8 research outputs found

    Noise Covariance Properties in Dual-Tree Wavelet Decompositions

    Get PDF
    Dual-tree wavelet decompositions have recently gained much popularity, mainly due to their ability to provide an accurate directional analysis of images combined with a reduced redundancy. When the decomposition of a random process is performed -- which occurs in particular when an additive noise is corrupting the signal to be analyzed -- it is useful to characterize the statistical properties of the dual-tree wavelet coefficients of this process. As dual-tree decompositions constitute overcomplete frame expansions, correlation structures are introduced among the coefficients, even when a white noise is analyzed. In this paper, we show that it is possible to provide an accurate description of the covariance properties of the dual-tree coefficients of a wide-sense stationary process. The expressions of the (cross-)covariance sequences of the coefficients are derived in the one and two-dimensional cases. Asymptotic results are also provided, allowing to predict the behaviour of the second-order moments for large lag values or at coarse resolution. In addition, the cross-correlations between the primal and dual wavelets, which play a primary role in our theoretical analysis, are calculated for a number of classical wavelet families. Simulation results are finally provided to validate these results

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Wavelet-based noise reduction of cDNA microarray images

    Get PDF
    The advent of microarray imaging technology has lead to enormous progress in the life sciences by allowing scientists to analyze the expression of thousands of genes at a time. For complementary DNA (cDNA) microarray experiments, the raw data are a pair of red and green channel images corresponding to the treatment and control samples. These images are contaminated by a high level of noise due to the numerous noise sources affecting the image formation. A major challenge of microarray image analysis is the extraction of accurate gene expression measurements from the noisy microarray images. A crucial step in this process is denoising, which consists of reducing the noise in the observed microarray images while preserving the signal information as much as possible. This thesis deals with the problem of developing novel methods for reducing noise in cDNA microarray images for accurate estimation of the gene expression levels. Denoising methods based on the wavelet transform have shown significant success when applied to natural images. However, these methods are not very efficient for reducing noise in cDNA microarray images. An important reason for this is that existing methods are only capable of processing the red and green channel images separately. In doing so. they ignore the signal correlation as well as the noise correlation that exists between the wavelet coefficients of the two channels. The primary objective of this research is to design efficient wavelet-based noise reduction algorithms for cDNA microarray images that take into account these inter-channel dependencies by 'jointly' estimating the noise-free coefficients in both the channels. Denoising algorithms are developed using two types of wavelet transforms, namely, the frequently-used discrete wavelet transform (DWT) and the complex wavelet transform (CWT). The main advantage of using the DWT for denoising is that this transform is computationally very efficient. In order to obtain a better denoising performance for microarray images, however, the CWT is preferred to DWT because the former has good directional selectivity properties that are necessary for better representation of the circular edges of spots. The linear minimum mean squared error and maximum a posteriori estimation techniques are used to develop bivariate estimators for the noise-free coefficients of the two images. These estimators are derived by utilizing appropriate joint probability density functions for the image coefficients as well as the noise coefficients of the two channels. Extensive experimentations are carried out on a large set of cDNA microarray images to evaluate the performance of the proposed denoising methods as compared to the existing ones. Comparisons are made using standard metrics such as the peak signal-to-noise ratio (PSNR) for measuring the amount of noise removed from the pixels of the images, and the mean absolute error for measuring the accuracy of the estimated log-intensity ratios obtained from the denoised version of the images. Results indicate that the proposed denoising methods that are developed specifically for the microarray images do, indeed, lead to more accurate estimation of gene expression levels. Thus, it is expected that the proposed methods will play a significant role in improving the reliability of the results obtained from practical microarray experiments

    Probabilistic modeling of wavelet coefficients for processing of image and video signals

    Get PDF
    Statistical estimation and detection techniques are widely used in signal processing including wavelet-based image and video processing. The probability density function (PDF) of the wavelet coefficients of image and video signals plays a key role in the development of techniques for such a processing. Due to the fixed number of parameters, the conventional PDFs for the estimators and detectors usually ignore higher-order moments. Consequently, estimators and detectors designed using such PDFs do not provide a satisfactory performance. This thesis is concerned with first developing a probabilistic model that is capable of incorporating an appropriate number of parameters that depend on higher-order moments of the wavelet coefficients. This model is then used as the prior to propose certain estimation and detection techniques for denoising and watermarking of image and video signals. Towards developing the probabilistic model, the Gauss-Hermite series expansion is chosen, since the wavelet coefficients have non-compact support and their empirical density function shows a resemblance to the standard Gaussian function. A modification is introduced in the series expansion so that only a finite number of terms can be used for modeling the wavelet coefficients with rendering the resulting PDF to become negative. The parameters of the resulting PDF, called the modified Gauss-Hermite (NIGH) PDF, are evaluated in terms of the higher-order sample-moments. It is shown that the MGH PDF fits the empirical density function better than the existing PDFs that use a limited number of parameters do. The proposed MGH PDF is used as the prior of image and video signals in designing maximum a posteriori and minimum mean squared error-based estimators for denoising of image and video signals and log-likelihood ratio-based detector for watermarking of image signals. The performance of the estimation and detection techniques are then evaluated in terms of the commonly used metrics. It is shown through extensive experimentations that the estimation and detection techniques developed utilizing the proposed MGH PDF perform substantially better than those that utilize the conventional PDFs. These results confirm that the superior fit of the MGH PDF to the empirical density function resulting from the flexibility of the MGH PDF in choosing the number of parameters, which are functions of higher-order moments of data, leads to the better performance. Thus, the proposed MGH PDF should play a significant role in wavelet-based image and video signal processin
    corecore