367 research outputs found

    Optimal allocation of finite sampling capacity in accumulator models of multi-alternative decision making

    Full text link
    When facing many options, we narrow down our focus to very few of them. Although behaviors like this can be a sign of heuristics, they can actually be optimal under limited cognitive resources. Here we study the problem of how to optimally allocate limited sampling time to multiple options, modelled as accumulators of noisy evidence, to determine the most profitable one. We show that the effective sampling capacity of an agent increases with both available time and the discriminability of the options, and optimal policies undergo a sharp transition as a function of it. For small capacity, it is best to allocate time evenly to exactly five options and to ignore all the others, regardless of the prior distribution of rewards. For large capacities, the optimal number of sampled accumulators grows sub-linearly, closely following a power law for a wide variety of priors. We find that allocating equal times to the sampled accumulators is better than using uneven time allocations. Our work highlights that multi-alternative decisions are endowed with breadth-depth tradeoffs, demonstrates how their optimal solutions depend on the amount of limited resources and the variability of the environment, and shows that narrowing down to a handful of options is always optimal for small capacities

    Relevancia del problema de control motor y reconsideración del protocolo NIOSH en las tareas con manipulación manual de cargas

    Get PDF
    En este trabajo de investigación se ha analizado la manipulación manual de cargas utilizando los sistemas electrónicos y tecnologías desarrolladas en el Laboratorio de Biomecánica del Movimiento Humano y Ergonomía de la Universidad de Extremadura que han permitido medir la geometría del movimiento y el nivel de esfuerzo que suponen estas tareas. Los resultados obtenidos corroboran todas las hipótesis establecidas respecto de la intervención de los músculos analizados y su relación con el problema de control de los movimientos Además los resultados sugieren una discusión científica sobre la fiabilidad del protocolo NIOSH que tendría que tener en cuenta la calidad de control postural en la manipulación manual de cargas y de la técnica en la determinación del nivel de riesgo de padecer problemas músculo – esqueléticos. Concluyendo se puede afirmar que en Extremadura se dispone de una metodología científica altamente fiable que permite analizar y evaluar tareas que incluyen manipulación manual de cargas que puede ser de mucha utilidad tanto para la prevención de riesgos laborales como para la formación de los prevencionistas

    Beyond neural coding? Lessons from perceptual control theory

    Get PDF
    Pointing to similarities between challenges encountered in today's neural coding and twentieth-century behaviorism, we draw attention to lessons learned from resolving the latter. In particular, Perceptual Control Theory posits behavior as a closed-loop control process with immediate and teleological causes. With two examples, we illustrate how these ideas may also address challenges facing current neural coding paradigms

    Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance

    Full text link
    When an ambiguous stimulus is viewed for a prolonged time, perception alternates between the different possible interpretations of the stimulus. The alternations seem haphazard, but closer inspection of their dynamics reveals systematic properties in many bistable phenomena. Parametric manipulations result in gradual changes in the fraction of time a given interpretation dominates perception, often over the entire possible range of zero to one. The mean dominance durations of the competing interpretations can also vary over wide ranges (from less than a second to dozens of seconds or more), but finding systematic relations in how they vary has proven difficult. Following the pioneering work of W. J. M. Levelt (1968) in binocular rivalry, previous studies have sought to formulate a relation in terms of the effect of physical parameters of the stimulus, such as image contrast in binocular rivalry. However, the link between external parameters and “stimulus strength” is not as obvious for other bistable phenomena. Here we show that systematic relations readily emerge when the mean dominance durations are examined instead as a function of “percept strength,” as measured by the fraction of dominance time, and provide theoretical rationale for this observation. For three different bistable phenomena, plotting the mean dominance durations of the two percepts against the fraction of dominance time resulted in complementary curves with near-perfect symmetry around equi-dominance (the point where each percept dominates half the time). As a consequence, the alternation rate reaches a maximum at equi-dominance. We next show that the observed behavior arises naturally in simple double-well energy models and in neural competition models with cross-inhibition and input normalization. Finally, we discuss the possibility that bistable perceptual switches reflect a perceptual “exploratory” strategy, akin to foraging behavior, which leads naturally to maximal alternation rate at equi-dominance if perceptual switches come with a cost

    Auto and crosscorrelograms for the spike response of LIF neurons with slow synapses

    Full text link
    An analytical description of the response properties of simple but realistic neuron models in the presence of noise is still lacking. We determine completely up to the second order the firing statistics of a single and a pair of leaky integrate-and-fire neurons (LIFs) receiving some common slowly filtered white noise. In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are obtained from an improvement of the adiabatic approximation introduced in \cite{Mor+04}. These two functions define the firing variability and firing synchronization between neurons, and are of much importance for understanding neuron communication.Comment: 5 pages, 3 figure

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    The Cost of Accumulating Evidence in Perceptual Decision Making

    Get PDF
    Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic programming, we were able to estimate the cost of making additional observations per unit of time from two monkeys and six humans in a reaction time (RT) random-dot motion discrimination task. Surprisingly, we find that the cost is neither zero nor constant over time, but for the animals and humans features a brief period in which it is constant but increases thereafter. In addition, we show that our theory accurately matches the observed reaction time distributions for each stimulus condition, the time-dependent choice accuracy both conditional on stimulus strength and independent of it, and choice accuracy and mean reaction times as a function of stimulus strength. The theory also correctly predicts that urgency signals in the brain should be independent of the difficulty, or stimulus strength, at each trial
    corecore