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There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary
physics approaches which have been successfully applied to online E-commerce platforms. Motivated by
this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite
networks. Taking into account the degree information, the proposed generalized model could deduce the
collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them.
Furthermore, we analyze the generalized model with single and hybrid of degree information on the
process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree
information for different popular objects to toward promising precision of the recommendation.

1. Introduction

Over the last decade, the rapid growth of information in both 
online and offline leads to an information overload problem [1,2]. 
All of surfers would have the feeling of confusion which one is 
the best when searching online, reading online, shopping online, 
entertaining online, or even dating online [3,4]. To address these 
problems, the information filtering has become a promising and 
effective way to filter out the irrelevant information and provides 
personalized suggestions according to the track of past purchases 
of users as well as other information of products and users [5,6]. 
Due to its significance for the economy and society, designing ef-
ficient information filtering algorithms has received wide attrac-
tions in many branches of science such as computer science, in-
formation science and interdisciplinary physics. One of the most 
promising information filtering algorithms is the collaborative fil-
tering (CF) [7,8]. The CF makes work according to the database 
of the users’ past history of purchases and the product searching 
records to offer the personalized recommendation. Breese et al. [9]
classified CF into two broad groups which were memory-based 
and model-based methods. The memory-based methods predict 
missing information and recommend products based on similarity 
measures between users and products [7,8,10]. The model-based 
algorithms use the collection of the user and object informa-
tion to learn an information filtering model by clustering [11], 
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bayesian [12], matrix factorization [13,14] and other machine 
learning techniques [15,16]. Being different from the perspec-
tive computer sciences, the interdisciplinary physics approaches 
adapted the complex network theory and various classical physics 
processes have provided some new insights and solutions for the 
challenges in the active field of the information filtering [6,17,18], 
for instance, a diffusion process analogous to the heat conduction 
process across a bipartite complex network [19], a network-based 
inference method considering the resource allocation dynamics on 
bipartite complex networks [20], the opinion diffusion [21] and 
the gravity principle [22] being extended in the information filter-
ing, the information core and information backbone [23,24] shed 
some light on the in-depth understanding of information filtering. 
Further, the review [6] highlighted a prospect of physicists to a 
comprehensive guide to information filtering algorithms.

In summary, the CF and interdisciplinary algorithms have 
already been successfully applied to many well-known online 
e-commerce platforms. Meanwhile, many recent works have been 
devoted to study the expansion of both algorithms, for instance hy-
brid method [25,26], biased-heat conduction [27,28], multi-channel 
diffusion [29], preferential diffusion [30,31], hybrid diffusion [32], 
direct random walks method based on CF [33], hypergraph model 
with social tag [34,35], multi-linear interactive matrix factoriza-
tion [36]. These algorithms would further improve the efficiency 
of the information filtering. By referring to them, there could exist 
a simple general formula behind CF, interdisciplinary physics algo-
rithms as well as the extension methods. Motivated by this idea, 
we propose a simple general model in which employing the dy-
namics of the random walk in bipartite networks and then derive 
an analytical expression for tunable parameters of the transition 
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Fig. 1. (Color online.) Illustration of a bipartite network which is constructed by the tracks of the consumer purchases, which can be described as the process of the random 
walker model. (a) A small example of a bipartite network which keeps the track of the consumer purchases. (b) The random walker starts from the user side. (c) The random 
walker starts from the object side.

probability matrix. When taking into account the degree informa-
tion, the process of random walkers can be equivalent to the repre-
sentative information filtering algorithms such as the CF [7,8], heat 
conduction method [21], network-based inference method [20], 
hybrid method [25]. These above methods are exceptional cases 
from the proposed generalized model. Consequently, we analyze 
the generalized model with single and hybrid of degree informa-
tion on the process of random walk in bipartite networks, and the 
effect of degree information on the different popular level objects 
in the process of the information filtering. Finally, we suggest a 
possible strategy for different popular objects in the recommenda-
tion when using the single and hybrid of degree information on 
the process of random walk in bipartite networks.

2. Models

In Fig. 1(a), we present an example of a bipartite network which 
is constituted by the records of consumer purchases. We would 
recommend an object to a user based on his/her similar past pur-
chases with others or the purchase records of those who have 
some resemblance with him/her. In a broad view, we can make 
personalized recommendations for each consumer depending on 
the past purchases of the consumer as well as information re-
lating to the similarity of other consumers or items. With this 
concept, many online business platforms such as Alibaba, Ama-
zon, Neflix, Digg are reported to develop sophisticated information 
filtering systems to boost their online sales. Therefore, the infor-
mation filtering problem is reduced to the problem that estimating 
the valuation for products that have not been seen by consumers. 
Considering the fact that millions of products exist in online busi-
ness platform, the information filtering problem could be thought 
as identifying only the highest ranked products for each user in-
stead of predicting the rating of each product for each user.

2.1. The random walker model

Let us consider an unweighted bipartite network G(U , O , E), 
where U = {u1,u2, · · · ,um}, O  = {o1,o2, · · · ,on} and E =
{e1, e2, · · · , el} are the set of users, products and links respectively. 
The network is described by AM∗N , adjacency matrix with Aiα if 
there is a track between user i and product α, and zero other-
wise. The dynamics of a random walker on the bipartite network 
is encoded by a transition probability matrix with elements of the 
form,

P (ui → oα) or P (oα → ui), (1)

measuring the probability that a walker passes from ui to oα

(or oα to ui ).
Firstly, we can assume that a random walker starts from the 

user side at the beginning, and the walker’s initial state assigns 
as X0 = u. We represent the probability P (u, o, t) as the walker 

passes from the user side ui to the object side oα during the 
t steps and corresponding to transition state which interprets as 
X0, X1, · · · , Xt−1, Xt . Consequently, the probability P (u, o, t) that 
the walker reaches the object side oα during t steps under the 
initial state X0 = u is,

P (u,o, t) = P (Xt = o | X0 = u) (2)

and then, from bayesian theory, we can get,

P (Xt = o | X0 = u)

=
∑
o′∈O

P (Xt = o | Xt−2 = o′, X0 = u)P (Xt−1 = o′ | X0 = u)

=
∑
o′∈O

P (Xt = o | Xt−2 = o′, X0 = u)P (u,o, t − 1). (3)

We now define the walkers from the user side u and along the 
object side o to the next pathway. The each pathway is selected by 
the probability ψ .

P (Xt = o | Xt−2 = o′, X0 = u) = ψ. (4)

Finally, combing the equation (2), (3), (4), we can get

P (Xt = o | X0 = u) =
∑
o′∈O

P (u,o, t − 1)ψ. (5)

The recommendation is to develop an effective way to provide 
personalized suggestions according to the track of past purchases 
of users and objects. We can assume the walkers can walk along 
with the track of past purchases of users and objects. For sim-
plicity, Fig. 1(b) and (c) represent the process of the walker when 
considering the situation t = 3. Fig. 1(b) shows that the walker’s 
road map (users–objects–users–objects) which starting from the 
user side, while as shown in Fig. 1(c), the walker’s road map ap-
pears objects–users–objects–users which starting from the object 
side. Starting from the user side, the random walker must walk 
three steps at least to the object side, and starting from the object 
side, the random walker also must walk three steps at least to the 
user side. So, if an object is selected to recommend to a user, the 
random walker needs to walk t (t = 2 ∗ j +1, j = 1, 2, . . .) steps. In 
summary, there are two pathways for random walkers in one step.

1) The walkers pass from the user side to the object side with 
the probability matrix,

P (u → o) = �(u)A. (6)

2) The walkers pass from the object side to the user side with 
the probability matrix,

P (o → u) = A�(o), (7)

where, �(u) and �(o) are M ∗ M and N ∗ N diagonal matrix 
respectively corresponding to the user and product profiles, for 
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example, degree, eigenvector, cluster coefficient and so on in the 
bipartite networks. Apparently, we could also present the proba-
bility matrix as AT �(u) or �(o)AT respectively.

2.2. The random walker model with degree information

The transition probability matrix allows us to capture many 
attributes of the bipartite networks. Among these attributes, the 
degree information which is the very simple way of quantifying 
attributes of bipartite networks would be considered in this pa-
per. Firstly, we define D(u, λ) and D(o, λ) as the diagonal degree 
matrix which is calculated detailedly,

D(u, λ) =
⎧⎨
⎩

1
(
∑
j

Ai j)
λ , i = j

0, i �= j
(8)

D(o, λ) =
⎧⎨
⎩

1
(
∑
i

Ai j)
λ , i = j

0, i �= j
(9)

We then consider the simplest situation of the random walker 
dynamics when t = 3. As we can see from Fig. 1(b) and (c), there 
are two ways in one step, which the walk starts from the user side 
or the abject side respectively,

1) The walkers pass from the user side to the object side with 
the probability matrix,

P (u → o) = D(u, λ)A. (10)

2) The walkers pass from the object side to the user side with 
the probability matrix,

P (o → u) = AD(o, λ). (11)

Now, we introduce the CF, interdisciplinary physics algorithms 
from the prospect of the dynamics of random walkers by equa-
tion (10) and (11). The common procedure of the collaborative 
filtering technique is firstly computing similarity between users 
(user-based) or objects (object-based) and then making a predic-
tion based on the similarity in the first step. The basic idea in 
the quantification of similarity between two users is based on 
the number of objects which have been chosen by both users in 
the past. It is also possible to define a similarity between two 
objects based on the number of users who have chosen them. 
Thus, taking account of these two steps, the simple collaborative 
filtering procedure can be expressed by AAT . In the HC, the re-
source is redistributed via an averaging procedure with users re-
ceiving a level of resource equal to the mean amount possessed 
by their neighbouring objects, and objects then receiving back the 
mean of their neighbouring users’ resource levels. By contrast, in 
the NBI, the initial resource placed on objects is first evenly dis-
tributed among neighbouring users and then evenly redistributed 
back to those users neighboring objects. Both HC and NBI are re-
distributed resource in a manner akin to a random walker process. 
Whereas, HC employs a row-normalized transition matrix, that of 
NBI is a column-normalized transition matrix. Thereupon, the hy-
brid method (HM) can be achieved by incorporating the a tunable 
parameter λ into the transition matrix normalization. The detailed 
matrices are expressed as D(o, 1 − λ)AT D(u, 1)AD(o, λ)AT . When 
λ = 0 the equation equals HC, and λ = 1 the equation equals NBI. 
As discussing above, these recommendation procedures can be ex-
pressed according to the random walker process as shown in Ta-
ble 1, from which the above methods are exceptional cases from 
equation (10) and (11). When we consider three steps in ran-
dom walks, we can achieve a simple recommendation. While in 
the three or more steps, there exists a great number of com-
binations which can develop a large amount of recommendation 
algorithms.

Table 1
Deducing the proposed information filtering methods recently in the literature by 
the random walker model.

Method First step Second step Third step

CF A AT A

HC A AT D(u,1) AD(o,1)

NBI A D(o,1)AT D(u,1)A

HM D(o,1− λ)AT D(u,1)A D(o, λ)AT

3. Materials and metrics

3.1. Materials

In this paper, we test the general model in a representative real 
network which is sampled from MovieLens [37]. MovieLens is an 
online video recommendation web site which invites users to rate 
videos. The rating records in the MovieLens range from one (i.e., 
worst) to five (i.e., best). If a user i selects an video α and rates 
it, a link between the user i and the video α would be established 
as shown in Fig. 1(a). In this paper, we only consider the ratings 
larger than 3 as links. Based on those selected links, we can con-
struct a user-video bipartite network. MovieLens-1 data set (M1) 
contains more than 8 million records, and MovieLens-2 (M2) is a 
subset of M1 dataset which only contains 800 thousand records. 
M2 data set is usually used as benchmark data set of the informa-
tion filtering. In the following we report the results corresponding 
to the M2 data set that is randomly divided into the training set 
and the test set. The training set contains 90% of the data, while 
the test set consists of the remaining 10% of data. It is notable that 
in results, we consider that the length of a recommendation list 
L which can be proposed to each user is 20. This value has been 
already used in other works and can be considered a valid ref-
erence to compare the performance of different recommendation 
measurements. In addition, we run 100 independent realizations 
in each experiment.

For Movielens data sets, we first display the degree distribu-
tion of objects in Fig. 2(a). The distribution exhibits relatively broad 
tails which indicates most objects’ degree is small, and a few ob-
jects’ degree is large. This suggests that we should take the degree 
long tail effect into account. In this paper, we classify the objects’ 
degree into three different levels. In the high level, we consider 
the objects whose degree ranks top 1%. In the medial level, the ob-
jects’ degree ranks from top 1% to top 10%. The low level contains 
the rest 90% of objects. For each targeted level object set, the user 
degree distribution is shown in Fig. 2(b) and (c). We can find in 
the high degree object group, the user degree distribution shows a 
strong inclination, which suggests the users with small degree are 
more likely to select the objects in the high level, while for the 
low degree object group, the inclination of the user degree drops 
down clearly. It is notable that these objects accounted for 90%. 
Thereupon, when designing an efficient information filtering algo-
rithms, the inclination of the user preference to objects at different 
popularity level should be well-considered.

3.2. Metrics

As we known, the discussed above each method will generate 
a recommendation list L for users. In principle, the recommenda-
tion list from an effective recommendation method should be as 
close as possible to the user purchase records in the real world. 
While, the proposed methods allow us to employ many attributes 
of the bipartite networks and tunable parameters to capture the 
individual interests of users. As a result, we need to evaluate that 
how the attributes of the bipartite networks and tunable parame-
ters effect the recommendation list. So, we define the preference 
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Fig. 2. (Color online.) The degree distribution of objects in two movielens data sets. (a) The degree distribution of objects. The two sets have the same slope −0.95. 
(b) and (c) The distribution of the user degree with objects which are in high, medial, low level respectively.

Fig. 3. (Color online.) The preference of recommendation when considering single factors of the user degree information. We employ the random walker process which is 
described as D(U , λ)AAT D2(u, λ)A. In order to compare the prediction with the realization, we consider the tunable parameters λ = 0, 0.5, 1 and the test set.

of the recommendation to analyze that for a specific group of ob-
jects, the users by which the recommendation algorithms tend to 
recommend to. Meanwhile, we use the precision of the recom-
mendation to analyze how many objects in the recommendation 
list are actually in user purchase records in the real world. Firstly, 
we limit to the objects in the high level and assume that for a 
targeted user i, there are H(i) high level objects in the recommen-
dation list, and C(i) high level objects belong to the test and the 
recommendation list in common. We define the preference of rec-
ommendation as follows,

P (k) =
∑

i∈Uk
H(i)∑

i∈U H(i)
, (12)

where Uk is the set of users whose degree equals k. The precision 
is defined as the ratio of the relevant objects in the real world 
selected to the number of objects recommended accurately. The 
precision equals,

Precision = 1

mH

∑
i∈U

C(i)

H(i)
, (13)

where mH is the total number of objects in the high level. Thus, 
a higher the precision value means a more accurate prediction of 
the recommendation. In addition, the corresponding objects in the 
medial and low level are taken the same processes.

4. Validations

4.1. The effect of single factors

For a better understanding of the generalized model, we con-
sider the single degree information in the process of the random 
walk. Firstly, we consider the process of the random walk only 
with the probability matrix (D(u, λ)A) during the three steps. The 
equation for the three steps of random walks can be expressed 
as D(U , λ)AAT D2(u, λ)A. The preference of recommendation is 
shown in Fig. 3. With λ increasing, the recommendation algorithm 

is less likely to recommend objects which are in the high and me-
dial level, but for objects which are in the low level as shown in 
Fig. 3(c), with λ increasing, the corresponding algorithm is more 
inclined to recommend these objects. It suggests that the predic-
tion of recommendation for objects which are in high and medial 
level is contrary to that for objects in low level with λ increasing.

Meanwhile, we discuss the dynamics of the random walk which 
is only affected by the object degree information with the prob-
ability matrix (D(o, λ)AT ). The random walk process can be ex-
pressed as AD2(o, λ)AT AD(o, λ). The results of the recommenda-
tion preference are shown in Fig. 4. It is notable that when λ = 1, 
the prediction results that the recommendation algorithm can not 
recommend the objects which are in the high and medial level as 
shown in Fig. 4(a) and (b). As given in Fig. 4(b) and (c), the recom-
mendation algorithm is more tendency to recommend the objects 
which are in medial and low level with λ decreasing. In summary, 
when only considering the user degree information, objects in the 
high and medial level are less likely to be recommended to the 
users with the parameter λ increasing, while the objects in the 
low level, the preference of recommendation is reversed. When 
only considering the object degree information with the param-
eter λ increasing, the objects in the low level are less inclined to 
be recommended to the users.

Fig. 5 shows that how the precision changes with the tunable 
parameter λ when the process of the random walk is only affected 
by the object or user degree information. There exist different opti-
mal parameters leading to the highest precision value for objects in 
the high, medial and low level respectively. Firstly, we analyze that 
the precision value changes with λ varying when only consider-
ing the user degree information. The precision about the objects in 
the high level is closely to 1 and keeps stably. While in the medial 
level, the precision declines slowly when λ increases, in addition 
in low level, the precision value is very low, and also increases 
slowly. But when only consider the object degree information, the 
precision can reach 0.11 in the low level. In the high and medial 
level, when λ is more than 0.75, the precision stays at 0. The main 
reason is that when λ rising, the recommendation algorithm do 
not recommended objects in the high and medial level as shown 
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Fig. 4. (Color online.) The recommendation preference when considering single factors of object degree information. We employ the random walker process which can be 
described as AD2(o, λ)AT AD(o, λ). In order to compare the prediction with the realization, we consider the tunable parameters λ = 0, 0.5, 1 and the test set.

Fig. 5. (Color online.) Precision with the tunable parameter λ for the prediction of the recommendation when considering the single degree information in the process of the 
random walk. Squares (�) indicate that the precision of the recommendation when the random walker process with the probability matrix D(o, λ)AT uses the object degree 
information. Circles (◦) report that the precision of the recommendation when the dynamics of random walk affects by user degree information with the probability matrix 
(D(u, λ)AT ).

Fig. 6. (Color online.) The recommendation preference when considering the hybrid factors of the constant user degree information and the variable object degree information. 
We employ the random walker process which is described as (D(o, 1 − λ)AT D(u, 1)AD(o, λ)AT ). In order to compare the prediction with the realization, we consider the 
tunable parameters λ = 0, 0.4, 0.8, 1 and the test set.

in Fig. 4(a) and (b). As a result, in order to improve the precision 
of the recommendation, we should take different strategies to rec-
ommend the objects at different popularity levels.

4.2. The effect of hybrid factors

In this section, we analyze the effect of the hybrid factors about 
the degree information of users and objects. Firstly, we consider 
the formula (D(o, 1 −λ)AT D(u, 1)AD(o, λ)AT ), in which the object 
degree information and user degree information are both taken ac-
count in the information filtering systems. In the system, the user 
degree information is constant, while the object degree informa-
tion is tunable. We can describe the dynamics of random walk in 
detail. In the first step, the random walkers pass from the object 
side to the user side who are only affected by the object degree 
information with the probability matrix (D(o, 1 − λ)AT ). In the 
second step, the random walkers move through the access from 
the user side to the object side with the constant probability ma-
trix (D(u, 1)A). While in the third step, the random walkers go 
to the user side from the object side with the tunable probabil-
ity matrix (D(o, λ)AT ) which just includes the object information. 
In addition, we consider the parameter λ = 0, 0.4, 0.8 and 1. We 

can see from Fig. 6(a) in the high level, when λ = 0, the recom-
mendation preference fits with the test set well. However, when λ
increases to 1, the preference of recommendation to objects in the 
high level becomes clearer, which suggests that the recommenda-
tion algorithm is more inclined to recommend the objects in the 
high level. From Fig. 6(b) and (c) in the medial and low level, the 
preference of recommendation to objects also becomes more evi-
dent as λ increasing.

After discussing the random walker dynamics with the con-
stant user degree information and the tunable object degree in-
formation, we then analyze the process of the random walk with 
the tunable user degree information and the constant object de-
gree information. In the first step, walkers start from the user 
side to object side, we only consider the user degree information 
with the tunable probability matrix (D(u, 1 − λ)A). In the second 
step, the random walkers pass from the object side to the user 
side determined by the constant object degree information with 
the probability matrix (D(o, 1)AT ). In the last step, the walkers 
track from the user side to the object side, the user degree in-
formation is also taken into account with the tunable probability 
matrix (D(u, λ)A). The results of the recommendation preference 
are revealed in Fig. 7, it is surprising to us that the correspond-
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Fig. 7. (Color online.) The recommendation preference when considering the hybrid factors of the constant object degree information and the variable user degree information. 
We employ the random walker process which is described as (D(u, 1 − λ)AD(o, 1)AT D(u, λ)A). In order to compare the prediction with the realization, we consider the 
tunable parameters λ = 0, 0.4, 0.8, 1 and the test set.

Fig. 8. (Color online.) Precision with the tunable parameter λ for the prediction of recommendation when considering the effect of the hybrid factors about the degree 
information of users and objects. Squares (�) indicate that the precision of the recommendation when the random walker dynamics with the constant user degree infor-
mation and the tunable object degree information. Circles (◦) report that the precision of recommendation when the process of random walk with the tunable user degree 
information and the constant object degree information.

ing can not recommend the objects in the high and medial level 
to the users when λ = 1 as shown in Fig. 7(a) and (b). When 
λ = 0, 0.4, 0.8, the preference of recommendation is similar, which 
suggests the tunable parameter λ could not affect the recommen-
dation for the objects in the high and medial level considering the 
constant object degree information and the tunable variable user 
degree information. While in Fig. 7(c) in the low level, we could 
see that with λ increasing, the recommendation algorithm is less 
likely to recommend objects, which is different from that consider-
ing the constant user degree information and the tunable variable 
object degree information.

We also perform the analysis of the prediction precision when 
taking different hybrid factors into account as revealed in Fig. 8. 
When the process of random walk with the tunable user degree 
information and the constant object degree information as the 
parameter λ increases, the precision of recommendation always 
equals to 1 in the high level, and increases slowly in the medial 
level, while in the low level increases more slowly. That is to say, 
the precision of recommendation does not change much with the 
tunable parameter λ varying, which is different from the process 
of random walk affected by the tunable object degree information 
and the constant user degree information, in which as the param-
eter λ increases, the precision also rises to the highest value 1
and then keeps stable in the high level, while in the medial level 
the precision can reach the highest value 0.49 and then declines 
slowly. In the low level, the precision value always descends with 
the tunable parameter λ increasing. In general, it is easy to find 
optimal strategy for objects in high and medial level to recom-
mend them accurately and efficiently, but for objects in low level, 
we should consider a better method to improve the accuracy of 
the recommendation.

5. Conclusions and discussions

So far, the collaborative filtering techniques and the interdisci-
plinary physics approaches attract a wealth of empirical and the-

oretical research and produce many successful E-commerce plat-
forms. There could exist a simple general formula behind the col-
laborative filtering, interdisciplinary physics algorithms and even 
the extension methods. In agreement with the previous studies, we 
employed the dynamics of the random walks, and the framework 
of the general model had three key steps, which were (1) building 
the initial transition probability matrix with tunable parameters; 
(2) obtaining the track of random walkers; and (3) figuring out the 
walker tracks to predict the preference of users. We considered the 
simplest degree information in bipartite networks and proposed 
a generalized formula, which could deduce and develop the pro-
posed well-known information filtering methods recently in the 
literatures such as collaborative filtering, network-based inference, 
heat conduction and hybrid method. Furthermore, we studied the 
generalized method with the single and hybrid degree informa-
tion on the process of the random walk in the bipartite networks. 
The results stated clearly that the user degree information af-
fected the recommendation preference which is in contrast with 
only considering the object degree information, further the perfor-
mance of recommendation was affected by the process of random 
walk when taking account different single and hybrid degree in-
formation. As a result, we could suggest that using the two hybrid 
factors adjust the recommendation preference for different popu-
lar objects to toward promising precision of recommendation. Our 
findings could provide several pragmatic lessons for the efficient 
recommendation strategy in the E-business platforms and efficient 
interactive information prediction in online social networks. For 
instance, the different popular level objects could develop an ap-
propriate strategy to make recommendations for users, as well as 
considering the preference of users with different activity. Mean-
while, this work leads to many extension, for instance, the other 
information of bipartite networks such as clustering, eigenvector, 
and assortative coefficient could also be applied in the random 
walk dynamics in the further research. In addition, we just develop 
the process of the random walk to information filtering consider-
ing simplest situation in our proposed generalized method, and we 
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will further study the machine learning technique to train the op-
timal road map of random walkers for offering the personalized 
recommendation.
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