
N O T E T O USERS 

This reproduction is the best copy available. 

UMI 





Wavelet-Based Noise Reduction of 
cDNA Microarray Images 

TAMANNA HOWLADER 

A THESIS 

IN 

T H E DEPARTMENT 

OF 

MATHEMATICS AND STATISTICS 

P R E S E N T E D IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

F O R THE D E G R E E OF D O C T O R OF PHILOSOPHY 

CONCORDIA UNIVERSITY 

MONTREAL, Q U E B E C , CANADA 

J U N E 2 0 0 9 

(C) TAMANNA HOWLADER, 2 0 0 9 



1 * 1 
Library and Archives 
Canada 

Published Heritage 
Branch 

Bibliothgque et 
Archives Canada 

Direction du 
Patrimoine de l'6dition 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votm reference 
ISBN: 978-0-494-63377-9 
Our file Notre r6f6rence 
ISBN: 978-0-494-63377-9 

NOTICE: AVIS: 

The author has granted a non-
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Biblioth&que et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

M 

Canada 



A B S T R A C T 

Wavelet-Based Noise Reduction of cDNA Microarray Images 

Tamanna Howlader, Ph.D. 

Concordia University, 2009 

The advent of microarray imaging technology has lead to enormous progress in 

the life sciences by allowing scientists to analyze the expression of thousands of genes 

at a time. For complementary DNA (cDNA) microarray experiments, the raw data 

are a pair of red and green channel images corresponding to the treatment and control 

samples. These images are contaminated by a high level of noise due to the numerous 

noise sources affecting the image formation. A major challenge of microarray image 

analysis is the extraction of accurate gene expression measurements from the noisy 

microarray images. A crucial step in this process is denoising, which consists of 

reducing the noise in the observed microarray images while preserving the signal 

information as much as possible. This thesis deals with the problem of developing 

novel methods for reducing noise in cDNA microarray images for accurate estimation 

of the gene expression levels. 

Denoising methods based on the wavelet transform have shown significant success 

when applied to natural images. However, these methods are not very efficient for re-

ducing noise in cDNA microarray images. An important reason for this is that existing 

methods are only capable of processing the red and green channel images separately. 

In doing so, they ignore the signal correlation as well as the noise correlation that 

exists between the wavelet coefficients of the two channels. The primary objective of 

this research is to design efficient wavelet-based noise reduction algorithms for cDNA 

microarray images that take into account these inter-channel dependencies by 'jointly' 

estimating the noise-free coefficients in both the channels. Denoising algorithms are 
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developed using two types of wavelet transforms, namely, the frequently-used discrete 

wavelet transform (DWT) and the complex wavelet transform (CWT). The main ad-

vantage of using the DWT for denoising is that this transform is computationally very 

efficient. In order to obtain a better denoising performance for microarray images, 

however, the CWT is preferred to DWT because the former has good directional se-

lectivity properties that are necessary for better representation of the circular edges of 

spots. The linear minimum mean squared error and maximum a posteriori estimation 

techniques are used to develop bivariate estimators for the noise-free coefficients of the 

two images. These estimators are derived by utilizing appropriate joint probability 

density functions for the image coefficients as well as the noise coefficients of the two 

channels. 

Extensive experimentations are carried out on a large set of cDNA microarray 

images to evaluate the performance of the proposed denoising methods as compared 

to the existing ones. Comparisons are made using standard metrics such as the peak 

signal-to-noise ratio (PSNR) for measuring the amount of noise removed from the 

pixels of the images, and the mean absolute error for measuring the accuracy of the 

estimated log-intensity ratios obtained from the denoised version of the images. Re-

sults indicate that the proposed denoising methods that are developed specifically for 

the microarray images do, indeed, lead to more accurate estimation of gene expres-

sion levels. Thus, it is expected that the proposed methods will play a significant 

role in improving the reliability of the results obtained from practical microarray 

experiments. 
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Chapter 1 

Introduction 

Complementary DNA (cDNA) microarray image technology has transformed mole-

cular genetics, allowing researchers to study the activity of thousands of genes at a 

time. By examining all genes of a given organism at the same time and possibly un-

der different conditions, scientists can obtain valuable insights on gene function, gene 

regulation and gene interaction. The application of this technology is increasing in 

recent years as it becomes a powerful tool for discovering new types of diseases and for 

predicting or diagnosing the type of disease based on gene expression measurements. 

The raw data of cDNA microarray experiments is a pair of fluorescent intensity 

images that measure the relative activity of genes under study. DNA microarray image 

processing is an important information extraction problem occurring in molecular 

biology and bioinformatics. Since, a microarray experiment is a multi-phased process 

with various sources of noise, the resulting images are often very noisy. The extraction 

of accurate gene expression measurements from these noisy images is a challenging 

problem and an area of intense scientific research. 

1.1 c D N A Microarray Images 

The cDNA microarray image technology is a tool geared at measuring the 'activity' 

of a gene. The two-channel cDNA microarray is designed to measure the activity of 
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a set of genes under two conditions, namely, treatment and control (Zhang, 2006). 

Very simply, a typical two-channel microarray experiment consists of the following 

steps. Messenger RNA (mRNA) from control and treatment samples are converted 

into cDNA, labelled with fluorescent dyes (green Cy3 dye for control, red Cy5 dye 

for treatment) and mixed together. The mixture is then washed over a slide spotted 

with probes, which are DNA sequences from known genes. A given strand of cDNA 

bonds with the spot representing the gene which produced that transcript. Next, the 

slide is scanned producing two 16-bit images, one for the green channel and another 

for the red. These image files are the raw data of the microarray experiment. Each 

spot on the images consists of a number of pixels (typically, 50-400), wherein the 

brightness of each pixel reflects the amount of Cy3 or Cy5 at the spatial location 

corresponding to that pixel. Thus, one can identify the genes that are differentially 

expressed between the two samples by comparing the pixel intensities of each spot in 

the red and green channel images. A more detailed description of the concepts behind 

microarray technology and the steps involved in microarray experiments is given in 

Chapter 2. 

Microarray experiments involve a large number of error-prone steps which result 

in a high level of noise in the resulting images (Ruosaari and Hollmen, 2002; Mas-

triani and Giraldez, 2006). The sources of noise can be divided into two categories: 

instrument noise and microarray noise. Instrument noise is produced by the imaging 

system itself. A microarray scanner is a complex instrument containing electrical, op-

tical, and mechanical parts. Consequently, there are many sources of distortions that 

affect the final microarray images. The different types of instrument noise are pho-

ton noise, laser light reflection, dark current noise, electronic noise and quantization 

noise (Zhang et al., 2002; Lukac et al., 2004; Mastrogianni et al., 2008). Microarray 

noise results from local contamination during the printing, hybridization and washing 
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stages of the experiment, dust on the glass slide and by non-specific hybridization to 

the probes on the microarray surface (Zhang et al., 2004). The presence of noise 

causes serious distortions in the pixel intensities and produces variations in the image 

such as different spot diameters, variable shape or contour, high background and/or 

low foreground, spatial artifacts, etc. 

1.2 Motivation 

One of the most important steps of microarray experiments is the conversion of the 

microarray image into numerical information that quantifies gene expression. This 

step is known as microarray image analysis. In cDNA microarray experiments, the 

log-intensity ratio is widely used as a measure of relative abundance of a gene in the 

treatment and control samples (Jornsten et al., 2002, 2003). This quantity is later used 

in downstream analysis such as gene clustering (Tseng and Kao, 2005) and sample 

classification (Xiong et al., 2007). The success of cDNA microarray data analysis is, 

therefore, critically dependent on the accuracy of the estimated log-intensity ratios. 

There are three major steps involved in extracting the log-intensity ratios from 

microarray images. The first step is gridding, which consists of identifying target 

areas within the image. Target areas are non-overlapping regions of the image each 

enclosing one spot (Bozinov and Rahnenfuhrer, 2002). In the second step, pixels 

within the target area that correspond to the spot must be found. This is performed 

by segmentation, which consists of partitioning the target area into the spot and 

its local background. The presence of noise results in inaccurate spot segmentation 

(Daskalakis et al., 2007). For instance, when histogram-based methods of segmenta-

tion are used, noise or artifacts may be classified into the spot leading to errors in the 

estimated spot intensity values (Zhang et al., 2004). In a noisy image, it is difficult to 

distinguish low intensity spots from their background and this often results in large 
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measurement errors. The next step is to calculate the log-intensity ratio from the 

spot pixel intensities. Common practices for combining pixel data in a spot from 

both images into an estimate of the log-intensity ratio include forming the simple 

ratio of average pixel values or forming the ratio of pixel medians. 

Significant differences are observed between values of the log-intensity ratio ob-

tained from the noisy images and the estimated noise-free or 'denoised' images. This 

indicates that the log-intensity ratio is highly sensitive to the presence of noise. The 

noise must therefore be reduced prior to calculating the log-intensity ratio to pre-

vent erroneous biological conclusions. To address the problem of noise in microarray 

experiments, one approach has been to develop statistical methods for estimating 

'true' gene-expression measurements from the noisy image. In such an approach, er-

ror models have been used to describe the relationship between real and observed 

intensity values while taking into account the cumulative effects of chemical, optical, 

and computational factors introduced by the microarray technology (Ideker et al., 

2000; Goryachev et al., 2001). However, the process of assessing and controlling the 

relative contributions of the many sources of noise in a microarray experiment is dif-

ficult. These methods are therefore complicated and yet to be standardized. Instead 

of tackling the problem at the analysis stage, alternatively, one could approach the 

problem from the top. This involves processing the noisy image so as to obtain an 

estimate of the noise-free image (denoising), from which, the true gene-expression 

measurements could then be extracted. Once the denoised image is obtained, the 

process of estimating the true gene-expression measurements becomes a relatively 

straightforward and easy process. The value of this approach is being increasingly 

recognized as more and more research articles are being devoted to the development 

of efficient algorithms for reducing noise in cDNA microarray images (O'Neill et al., 

2003; Lukac and Smolka, 2003; Wang et al.. 2003b; Lukac et al., 2004: .Mastriani and 
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Giraldez, 2006). 

There are some commercially available microarray image processing softwares for 

estimating the log-intensity ratios such as QuantArray, Spot, and GenePix. These 

softwares use low-level noise reduction techniques, such as the median filter, for 

processing the microarray images. However, these methods are insufficient, and the 

presence of noise results in erroneous segmentation and intensity extraction that leads 

to inaccurate estimation of the log-intensity ratios (Daskalakis et al., 2007). Thus, 

use of efficient algorithms for reducing noise is essential for microarray image analy-

sis. Noise removal in microarray images can be performed both in the pixel-domain 

as well as in the transform domain. For instance, O'Neill et al. (2003) proposed a 

noise reduction technique that is implemented in the pixel-domain. This method con-

structs a mask of the artifact, which is used to recreate the image of the noise. The 

noise image is then subtracted from the observed image to leave the noise-free signal. 

Lukac and Smolka (2003) proposed a method based on center-weighted vector median 

filters to attenuate noise in microarray images. In a later paper, Lukac et al. (2004) 

proposed two types of order-statistic filters for removing noise, one for the spot and 

another for the background. 

Although the pixel-based methods are simpler to implement in general, methods 

developed using an appropriate transform domain are more efficient in reducing noise. 

Various kinds of transforms such as the discrete cosine transform (DCT), the discrete 

Fourier transform (DFT) and the discrete wavelet transform (DWT) are available for 

processing microarray images. However, among the various transforms, the DWT has 

enjoyed greater success in reducing the noise in a signal (including an image) due to 

its space-frequency localization property and the freedom to choose different kinds of 

basis functions (Mallat, 1999). Unlike the other transforms, the DWT has been used 

extensively in signal and image denoising due to its high energy compaction proper-
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ties (see for example, Donoho and Johnstone, 1994; Gao and Bruce, 1997; Gao, 1998; 

Donoho and Johnstone, 1995; Chang et al., 2000a; Cai and Silverman, 2001; John-

stone and Silverman, 2005). Moreover, the decimated DWT, which is also known as 

the classical DWT, is nonredundant1 and thus denoising methods based on this trans-

form have computational complexity that is comparable to methods based on other 

transforms such as the DFT and DCT (Mallat, 1999; Sendur and Selesnick, 2002a). 

It is to be noted that fast implementation of the denoising algorithm is essential for 

processing the huge data of microarray experiments. However, the decimated DWT 

lacks the desirable shift-invariance and directional selectivity properties (see Chapter 

2 for details) that are important in the context of microarray image denoising. Thus, 

any variant of the DWT that has these features is expected to perform better. 

The success of wavelet-based methods for reducing noise in signals as well as stan-

dard images has motivated some research in the context of microarray images as well 

(see for example, Wang et al., 2003b; Mastriani and Giraldez, 2006; Mastrogianni 

et al., 2008). Moreover, the DWT being a multiresolution analysis allows one to effi-

ciently process an image at more than one resolution, and thus, it is gaining attention 

among researchers in the development of new techniques for conducting several tasks 

of microarray image processing and data analysis, such as, gridding (Athanasiadis 

et al., 2007), spot recognition (Bidaut et al., 2006; Wang et al., 2003a), and analysis 

of differential gene expression (Turkheimer et al., 2004, 2006). Hence, an efficient 

wavelet-based noise reduction algorithm may be seamlessly embedded into the rou-

tines of such wavelet-based techniques for analyzing gene expression data so that the 

entire process of image processing and data analysis becomes faster, automated, and 

more efficient. 

The existing wavelet-based techniques for denoising of signals or standard images 

(see for example. Donoho, 1995; Donoho and .Johnstone, 1995; Gao, 1998; Chang et al.. 

' N u m b e r of t r ans fo rm coefficients is equal to the number of da ta samples 
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2000a; Johnstone and Silverman, 2005; Mihgak et al., 1999; Cai and Silverman, 2001) 

are capable of 'individually' processing the red and green channel images. However, 

significant positive correlation exists between the pixel intensities as well as DWT 

coefficients of the two channels at the same spatial location (Zhang et al., 2005b; 

Davies and Seale, 2005; Howlader and Chaubey, 2009b). In addition, it is expected 

that there will be significant inter-channel noise-correlation since the factors that 

affect image formation are similar for both channels. Thus, by processing the images 

separately, one is, in fact, ignoring the information content in the other channel. 

For this reason, existing methods for image denoising are less efficient for microarray 

image processing applications. 

1.3 Objectives 

The main objective of this thesis work is to develop new noise reduction algorithms 

for cDNA microarray images in the wavelet domain. Since the purpose of a microar-

ray image is not for visual inspection, but rather, for the extraction of information 

regarding gene expression levels, our aim is to develop algorithms that reduce noise 

with minimal loss of information for accurate estimation of gene expression levels. 

The theoretical development of these new algorithms is based on the observation 

that there exists significant correlation between the wavelet coefficients of the red and 

green channel images of cDNA microarray experiments at the same spatial location. 

When such an association exists, a 'joint estimation' technique should provide better 

estimates of the noise-free coefficients than a method that individually processes the 

two channels. It may be mentioned that, correlations may exist with coefficients 

at other spatial locations as well, however, these correlations will be much weaker. 

Denoising algorithms that use the wavelet transform consist of three basic steps: (i) 

calculating the wavelet transform of the noisy signal (ii) modifying the noisy wavelet 
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coefficients according to some rule, and (iii) computing the inverse transform using 

the modified coefficients. The problem considered in this research primarily deals with 

step (ii), i.e., developing efficient bivariate estimators for the noise-free coefficients of 

the red and green channel images. 

The proposed algorithms are implemented both in the decimated DWT domain 

as well as in the complex wavelet transform (CWT) domain. Although the decimated 

DWT is frequently used in image denoising, methods are also developed in the CWT 

domain because the latter has desirable properties not found in the decimated DWT 

that allow better detection of the circular edges of spots on a microarray image. To 

construct the bivariate estimators, we consider minimization of various cost functions, 

such as the mean squared error (MSE) in the case of linear minimum mean squared 

error (LMMSE) estimation and the uniform cost function in the case of maximum a 

posteriori (MAP) estimation. For a good estimation performance, the bivariate es-

timators are derived by considering appropriate joint prior functions for the wavelet 

coefficients of the two images that take into account the inter-channel signal corre-

lation. The inter-channel noise correlation is also considered in the estimation by 

defining appropriate joint probability density functions for the noise coefficients in 

the two channels. To evaluate the performance of the proposed algorithms, extensive 

simulation experiments are performed using a large set of cDNA microarray images. 

Since the goal of microarray image denoising is to retrieve accurate estimates of 

gene-expression levels from noisy microarray images, the performance of a denoising 

algorithm should be evaluated both in terms of the amount of noise reduction as well 

as accuracy of the estimated log-intensity ratio. Thus, the proposed methods are 

compared with existing wavelet-based methods using two performance criteria: de-

noising performance (in the MSE sense) and accuracy of the estimated log-intensity 

ratios. 
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1.4 Organization of the Thesis 

This thesis is organized as follows. Some background on the steps of microarray ex-

periments and wavelet-based image denoising are given in Chapter 2. The contents 

of this chapter facilitate the understanding of the algorithms developed in the subse-

quent chapters. In Chapters 3 and 4, respectively, we present our proposed algorithms 

for microarray image denoising in the decimated DWT and the CWT domains. Bi-

variate wavelet estimators are derived considering correlation between the signal as 

well as the noise coefficients in the two channels using two separate estimation tech-

niques. Simulation experiments are conducted on a set of cDNA microarray images 

to evaluate the performance of the proposed algorithms. We conclude with Chapter 

5 which summarizes the main theme and overall findings of this research work and 

provides directions for future study. 



Chapter 2 

Microarray Experiments and 
Wavelet-Based Denoising 

2.1 Introduction 

Microarray imaging technology is one of the recent advances in bioinformatics and 

molecular biology that provides 'snapshots' of which genes are expressed in cells of 

various tissues and diseases at a particular point in time. Each microarray experiment 

consists of a long chain of delicate steps from tissue acquisition to microarray data 

analysis, and typically, errors and distortions can get magnified in each step. Most 

of these errors show up as noise in the microarray images. Although there are dif-

ferent types of microarrays, our focus is on the cDNA microarray, also known as the 

spotted array. In the first part of this chapter, we discuss the concepts behind cDNA 

microarray experiments and explain some details of the steps that are involved. 

Microarray image processing is a critical aspect of microarray experiments. Al-

though the basic goal of extracting the pixel intensities on each spot is straightfor-

ward, the presence of noise in the image makes it a complex process. In image signal 

processing, the signal is often transformed because the transformed data exhibits cer-

tain properties that enable one to efficiently handle the problem in question. For 

instance, denoising can be performed more efficiently in the DWT domain than in 

the pixel domain because the former being a multiresolution analysis, allows one to 

10 
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Figure 2,1: Block diagram of a transform-based image denoising algorithm. 

process an image at more than one resolution. The motivation for using wavelet 

transform for reducing noise from a microarray image has been discussed in Chap-

ter 1. Any transform-based, including the DWT-based, image denoising scheme is 

shown in Fig. 2.1 with a simple block diagram. In this figure, g represents the noisy 

pixel intensities, y are the noisy transform coefficients, x are the estimated noise-free 

coefficients and / are the estimated noise-free pixel intensities. The first step is the 

transformation of spatial information into the coefficient domain. The second step 

is to estimate the transform coefficients from their noisy observations. Finally, an 

inverse transformation is necessary to obtain the denoised estimate of the microarray 

image. The wavelet transform has several variants, each having certain advantages. 

For example, the decimated DWT is suitable to obtain a fast denoising algorithm, 

since such a transform is non-redundant. However, this transform is shift-variant and 

has poor directional selectivity. The stationary wavelet transform (SWT) is shift-

invariant at a. cost of huge computational complexity and its directional selectivity 

is the same as that of the decimated DWT. The CWT is a special type of wavelet 

transform that overcomes some of the limitations of the decimated DWT and SWT. 

Its notable features include near shift-invariance property, improved directional selec-

tivity, and low computational complexity. 

In the second part of this chapter, a brief introduction to the wavelet transform 

(Daubechies, 1992; Mallat, 1999; Coswami and Chan, 1999; Strang and Nguyen, 1996) 

is presented. The mechanism for obtaining the one dimensional (ID) wavelet coeffi-

cients from a ID signal using the concept of multiresolution analysis is shown. Next, 
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DNA • RNA • Protein 
transcription translation 

Figure 2.2: Graphical illustration of the conversion of genetic information into pro-
teins. 

a procedure for calculating the 2D DWT, SWT, and CWT coefficients by extending 

the concept of ID wavelet theory is presented. Finally, a brief review of some of the 

standard wavelet-based denoising methods is given. 

2.2 Overview of c D N A Microarray Experiments 

The cells of living organisms contain inheritable (genetic) information stored in a 

molecule known as deoxyribonucleic acid (DNA). DNA are double-stranded molecules. 

Each strand is composed of a long string of nucleotides and each nucleotide contains 

one of four bases [adenine (A), guanine (G), cytosine (C) or thymine (T)]. The two 

complementary strands of the DNA molecule are held together by the exclusive base 

pairing of A with T, and G with C. This basic chemical fact of complementarity 

lies at the basis of each microarray. A gene is a segment of DNA that maps into a 

specific protein. In other words, the production of proteins can be thought of as the 

function of a gene. Gene expression is the process by which genetic information at 

the DNA level is converted to functional proteins. Fig. 2.2 summarizes the two main 

steps of gene expression: transcription and translation. Transcription is the first step 

in gene expression in which mRNA (single stranded molecules similar to DNA) is 

synthesized from a DNA template. Translation is the process by which mRNA are 

used as patterns to produce protein. Thus, the mRNA delivers DNAs genetic message 

to the cytoplasm of a cell where proteins are made. 

A microarray is an ordered array of microscopic elements (or spots) on a planar 

substrate (nylon membrane, glass or plastic) that allows the specific binding of genes 

or gene products. The purpose of a microarray is to measure the amount of message 
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that was broadcast through the RNA for each gene in the genome. The two-channel 

cDNA microarray is designed to measure the transcriptional activity of a set of genes 

under two conditions, namely, treatment and control (Zhang, 2006). 

A typical two-channel microarray experiment consists of the following steps. The 

first step is array fabrication in which a set of previously known cDNA sequences 

called probes are printed onto the array using a robotic arrayer. The probes are 

produced by polymerase chain reaction (PCR), which is a technique that 'amplifies' 

or replicates DNA fragments, and then purifies it to reduce the presence of unwanted 

components. The selection of the set of probes depends on the experiment; usually 

genes that are relevant to the biological questions under investigation are selected. 

When different probes matching all mRNAs in a cell are used, a snapshot of the 

total mRNA pool of a living cell or tissue can be obtained. The microarray spots 

are therefore collections of probe molecules (segments of cDNA strands) arranged in 

grids that allow specific binding of target molecules. In the second step, mRNAs 

are separately isolated from the experimental and control samples and converted into 

cDNA through a procedure known as reverse transcription. The cDNA is labelled 

with a fluorescent green (Cy3) or red (Cv5) dye, the green dye being used for the 

control and the red dye for the treatment. The third step is known as hybridization 

in which the two labelled target cDNAs are mixed in equal proportions and then 

applied to the microarray containing probe cDNAs in the spots. If the probe and 

target cDNAs are complementary of each other then they should be bound by their 

base pairs. Thus, a given strand of target cDNA bonds with the spot representing 

the gene which produced that transcript. The strength of the binding depends on the 

amount of the gene expression in the target samples. For example, if a gene (spotted 

on the array) is more expressed in the experimental cell (labelled with Cv3) than in 

the control cell, then Cv3-molecules should bind more to that gene spot compared to 
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Figure 2.3: Combined false color image for cDNA microarray (Zhang, 2006). Red 
spots in the combined image correspond to spots that are expressed more in channel 
one. Green spots correspond to those expressed more in channel two. Yellow spots 
have a similar level of expression in both channels. Dark spots are low expressed in 
both channels. 

the Cy5-molecules. After sufficient time is allowed for this competitive hybridization, 

the microarray is carefully washed a number of times so that all the unbound target 

cDNAs are washed off. The next steps of a microarray experiment are image analysis 

and data extraction. 

In image analysis, a confocal laser microscope is used to scan the array at two chan-

nels using two wavelengths, one for the Cy5 fluorescent-tagged sample (say, Channel 

1) and another for the Cy3 fluorescent-tagged sample (say, Channel 2). A detector 

captures the emitted photons, measures and records their levels and subsequently 

converts the measurements into an electric current by a photomultiplier tube (PMT). 

This in turn is digitized into pixel intensities and stored in tagged image file format 
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(TIFF). Two 16-bit TIFF images are generated corresponding to the two samples 

under investigation. A 16-bit image has a dynamic range of [0, 65535] (Zhang, 2006). 

Both images consist of spots arranged in regular grid-like patterns. These images 

are considered as the 'raw' data for the microarray experiment. The images corre-

sponding to Cy3 (i.e., green) and Cy5 (i.e., red) can be overlayed to produce a single 

false-color image as shown in Fig. 2.3. By analyzing the location and intensity of the 

fluorescent signals of the red and green channel images, one can determine the level 

of activity of each gene. For instance, any spot whose intensity is different between 

the two channels, corresponds to a gene that is differentially expressed in the treated 

versus control group. Fig. 2.4 summarizes the steps in a microarray experiment. 

Further details regarding the set-up of microarray experiments may be found in Wit 

and McClure (2004) and McLachlan et al. (2004) and issues relating to experimental 

design for microarrays is discussed by Churchill (2002). 

Let f(i), i = 1, 2, • • • , jVi represent a ID signal of size iVixl , where i is the ID index. 

The DWT of the signal is given by (Gonzalez and Woods, 2002) 

where Xj denotes the approximate coefficients in the largest level J, xf denotes the 

detail coefficients in a decomposition level I (I = 1, 2. • • • , J) , (f>j(i, ki) = '2J/2<fi(2Ji — 

A'i), il)f(i, = 2l'2(j)(2li — ki), and (f> and ip, respectively, are the scaling and wavelet 

functions. The approximate and detail coefficients can be obtained as 

2.3 Preliminaries on D W T 

2 . 3 . 1 I D D W T 

/(«) = T x i f a M a , h ) + T T x f { k ^ f { i , h ) (2.1) 
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Figure 2.4: Steps in a cDNA microarray experiment (Zhang, 2006). 

The functions (j> and tp are chosen in such a way that the signal can be reconstructed 

from the DWT coefficients without error. Since the DWT is a type of multiresolution 

analysis, the nesting property requires the scaling function (p and wavelet function ip 

satisfy the two-scale dilation equations 

oo oo 
(f)(i) = V2 - u) = Mu)0(2i - u) 

M= —OO U= — OC 

where h$ and h^, respectively, are called the scaling and wavelet vectors for for-

ward DWT. Using the above relations, Mallat (1999) has shown that the ID DWT 

coefficients of adjacent decomposition levels can be estimated very efficiently by the 
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Figure 2.5: Block diagram of the ID DWT using the scaling and wavelet vectors at 
the analysis and synthesis stages, (a) Forward transform for obtaining the (I + l)-th 
level detail coefficients, (b) Inverse transform for obtaining the l-th level approximate 
coefficients. 

i+H (fci) = Y1 - 2h)xf(*i) = Ki-u) * xf(u) 
u=—oc 
oo 

x?+i(ki) - ~ 2ki)xt(u) = Ki~u) * xt(u) 

w=2fci >0 

following 
oo 

(2.3) 

(2.4) 
u=2fc1,fc1>0 'U—— LXJ 

where * is a convolution operator. The above equations imply that the approximate 

and detail coefficients at decomposition level (/ + 1), respectively, can be obtained 

from convolving the approximate coefficients at decomposition level I by h4, and h^ 

and down-sampling by 2. The coefficients at the (1 + l)-th level may also be obtained 

by performing the matrix operations xf+1 = W^xf and xf+1 = W^xf, where W^ and 

Wy, are circulant matrices having h$ and h^, as their first columns, respectively, and 

xf is the vector of approximate coefficients at the Z-th level. It can be found that the 

inverse transform of the ID DWT coefficients of adjacent decomposition levels can 

also be estimated very efficiently by the following 

= h<p{u) * xt+\{u) + h^u) * xf+1(u) (2.5) 

where h^ and hl[;, respectively, are called the scaling and wavelet vectors for inverse 

DWT. The above equation implies that the approximate coefficients at. decomposition 

level I can be obtained from convolving the up-sampled (by inserting zero in odd 

or even indices) approximate and detail coefficients at decomposition level (I + 1). 
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Figure 2.6: Subband representations of a 3-level 2D DWT. 

respectively, by h<p and h^ and adding the results. It may be pointed out that to 

maintain the perfect reconstruction requirement, h$ is time reversal of h^ and h^ 

is time reversal of h^. A simple block diagram of the forward ID DWT using the 

analysis scaling-and-wavelet vectors and inverse ID DWT using the synthesis scaling-

and-wavelet vectors for adjacent decomposition levels is shown in Fig. 2.5. It is to 

be noted that there is no data redundancy in the DWT coefficients due to the down-

sampling of convolved coefficients after each level decomposition. That is, the number 

of DWT coefficients is the same as the number of data samples. In literature, this is 

very often referred to as the decimated ID DWT. 

2 . 3 . 2 2 D D W T 

Let f[i,j), i = 1, 2, • • • , Ni, j = 1. 2. • • • , 7V2 represent pixels of 2D signal (e.g., image) 

of size Ni x Ar
2, where (i,j) is the 2D index. The DWT of this signal is given by 
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Figure 2.7: Block diagram of the 2D forward DWT using the analysis scaling-and-
wavelet vectors for obtaining the (I + l)-th level detail coefficients. 

(Gonzalez and Woods, 2002) 

Ni N2 

f ( h j ) = /]VAT[^ kuk2) ^ 2 k\—l ko — l 
J Ni N2 

+ E E E E 1 ^ 1 - ^ ^ ' ^ ^ ) 
1=1 OeH,V,Dki=\ fc2=1 

(2.6) 

where xf (O G H, V, D) denotes the detail coefficients in the decomposition level I 

(I = 1, 2, • • • , J ) of orientation O, and $ and respectively, are the 2D scaling and 

wavelet functions. Separable scaling and wavelet functions are common for extending 

the ID DWT to the multidimensional DWT. Hence, the 2D scaling and wavelet 

functions can be represented in terms of ID scaling and wavelet functions as 

j, kuk2) = 2J'2<t>(2Ji - h)<p{2Jj - k2) 

ki, k2) = 2l^(2't - kM{2lj - k2) 

vli]'(i,j, kuk2) = 2l'2(b{2li - h)ib{2lj - k2) 

VffC'-J: ki.h:2) = 21 '2c(2' / - k] )c{2,j - k2) 
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Figure 2.8: Block diagram of the 2D inverse DWT using the synthesis scaling-and-
wavelet vectors for obtaining the /-th level approximate coefficients. 

The approximate and detail coefficients of the 2D DWT can be obtained as 

j Ni N2 

r , (2.7) 
i= 1 j=l 

X o 
, Ni N2 

(fci, fe) = " 7 = £ E /(*> j)*?^ h,k2) V iVjiv2 ̂  ^ 
(2.8) 

These coefficients are clustered into groups or subbands of different levels and ori-

entations. The subbands HLi, LHi, and HHi (I = 1,2, ••• . J) contain the detail 

coefficients of the horizontal (0°), vertical (90°), and diagonal (±45°) orientations, 

viz., xf1, x j , and x f , respectively. The subband LLj is the lowest resolution resid-

ual that contains xj. The subband representation of a typical 3-level 2D DWT is 

shown in Fig. 2.6. Due to the separability of the scaling and wavelet functions, 

the 2D DWT may be implemented using two separate ID DWT. Similar to the ID 

DWT, the fast and efficient implementation of the forward and inverse of 2D DWT 

is obtained by using the analysis and synthesis scaling-and-wavelet vectors. Both the 

forward and inverse transforms use two-stage convolution, one through columns and 
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another through rows. A simple block diagram of the forward 2D DWT is shown in 

Fig. 2.7 and the inverse one in Fig. 2.8. 

Orthogonality, symmetry, and short support of the wavelet function are some of the 

desirable characteristics of the 2D DWT. Orthogonality decorrelates the transform 

coefficients, thereby minimizing the redundancy. Symmetry permits a symmetric 

boundary extension that minimizes border artifacts. Short support property is valu-

able for reducing truncation artifacts in the reconstructed images. The choice of 

wavelet function (e.g., orthogonal, biorthogonal, or spline) is dependent on the type 

of application. For example, biorthogonal or spline wavelet functions are preferable for 

image compression, since a symmetric boundary extension or a low truncation error 

of the transform coefficients improves compression performance. On the other hand, 

denoising requires higher decorrelation efficiency and, therefore, orthogonal wavelet 

functions are more preferable for this purpose. Examples of orthogonal wavelet func-

tions that are commonly used in denoising are Daubechies 8 wavelet function (Db8) 

and the Symlet wavelet function of order 8 (Sym8) (Daubechies, 1992). The Db8 

wavelet function consists of the following scaling and wavelet vectors for forward 

DWT: 

hi = -0.0001, 0.0007, -0.0004, -0.0049,0.0087,0.0140, -0.0441, -0.0174,0.1287, 

0.0005, -0.2840, -0.0158,0.5854,0.6756, 0.3129, 0.0544 

-0.0544, 0.3129, -0.6756,0.5854. 0.0158, -0.2840, -0.0005, 0.1287, 0.0174, 

-0.0441, -0.0140, 0.0087,0.0049, -0.0004, -0.0007, -0.0001 

The scaling and wavelet vectors of the Sym8 wavelet function are given by: 

-0.0034, -0.0005, 0.0317, 0.0076, -0.1433, -0.0613, 0.4814, 0.7772, 0.3644, 

-0.0519, —0.0272. 0.0491, 0.0038, -0.0150, -0.0003, 0.0019 

(2.9) 

K = 
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hT = [-0.0019, -0.0003,0.0150,0.0038, -0.0491, -0.0272,0.0519,0.3644, -0.7772, 

0.4814,0.0613, -0.1433, -0.0076,0.0317,0.0005, -0.0034 . 

2D S W T 

Although down-sampling in the DWT allows perfect reconstruction of 2D signal (Mal-

lat, 1999), the DWT is not shift-invariant (Coifman and Donoho, 1995). In other 

words, a small shift in the input signal may cause significant variation in the distribu-

tion of energy between the DWT coefficients at different decomposition levels. Hence, 

processing of the 2D DWT coefficients may not provide desired performance in some 

applications, such as image denoising. To overcome this problem, the SWT coeffi-

cients are calculated by the same procedure as the DWT, except the down-sampling 

is avoided to account for the all possible shifts. Such a transform is often called 

the overcomplete representation or shift-invariant form or non-decimated form of the 

DWT. The data redundancy in the SWT increases to a value of 2W, for d dimensional 

signal (Chang et al., 2000b; Coifman and Donoho, 1995). 

2 . 3 . 3 2 D C W T 

The decimated 2D DWT-based image denoising have two major drawbacks, namely, 

the lack of shift-invariance and the poor directional selectivity. The SWT resolves 

only the first problem, however, at the expense of huge computational load. The 

second problem is inherent for the SWT, since it uses the 2D scaling and wavelet 

functions that are real and separable. In other words, both the decimated DWT and 

SWT coefficients capture only three directional features in the 2D signal, namely, 

the horizontal (0°), vertical (90°), and diagonal (±45°) features. In order to improve 

the directional selectivity, the CWT has been introduced that has complex valued 

scaling and wavelet functions, viz., + z<J>2 nnd + 1^2- such that <f>] and $2 
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as well as \I>i and \&2 form Hilbert pairs1 (Selesnick et al., 2005; Selesnick, 2001, 

2002; Tay et al., 2006). The choice of scaling and wavelet functions of CWT is 

such that this transform can capture six directional features, namely, —15°, —45°, 

—75°, 15°, 45°, and 75° of an image. Therefore, the CWT has better directional 

selectivity as compared to both the decimated DWT and SWT. Various methods 

has been proposed for obtaining the CWT coefficients (Portilla and Simoncelli, 2000; 

Kingsbury, 1999, 2001; Selesnick, 2001, 2002; Fernandes et al., 2003; Clonda et al., 

2004; Barber and Nason, 2004; Selesnick et al., 2005; Olkkonen et al., 2006), however, 

due to the simplicity of implementation and sufficiently low redundancy, the dual-tree 

CWT (DT-CWT) that has been proposed by Kingsbury (1999) and later generalized 

by Selesnick (2001), is becoming popular. The DT-CWT consists of two trees of 

DWT in parallel and provides four pairs of subbands, namely, (LLli , LL2,). (LHli, 

LH2t), (HL\h HL2l), and (HHlh HH2l), where 1 and 2 refer to the two trees. The 

implementation of the DT-CWT requires that the functions $1 and operate on 

the odd numbered data samples and $2 and cm even numbered data samples. 

Having a delay of one-half of a sample, these operations ensure that $1 and <I>2 as 

well as and VP2 form a Hilbert pair, and thus, the real and imaginary components 

of the complex coefficients are statistically uncorrelated. In order to improve the 

shift-invariance property, the DT-CWT avoids down-sampling operation in the first-

level decomposition. Hence,, the DT-CWT has much lower shift sensitivity than the 

DWT but a redundancy of 2rf, which is higher than that of the DWT but lower than 

that of the SWT by a factor of 2'. Detailed analysis of estimating the 2D DT-CWT 

coefficients can be found in Selesnick et al. (2005); Kingsbury (1999, 2001); Selesnick 

(2001, 2002); Gopinath (2003): Chaux et al. (2006) and Tay et al. (2006). 

' T w o functions form a Hilbert pair if one of them is t.he Hilbert t ransform of the other . 
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2.4 Wavelet-Based Denoising: A Review 

Owing to the sparseness2 of the wavelet transform, only a few large detail coefficients 

in a subband contain information about the underlying image, while small values 

can be attributed to the noise that uniformly contaminates all subbands (Fadili and 

Boubchir, 2005). Wavelet-based denoising techniques modify each coefficient of the 

subband by using a thresholding or shrinkage function, which shrinks the coefficients 

in magnitude towards zero. Removing the small coefficients then removes most of the 

noise. In practice, the coefficients of subband LLj are kept intact. This is because of 

the fact that the approximate coefficients usually represent important features of the 

image and any small perturbation yields a significant error. 

From the early stages of wavelet-based denoising, a considerable effort has been 

made to design appropriate shrinkage or thresholding functions for the noisy wavelet 

coefficients. Some of the well known nonlinear shrinkage functions for estimating a 

noise-free wavelet coefficient x from its noisy observation y are: 

• Hard-thresholding (Donoho and Johnstone, 1994): x = y • l(|y| > T) 

• Soft-thresholding (Donoho and Johnstone, 1994): x = sgn(y) • max(0, \y\ — T) 

• Firm-shrinkage (Gao and Bruce, 1997): 

if \y\ < Tr 

if T\ < \y\ < X2 

if M > t2 

(2.10) 

• Non-negative garrote-shrinkage (Gao, 1998): 

(2.11) 

2 Most of the coefficients are close t o zero. 
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Smoothly clipped absolute deviation thresholding for a given constant a (An-

toniadis and Fan, 2001): 

f sgn(y) • m a x ( 0 , \ y \ - T ) if \y\ < 2T 
(a - 1 )y - aTsgn(y) x — < if 2T < \y\ < aT (2.12) 

a — 2 

k y if \y\ > aT 

Piecewise linear thresholding (Stefano et al., 2004): 

if Is/I < T, 

* = (y - Sgn(y) . TO + T2 - sgn(-y) if < |y| < T3 (2"1 3) 
i3 — li 

. y if M > T3 

NeighCoeff thresholding (Cai and Silverman, 2001): 
2 

i = 9 . m a x (2.14) 
\ lsS3(k) Vk J 

Amplitude-scale-invariant Bayes estimator (Figueiredo and Nowak, 2001): 

x = - • max (0. y2 — SaTj (2.15) 
y 

where T, T\, T2, or T3 is a threshold, a2 is the noise variance, 1 is a indicator func-

tion, Sz{k) is a 3 x 3 squared-shape local neighborhood centered at spatial location 

k = (ki,k2), and N is the number of data samples in a subband. Various denois-

ing methods have been developed by choosing an appropriate threshold for a given 

shrinkage function. Some of the successful thresholds are: 

Universal threshold in VisuShrink (Donoho, 1995) method: T = ovy/2 log(A/"), 

where N is the total number of data samples. 

Threshold in translation invariant denoising (Coifman and Donoho, 1995) method: 

T — avy/2\n(N log2 N) 



26 

• Sure threshold in SureShrink (Donoho and Johnstone, 1995) and GarrotShrink 

(Gao, 1998) methods: T = argmin0<T<v/215iW [iV - 2 • : < T} + 

• Threshold in BayesShrink (Chang et al., 2000a) method: T — a\jax 

where a \ is the variance of the noise-free coefficients. The choice of an appropriate 

threshold may depend on factors such as the type of image, the denoising efficiency 

and computational efficiency. For instance, when a fast denoising algorithm is re-

quired, the universal threshold may be used since it needs to be calculated only once 

for all the subbands. However, this threshold is too high for good denoising. Most 

signals in images show a spatially non-uniform energy distribution, which motivates 

the choice of a non-uniform threshold. Since a given noisy signal may consist of some 

parts where the magnitudes of the signal coefficients are below the globally defined 

threshold and other parts where the noise magnitudes exceed that given threshold, 

a subband-adaptive threshold (e.g. threshold in BayesShrink and SureShrink) or 

spatially-adaptive threshold (e.g. threshold in NeighCoef) is preferred for a bet-

ter denoising performance. However, these thresholds require greater computation 

time because the threshold needs to be computed separately for each subband in the 

subband-adaptive methods, or for each coefficient in the spatially-adaptive methods. 

The shrinkage function and threshold are also derived using a probabilistic model 

for the noise-free coefficients. Such a function is given by (Hyverinen, 1999) 

x = sgn(y) • max (0, |y| - a2
v\il{y)\) (2.16) 

where J2(x) = — ̂ [log(p^(x))] is the score function of x and px(%) is its probability 

density function (PDF). In the specific case, where px{x) is defined by the Laplacian 

distribution, the shrinkage function is obtained as (Sendur and Selesnick, 2002a) 

x = sgn(y) • max ( 0, \y\ - ^ ^ J (2.17) 
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Recently, Bayesian estimators are also being used to estimate the noise-free wavelet 

coefficients from their noisy observations. Standard estimators are the MAP, MMSE, 

and minimum mean absolute error (MMAE) estimators, which are obtained using the 

posterior density function Px\y{x\v) follows (Papoulis, 1991). 

• MAP-based estimation: The denoised coefficients are estimated as the condi-

tional mode given by 

• MMSE-based estimation: The denoised coefficients are estimated as the condi-

tional mean given by 

• MMAE-based estimation: The denoised coefficients are estimated as the condi-

tional median which is obtained from the relation 

In order to obtain the posterior density function, various prior functions have been 

assumed for the subband DWT coefficients as well as for local neighboring coefficients. 

Since sparsitv of the DWT coefficients is significant, the histogram of the DWT coef-

ficients of a subband is unimodal, heavy-tailed and sharply peaked in nature (Huang, 

2000; Srivastava et al., 2003). Thus, heavy-tailed prior functions are commonly used 

for the subband DWT coefficients. Examples of such PDFs are Laplacian (Sendur and 

Selesnick, 2002a), generalized Gaussian (GG) (Mallat, 1989), Bessel K-form (Fadili 

and Boubchir, 2005), symmetric alpha-stable (SaS) (Achim et al., 2003), symmet-

ric normal inverse Gaussian (Solbo and El toft, 2004), scale mixtures of Gaussian 

(SMG) (Chipman et al., 1997; Abramovich et al., 1998; Clyde and George, 2000), 

and quasi-Cauchy (Johnstone and Silverman, 2005). The parameters of the PDF 

x = argmax^|y(x | j / ) (2.18) 

(2.19) 

(2.20) 
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can be estimated using different techniques, such as the method of moments (MoM), 

maximum likelihood (ML), MAP, and entropy-matching method (Aiazzi et al., 1999). 

However, the prior function for local neighboring DWT coefficients is very often cho-

sen as Gaussian3 (Mihgak et al., 1999; Kazubek, 2003; Cai and Silverman, 2001). In 

such a case, the MAP estimator for the noise-free coefficient is given by 

where o\k and a 2 are replaced by their estimates. To improve the performance of 

locally-adaptive estimators, parameters of the PDF are estimated using more sophis-

ticated methods, such as MAP estimation, in which a prior function for the parameter 

is defined. Such an approach is found in Mihgak et al. (1999), where the prior of the 

variance parameter a2
k is chosen as the exponential PDF. The MAP estimator of the 

variance in such a case is 

where Sw(k) is a w xtu squared-shape local neighborhood centered at spatial location 

k = {k\. h'2), M is the number of data samples in Sw(k), and the hyperparameter A is 

estimated as A = 1/y'Var(<7^) \/k, in which a%k is the ML estimate. When the prior 

function for the variance parameter is chosen as Jeffrey's non-informative prior, the 

MAP estimator is obtained as (Figueiredo and Nowak, 2001) 

There exists a nonlinear dependency between the wavelet coefficients of a particular 

location in a given subband and that of the corresponding location of the coarser 

subband. Denoising algorithms have also been developed that take into consideration 

this inter-scale dependency by using hidden Markov tree (HMT) models (Romberg 
3 In the l i terature , the Gauss ian P D F is also called normal P D F . 

(2.21) 

(2.22) 

(2.23) 
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et al., 2001; Crouse et al., 1998) or an appropriate joint PDF (Sendur and Selesnick, 

2002b; Achim and Kuruoglu, 2005; Zhang et al., 2005a). An example of a bivari-

ate PDF that considers the nonlinear inter-scale dependency (Sendur and Selesnick, 

2002b) is 

g / ^/g \ 
Pxxc (x, xc) = -—? • exp \ A 2 + xc > - oo < x,xc < oo (2.24) 2-no* y ax J 

where xc is the DWT coefficient of the coarser subband corresponding to the location 

of x. The MAP estimator using this PDF is 

I = -7==2 • M A X ( Vv^+v! - — ) (2 .25) Vv +Vc V °x 1 
and the method is referred to as the BiShrink method (Sendur and Selesnick, 2002b). 

2.5 Conclusion 

In this chapter, an overview has been given of the steps involved in a cDNA microarray 

experiment. A short introduction to the ID DWT has been presented along with its 

2D extension. The relations of the SWT and CWT with the decimated DWT have 

also been discussed. A brief review of wavelet-based denoising has been presented. 

The estimation formulae of some of the existing denoising methods have also been 

given. 



Chapter 3 

DWT-Based Denoising Algorithms 
for cDNA Microarray Images 

3.1 Introduction 

Due to the non-ideal environment of the imaging technology and array construction, 

microarray images are contaminated by noise. Gene expression measurements ob-

tained from such noisy images are inaccurate. Hence, the noise reduction step is 

unavoidable prior to any analysis of cDNA microarray images. This chapter begins 

with some background on noise models for cDNA microarray images and discusses 

the necessity for algorithms that remove additive Gaussian noise (AGN). A short in-

troduction to traditional DWT-based denoising algorithms for the removal of AGN is 

given in Chapter 2. An important limitation of the existing algorithms is that they 

are not efficient for microarray image denoising applications. This is because these 

algorithms are only capable of processing the red and green channel images sepa-

rately. But, there exists significant correlation between the DWT coefficients of the 

red and green channel images at the same spatial location (Howlader and Chaubev, 

2009b). Moreover, the underlying processes that generate noise in the two images are 

similar, and hence, noise coefficients of the two channels are expected to be correlated 

as well. Thus, by processing the two images separately, conventional denoising algo-

rithms ignore the inter-channel dependencies between the DWT coefficients of the 

30 
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image as well as the noise. We argue that improved denoising performance could be 

achieved by exploiting these dependencies and incorporating information from both 

images during the estimation process. 

This chapter uses LMMSE and MAP estimation techniques to develop new bi-

variate estimators (Howlader and Chaubey, 2009b) for the DWT coefficients of the 

red and green channel images of cDNA microarrays. Estimation is based on a joint 

statistical model for the image coefficients of the red and green channel images. The 

presence of noise correlation between the two channels is also considered in the esti-

mation process. It is shown that both approaches lead to the same bivariate wavelet 

coefficient estimator. Unknown variance parameters in the estimator are estimated 

locally using the MAP criterion with different choices for the prior function. Certain 

denoising algorithms are obtained by choosing suitable prior functions. Extensive 

simulations are conducted to assess the efficiency of the proposed algorithms with 

respect to conventional DWT-based denoising methods. Since the purpose of a mi-

croarray image is the extraction of information regarding gene expression levels, a 

good microarray image denoising algorithm removes noise while preserving much of 

the signal information. Thus, results are presented not only for denoising of the 

pixels measured in the MSE sense, but also for accuracy of the log-intensity ratios 

estimated from the denoised images. It is shown that the proposed methods provide 

an improved noise reduction performance and yield log-intensity ratios that are close 

to the true values as compared to that of the existing denoising methods. 

3.2 Noise Models 

Microarray technology is a complex electrical-optical-chemical process involving mul-

tiple random factors. Consequently, there are many sources of error that show up as 

noise in the resulting images. Examples of noise in microarray images include pho-
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ton noise, laser light reflection, electronic noise, quantization noise, dust on the glass 

slide, and so on (Lukac et al., 2004; Zhang et al., 2004; Mastrogianni et al., 2008). If 

the image is corrupted by additive noise, then the intensity of the noisy image at the 

spatial location (i,j) is given by 

9(iJ) = f(i,j) + e(iJ) (3-1) 

where e{i,j) is the noise at that spatial location. Noise that corrupts the image 

may be dependent or independent of the image. In the particular case, when s(i,j) is 

independent of the image and assumed to be i.i.d. JV(0, a t h e model in (3.1) is called 

the additive white Gaussian noise (AWGN) model. As an example, electronic noise 

in microarray images follows the AWGN model. Other noise models for microarray 

images include the multiplicative noise model (Rangayyan et al., 1998) as in the case 

of PMT noise (Zhang et al., 2004) and speckle, and the impulsive noise model (Lukac 

et al., 2004; Boncelet, 2000). Apart from the Gaussian distribution, the Poisson 

(Balagurunathan et al., 2002), uniform (Mastrogianni et al., 2008) (e.g., quantization 

noise) and exponential distributions (Davies and Seale, 2005) have also been used 

to describe the noise characteristics of microarray images. It is to be noted that 

many non-additive and non-Gaussian noise models for images can be mathematically 

remodelled as the additive noise model in (3.1) (Rangayyan et al., 1998). For instance, 

photon noise is non-additive, signal dependent and can be described by the Poisson 

process (Rangayyan et al., 1998) 

Pg\f{9{hJ)\f(-l-Jhe) = 

where g(i,j) is the observed image and g is the rate of the Poisson process. The 

normalized image <j(i,j) = y(t.j)/g can be described by the model in (3.1) by 

considering e{i,j) — g{i,j) — /'(/. j) as the noise having zero mean and variance 

°l(i.j) = Ei9(jJ)/02} (Kuan et al., 1985: Rangayyan et al., 1998). Alternatively, the 
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Anscombe transform T(g(i,j)) = 2yJ(g(i,j) + §) may be used to convert the image 

g{i.,j) that is corrupted with Poisson noise to the transformed image g(i, j) corrupted 

by AWGN having a\ = 1, under the assumption that E{g} is large (Starck et al., 

1998). Again, consider the multiplicative noise model that is given by 

g{hj) = f(hj)((i,j) (3-3) 

where ( ( i , j ) is a stationary noise uncorrelated with the image having mean and 

variance a2 . This model can also be converted to the additive noise model in (3.1) 

by defining g(i,j) = and expressing g(i,j) in terms of signal plus signal-

dependent additive noise as follows 

9&3) = / ( M ) + f C ( ' , j ) ~ * ] / ( « , j)- (3-4) 

By comparing (3.4) with (3.1), we can identify the additive noise as e{i,j) = 

— 1 )f(i,j) having zero mean and index dependent noise variance (Kuan et al., 1985) 

2 
O, 

2 _ 
£ { i ' j ) 1 + a c 

« , , ) + / 4 , ) ) (3-5) 

where pg(i.j) and a 2 ^ r e s p e c t i v e l y , are the mean and variance of the corrupted 

intensities at each index ( i , j ) . Alternatively, the log-transformation can be applied 

to (3.3) to obtain an additive noise model. Since most of the noise types in microarray 

images can be either modelled or remodelled as additive noise, denoising of microarray 

images corrupted by additive noise stands as a classical problem in microarray image 

analysis. In this thesis, we focus on developing efficient algorithms for reducing AGN 

in cDNA microarray images. 

3.3 Image Denoising Using D W T 

The DWT is an important tool in the denoising of images corrupted by AGN due to 

its energy compaction and decorrelation (i.e.. subbands are uncorrelated) properties 
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(Mallat, 1999; Sendur and Selesnick, 2002a). The decimated DWT is non-redundant 

and this feature make it attractive for fast and efficient image denoising. Moreover, a 

method which performs well in the decimated DWT domain is expected to perform 

well using other wavelet-like transforms (e.g., curvelet, ridgelet, contourlet, etc.). 

The DWT-based image denoising techniques for AGN can be found in Chang et al. 

(2000a,b); Moulin and Liu (1999); Simoncelli and Adelson (1996); Achim et al. (2003); 

Fadili and Boubchir (2005); Portilla et al. (2003); Strela et al. (2002); Portilla et al. 

(2001); Coifman and Donoho (1995); Sendur and Selesnick (2002a); Crouse et al. 

(1998); Wainwright and Simoncelli (2000); Choi et al. (2000); Mihgak et al. (1999); 

Kazubek (2003); Donoho (1995); Donoho and Johnstone (1995); Zhang et al. (2000); 

Cai et al. (2001); Crouse et al. (1999); Fan and Xia (2001). 

There are two major approaches to statistical wavelet-based denoising. In the 

first approach, the wavelet coefficients are modified using certain threshold parame-

ters and nonlinear shrinkage functions (Vidakovic, 1999; Antoniadis et al., 2001). 

Image denoising methods using such an approach include the VisuShrink (Donoho, 

1995), SureShrink (Donoho and Johnstone, 1995), BayesShrink (Chang et al., 2000a), 

amplitude-scale-invariant Bayes estimator (Figueiredo and Nowak, 2001), NeighCoef 

(Cai and Silverman, 2001), Spatial-correlation thresholding (Bao and Ma, 2005), 

and empirical Bayes thresholding (EBayesThresh) (Johnstone and Silverman, 2005). 

Standard choices for nonlinear shrinkage functions are soft- and hard-thresholding 

(Donoho and Johnstone, 1994), firm-shrinkage (Gao and Bruce, 1997), and non-negative 

garrote shrinkage (Gao, 1998). Although computationally simple, arbitrary choice 

of nonlinearity in these methods leads to certain drawbacks. For instance, the soft-

thresholding technique yields biased estimates with moderate variances whereas hard-

thresholding yields less biased estimates having higher variances (Gao. 1998). The 

second and better approach is to design an estimator for the noise-free wavelet coeffi-
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cients of images by minimizing a Bayesian risk, typically under MMSE , MMAE , or 

MAP criterion. For instance, Simoncelli and Adelson (1996) use MMSE estimation 

to derive the wavelet coefficient estimator, whereas Bhuiyan et al. (2007) and Sendur 

and Selesnick (2002a) use MMAE and MAP estimation, respectively. 

Image denoising algorithms can be broadly classified as subband-adaptive (Pizurica 

and Philips, 2006) or locally /spatially- adaptive (Chang et al., 2000b; Jansen and 

Bultheel, 2001). For instance, the methods SureShrink, BayesShrink, and EBayesThresh 

are subband adaptive techniques, which calculate a different threshold for each sub-

band under the assumption that wavelet coefficients in each subband are independent 

and identically distributed (i.i.d). However, DWT coefficients of a subband are spa-

tially non-stationary and there exists strong intra-subband and weak interscale depen-

dencies among the coefficients (Liu and Moulin, 2001). To account for intra-subband 

dependency, locally-adaptive techniques, such as the LAWMAP (Mihgak et al.. 1999) 

and NeighCoef (Cai and Silverman, 2001), estimate a wavelet coefficient from its local 

neighboring region. The PDF for local neighboring DWT coefficients of natural im-

ages is very often chosen as zero-mean Gaussian (Mihgak et al., 1999; Voloshynovskiy 

et al., 2001). This is mainly due to the fact that the heavy-tailed PDFs used for 

the subband-adaptive methods approach the Gaussian PDF when the parameters are 

estimated from local neighboring coefficients. For example, the shape parameter of 

GG PDF and characteristic exponent of SaS PDF approach 2 when local neighboring 

coefficients of natural images are considered. The locally-adaptive denoising methods 

have two major advantages over the subband-adaptive ones. First, they yield better 

performance since they take into account the intra-subband dependency among the 

coefficients. Secondly, these methods are computationally efficient because unlike the 

subband coefficients which have heavy-tailed PDFs. the local neighboring coefficients 

have simpler PDFs such as the Gaussian. Therefore in most cases, the final estimator 
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has a closed-form expression and numerical calculation is not required. Further, the 

estimation of the parameters of the PDF of local neighboring coefficients whether it 

be by MoM or ML, is much simpler than in the case of a heavy-tailed PDF of the 

subband coefficients. Thus, in general, for image denoising a locally-adaptive esti-

mator is preferable to the subband-adaptive one. Several methods have also taken 

into account the inter-scale dependency between the wavelet coefficients (Sendur and 

Selesnick, 2002a; Achim and Kuruoglu, 2005). But, information theoretical analysis 

indicates that only slightly better denoising performance can be achieved by consider-

ing the inter-scale dependence in addition to the intra-subband one (Liu and Moulin, 

2001). Moreover, such a denoising method is often computationally more intensive. 

Existing DWT-based denoising algorithms may work well with the natural im-

ages. However, they are not very efficient for reducing noise in cDNA microarray 

images. An important characteristic of cDNA microarray images is that the DWT 

coefficients of the red and green channel images are significantly correlated at the 

same spatial location. Experiments are conducted on several microarray images to 

verify this important feature. Since, existing denoising algorithms can only be used 

to process the red and green channel images separately, these methods are incapable 

of considering the inter-channel dependencies that exist in the microarray images. In 

the next section, new denoising algorithms are designed for microarray images using 

joint estimation techniques that exploit the correlation between the coefficients of the 

two channels. 
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Let fr{i,j) and fg(i,j) be pixels of the red and green channel images, respectively, 

where i = 1,..., Ni and j = 1 , . . . , N2- Then the noisy pixels may be represented as 

where er(i, j) and £g(i,j) are noise-samples at the reference location. It is assumed 

that noise-samples of the red and green channel images are correlated in the pixel 

domain, and are distributed as i.i.d. zero mean bivariate Gaussian having equal 

variance a£ and correlation coefficient p£. The standard deviation oe indicates the 

strength of noise and p£ measures the amount of linear dependency of noise between 

channels. It is assumed that ac and pe are known. However, if ac is unknown, it may 

be estimated from the sample standard deviation of pixels in regions selected from the 

background of the red or green channel image. Similarly, pe can be estimated using the 

sample correlation coefficient by selecting corresponding regions from the backgrounds 

of the red and green channel images. It is necessary to use the background regions 

for such an estimation, since these regions contain mostly noise and little or no signal 

information. 

Let xT(k\, k2) and xg(ki, k2) denote the DWT coefficients of the noise-free microar-

ray images in the red and green channels, respectively, at spatial location {ki,k2) of 

a given subband. Since the DWT is a linear transform, the noisy coefficients of the 

images at that spatial location can be written as 

where c,(k\. k2) and vg(k\, k2) are the noise coefficients of the red and green channels, 

respectively, with equal variance cr2 and correlation coefficient pv. If ov and pv are 

9r{i;j) = fr(ij)+£r(i,j) 

9g(hj) =fg(h j)+eg{i,j) 

(3 .6) 

(3-7) 

yr{k\, k2) = Xrih, k2) + Vr{ki,k2) 

yg(ki, k2) = Xgfa ,k:2) + vg{k]:k2) 

(3.8) 

(3.9) 
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Table 3.1: Average of local inter-channel correlations of DWT coefficients in various 
subbands using 10 typical cDNA microarray images. 

Subband Level of decomposition Subband 
1 = 1 1 = 2 I = 3 I = 4 

HHt 0.04 0.19 0.58 0.95 
HLt 0.25 0.67 0.88 0.96 
LHi 0.10 0.54 0.84 0.96 

unknown, the DWT coefficients of the noisy image may also be used to estimate them. 

For example, av may be estimated using the robust median estimator (Donoho and 

Johnstone, 1995) that is given by 

m r i t o M v 6 m h h m d H g l . { 3 . 1 0 ) 

U.6745 

Since the DWT coefficients of images in a subband are spatially non-stationary 

(Mihgak et al., 1999; Jansen and Bultheel, 2001; Cai and Silverman, 2001), the ran-

dom variables of the coefficients are index dependent. Let xr{k\,k.2) and xq(ki,k,2) 

be the samples of the random variables Xr(ki,k2) and Xg(kj, k^), respectively. Simi-

larly, we define the random variables Yr(ki, fo) and Yg(ki, k2). On the other hand, the 

wavelet coefficients of noise are spatially stationary and, therefore, the corresponding 

random variables Vr and Vg are index independent. For notational convenience, the 

indices are suppressed unless stated otherwise. 

To develop an efficient estimator for the DWT coefficients of microarray images, 

a priori knowledge about the random variables Xr and Xg is essential. It is known 

that the pixel intensities of spots at the same spatial location of the red and green 

channel images are strongly correlated with each other (Davies and Seale, 2005; Zhang 

et. al., 2005b). Since the DWT is a linear transform, the corresponding transform 

coefficients of the two channels are expected to be highly correlated as well. We 

verify this experimentally by computing the correlation between local neighboring 

coefficients of two channels for 10 typical cDNA microarray images. Table 3.1 shows 
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Table 3.2: Average percentage of Xr and Xg that are significantly correlated in various 
subbands using 10 typical cDNA microarray images. 

Subband Level of decomposition Subband 
I = 1 1 = 2 1 = 3 1 = 4 

HHt 20 68 93 92 
HLt 33 75 78 87 
LHt 25 72 86 79 

average values of these local correlations for a four-level DWT that are estimated 

using a 7 x 7 sliding window. It is to be noted that the correlations obtained using 

other window sizes, such as 3 x 3, 5 x 5, and 9 x 9 are also similar. From the table, 

it is evident that positive correlation exists between the local neighboring coefficients 

of the two images, particularly at higher levels of decomposition. Further, it is seen 

that the correlations for the subbands at any given level are higher than that of 

the corresponding lower levels. This is expected since wavelet coefficients in the 

higher levels contain more significant structural features than those in the lower levels 

(Mallat, 1999), for which, there exists more similarity among the former. To determine 

if the observed correlations are statistically significant, we perform the standard test 

which is based on the ^-distribution (Goulden, 2007). The test is performed for 

the correlation between Xr and Xg at a given spatial location by using the wavelet 

coefficients within a 7 x 7 window centered at that location. The level of significance 

used for this test is 5 percent. Table 3.2 gives the average percentage of Xr and 

Xg in each subband that are significantly correlated wherein the percentages are 

obtained bv averaging over the same set of images used for Table 3.1. It is seen 

from Table 3.2 that at least 65% coefficients within the subbands of the red and 

green channel images are significantly correlated with each other at a decomposition 

level I > 2. In addition, the percentage of significant correlations in the subbands of 

decomposition level I 1 are non-negligible. The results obtained using other window 
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sizes are very similar to those given in Table 3.2. Thus, joint estimation is necessary 

for obtaining better denoising performance. It is to be mentioned that although the 

inter-channel correlations in the subbands of level 1 = 1 are lower than that of the 

higher levels, estimation of the noise-free coefficients of these subbands using a joint 

estimation technique cannot be expected to be worse than methods assuming zero 

correlation. 

For joint estimation of the noise-free coefficients, a bivariate PDF for XT and Xg 

is required that takes into account the inter-channel correlation. In the pixel domain, 

the distribution of spot intensities of the red or green channel image is approximately 

Gaussian (Balagurunathan et al., 2002; Davies and Seale, 2005). Moreover, the images 

follow the same statistical distribution in the pixel- and DWT-domains (Srivastava 

et al., 2003). Therefore, a good choice for modelling the noise-free coefficients of the 

red or green channel image at a given spatial location is the zero-mean Gaussian PDF 

with variance estimated from the local neighboring coefficients. Since the coefficients 

of the local neighborhoods of the two images are linearly dependent, the joint density 

function of Xr and Xg is chosen to be the zero-mean bivariate Gaussian PDF that is 

given by 

Pxrxg{xr.xg) = 1 exp - * <j ̂  + - 2 p — ^ \ , (3.11) 
2iraragy/(l - p2) _ 2(1 - p2) [a2 a2 arag

l 

—oo < Xr, Xg < oo 

where {a2 (a2 > 0), a2 {a2 > 0)} and p ( - 1 ^ p ^ 1), are the variance and 

correlation parameters, respectively, which are estimated using the local neighboring 

coefficients. Here, the parameter p measures the linear dependency between the DWT 

coefficients of the two channels. Two methods are used to assess bivariate normality 

to evaluate the appropriateness of the proposed joint PDF for the index-dependent 

random variables Xr and Xg using a set of local neighboring coefficients centered 

at that index. First, we consider the well-known Mardias test (Mardia. 1970. 1974) 
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Table 3.3: Average percentage of Xr and Xg in each subband that follow the bivariate 
Gaussian PDF by Mardia's test (Mardia, 1970) using 10 typical cDNA microarray im-
ages. 

Subband Level of decomposition Subband 
I = 1 1 = 2 I = 3 1 = 4 

HHi 97.74 95.40 94.04 94.82 
nu 97.34 94.57 92.73 89.20 
LHi 97.83 94.81 91.55 88.46 

that is based on skewness and kurtosis of data, since this test is stable and reliable for 

assessing multivariate normality (Romeu and Ozturk, 1993; Kim and Timm, 2006). 

Table 3.3 presents the results concerning Mardia's test using a 7 x 7 window as the 

local neighboring region for each coefficient. Level of significance used for this test to 

reject the null hypothesis of bivariate normality is 5 percent. The values in this table 

represent the percentage of the coefficients in each subband that follow the bivariate 

Gaussian PDF by averaging over the same set of images used for Table 3.1. It can 

be seen that a high proportion of Xr and Xg follow the bivariate Gaussian PDF in 

all the subbands. Next, chi-square plots (Kim and Timm, 2006) are constructed as 

a graphical tool to examine bivariate normality of these random variables. Fig. 3.1 

shows the average of the chi-square plots obtained for all the random variables Xr 

and Xg in the subbands HL\, HL2, HLz, and HL4 using the same settings that 

are used for Mardia's test. As can be seen from these plots, the squared generalized 

distances of the DWT coefficients that are measured from the local neighboring region 

and the chi-square quantiles are approximately equal. The chi-square plots for the 

other subbands are very similar to those in Fig. 3.1 and are therefore not shown. 

Since neither the chi-square plots nor the results of Mardia's test indicate significant 

departures from bivariate normality, we conclude that the joint PDF in (3.11) is an 
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Figure 3.1: Chi-square plots to assess bivariate normality of XT and Xg in the sub-
bands (a) HLi (b) HL2 (c) HL3 and (d) HL4. 
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appropriate model for the random variables XT and Xg. As we shall see later, an 

advantage of being able to use the bivariate Gaussian PDF in the development of 

an estimator is that it yields a closed-form solution so that the resulting denoising 

algorithm is fast and efficiently implementable. In the following sections, we use this 

PDF in LMMSE and MAP estimation to derive bivariate estimators for Xr and Xg. 

3.4.1 Bivariate LMMSE Estimator 

Let the additive noise model in (3.8) and (3.9) be represented in vector notation as 

y = x + v (3.12) 

where x = [xr, xg]T, y = hr, yg]T, and v = [vr,vg]T are samples of the random vectors 

X, Y, and V, respectively. Then the LMMSE estimator for x given the corrupted 

observation y can be written as (Kamen and Su, 1999) 

i = /iX + E x y S y 1 ( y - / J y ) (3.13) 

where n x and /.iy are the mean vectors of the random vectors X and Y", E x y is the 

cross-covariance matrix of X and Y, and Ey is the covariance matrix of Y. The 

matrices E ^ y and Ey may be written as 

Exv = E{(X - nx)(Y - / /y)T} (3.14) 

and 

E r = E{(Y - hy){Y - (3.15) 

where E{ } is the mathematical expectation. Since the DWT coefficients of the 
image and additive noise have zero means (Mallat, 1999), fix = I'v = 0, and //y = 
I'x + I'v = 0, where /ty is the mean vector of V. Further, the image and additive 
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noise are independent so that 

Exr =E{XYT} 

=E{X(X + V)T} 

=E{XXT} + E{XVT} 

= £ { X I T } + W V 

= E X (3.16) 

which is the covariance matrix of the bivariate Gaussian random variable X given by 

(3.17) 
cr2 parag 

parag ag 

The covariance matrix of Y is found to be Ey = E x + Ev, where E v is the covariance 

matrix of the joint PDF of Vr and Vg. Thus, the LMMSE estimator of x given in 

(3.13) becomes 

x = Ex{Ex + Ev)-1y (3.18) 

To find x, the elements of S y need to be specified. The noise model in (3.6) and (3.7) 

assumes that the microarray images are corrupted with additive bivariate Gaussian 

noise where a2 is the noise strength in each channel and pc is the inter-channel noise 

correlation. It is known that the DWT coefficients of Gaussian noise in an image 

follow the i.i.d. zero-mean Gaussian distribution (Mallat, 1999). Then the DWT 

coefficients of additive bivariate Gaussian noise in microarray images follow the i.i.d. 

zero-mean bivariate Gaussian PDF with equal variance cr2=^tr(WVV7 )'of and cor-

relation parameter pv = p£: where W e { W ° ; 0 6 II. V. D] denotes the transform 

matrix of the DWT and tr{ } the trace of a matrix. The relation pv = pe holds since 

the covariance of iv(&], fo) and v(J{k^. k2) is given by (JlvV9 = |t.r{>VWJ'}(7tr£ . For 

orthogonal wavelet functions, ^-tr{VV>Vr} = 1 and hence in this case. = <j\. On 
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the other hand, pv = pe, whether the wavelet function be orthogonal, biorthogonal, 

or spline. The covariance matrix of V may be written as 

£ v = K 1 Pv 
Pv 1 

(3.19) 

Using the expressions of E x and E y in (3.18) and performing the matrix operations, 

the DWT coefficients of red and green channel images can be obtained as 

30 n 

[yr,Vg] 

tVr.Vg] = 

a2af - ppvaraga2 

02r°\ + rfitf + rf) - tfpvirfpv + 2par(Tg) 

Q2g<?l - PPyVrOgCtl 

°g?2 + + av) - vIPvWIPv + 2p(JTOg) 

Vr + 
{pOg - PVOr) 
2 9 "9 <JrO{ - PPvVgOi 

(3.20) 

(r2(par - pvOg) 
y9 + ^ ^ 2 — T r r h v r aga2 - PPvVr&v 

(3.21) 

where a2 = [1 - p2)a2 + a2
v and o\ = [1 - p2]a2 + a2. 

3.4.2 Bivariate M A P Estimator 

The MAP estimator for x given the corrupted observation y is (Kamen and Su, 1999) 

x(y) = &rg max pX\Y{x\y) (3.22) 

Using the Bayes rule, (3.22) can be written in terms of the PDFs of noise and the 

noise-free wavelet coefficients as 

x{y) = argmax [pY\x{y I x) -px(®)] 

= arg max \pv{y - x) • px{x)] 
x 

= argmax [In(pv(y ~ x)) + ln(px(®))] (3.23) 

where px(~) is the joint PDF given in (3.11) and pv(-) is the zero-mean bivariate 

Gaussian PDF given by 

Pv(v) 
2 T r ^ y o r ^ y 

• exp 
2^2(1 - pi) 

Vl + Vl - 2PvVrV, (3.24) 
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By using (3.24), (3.23) becomes 

1 
[xr, = arg max 

xr^xg 2a2(l - Pi) 
(yr - xr)2 + (yg - Xg)2 - 2p v(y r - xr)(yg - xg) 

+ 1 n{PXrXg{Xr,Xg)) 

(3.25) 

To maximize (3.25), we solve the equations 

1 
yr xr ~ Py{y9-Xg) 

1 Xr P Xg 

(1 - PIK 
yr xr ~ Py{y9-Xg) 

(1 - P2) u ? ar crg 

I 
Vg ~

 x9 PviVr xr) 
1 Xg p xT 

(1 - Vg ~
 x9 PviVr xr) 

(1 - P 2 ) k og aT 

= 0 

= 0 

(3.26) 

(3.27) 

to obtain the following MAP estimators for xr and xg (Howlader and Chaubey, 

2009b): 

0C r 

[Vr, Vg] = 

[:Vr,yg] = 

<J2
to\ - ppv0r0g02

v 

+ + al) ~ tfPvitfpv + 2pOrOg) 

02g°l ~ ppy(JrOgOl 
°2g°2 + + <*l) ~ &vPv(V2PV + 2pOrOg) 

Vr + 

Vo 

a2,{pag - pv(Tr) 
i 9 Vg ara{ - ppvogoA

v 

(3.28) 

vl{p°r - PvOg) 
2 9 y>" Vg°2 ~ PPvVrV?, 

(3.29) 

where a2 = [1 - p2}a2
g + a2 and a2 = [1 - p2)a2

r + a2 . Thus, LMMSE and MAP 

estimation lead to the same bivariate estimator. In the special case where noise 

coefficients in the two channels are uncorrelated (i.e., pv = 0), the above estimator 

reduces to: 

r2 

Xr 

X, 

[Vr-.yg] 
a2a2 

a2 a2 + al{a2 + a2) 

[yr,yg] = 
2 2 

Vr+P 

y9+p 

a{ ar 

2 ^ a^Or 
aj ag 

yr 

(3.30) 

(3.31) 

3.4.3 Parameter Estimation 

The estimators given in (3.28), (3.29) and (3.30), (3.31) require prior knowledge of the 

parameters a2., a2, and p. Since image coefficients in a given subband of the red and 
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green channel images are spatially non-stationary, these parameters depend on the 

spatial index (Arj, k2)- For notational simplicity, we shall denote the two-dimensional 

spatial index (ki, k2) by k in the remainder of this chapter. A locally-adaptive method 

is used to estimate these parameters at the A;-th index using the noisy coefficients in a 

neighboring region S(k). The local neighborhood S(k) is defined as all the coefficients 

within a square-shaped window that is centered at [yr{k),yg(k)]. Although wavelet 

coefficients of an image are not i.i.d. within a subband, for the purpose of parameter 

estimation, it is assumed that coefficients within a local neighborhood are i.i.d. Thus, 

we assume that the joint PDF of Yr(k) and Yg(k) is an i.i.d. zero-mean bivariate 

Gaussian PDF with parameters crf/r(k), &fJg{k) and py{k), which are estimated from 

the coefficients in S(k). In other words, (?yr{m) = o2
r(k), Oyg{m) = 'a2 (k), and 

py(m) = py(k) for all indexes m £ S(k). We now describe how the parameters at 

each index may be estimated using ML and MAP estimation. 

ML Method 

First, the ML method is used to estimate the parameters for each coefficient. We 

compute the ML estimates of the index-dependent parameters using a sliding window 

approach and then substitute these values in (3.28) and (3.29) to obtain the MAP 

estimates for xr and xg, respectively. Let a2
r and Oyg be the variances for Yr(m) and 

Yg{m), respectively, and py be the correlation between them conditioned on S{k). 

The log-likelihood for the noisy coefficients is given by 

mes(k) 

— M In 2-ko,.(7. ,2 y 
1 E m Vr{™) i E m y ? ( m ) 

yr-"yg 2(1 ~PI)\-
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where pyrys (yr, yg | ayriaygiPy) the zero-mean bivariate Gaussian density with para-

meters ay r , Oyg, and py, and M is the total number of coefficients in the neighborhood 

S(k). The following ML estimates are obtained by differentiating t{k) with respect 

to the parameters ayr, aVg, and py, setting the results to zero, and then solving the 

likelihood equations. 

a:_(k) =argmax*(fc) = (3-33) -2 
" t > 0 M 

Vr~ meS(k) 

•2 a; (k) = arg max /(*) = £ »J(m> t3"34) 
Vg- mes(k) 

(3.37) 

yr(m)ya(m) 

py(k) = arg max t{k) = ^ ^ W'K (3.35) 

We then obtain the ML estimates for parameters of the noise-free coefficients as 
al{k) = max I ^ £ ^ ( m ) - a 2 ,0 J (3.36) 

\ mes(k) ) 

5j(fc) = max[l: J ] y2
g(m)-al o] 

\ m£S{k) ) 

p(k) = max ^min ^ ^ ^ yr(m)yff(m) - l^j , - 1 j (3.38) 

These values are substituted in (3.28) and (3.29) to obtain the MAP (or LMMSE) 

estimates for the noise-free wavelet coefficients of two channels. 

M A P Method 

The MAP estimation technique yields better estimates than ML estimation provided 

that correct prior functions for the unknown parameters can be defined. In this 

section, we investigate the choice of appropriate prior functions for the parameters 
a y a y g - a n ( l Py an<^ later use these prior functions to derive the MAP estimators. 

In the Bavesian literature, the inverse-gamma (IG) PDF is often used as the prior 

density for the variance parameter (Congdon. 2003). More specifically, it is used as a 
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Figure 3.2: Empirical PDFs of local variances of the wavelet coefficients in the sub-
bands of (a) first level (b) second level (c) third level and (d) fourth level decompo-
sition of a typical green channel image. 
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Figure 3.3: Empirical PDFs of local correlation of the wavelet coefficients in the 
subbands of (a) first level (b) second level (c) third level and (d) fourth level decom-
position of red and green channel images. 
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conjugate prior for the variance in a univariate normal model. Hence, first we choose 

the IG prior to model the local1 variances of the wavelet coefficients in the red and 

green channel images. However, the exponential prior has been shown to be a reason-

able model for the local variances of the DWT coefficients for natural images (Mihgak 

et al., 1999). Fig. 3.2 shows empirical PDFs of the local variances of DWT coefficients 

in the subbands of the first four levels of decomposition for a typical green channel 

microarray image. The variances are estimated using a sliding window of size 5 x 5 . 

Empirical PDFs are also obtained for subbands of the red channel image using differ-

ent window sizes, but these are similar to Fig. 3.2 and are therefore not shown. From 

Fig. 3.2 it is seen that the empirical PDFs for a2
g obtained in each subband at each 

level of decomposition are similar in shape. They are roughly convex, bounded at 

zero and highly skewed to the right. The data therefore suggest that the exponential 

prior may be an appropriate model for the local variances of the DWT coefficients of 

cDNA microarray images as well. However, the exponential PDF is a special case of 

the gamma PDF, which contains both a shape parameter as well as a scale parameter. 

Intuitively, one would expect the two-parameter gamma PDF to provide a better fit 

to the data. We fitted the gamma PDF to the local variances of the red and green 

channel images. For most subbands, the estimated value of the subband-adaptive 

shape parameter was found to be close to one. Hence, the exponential PDF was 

chosen as the prior function for modelling a2
g and a2

r . 

Although the empirical PDFs for show a consistency in shape among the 

various subbands, the empirical PDFs of py vary substantially according to level of 

decomposition. This can be seen from Fig. 3.3, which shows the empirical PDFs of 

py in the subbands of each level of decomposition for a typical two-channel cDNA 

microarray image. The empirical PDFs in the subbands of the first level appear to be 

approximately Gaussian and are centered at py = 0. However, the empirical PDFs for 
1 The t e rm local implies t h a t the paramete r is es t imated using the local neighboring coefficients. 
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the higher-level subbands are clearly non-Gaussian. For instance, the empirical PDFs 

for the second and third-level subbands are multi-modal in nature. Moreover, as the 

level of decomposition increases, the peakedness of the subband PDFs increases near 

the boundary at py = 1. Thus, there is no consistency in shape of the empirical prior 

functions of py in the various levels. Level-specific prior functions might be considered 

such as a Gaussian PDF for the first level subbands, SMG for the second and third 

level subbands, and a negatively skewed PDF for the subbands in the fourth level of 

decomposition. However, such an approach increases the computational complexity 

of the proposed algorithm significantly. Therefore, we prefer to estimate py using 

the ML method as described in the previous subsection. We now describe the MAP 

estimation method for obtaining estimates of the local variances a2
r and a2

g using (i) 

the IG prior, and (ii) the exponential prior. 

(i) Inverse-gamma prior 

In this section, we derive MAP estimates for the index-dependent parameters a2
r and 

a 2 using the following IG priors 

where a,], ft] and a2, b2 are the subband-adaptive hyperparameters. Then the 'joint 

prior' for a2
r and ay is considered to be a product of the marginal priors in (3.39) 

and (3.40). Using the above prior functions, the log-likelihood function for the noisy 

coefficients in S(k) can be written as 

*(A:)= ^ lnpyrV9 (yr{m),yg{m) \ o2
y^ o2

Jg, py) + In M a 2 . ) + l n / i 2 ( < ) (3.41) 

b ni 

= 1 e x p ( - h / o l ) , > 0 

b " 2 

M < ) = exp(-62 /a2
s) , a2

yg > 0 

(3.39) 

(3.40) 

( 6 5 ( A ) 
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Maximization of l(k) with respect to oVr and oVg gives the following likelihood equa-

tions. 

Piv't + Py llmVr{rn)yg{m) 
Vr 1 -Pi 

'yr 
'yg 

2 6 1 = 0 
m 

(3.42) 

ft* + - ' Z f t m ) - - 0 (3.43) 1 f y - yr 1 fJy rn 

where (3y = M + 2ax + 2 and /?2 = M + 2a2 + 2. Solving (3.42) and (3.43) for ayr and 

<7yg, and using the relations a2
r = a2 + and a2

g = a2 + a2, we obtain the following 

MAP estimators for a 2 and a2: 

a2{k) = max , 4<J? 
Py(k)*3(k) , /p2(fc)vp3(fc) 2 

^ +\l ^ + 4/?1(*1(A;) + 2&1) 

(3.44) 

max 4/3| + + 4 /? 2 (^ 2 W + 262) -(7,2,0 

(3.45) 

In the above expressions, 

1 - ^ 

1 - M m 

(fc) = 2 _ ^( f r ) 

(3.46) 

(3.47) 

(3.48) 

The MAP estimators <5f(fc) and <r̂ (A:) contain unknown quantities cr2 {k), a2
r(k)\ 

py(k), ai, a2, 61, and 62 that need to be replaced by suitable estimates. We choose 

the ML estimates for cr2
g(k:), a2

r(k) and py{k). Considering 01 > 2 and o2 > 2, the 

hvperparameters of the IG priors for each subband are estimated by the following 
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MoM estimators 

= al r{di - 1) Va2 e subband (3.49) 

b2 = a2(d2-l) V a2 G subband. (3.50) 

where a2
r and a2

g represent the mean of the ML estimates of the variances of the noisy 

coefficients in a subband for the red and green channel images, respectively. Finally, 

the MAP estimates of (£;) and a2(k), and the ML estimate for p(k) are substituted in 

(3.28) and (3.29) to obtain the MAP estimates for the noise-free wavelet coefficients. 

(ii) Exponential prior 

In this section, we assume that the 'joint prior' for a2
r and a2

g is a product of the 

following exponential priors 

where Ai and A2 are the two subband-adaptive hyperparameters. Using the prior 

functions given in (3.51) and (3.52), the following likelihood equations are obtained 

h(a2
yr) = A 1 e x p ( - A 1 < ) , < > 0 

/ 2 « ) = A2exp(-A2aJJ ) a2 > 0 

(3.51) 

(3.52) 

From (3.53) and (3.54) we have 

=>Aat + Ba2 + C = 0 (3.55) 

where 

A = 2A]. B 
HV m 
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Solving for a2
r in (3.55) and using the relation a2

r = a2 + a2, we obtain the MAP 

estimator for a2(k) as 

'Vgy 
a2(k) = max , , ^ 

1 4 A i - + v - ti)2+ 
-<t2

v ,0) (3.56) 

Similarly, we obtain the MAP estimator for a2(k) as: 

ag(k) = max 
4 A S 

2X<{k) (2Xi<{k) -1§)2+8A2*2^ yr v / 

- < £ 0 1 (3.57) 

where ^\(k) and ^ ( f c ) are given in (3.46) and (3.47), respectively. Since a2
g(k), 

Oyr(k), py{k), Ai and A2 are unknown, they must be replaced by suitable estimates. We 

use the ML estimates given in (3.33), (3.34), and (3.35) to estimate a2 {k), cr2
r(k), and 

py(k), respectively. Since a2 and a2 are random variables, whereas a2 is a constant, 

Var{(Jyr) = Var(cr^) and Var{cr2
g) = Var(cr2). Hence, the hyperparameters Ai and A2 

for each of the subbands are estimated as 

Ai = , 1 , \/ a2
r € subband (3.58) 

V ^ G s u b b a n d (3.59) 

where a2(k) and c2{k) are the ML estimates in (3.36) and (3.37), respectively. Finally, 

the unknown parameters in (3.28) and (3.29) are replaced by the MAP estimates a2(k) 

and (J2{k) given above and the ML estimate p(k) given in (3.38) to obtain a better 

estimate of the noise-free wavelet coefficients. Fig. 3.4 summarizes the steps of the 

proposed noise reduction scheme. 

It may be noted that the estimators for the local variances given in (3.44) and 

(3.45) using the IG prior, and in (3.56) and (3.57) using the exponential prior, yield 
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Figure 3.4: Block diagram for obtaining denoised cDNA microarray image using the 
proposed joint estimation technique. 

non-negative real numbers. Moreover, the estimators are such that the variances of 

the wavelet coefficients for any one image are estimated using noisy coefficients from 

both the images. By using information from both channels, the dependency between 

the two images is accounted for, and therefore, it is expected that these estimators 

will yield good results. 

It is to be pointed out that the two sets of MAP estimates for the local variances 

result in two separate denoising algorithms. The first algorithm, referred to as Pro-

posed Method I, uses the local variance estimators given in (3.44) and (3.45) based 

on the IG prior. The main steps of this algorithm are given in Fig. 3.5. The sec-

ond algorithm, which we call Proposed Method II, uses the local variance estimators 

given in (3.56) and (3.57) and is outlined in Fig. 3.6. To assess the computational 

efficiency of these algorithms, the computational complexity of each algorithm may 

be derived. In practice, this complexity refers to the number of elementary computer 

operations required by the algorithm to solve the given problem expressed as a func-

tion of the data size. The computational complexity of the algorithms for Proposed 

Method I and Proposed Method II may be derived as follows. For an image of size 

Ni x N-2, the computational complexity of the forward or inverse DWT may be found 
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1. Input: gr(i,j), gg(i,j), i = 1, • • • Ni, j = 1, • • • N2 

2. Forward transform: Obtain the noisy DWT coefficients yr = 
yg = Wgg, using the forward transform matrix W 

= Wgr and 

3. Estimation of DWT coefficients using the local parameters: 
for / = 1 : J do 

for 0 = 1 : 3 (1 H, 2 V, 3 => D) do 
\/k in a subband, 
Compute o2

T(k) (refer to (3.44)) 
Compute o2

g(k) (refer to (3.45)) 
Compute p(k) (refer to (3.38)) 
Compute xr(k) and xg(k) (refer to (3.28) and (3.29)) 

end for 
end for 

4. Inverse transform: Obtain denoised images fr = W-1£Cr 

W~1xg using the inverse transform matrix W - 1 
and fg = 

Figure 3.5: Steps in the algorithm for Proposed Method I. 

as 0 ( y £ ( l — 4~J)./ViN2), where £ is the length of the scaling or wavelet vector, J is 

the highest-level of decomposition and O denotes the order of the calculation. Since 

J is a positive integer, the upper bound of this complexity is 0{~£N\N2)- Proposed 

Method I or Proposed Method II requires that for each of the DWT coefficients, 

total 5 parameters are being estimated locally. These are: three ML estimates for 

the correlation coefficient and variances in the two channels, and two MAP estimates 

for the variances. Hence, for a window size of w x w, the computational complexity 

due to the parameter estimation is 0{biu2 N\N2)- The complexity of obtaining the 

denoised coefficients using these local parameters is 0(4.N^N2)- The overall computa-

tional complexity for each of the algorithms comprises the complexities of the forward 

and inverse DWT of two images, parameter estimation, and estimation of noise-free 

coefficients from the noisy ones. Since u<2 > 1 and £ > 1, the computational com-

plexity of any of the proposed DWT-based denoising algorithm may be obtained as 
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1. Input: gr(i,j), g9(i,j), i = 1, • • • Ni, j = 1, • • • 

2. Forward transform: Obtain noisy DWT coefficients yr = W<7r and yg = 
Wgfg, using the forward transform matrix W 

3. Estimation of DWT coefficients using the local parameters: 
for I = 1 : J do 

for O = 1 : 3 (1 => H, 2 =» V, 3 => D) do 
Vfc in a subband, 
Compute a?(k) (refer to (3,56)) 
Compute af{k) (refer to (3.57)) 
Compute p(k) (refer to (3.38)) 
Compute xr(k) and xg(k) (refer to (3.28) and (3.29)) 

end for 
end for 

4. Inverse transform: Obtain denoised images fr = W~lxr and fg = 
W~1xg using the inverse transform matrix W _ 1 

Figure 3.6: Steps in the algorithm for Proposed Method II. 

The purpose of microarray image denoising is to improve the extraction of statistical 

information regarding gene expression levels instead of visual enhancement as in tra-

ditional image denoising. Therefore, a successful microarray denoising algorithm is 

the one that reduces noise with minimal loss of information for downstream statistical 

analysis. In cDNA microarray experiments, gene expression is commonly quantified 

in terms of the log-intensity ratio that is given by (Jornsten et al., 2002): 

where Sr and Sg denote pixel intensities in the red and green channel images, respec-

tively, ROI refers to the region of interest or spot where hybridization occurs, n is 

3.5 Estimation of Log-Intensity Ratio 

(3.60) 



Figure 3.7: Grid identifying target areas for spots in a red channel microarray image. 

the number of pixels in the ROI, and br and bg are the median of the pixel intensi-

ties of local background corresponding to the ROI of two channels. By comparing 

the treatment versus control samples on a gene-by-gene basis, the log-intensity ratios 

identify genes that are activated or repressed by the treatment. Although relative 

differences in gene expression may also be measured by the ratio of spot intensities 

in the red and green channel images, the log-intensity ratio is preferred instead. This 

is because intensity ratios have the disadvantage of treating up- and down-regulated 

genes differently. For instance, genes up-regulated by a factor of 2 have an intensity 

ratio of 2, whereas those down-regulated by the same factor have an intensity ratio of 

—0.5.' The logarithm base 2 transform has the advantage of producing a continuous 

spectrum of values and treating the intensity ratio (or their reciprocals) symmetri-

cally, so that a gene up-regulated by a factor of 2 has a log-intensity ratio of 1, a gene 

down-regulated by a factor of 2 has a log-intensity ratio of -1, and a gene expressed 

at a constant level (with a ratio of 1) has a log-intensity ratio equal to zero. (Hayat, 

2005). Another advantage is that the distribution of log-transformed intensity ratios 

is approximately normal. Presence of noise in microarray images can seriously distort 
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the pixel intensities of a spot and corresponding background, and thus, the estimated 

log-intensity ratio values. Hence, an effective way to assess the competence of var-

ious denoising algorithms for microarray images is to compare the accuracy of the 

log-intensity ratios that are estimated from the denoised images. 

To calculate R, the first step is to identify target areas in the red and green channel 

images. In general, the target area is a square or rectangular region on an image en-

closing one spot. These regions are identified by placing a grid over the entire image. 

Fig. 3.7 shows an example of such a gridding technique. Since this gridding is made 

on a regular array, the grid lines are evenly spaced resulting in square-shaped target 

areas, each containing a spot and the background. The next step, known as seg-

mentation, consists of identifying the pixels that belong to the ROI and background 

in a target area. There exists several segmentation methods, each having certain 

advantages and drawbacks. Some of these methods have been compared in Zhang 

et al. (2004) and Yang et al. (2002). In this chapter, we use a histogram method, 

which defines the background and ROI as pixels with intensities between the 5th and 

20th percentile and between the 80th and 95th percentile, respectively (Bozinov and 

Rahnenfuhrer, 2002; McLachlan et al., 2004). This segmentation method is chosen 

for its simplicity, which is why it has been implemented in well known microarray 

image processing softwares, such as QuantArray (McLachlan et al., 2004). The local 

background intensity for each spot, br or bg, is estimated using the median of pixel 

intensities in the background of the square target area for each image. 

3.6 Experimental Results 

Extensive experimentations are carried out to compare the performance of the pro-

posed algorithms with that of others on several microarray images obtained from real 

experiments. The experiments are conducted on a large number of microarray images 
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that have been downloaded from the website of the Stanford MicroArray Database 2. 

In order to conduct the experiments original noise-free images are necessary. Since 

perfectly noise-free images are not available in practice, we choose as noise-free im-

ages those that appear to be corrupted with very little noise. The images are selected 

by inspection in the following manner. First, a synthetic background is created by 

adding Gaussian noise on a zero-intensity background. This is then compared with 

the background of the test images by zooming in. Images having backgrounds that 

do not resemble the synthetically corrupted zero-intensity background and possess 

almost no artifacts are chosen as the noise-free images. The images that have been 

used in the experiments are 16-bit TIFF files of size 1000 x 1000. 

Noisy images are synthetically created by adding bivariate Gaussian noise to the 

noise-free images considering four values of pF, viz., 0, 0.25, 0.50, and 0.75 and five 

values of <r£, viz., 800, 1000, 1200, 1400 and 1600. The performance of the noise 

reduction algorithms are compared using two sets of experiments. In the first set of 

experiments, the denoising performance of each algorithm is quantified in decibels 

(dB) using the peak signal-to-noise ratio (PSNR) ratio which is defined as3 

and / represents the true microarray image of size A'"] x N2- This measure is inversely 

proportional to the residual error in an image. Thus, a higher PSNR implies a better 

noise reduction performance and vice versa. In the second set of experiments, we 

estimate values of the log-intensity ratio R from the denoised images and compare 
2htt .p. : / /smd.st .anford.edu/index.sht .ml 
3 T h e peak of the image signal is 2 1 6 — 1 = 65535. 

(3.61) 

where MSE(/) is the MSE of the denoised image that is given by 

(3.62) 
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these values with the estimates obtained from the noise-free images. Distances be-

tween these two estimates are measured using the mean absolute error (MAE) given 

where Rq is the log-intensity ratio for the q-th spot estimated using the noise-free 

image, Rq is the estimate obtained from the denoised image, and K is the total number 

of spots in the image. A lower value of the MAE indicates a better performance of 

the denoising algorithm due to greater accuracy in the estimation of R. 

In Section 3.4.3, MAP estimation of the local variance parameters were described 

using the IG prior as well as the exponential prior. Thus we implement two denoising 

algorithms, namely, Proposed Method I and Proposed Method II corresponding to the 

IG and exponential prior functions, respectively. Apart from the proposed methods, 

eight different DWT-based denoising methods have been considered in the simulation, 

namely, the VisuShrink (Donoho, 1995), SureShrink (Donoho and Johnstone, 1995), 

GarroteShrink (Gao, 1998), BayesShrink (Chang et al., 2000a), EBayesThresh (John-

stone and Silverman, 2005), LAWMAP (Mihgak et al., 1999), NeighCoef (Cai and Sil-

verman, 2001) and BiShrink (Sendur and Selesnick, 2002a). Since these methods do 

not take into account the presence of correlated noise between the two channels, it is 

reasonable to compare these methods with the proposed ones under the assumption of 

uncorrelated noise. Therefore, these methods are compared for the case when p£ = 0. 

In the experiments, the DWT of the images are obtained using Sym8 (Daubechies, 

1992). A four-level decomposition of the DWT is chosen, since any further decompo-

sition level does not produce a significant increase in denoising performance. Among 

the methods that are considered, the VisuShrink uses a universal threshold parameter 

for all subbands, the GarroteShrink. BayesShrink, SureShrink. and EBayesThresh use 

subband-adaptive parameters, whereas the LAWMAP. NeighCoef, BiShrink and the 

by 

(3.63) 
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Table 3.4: Output PSNR values in dB for the DWT-based denoising algorithms at 
various noise strengths when pe = 0. 

<7e 800 1000 1200 1400 1600 
IPSNRJ 
IPSNRj 

38.29 
38.27 

36.35 
36.33 

34.77 
34.75 

33.43 
33.41 

32.27 
32.25 

Methods 

VisuShrink 42.78 
43.44 

41.59 
42.24 

40.53 
41.26 

39.73 
40.35 

38.50 
38.97 

SureShrink 44.04 
44.74 

42.82 
43.46 

41.80 
42.47 

40.93 
41.62 

39.88 
40.44 

GarroteShrink 43.29 
43.55 

41.82 
42.07 

40.66 
40.80 

39.72 
39.78 

39.78 
40.11 

BayesShrink 43.07 
43.81 

42.05 
42.73 

41.19 
41.79 

40.42 
40.98 

39.71 
40.39 

EBayesThresh 43.85 
44.49 

42.64 
43.12 

41.49 
42.02 

40.63 
41.16 

39.95 
40.37 

LAWMAP 44.85 
45.51 

43.61 
44.20 

42.58 
43.14 

41.72 
42.26 

40.86 
41.45 

NeighCoef 45.50 
46.28 

44.27 
44.94 

43.18 
43.81 

42.22 
42.86 

41.15 
41.67 

BiShrink 45.24 
45.96 

44.05 
44.67 

43.04 
43.59 

42.17 
42.68 

41.41 
41.87 

Proposed I 45.53 
46.34 

44.21 
44.96 

43.30 
43.99 

42.50 
43.15 

41.78 
42.41 

Proposed II 45.59 
46.49 

44.44 
45.33 

43.43 
44.33 

42.56 
43.44 

41.79 
42.68 

t IPSNRg and IPSNR,. denote t h e inpu t P S N R s for t h e green and red channel images respectively. 

proposed methods use locally-adaptive parameters. Only BiShrink considers the inter-

scale dependency between the wavelet coefficients in addition to the intra-subband 

one by using a bivariate circularly symmetric PDF to model the dependency between 

a coefficient and its parent. The denoising performance of the locally-adaptive meth-

ods are tested using several window sizes, such as 3 x 3, 5 x 5 , 7 x 7 , and 9 x 9 . 

Except for the NeighCoef, which is designed for a 3 x 3 window, the results of the 

remaining three locally-adaptive methods are shown for a 5 x 5 window, since this 

size gives the best denoising performance in most of the cases. It is to be noted that 
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the PSNR results obtained for the proposed methods remain almost the same when 

7 x 7 window size is used. 

Table 3.4 shows the output PSNR values for various denoising techniques obtained 

by averaging the results of twenty-five microarray images. The highest PSNR values 

among the methods for each of the noise levels are highlighted in boldface. It can 

be seen from the table that the locally-adaptive methods have a better performance 

compared to the subband-adaptive methods. Moreover, in terms of output PSNR val-

ues, both Proposed Method I and Proposed Method II outperform the other locally-

adaptive methods at all noise levels. Comparing between these two methods, we see 

that Proposed Method II, which uses the exponential prior, gives better denoising 

performance than Proposed Method I, which uses the IG prior. In the remainder of 

this chapter, Proposed Method II will be referred to as simply the Proposed Method, 

and further comparisons will be made with this method only. We see that the Neigh-

Coef, which gives the nearest PSNR values to the Proposed Method for nearly all 

noise levels, falls short bj' 0.40 dB on average. The significance of the observed dif-

ferences is better understood in terms of the MSE, which measures the residual error 

in an image. The MSE's for the two competing methods, namely, NeighCoef and 

LAWMAP, are higher than that of the Proposed Method by an average of 35 x 103 

units and 53 x 103 units, respectively. These high figures indicate significant improve-

ment in denoising performance of the Proposed Method over the competing ones. It is 

interesting to note that in spite of accounting for the inter-scale dependencies within 

an image, BiShrink does not perform as well as the Proposed Method. This suggests 

that for the denoising of cDNA microarray images, the consideration of inter-channel 

dependency is more important than the inter-scale one. In addition to good denoising 

performance, our method is computationally efficient. For example, the average time 

required to implement, the Proposed Method on an image of size 1000 x 1000 in the 
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MATLAB environment using a 2 GHz processor with 512 MB RAM is 1.71 seconds. 

Under the same setup, the two competing methods, viz., LAWMAP and NeighCoef, 

require 1.01 and 0.93 seconds, respectively. Thus, in terms of computational com-

plexity the Proposed Method is comparable to the other methods. It is observed that 

the output PSNRs obtained for the red channel images are consistently higher than 

that of the green channel images for every denoising method. A possible explanation 

for this is that the signal-to-noise ratios are higher in the red channel images than in 

the green channel images. 

Residual noise images are obtained as the absolute difference between the de-

noised image and the original image. These images are useful for making visual 

assessments of denoising performance because the brightness of a pixel on the im-

age reflects the magnitude of the estimation error at that spatial location. Fig. 3.8 

shows residua] noise images for SureShrink, which is the competing subband-adaptive 

method, NeighCoef, which is the competing locally-adaptive method, and the Pro-

posed Method. As compared to the other methods, the residual noise image for the 

Proposed Method contains spots that are less bright. This indicates that the Proposed 

Method more successfully removes noise from the spots. More detailed comparisons 

can be made by observing Fig. 3.9, which shows the 3-D representation of a noise-

free spot, its noisy version corrupted with a noise sequence having aE = 1200 and 

pe = 0.25, and the corresponding denoised versions using the SureShrink, LAWMAP, 

NeighCoef and the Proposed Method. This figure clearly reveals that the Proposed 

Method removes most of the noise from both the background and spot while pre-

serving most, of the signal magnitudes on the spot. On the other hand, the spot, 

is oversmoothed bv the other denoising methods including the NeighCoef. It, is to be 
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(c) (d) 

Figure 3.8: Residual noise images using various denoising algorithms with aE = 1200 
and p£ = 0.25. (a) Noisy image (b) SureShrink (c) NeighCoef, and (d) Proposed 
Method. 
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Figure 3.9: 3-D visualization of a spot, (a) Original and (b) noisy version of the spot 
with ae = 1200 and p£ = 0.25. Denoised versions of the spot using (c) SureShrink (d) 
LAWMAP (e) NeighCoef, and (f) Proposed Method. 
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Table 3.5: Output MAE values of log-intensity ratios for the DWT-based denoising 
algorithms at various noise strengths when pe = 0. 

<Te 800 1000 1200 1400 1600 
(Input MAE) 1.2602 1.4220 1.5972 1.7327 1.8580 

Methods 
VisuShrink 0.4075 0.4077 0.4079 0.4088 0.4097 
SureShrink 0.2547 0.3047 0.3396 0.3987 0.4056 

GarroteShrink 0.4267 0.5327 0.6283 0.7003 0.7363 
BayesShrink 0.7336 0.8255 0.8544 0.8802 0.9090 

EBayesThresh 0.4603 0.5340 0.6012 0.6681 0.6587 
LAWMAP 0.3218 0.4038 0.4687 0.5249 0.5705 
NeighCoef 0.3012 0.3165 0.3265 0.3292 0.3328 
BiShrink 0.2312 0.3080 0.3695 0.4353 0.4925 
Proposed 0.2595 0.2928 0.3113 0.3229 0.3275 

noted that oversmoothing is undesirable because less accurate gene activity measure-

ments result due to the reduced magnitude of spot intensities and inaccurate selection 

of spot and background pixels in the segmentation stage resulting from the blur in 

the image. 

Table 3.5 shows the values of the output MAE for estimating the log-intensity ratio 

R using the nine DWT-based denoising methods, wherein the images are corrupted 

with the five different noise levels considered in this section and with p£ = 0 for each 

noise sequence. The estimated values of R are obtained by averaging over the same 

set of test images that are used for Table 3.4. It can be observed from this table that 

the output MAEs of a noise reduction scheme are lower than the corresponding input 

MAEs, thus indicating that an efficient denoising algorithm for microarray images is 

essential for a better accuracy in the estimation of R. The tabular results indicate 

that the locally-adaptive noise reduction methods provide lower output MAE than 

the subband-adaptive ones in general. A similar observation has been made from the 

results based on the PSNR values in Table 3.4. From Table 3.5. it can be further 

seen that the proposed noise reduction method provides the lowest values of MAE for 
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Table 3.6: Output PSNR values of green and red channel images using the Proposed 
Method for different noise correlations and noise strengths. 

< 800 1000 1200 1400 1600 
p\ = 0.25 45.86, 46.73 44.73, 45.53 43.70, 44.54 42.82, 43.67 42.07, 42.91 
p£ = 0.50 45.80, 46.65 44.65, 45.43 43.60, 44.42 42.70, 43.54 41.93, 42.76 
p£ = 0.75 45.81, 46.62 44.64, 45.37 43.57, 44.34 42.64, 43.45 41.87, 42.66 

various noise levels except for one instance, i.e., o£ = 800. It is to be noted that even 

for this case, the MAE value given by the Proposed Method is close to the lowest one 

provided by the BiShrink method. We conclude that among the methods compared, 

the proposed one is the most efficient, since it consistently provides the lowest MAE 

at higher noise levels. 

Experiments are carried out to investigate the performance of the Proposed Method 

in the presence of correlation between noise of the two channels. Table 3.6 shows the 

output PSNR of the Proposed Method for green and red channel images using three 

different noise correlations, viz., p£ = 0.25, 0.50, and 0.75, at various noise levels. If 

we compare Table 3.4 and Table 3.6, it can be seen that when there is low correlation 

of noise between the channels, such as p£ = 0.25, the Proposed Method can provide 

even better output PSNRs than in the case of zero noise correlation. However, the 

PSNR values decline with increasing values for pe, especially at higher noise standard 

deviations. This observation is consistent with the findings of a recent study (Miller 

and Kingsbury, 2008) where it has been shown that the MSE of a bivariate estimator 

increases with the decreasing absolute deviation between the noise and signal corre-

lations. However, from Table 3.6 it is evident that the PSNR values do not decline 

by more than 0.25 dB. Hence, the Proposed Method provides good quality output 

images even when the noise sequences of the two channels are correlated. 
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In this chapter, we have proposed new methods for jointly estimating the DWT 

coefficients of two-channel cDNA microarray images corrupted by AGN. We have used 

both LMMSE estimation as well as MAP estimation for deriving joint estimators for 

the wavelet coefficients in the two channels. Both estimation techniques lead to the 

same bivariate estimator. Motivation for using a joint estimation technique arises 

from the observation that significant correlation exists between DWT coefficients in 

the two images of cDNA microarrays and thus an estimation technique that uses 

information from both images is expected to perform better. The bivariate Gaussian 

PDF is used as the prior function for the noise-free coefficients in both the channels. 

An important feature of the proposed estimator is that it 'jointly' estimates the 

noise-free coefficients in the two channels while taking into account the inter-channel 

dependency of the noise. 

In order to obtain improved estimates of the unknown local variances in the pro-

posed estimator, we have investigated the use of inverse-gamma and exponential 

priors for these parameters in MAP estimation. Separate denoising algorithms were 

obtained for each choice of the prior. The simulation experiments revealed that better 

denoising performance is attained when the exponential prior is used. The empirical 

prior distribution for the correlation coefficient has not shown a consistent behavior 

in the different subbands. For simplicity in implementation, the ML estimate for this 

parameter was chosen. The effectiveness of the proposed denoising scheme was tested 

by estimating the log-intensity ratio, which is the most, important output statistic 

for analysis of cDNA microarray experiments. Simulation results showed that the 

Proposed Method gives better denoising performance than existing methods both in 

terms of the PSNR of estimated images and MAE of estimated log-intensity ratios. 

Even when there exists correlation between noise in the two channels, the Proposed 
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Method is still found to be highly efficient. As a final comment, the denoising algo-

rithms that been proposed may appear to be computationally intensive at the outset, 

but they are actually simple and fast to implement due to the closed-form solution 

that is obtained. 



Chapter 4 

CWT-Based Denoising Algorithms 
for cDNA Microarray Images 

4.1 Introduction 

The success of an image denoising algorithm is largely dependent on the type of trans-

form used. Although the DWT-based methods proposed in Chapter 3 performed very 

well, further improvements in denoising performance could be achieved by overcom-

ing two major drawbacks of the DWT, namely, poor directional selectivity and lack 

of shift invariance. In the context of microarray image denoising, an improved direc-

tional selectivity and a better shift invariance property of the transform are desirable 

for better reconstruction of edges in the spots that have approximately circular shape. 

An introduction to 2D DWT and CWT has been given in Chapter 2. This chapter 

motivates the use of CWT-based algorithms for microarray image denoising and de-

scribes some of its features that overcome limitations of the traditional DWT-based 

methods. 

The CWT coefficients of an image have two types of representations, namely, 

Cartesian and polar. Since the magnitude components of polar representation have a 

better shift-invariance property than the individual real and imaginary components 

of Cartesian representation (Sendur and Selesnick. 2002a.b: Achim and Kuruoglu, 

2005). the former is chosen for denoising instead of the latter. It is observed that 

72 
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the magnitude components of the CWT coefficients in a given subband are correlated 

between the red and green channel images (Howlader and Chaubey, 2008, 2009a). It 

is expected that magnitude components of the noise coefficients in the two channels 

will be correlated as well. The inter-channel dependencies between magnitude com-

ponents of the image coefficients as well as the noise coefficients are ignored when 

the images are processed separately. For this reason, existing CWT-based methods 

do not provide satisfactory denoising performance when applied for microarray im-

ages. In this chapter, new bivariate LMMSE and MAP estimators (Howlader and 

Chaubey, 2009a) are developed that jointly estimate the magnitude components of 

the CWT coefficients in the two channels. Experimental results show that by tak-

ing into account the inter-channel dependency between magnitude components of the 

image coefficients as well as the noise, these estimators yield better noise reduction 

performance and more accurate estimates of the log-intensity ratios than existing 

CWT-based methods. In addition, the proposed CWT-based methods are contrasted 

with the DWT-based methods proposed in Chapter 3 both in terms of denoising 

performance as well as computational efficiency. 

4.2 Motivation for Using C W T in Microarray Im-
age Denoising 

The DWT used in image denoising can be of many types, such as orthogonal or 

biorthogonal, real or complex-valued, separable or nonseparable, and decimated or 

non-decimated. The choice of the type of DWT to be used should depend, among 

other factors, on the characteristics of the image. In Chapter 3. we proposed noise 

reduction algorithms for cDNA microarray images based on the decimated DWT that 

are computationally very efficient. The proposed algorithm was highly successful in 

meeting the two most, important objectives of microarray image denoising: apprecia-
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ble reduction of noise level and more accurate estimation of gene expression levels. 

However, the decimated DWT is not necessarily the 'best' transform to use for mi-

croarray images. Microarray images are highly structured and consist of thousands 

of spots that are roughly circular in shape arranged on a regular grid. The decimated 

DWT lacks two important properties, namely, shift invariance and good directional 

selectivity, that are useful in the denoising of images possessing circular features or 

edges. Due to lack of shift-invariance of the DWT, shifting the signal by one results in 

different coefficients at the next lower level. The DWT is said to have poor directional 

selectivity because it is capable of detecting only the horizontal, vertical and diagonal 

features within an image. Both shift-invariance and good directional selectivity are 

desirable for microarray image denoising because they enable better reconstruction 

of the approximately circular edges of the spots. 

An improved image denoising performance can be achieved by using anon-decimated 

or redundant form of the DWT referred to as SWT (Mallat, 1999), which has bet-

ter shift-invariance property than the decimated one, but suffers from substantially 

increased computation requirements. In addition, the directional selectivity of the 

SWT is same as that of the DWT. There are other redundant transforms having 

better shift-invariance and directional selectivity properties such as the CWT (Kings-

bury, 1999, 2001; Selesnick, 2001, 2002; Selesnick et al., 2005; Fernandes et al., 2003; 

Clonda et al., 2004; Barber and Nason,.2004; Sendur and Selesnick, 2002b; Olkkonen 

et al., 2006; Achim and Kuruoglu, 2005), the curvelet (Starck et al., 2002), the con-

tourlet (Eslami and Radha, 2006), the wedgelet, the bandlet, the steerable pyramid 

(Portilla et al., 2001), the matching pursuit, and the basis pursuit. Methods based 

on these transforms lead to better denoising performance than that of the decimated 

DWT, but involve greater computational complexity. However, among these various 

transforms, the CWT is preferable due to its minimum redundancy, which makes 
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level 1 level 2 level 3 level 4 level 4: approximate 

Figure 4.1: Reconstruction of a circular disc image on a dark background using 4-level 
CWT and DWT (Kingsbury, 1999). 

the CWT-based denoising algorithms computationally more efficient than the other 

redundant transform-based algorithms. A computationally efficient algorithm is de-

sirable in the context of microarray image denoising due to the huge volume of data 

that needs to be processed. 

Unlike the separable DWT coefficients, which capture only three directional fea-

tures in an image, the wavelet functions of the CWT capture six directional features. 

Hence this transform has directional selectivity that is better than the classical DWT. 

The transform is approximately shift-invariant so that there are almost no blurred 

edges or ripple artifacts in the denoised image. Thus segmentation of the spot from 

its background can be performed more accurately. In addition, CWT-based denoising 

methods are computationally more efficient than transforms having similar properties 

due to its limited redundancy. Fig. 4.1 compares the efficiency of the CWT relative 

to the DWT for detecting the circular edges of a spot that is typical for a microarray 

image. The upper row shows the output images reconstructed from the CWT coef-

ficients, while the lower row shows the output images when the decimated DWT is 

used. In the lower row, there are substantial artifacts in the form of irregular edges. 

These artifacts are absent in the CWT images illustrating good shift-invariance and 
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directional selectivity properties of the latter. These results motivate us to propose 

new algorithms for reducing AGN in cDNA microarray images using the CWT. 

4.3 Estimation of CWT Coefficients 

Consider the additive noise model in the pixel domain given in Section 3.4. We 

formulate this model in the CWT domain as follows. Let xr(k\,k2) and xg{k\, k2) 

denote the polar representation of the CWT coefficients of the noise-free red and 

green channel images, respectively, at the spatial location (k\, k2) of a given subband. 

Since the CWT is a linear transformation, the noisy coefficients of the images at that 

spatial location can be written in the polar representation as 

yr{ki,k2) = Xr{ki,k2) + vr{ki, k2) (4.1) 

y9{ki,k2) = xg(ki, k2) + vg(ki, k2) (4.2) 

where vr{ki,k2) and vg(k\,k2) are the noise coefficients of the red and green chan-

nel images, respectively. Let xl(ki,k2) and xT
g{k\, k2) be the magnitude components 

of xr(k\, k2) and xg(ki,k2), respectively, and xe
r{k\,k2) and x°g{k\, k2) be the corre-

sponding phase components. Similar notations may be used for yr(k\, k2), yg(ki,k2), 

vT{ki, k2) and vg(ki, k2). In the polar representation, both the magnitude and phase 

components are necessary for reconstructing the denoised image. Several studies have 

shown that the denoised magnitude components along with the noisy phase compo-

nents are sufficient for obtaining an appreciable noise reduction performance (see 

for example, Sendur and Selesnick, 2002a; Achim and Kuruoglu, 2005; Sendur and 

Selesnick, 2002b). Motivated by these results, bivariate estimators are derived to 

reduce the noise from the magnitude components of the CWT coefficients of microar-

ray images. The denoised images are then reconstructed using the inverse CWT of 

iT
r{ki .,k2)Ay°T (£•], k2) and xT

g(k\, k2)Zyg(k\, k2). Since estimators are derived for the 

magnitude components, hereafter in this paper, the superscripts r and 9 are dropped 
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Table 4.1: Average of inter-channel correlations for the magnitude components of 
CWT coefficients in various subbands using 10 typical cDNA microarray images. 

Subband Level of decomposition 
1 = 1 1 = 2 1 = 3 1 = 4 

HHh 0.48 0.82 0.88 0.96 
HH2t 0.52 0.76 0.94 0.96 
HLh 0.77 0.91 0.95 0.97 
HL2l 0.67 0.91 0.96 0.96 
LH1; 0.71 0.93 0.96 0.96 
LH2l 0.77 0.91 0.95 0.97 

for notational simplicity and the resulting notations represent the magnitude compo-

nents of the CWT coefficients. 

As in the case of DWT coefficients of images, the CWT coefficients are consid-

ered to be locally non-stationary to take into account the intra-subband dependency 

(Sendur and Selesnick, 2002b). As a result, the random variables of the magnitude 

components of the coefficients are index dependent. Let Xr(A;i, k2) and Xg(k\, k2) be 

the random variables for xr(ki, k2) and xg{k\, k2), and Yr{k\, k2) and Yg(k\, k2) be the 

random variables for the noisy observations yr{k\, k2) and yg(ki, k2). Since the CWT 

coefficients of noise are spatially stationary, the random variables Vr and Vg repre-

senting the magnitude components of noise are index independent. For notational 

convenience, the indices are suppressed unless stated otherwise. 

The existing CWT-based methods for image denoising can be used to process the 

red and green channel images separately. In doing so, these methods ignore the inter-

channel dependencies that exist between the coefficients. In Chapter 3, experiments 

were conducted on several microarray images which revealed the presence of signifi-

cant correlation between the DWT coefficients of the two channels. Since the CWT is 

a linear transform, and strong dependency is observed between the images in the pixel 

domain, magnitude components of the CWT coefficients should be highly correlated 

as well. This is experimentally verified by measuring the correlation between the local 
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Table 4.2: Average percentage of magnitude components Xr and Xg that are signifi-
cantly correlated in various subbands using 10 typical cDNA microarray images. 

Subband Level of decomposition 
I = 1 1 = 2 1 = 3 1 = 4 

HHlt 35 79 100 100 
HH 2, 34 78 100 100 
HLh 35 87 100 100 
HL2l 36 89 100 100 
LHh 36 84 100 100 
LH 2, 36 84 100 100 

neighboring magnitude components of the two channels for 10 typical cDNA microar-

ray images. Table 4.1 shows the average values of the local correlations obtained 

using the same set-up as in Table 3.1. It is seen from this table that in all subbands, 

the inter-channel correlations for the magnitude components are much higher than 

the inter-channel correlations for the DWT coefficients given in Table 3.1. This is 

because, in general, the magnitude components of the CWT possess more signal fea-

tures than the DWT coefficients. Tests of significance for the correlation coefficient 

are performed for each pair of magnitude components XT and Xg using the same test 

procedure and experimental set-up as described for Table 3.2. It can be seen from 

Table 4.2 that for a subband in decomposition level I > 2, 100% of the components Xr 

and Xg are significantly correlated with each other. In addition, a large proportion of 

the components (more than 75%) in the subbands of decomposition level 1 = 2, and 

at least one-third of these in I = 1 are significantly correlated. Thus, joint estimation 

of the magnitude components is a necessity for obtaining a satisfactory denoising 

performance. The bivariate PDF of the local neighboring magnitude components of 

two channels plays a significant role for such joint estimation. 

Both real-valued as well as non-negative valued random variables have been used 

to model the magnitude components of CWT coefficients in a subband of an image. 

Examples include, the univariate a-stable distributions (Achim and Kuruoglu. 2005) 
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Table 4.3: Average percentage of XT and Xg in each subband that follow the bivariate 
Gaussian PDF by Mardia's test (Mardia, 1970) using 10 typical cDNA microarray im-
ages. 

Subband Level of decomposition Subband 
I = 1 I = 2 1 = 3 1 = 4 

HHh 
HH2l 

94.38 
94.35 

86.44 
88.88 

72.64 
75.04 

94.08 
95.86 

HLh 
HL2t 

93.18 
93.19 

86.44 
86.80 

69.60 
71.52 

89.35 
89.94 

LHh 
LH2l 

94.26 
94.50 

86.96 
87.60 

73.76 
71.84 

90.53 
87.57 

and the univariate Rayleigh mixture model (Ferrari and Winsor, 2005; Shaffrey et al., 

2002). Although magnitude components are non-negative random variables, proba-

bility models for non-negative data are not appropriate for modelling the magnitude 

components of CWT coefficients of microarray images. This is because, microarray 

images contain some smooth regions in the background, which give rise to a non-

negligible proportion of zero-valued magnitude components. Probability models for 

non-negative data, such as the Rayleigh and generalized gamma PDFs, fail to capture 

this important feature. On the other hand, PDFs such as the a-stable distributions 

become complicated when extended to their bivariate form. Further, in the locally 

adaptive methods, use of complicated PDFs results in high computational cost since 

closed-form solutions cannot be obtained in most of the cases. It is observed that 

when such PDFs are used in modelling the local neighboring coefficients, the values 

of the parameters of the fitted model are such that these PDFs can be very closely 

approximated by the Gaussian distribution. Since it is desirable to use a bivariate 

PDF that provides satisfactory fit to the data and is mathematically tractable, we 

choose the joint density function of Xr and Xg to be the bivariate Gaussian PDF 
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given by 

Vxrxg{x r, xg) = exp 
2-narogyJ(l - pl) 

1 { { X r - H r f {Xg-flg)2 

2 ( 1 - P 2 ) I a* o\ 

Q fa" ~ l * r ) (Xg ~ Hg) 

aT <Jg 
(4.3) 

where the parameters pr (/xr > 0), p,g {pg > 0) , a2 (a2 > 0), <r2 (a2 > 0) and p 

( — 1 ^ / 9 ^ 1 ) are estimated using the local neighboring coefficients. To examine 

the appropriateness of this PDF for the index dependent random variables Xr and 

Xg, Mardia's test (Mardia, 1970, 1974) is performed using a set of local neighboring 

magnitude components centered at that index. Level of significance used for this test 

to reject the null hypothesis of bivariate normality is 5 percent. In addition, graphical 

assessments for bivariate normality axe also made by constructing chi-square plots 

(Kim and Timm, 2006) using the same data. The results concerning the Mardia's 

test using a 7 x 7 window as the local neighboring region for each of the components are 

given in Table 4.3. This table provides the percentage of the magnitude components 

for each subband that follow the bivariate Gaussian PDF by averaging over the same 

set of images that, were used for Table 4.1. It can be seen from Table 4.3 that a 

significant proportion (more than 85%) of the random variables Xr and Xg in each 

subband follow the bivariate Gaussian PDF in I = 1,2, and 4 as well as a sufficient 

proportion (more than 70%) in I = 3. Fig. 4.2 shows the average of the chi-square 

plots obtained for all the random variables Xr and Xg in the subbands HL\\, HLl2> 

HLl^, and HLI4 using the same settings that are used for Mardia's test. It is seen 

that these plots closely resemble the 45° reference line. The chi-square plots for 

the other subbands are not shown since they are very similar to those in Fig. 4.2 

The findings of the chi-square plots thus reinforce the conclusion that the magnitude 

components closely follow the bivariate Gaussian PDF. 

The results of the Mardia's test, given in Table 4.3 and that of the chi-square plots 
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Figure 4.2: Chi-square plots to assess bivariate normality of Xr and Xg in the sub-
bands (a) HLh (b) HL12 (c) HL13 and (d) HL14. 
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in Fig. 4.2 show that the proportion of the random variables XR and XG that follow 

the bivariate Gaussian PDF is the least in / = 3. However, a choice of bivariate 

Gaussian PDF for this level does not degrade overall denoising performance signifi-

cantly. This is due to the fact that the wavelet coefficients in the lower level subbands 

are dominated by noise unlike that in the higher levels (Mallat, 1999; Rahman and 

Hasan, 2003). As a consequence, overall denoising performance is highly dependent on 

the efficiency of noise removal from the subbands at the lower levels. In other words, 

it is more important to choose a joint PDF that provides a better fit to the magni-

tude components of the subbands in a lower level to achieve a satisfactory denoising 

performance. Hence, for the purpose of denoising, the bivariate Gaussian PDF is an 

appropriate choice. In the next section, bivariate LMMSE and MAP estimators are 

derived using this PDF as a joint prior function. 

4.3.1 Bivariate L M M S E Estimator 

Let x — [xr, xg]T, y = [yT. yg]T, and v = [vr, vg]T be the samples of the random vectors 

X, Y", and V representing magnitude components of the noise-free coefficients, noisy-

coefficients and noise-coefficients, respectively. To find the LMMSE estimator for x, 

we use the formula given in (3.13), which requires knowledge of the mean vectors p x 

and fiy, the covariance matrix E-y, and the cross-cova.riance matrix Exy- Since the 

image and additive noise are independent, it can be shown that pY = Hx + Pv and 

E x y = Ex- where / jy is the mean vector of V, ji'x — j/ir, pg] is the mean vector of 

X , and Ex is the covariance matrix of X given by 

E x = 
a2

r porag 

poTog ag 
(4.4) 

where X follows a bivariate Gaussian PDF. The covariance matrix of Y is found to 

be Ey = E x + Ev, where Ev is the covariance matrix of the joint PDF of Vr and 
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Vg. Thus, the LMMSE estimator given in (3.13) becomes 

x = Hx + S x ( S x + £ v ) 1(y - Hx - Pv) (4.5) 

To find the elements of Sy , the characteristics of noise in the CWT-domain are to be 

determined. It is known that when a two-dimensional vector has elements that are 

zero-mean normally distributed, are uncorrelated, and have equal variance, then the 

magnitude of the vector will have a Rayleigh distribution (Simon, 2002). Since the 

real and imaginary components of the CWT coefficients of Gaussian noise in an image 

follow the i.i.d. zero-mean Gaussian distribution (Shaffrey et al., 2002), the PDF of 

the magnitude components Vr or Vg will follow the univariate Rayleigh PDF. Further, 

it can be shown that the real or imaginary components of the CWT coefficients of 

additive bivariate Gaussian noise in the red and green channel images follow the 

i.i.d. zero-mean bivariate Gaussian distribution having correlation coefficient pe and 

variance tr{ WWT}LA2, where W is the transformation matrix of CWT. Hence, from 

the definition of a bivariate Rayleigh random variable, the magnitude components 

of the CWT coefficients of additive bivariate Gaussian noise in microarray images 

follow the i.i.d. bivariate Rayleigh distribution (Simon, 2002) having the parameters 

a\ = tx{WWT}la2 and pv = pe. Using these parameters the joint PDF of Vr and Vg 

may be written as (Simon, 2002) 

where /#(•) denotes the modified Bessel function of order d (Abramowitz and Stegun, 

1965). Since the marginal PDF of Vr or V9 is the univariate Rayleigh PDF, the mean 

and variance of the random variables is given by p.n — <Jv\f \ and a2 — afX^r), 

respectively. Thus, the mean vector of V is pJ
v = and the covarianc-e 

matrix is 

(4.6) 

(4.7) 
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where <p(pv) = (1 — /o^)3
2i7i(|, §; 1 ,pl) - 1 and 2F\(a,/?;7;t) is the Gaussian hyperge-

ometric function (Abramowitz and Stegun, 1965). Using the expressions of p,x, Pv, 

E x , Ev in (4.5) and performing the matrix operations, the magnitude components 

of the CWT coefficients of red and green channel images can be obtained as 

[yr,yg] =Pr + 
1 1 

azta{ - oji 

a2 a 

Or°2
vU 3 

9 2 crfcr( - ui 

yr pr crv 
- ' 

(yg- fxg- avJ'^) 

Xfi [Vr, yg] = p g + 
2 2 a cr2 - UJ 1 

0J2 
yg- Pg- °v>J 2 

crgavu>4 
a2

gal - ui 
(yr - pr - avJ-) 

where 

= \p^p{Pv)orogal 
71" 

u 2 = ^vt^ipv) + 

U}3 
'4 

'4 - 7T 
= P ° g ( — ~ ^r'Apv) 

UI4 

' 2 ( 

°2 = [1 ~pVr+V2v( 

4 - 7T 

2 
2 

7T 

4.3.2 Bivariate M A P Estimator 

(4.8) 

(4.9) 

(4.10) 

(4.11). 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The MAP estimator for x given the corrupted observation y is (Kamen and Su, 1999) 

x(y) = arg m a x p x \ y { x \ v ) 
X 

= arg max [In{pv{y - x)) 4- ln(px(x))] (4.16) 



85 

where px(-) is the bivariate Gaussian PDF and pv{~) is the bivariate Rayleigh PDF 

given in (4.6).Then the bivariate MAP estimator becomes 

{xT,xg} = argmax ln(yP - xr) + \n(yg - xg) 
{yr - xr)2 (;yg - xgf 

2(1 - fflal 2(1 - p l )a l 
T ({yT~ xr){yg-xg)\pv\\ i . .v 
° V G2{\~p2) ) + ln \PXrX9 (*r, Xg)) (4.17) 

Let Z denote the expression within square brackets on the right hand side of (4.17). 

To find the values for xr and xg that maximize Z, it is necessary to solve the pair of 

equations -f^- = 0 and = 0, where Clf OXq 

Xr Pr ^ P {.Xg Pg) dz___ 
dxr (1 — p2)o2 ' 1 — p" Gr(J g 

1 + 
yr xr h{u) {yg -xg)\pv 

yr - xr (1 - pl)<rl JO(«) a2{l - p2
v) 

(4.18) 
dZ 
dx0 

Xg - Pg P {xr - Pr) 
(1 - p2)<J2

q 1 - P2 Or(Jg 
1 

+ Vg - x9 h{u) (yr -xr)\pv\ 
yg-xg ' (1 - p2

v)a2 I0(u) (J2(1 p2) 
(4.19) 

and u = ^Vr These nonlinear equations may be solved using the following &u IPv) 
numerical iterative procedure. Let £c(0) be the initial value of x and x^ be its value 

after the z -̂th iteration. The estimate is updated at each iteration using the relation 

£(t+l) = £(i) 

— 5H xz, where 5(0 < 5 < 1) is a constant that controls the step size, 

and H represents the Hessian matrix (Eliason, 2000) evaluated 

at x = The elements of H may be obtained from the following relations 

T Z1 = dZ dZ 
dxr dx, 

d2Z 
dx2 

02Z 
dxrdxn 

d2Z 
dxi 

1 1 
(1 -P2)a2 {yr-xr)2 (1 -pl)o. 2 v/" v 

{Vg - Xg)\py 
- Pi) 

AW) A{u) 
%{u) /o(«)J 

(4.20) 
d2Z 

dxgdxr 
+ h (w) | Pv 

(1 -p2)aTag I0(u) a2(l - pi) 
{Vg ~ Xg)\pv\ 

- A) 
5M _ W 
I2o(u) Io(u) 

(4.21) 

(i - P2k (?/,-.Tf l)2 (i -Piy 
{Vr ~ XT)\Pv 

-Pi) 
l\{u) f,{u) 

[ilH W J 

where (u) = l[Io{u) 4- h{u)]- Convergence is attained when \\x{yJr^ x 

(4.22) 
(">ll < e 

where || • || denotes the Euclidean norm and e is a very small quantity. It is desirable 
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1. Input: gr{i,j), gg(i,j), i = 1, • • • j = 1, • • • N2 

2. Forward transform: Obtain noisy CWT coefficients yl^-ye
T and yr

g^ye
g 

3. Estimation of CWT coefficients using the local parameters: 
for I = 1 : J do 

for 0 = 1 : 6 (1 HLl, 2 => HH1,3 => LH1,4 #L2, 
5=> HH2,6 LH2) do 

Vfc in a subband, 
Compute ${k) (refer to (4.25)) 
Compute fig{k) (refer to (4.26)) 
Compute a;\k) (refer to (4.27)) 
Compute af(k) (refer to (4.28)) 
Compute p(k) (refer to (4.29)) 
Compute xr(k) and xg(k) (refer to (4.8) and (4.9)) 

end for 
end for 

4. Inverse transform: Obtain denoised images using x*Zijf and xT
g/.y°g 

Figure 4.3: Steps in the LMMSE-based algorithm. 

that the iterative algorithm use a good initial estimate x ^ . For this reason, we have 

chosen a scenario assuming that no correlation exists between the image coefficients 

as well as the noise coefficients of the two channels. In such a case, the following 

initial values for xr and xg are obtained (Howlader and Chaubey, 2008) 

x ^ = max 

(4.23) 

f = max ( (i^l + al)yg + pga\ - y/a4
v(yg - ,ia)2 + 4 o f f i + 4a2

g<7$), 0 

(4.24) 
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1. Input: gr{i,j), g9{i,j), i = 1, • • • JV1} j = 1, • • • N2 

2. Forward transform: Obtain noisy CWT coefficients y ^ y ? a n d yT
ĝ -ye

g 

3. Estimation of CWT coefficients using the local parameters: 
for I = 1 : J do 

for O = 1 : 6 (1 HL1, 2 => HH1, 3 => LH1,4 HL2, 
5 =» HH2,6=> LH2) do 

Vfc in a subband, 
Compute (refer to (4.25)) 
Compute jl2{k) (refer to (4.26)) 
Compute a~(k) (refer to (4.27)) 
Compute af{k) (refer to (4.28)) 
Compute p(k) (refer to (4.29)) 
Initialize x by x[0) and xj0) (refer to (4.23) and (4.24)) 
Set v = 0 
while p ^ 1 ) - > e 

Update v = v + 1 
Compute z (refer to (4.18) and (4.19)) 
Compute H (refer to (4.20), (4.21) and (4.22)) 
Update ®<,/+1> = £<"> - H lz 

end while 
xT

r = i(r+l) and xT = f^"1"1^ 
end for 

end for 

4. Inverse transform: Obtain denoised images using f7
rZyf and XgZy^ 

Figure 4.4: Steps in the MAP-based algorithm. 

4.3.3 Parameter Estimation 

Both the bivariate LMMSE and MAP estimators require the parameters pg, af., 

ag, and p to be estimated from the observed noisy magnitude components of the CWT 

coefficients of red and green channel images. We use the locally-adaptive approach 

described in Section 3.4.3, in which, parameters at the k-ih index are estimated from 

the components of a local neighborhood S{k) assuming that coefficients within this 

neighborhood are i.i.d. Here, k represents the two-dimensional spatial index \k\, k2). 
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Then the parameters may be estimated using the ML method as (Giri, 1993) 

fir{k) = max I Y^ Vr(m) ~ Mn, 0 j (4.25) 
\ meS(k) / 

fig{k) = max I E - Vm 0 j (4.26) 
\ meS{k) J 

&2
r(k) = max [ JL (yr(m) - yr)2 - a2, 0 (4.27) 

\ meS(fc) / 

<72(fc) = max [ i £ - - 0 I ( 4- 2 8) 
\ me5(fe) J 

p{k) = max ^ min ^ ^ ^ (yr(m) - j/r)(j/ff(m) - , ( 4 . 2 9 ) 

where M is the total number of coefficients in S(k), and yr and yg are the sample-

means of the noisy magnitude components of the red and green channel images. The 

algorithms for the proposed LMMSE- and MAP-based methods are given in Fig. 4.3 

and Fig. 4.4, respectively. Further, the major steps involved in implementing these 

proposed algorithms are summarized using block diagrams in Fig. 4.5 and Fig. 4.6. 

We derive the computational complexities of both algorithms as follows. The 

upper bound of the computational complexity of the forward or inverse CWT may be 

found as C7(y£(A1 N2)), where NixN2 is the size of an image. The proposed LMMSE-

based method estimates 5 local parameters for each of the magnitude components of 

the CWT. Thus, the computational complexity of the parameter estimation of the 

Proposed LMMSE method is 0(10w2NiN2). For this method, the complexity of 

estimating the noise-free coefficients is 0(SNiN2). Since L 1 and w2 1, the 

overall computational complexity of the Proposed LMMSE method can be found as 

0((10u>2 + ^ C ) NjN 2 ) . In the case of MAP-based method-, each of the denoised 
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Figure 4.5: Block diagram for obtaining denoised cDNA microarray image using the 
proposed bivariate LMMSE estimator. 

coefficients are updated using an iterative process, wherein each update requires an 

inverse of a 2 x 2 Hessian matrix. The computational complexity of the parameter 

estimation is the same as that for the Proposed LMMSE method. Thus, the combined 

complexity of the parameter estimation and coefficient estimation of the M AP-based 

method is 0((10w2 + 6CBI)N1N2), where CB (CB » 1) is the complexity of the 

modified Bessel function and X ( I 1) is the number of iterations required for 

convergence. By including the complexities of the forward and inverse of CWT, the 

overall computational complexity of the Proposed MAP method is found as 0((10w2+ 

e C e X + ^ j V i i V s ) . 

4.4 Estimation of Log-Intensity Ratio 

In Section 3.5, we described the steps used to extract the log-intensity ratios from 

the microarray images. Among these steps, a crucial step for the estimation of the 

log-intensity ratio is segmentation. In Chapter 3, a histogram segmentation method 

was used for identifying a spot and its local background. The method was based 

entirely on the distribution of the pixel intensities within the target area and did 

not use any local spatial information. In this chapter, we propose a more accurate 



90 

Figure 4.6: Block diagram for obtaining denoised cDNA microarray image using the 
proposed bivariate MAP estimator. 

method of segmentation. We use an adaptive segmentation technique that is a hy-

brid of the fixed circle-based (Bozinov and Rahnenfuhrer, 2002) and histogram-based 

(McLachlan et al., 2004) segmentation methods, in order to benefit from the advan-

tages of both these methods. Segmentation is performed separately for the red and 

green channel images in the following manner. First, the center of mass is located 

from the pixels within a target area. Then using this point as the center, a circle is 

drawn having a fixed radius that depends on the size of the pin tip of the robotic ar-

rayer. We define the ROI as those pixels within the circle having intensities between 

the 60-th and 95-th percentiles, and the background as the pixels outside the circle 

having intensities between the 5-th and 20-th percentiles. It may be noted that these 

percentiles are calculated based on all the pixels within the target area. 

The hybrid segmentation method has the following two notable features that make 

it superior to the traditional fixed circle and histogram-based segmentation methods. 

First, the ROI selected by this method does not assume any perfectly circular shape 

at the center of target area as in the case of fixed circle-based method. Thus, the hy-

brid method provides a better separation of foreground when the spots have varying 

radii, irregular shapes, or spatial offsets from the center of the target area. Secondly. 



(a) (b) (c) 

Figure 4.7: Selection of the spot and background pixels from the observed image for 
calculating the log-intensity ratio, (a) A target area, (b) Pixels selected for the spot 
are shown as white, (c) Pixels selected for the background are shown as white. 

in selecting the pixels for a spot and its corresponding background, the hybrid segmen-

tation method considers the spatial contexts that is ignored in the histogram-based 

method. Fig. 4.7 shows an example of such selections of the pixels for a spot and its 

corresponding background in a target area using the hybrid segmentation method. It 

may be seen from this figure that the method is capable of detecting the irregular 

shapes of ROI and background considering the spatial contexts. 

4.5 Experimental Results 

Extensive experimentations are carried out to evaluate the performance of the pro-

posed bivariate LMMSE and MAP-based denoising algorithms as compared to that of 

the other CWT-based algorithms. We have compared only CWT-based algorithms, 

since methods implemented in the CWT-domain, in general, yield a better perfor-

mance than those implemented in the DWT-domain (Kingsbury, 1999, 2001; Chaux 

et al., 2006). The performance of the noise reduction algorithms are compared both 

in terms of the PSNR and the MAE of the estimated log-intensity ratios. The ex-

periments are conducted on the same set of microarray images that have been used 

to evaluate the performance of the DWT-based algorithms in Chapter 3. The com-



92 

plex coefficients in the experiments are obtained by employing a 4-level 2D DT-CWT, 

wherein an (ll,17)-tap biorthogonal filter in the first level of decomposition and 6-tap 

Q-shift orthogonal filters in the second- and higher-level decompositions (Kingsbury, 

2001) are used. 

Five denoising methods that use the CWT coefficients are considered in the ex-

periments. These are the complex multiwavelet style (CMWS) method (Barber and 

Nason, 2004), NeighCoef (Cai and Silverman, 2001), BiShrink (Sendur and Selesnick, 

2002a), and the proposed bivariate LMMSE and MAP-based denoising methods. Ex-

cept for the proposed methods, each of the other methods estimate the red and green 

channel images independently, i.e., ignoring the correlation between the two channels. 

The CMWS is a subband-adaptive method, while the remaining methods are locally-

adaptive. It may be mentioned that NeighCoef, which was originally proposed for 

denoising the DWT coefficients, has been adapted for implementation in the CWT-

domain. The NeighCoef has been chosen since it is one of the competing DWT-based 

methods. The locally-adaptive methods are implemented using the same settings for 

the window size mentioned in Section 3.6. 

Table 4.4 shows the output PSNR values for the five denoising methods obtained 

by averaging over the same set of images that have been used for Table 3.4. Since the 

proposed methods are capable of considering the inter-channel noise correlation, the 

PSNR values are obtained for different values of pe at each noise strength a£. The av-

erage of these PSNRs at a given o, is compared with the corresponding output PSNRs 

of the CMWS, NeighCoef and BiShrink methods that are incapable of considering 

the inter-channel noise correlation. The highest PSNRs corresponding to each a£ are 

highlighted in bold face. It can be seen from Table 4.4 that the proposed bivariate 

MAP-based denoising method outperforms the others. The average output PSNR 

values of the proposed bivariate LMMSE-based denoising method also exceeds that 
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Table 4.4: Output PSNR values in dB for the CWT-based denoising algorithms at 
various noise strengths. 

Oe 800 1000 1200 1400 1600 
IPSNR! 
IPSNR; 

38.29 
38.27 

36.35 
36.33 

34.77 
34.75 

33.43 
33.41 

32.27 
32.25 

Methods 

CMWS 45.16 
45.86 

43.82 
44.38 

42.64 
42.12 

41.63 
42.00 

40.72 
41.06 

NeighCoef 45.62 
46.40 

44.33 
44.98 

43.20 
43.80 

42.23 
42.80 

41.40 
41.97 

BiShrink 45.54 
46.26 

44.29 
44.95 

43.23 
43.84 

42.29 
42.92 

41.50 
42.09 

LMMSE 

pe = 0.00 45.78 
46.69 

44.57 
45.38 

43.53 
44.27 

42.63 
43.31 

41.82 
42.47 

p£ = 0.25 45.77 
46.67 

44.56 
45.36 

43.51 
44.25 

42.61 
43.29 

41.80 
42.45 

p€ = 0.50 45.72 
46.60 

44.50 
45.28 

43.45 
44.17 

42.54 
43.22 

41.73 
42.37 

Pe = 0.75 
45.57 
46.36 

44.32 
45.01 

43.25 
43.87 

42.32 
42.88 

41.49 
42.02 

Average (45.71) 
(46.58) 

(44.49) 
(45.26) 

(43.44) 
(44.14) 

(42.53) 
(43.18) 

(41.71) 
(42.33) 

MAP 

p£ = 0.00 46.15 
47.15 

45.00 
45.91 

43.98 
44.81 

43.08 
43.85 . 

42.27 
43.01 

p£ = 0.25 
46.12 
47.12 

44.96 
45.87 

43.95 
44.79 

43.05 
43.84 

42.25 
43.01 

p£ = 0.50 46.06 
47.01 

44.89 
45.74 

43.87 
44.66 

42.98 
43.74 

42.19 
42.94 

pe = 0.75 
45.94 
46.83 

44.76 
45.54 

43.73 
44.46 

42.85 
43.54 

42.07 
42.73 

Average (46.07) 
(47.03) 

(44.90) 
(45.77) 

(43.88) 
(44.68) 

(42.99) 
(43.74) 

(42.20) 
(42.92) 

t I P S N R , and IPSNR,- denote the input P S N R s for t he green and red channel images, respec-

tively. 
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of the NeighCoef, CMWS and BiShrink methods. A significant result that can be 

found from Table 4.4 is that the output PSNR of the BiShrink method, which con-

siders the inter-scale dependency of the magnitude components of the microarray 

images, falls short of that of the proposed LMMSE- and MAP-based methods that 

consider the inter-channel dependency of the components by 0.25 dB and 0.73 dB, 

respectively. This result reinforces the findings of Chapter 3 that consideration of the 

inter-channel dependency is more important than the inter-scale one for denoising 

of cDNA microarray images. Another observation that can be made from this ta-

ble is that with the increasing noise correlation between the two channels the PSNR 

declines both in the case of LMMSE- and MAP-based denoising methods. A similar 

relationship between noise correlation and output PSNR was observed in Table 3.6. 

However, it is evident from Table 4.4 that the PSNR values of the proposed methods 

do not decline much to fall short of the other methods. In other words, the proposed 

methods reduce noise better than the others do, even when the noise sequences of the 

two channels are correlated. 

Residual noise images are shown in Fig. 4.8 for the NeighCoef, BiShrink and 

the proposed MAP method. The NeighCoef appears to be most efficient in reducing 

noise in the background. However, it is the least efficient in reducing noise from the 

spots as indicated by the larger number of bright pixels within the area of the spots. 

Comparing the residual noise images for the BiShrink and MAP methods, we see that 

the latter has a darker background and the spots within the image contain pixels that 

are less bright. Thus, among the competing methods, the proposed bivariate MAP 

method has better overall denoising performance. Fig. 4.9 shows a 3D visualization of 

a typical noise-free spot, its noisy version corrupted with a noise sequence having a e = 

1400 and pe = 0.25. and the corresponding denoised versions using the NeighCoef. 

BiShrink. proposed LMMSE and proposed bivariate MAP methods. This figure shows 
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(c) (d) 

Figure 4.8: Residual noise images using various denoising algorithms with a£ = 1400 
and pe = 0.25. (a) Noisy image (b) NeighCoef (c) BiShrink, and (d) Proposed MAP 
method. 
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(a) (b) 

(c) (d) 

(f) 

Figure 4.9: 3-D visualization of a spot, (a) Original and (b) noisy version of the spot 
with ae = 1400 and pe = 0.25. Denoised versions of the spot using (c) NeighCoef (d) 
BiShrink (e) Proposed bivariate LMMSE method, and (f) Proposed bivariate MAP 
method. 
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Iteration 

Figure 4.10: Number of iterations required for convergence of the proposed MAP-
based algorithm in a given subband of the red and green channel images. 

clearly that the spot is oversmoothed by the NeighCoef and BiShrink methods. In 

contrast, the proposed LMMSE and MAP methods preserve the significant signal 

intensities on the spot while removing most of the noise from the background. 

To study the convergence properties of the MAP-based iterative algorithm, plots 

were obtained for the output PSNR versus iteration number for each subband of the 

red and green channel images. Figure 4.10 shows a typical plot obtained in a given 

subband. In most cases, the algorithm converges within 40 iterations. Moreover, 

significant improvement is seen in the final output PSNR values over the initial values. 

Table 4.5 shows the output MAE values of the estimated log-intensity ratios ob-

tained using the same denoised images that are used for Table 4.4. It can be seen 

that the output MAEs for a noise reduction scheme are lower than the correspond-

ing input MAEs. In addition, among the methods considered in this experiment, the 

proposed bivariate MAP estimator provides the lowest average MAEs, i.e., the most 

accurate estimates of R. The bivariate LMMSE estimator provides higher MAEs as 
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Table 4.5: Output MAE values of log-intensity ratios for the CWT-based denoising 
algorithms at various noise strengths. 

800 1000 1200 1400 1600 
(Input MAE) 0.149 0.153 0.157 0.169 0.180 

Methods 
CMWS 0.134 0.142 0.151 0.156 0.160 

NeighCoef 0.140 0.149 0.153 0.161 0.175 
BiShrink 0.110 0.118 0.133 0.133 0.131 
LMMSE 

p£ = 0.00 0.113 0.123 0.121 0.124 0.126 
p£ = 0.25 0.107 0.119 0.115 0.125 0.128 
p£ = 0.50 0.102 0.115 0.123 0.122 0.129 
p£ = 0.75 0.101 0.110 0.118 0.126 0.127 
Average (0.106) (0.117) (0.119) (0.124) (0.125) 

MAP 
p£ = 0.00 0.106 0.113 0.121 0.131 0.131 
p£ = 0.25 0.097 0.109 0.117 0.118 0.122 
p£ = 0.50 0.100 0.104 ' 0.110 0.114 0.124 
p£ = 0.75 0.096 0.098 0.109 0.112 0.116 
Average (0.100) (0.106) (0.114) (0.119) (0.123) 

compared to the MAP estimator, but these are still lower than those provided by the 

other methods. 

As seen from Tables 4.4 and 4.5, the denoising performance measured in terms of 

PSNRs and MAEs of the estimated log-intensity ratio are better for the proposed bi-

variate LMMSE and MAP estimation methods than for the other methods. Among 

the two methods proposed, denoising performance of the MAP-based method are bet-

ter than the LMMSE-based one, but the former being an iterative method requires 

a higher computation time than the latter. For example, the average time required 

to implement the proposed LMMSE- and MAP-based methods on an image of size 

1000 x 1000 in the MATLAB environment using a 2 GHz processor with 512 MB 

RAM are 4.57 seconds and 3.86 minutes, respectively. Thus, one needs to weigh the 

importance of accuracy and computation time when choosing between the LMMSE-

and MAP-based denoising methods. 
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Table 4.6: Performance of competitive DWT- and CWT-based methods in terms of 
PSNR and computational efficiency. 

APSNRJ Computational Computation 

APSNR]: complexity time 

DWT-based methods 

LAWMAP 42.72, 43.31 0(( 4w2 + fC)NxN2) 1.01 s 

NeighCoef 43.26, 43.91 C>((18 + f C)NIN2) 0.93 s 

BiShrink 43.18, 43.75 0((2w2 + f £)A^iiV2) 0.44 s 

Proposed Method I 43.46, 44.17 0{{ 5w2 + f 1.94 s 

Proposed Method II 43.56, 44.45 0((5w2 + f £)ATiAr2) 1.71 s 

CWT-based methods 

NeighCoef 43.36, 43.99 0{( 72 + IftyNtNz) 1.38 s 

BiShrink 43.37, 44.01 0((8w2 + lfC)lViiV2) 2.56 s 

Proposed LMMSE 43.68, 44.57 0((10w2 + f I Q N M ) 4.57 s 

Proposed MAP 44.10, 44.95 e>((10u<2 + 6 C B J + ^fC)N1N2) 3.86 m 

* A P S N R g and APSNR, . denote the average P S N R s for the green a n d red channel images, 
respectively. 

4.6 Comparisons Between DWT- and CWT-based 
Methods 

In this section, comparisons are made between the CWT-based algorithms and the 

DWT-based algorithms presented in Chapter 3. In particular, we have considered 

the proposed and the competitive algorithms. These algorithms are compared both 

in terms of denoising performance as well as computational efficiency, where the lat-

ter is analyzed by the computational complexity of an algorithm and time required 

for implementation in a given setup. Table 4.6 summarizes the average PSNR, the 

computational complexity, and implementation time1 for the proposed and compet-

' T h e me thods are implemented on an image of size 1000 x 1000 in the M A T L A B envi ronment 
using a 2 GHz processor with 512 M B R A M . 
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itive DWT- and CWT-based methods. For each of these methods, the window size 

that gives the best PSNR results has been used. From this table, it is evident that 

the CWT-based methods yield better denoising performance than the DWT-based 

methods. For instance, the proposed MAP method, which gives the best denoising 

performance among the CWT-based methods, shows an average 0.52 dB improve-

ment in PSNR compared to Proposed method II, which gives the best result among 

the DWT-based methods. This translates to an average decline of 20 x 103 units in 

the MSE when the CWT-based MAP method is used, thus indicating a significant 

improvement in denoising performance. Similarly, improvements in denoising perfor-

mance are also seen for NeighCoef and BiShrink when these methods are implemented 

in the CWT-domain instead of the DWT-domain. However, the CWT-based meth-

ods have increased computational complexity compared to the DWT-based methods 

(see Table 4.6). This is mainly due to the fact that the DWT is a non-redundant 

transform, whereas the CWT has a redundancy of 4. As a result of higher compu-

tational complexity, the time required to implement the CWT-based methods is, in 

general, higher than that of the DWT-based methods. For instance, the CWT-based 

Proposed MAP method requires 3.86 minutes, whereas the DWT-based Proposed 

Method II requires only 1.71 seconds. Thus, a tradeoff needs to be made between 

denoising performance and implementation time when choosing between the DWT-

and CWT-based methods. 

4.7 Conclusion 

In this chapter, two CWT-based denoising methods have been developed for microar-

ray images using the standard MAP and LMMSE estimation criteria. The motivation 

for CWT-based algorithms is that, in contrast to the DWT, the CWT has certain 

desirable features such as a near shift-invariance property and improved directional 
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selectivity that are important for denoising of microarray images which have spots 

that are approximately circular in shape. In addition, the proposed bivariate estima-

tors incorporate the correlation information of the images as well as noise between 

the red and green channels. Extensive experiments have been carried out on a large 

set of microarray images to evaluate the performance of the proposed LMMSE- and 

MAP-based denoising methods. Simulation results show that the proposed meth-

ods provide better denoising performance than the DWT-based algorithms given in 

Chapter 3 as well as the existing CWT-based methods. 



Chapter 5 

Conclusion 

5.1 Concluding Remarks 

In the age of biotechnology, cDNA microarray experiments have played a significant 

role in advancing genomic and medical research. The success of these experiments re-

lies to a great extent on the ability to extract accurate gene expression measurements 

from the microarray images that are produced. The task of extracting accurate in-

formation from microarray images poses significant challenges because the images are 

contaminated with a high level of noise. Microarray image processing is therefore an 

important area of research in the field of bioinformatics. This thesis is concerned with 

the specific problem of developing methods for reducing noise in cDNA microarray 

images for the purpose of extracting accurate information regarding gene expression 

levels. 

The wavelet transform has certain properties that allow efficient handling of the 

image denoising problem. In the literature, many algorithms have been proposed in 

the wavelet domain for reducing noise in standard images. Unfortunately, none of 

these methods are well adapted for use with microarray images. It is well known that 

the pixel intensities of the red and green channel images of microarray experiments 

are linearly dependent. We have found that such linear dependency exists between 

the two channels in the wavelet domain as well. The traditional wavelet-based image 
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denoising algorithms process the red and green channel images separately and treat 

the images as if they are completely independent. As a result, these methods do not 

have very good denoising performance. More efficient algorithms could be designed 

if the correlation between the images could be considered in the estimation process. 

Thus, in this thesis, new algorithms have been proposed for joint estimation of the 

noise-free coefficients in the red and green channel images. By defining appropriate 

joint PDFs for the image coefficients as well as the noise, these algorithms are capable 

of taking into account the signal correlation and noise correlation between the two 

channels. For estimation of the noise-free images, two separate estimation techniques 

have been used, namely, LMMSE and MAP estimation. The algorithms have been 

designed both in the decimated DWT domain as well as in the CWT domain. The mo-

tivation for CWT-based algorithms is that these methods exploit the good directional 

selectivity and shift-invariance properties of the transform that are not available for 

the DWT. These properties ensure better denoising performance and more accurate 

representation of the circular edges of spots within the microarray image. 

The proposed DWT- and CWT-based methods have been compared with the ex-

isting methods using several real microarray images. It is seen that the new methods 

show significantly better performance than the existing ones both with respect to 

denoising and accuracy in estimation of the gene expression measurements. We draw 

some important conclusions based on these findings. First, joint estimation of the red 

and green channel images of cDNA microarray experiments is necessary for a more ef-

ficient noise reduction performance. Secondly, when dealing with microarray images, 

consideration of inter-channel dependency is more important than the inter-scale one. 

Thirdly, the choice of the transform determines the efficiency of the noise reduction 

algorithm. For instance, in terms of denoising performance, the CWT-based algo-

rithms are more efficient because they provide an average of 0.35 dB improvement 
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in PSNR as compared to the DWT-based ones. On the hand the DWT-based algo-

rithms are computationally more efficient than the CWT-based ones, since the former 

is a non-redundant transform while the redundancy of the latter is four. When fast 

implementation of the algorithm is of major importance, the DWT-based denoising 

algorithms should be used instead. However, in situations where accuracy of the es-

timated log-intensity ratios is of greater concern, it is worthy to sacrifice the increase 

in computation time for a better denoising performance by using the CWT-based 

algorithms. 

5.2 Future Work 

There are some additional problems related to this thesis work that could be under-

taken for future research. In particular, we would like to investigate the following. 

1. In our experiments, the MAE was used as an indicator of the accuracy of the 

log-intensity ratios that were estimated from the denoised images. This measure 

is simple and good for preliminary comparisons since it measures the average 

distance between the log-intensity ratios obtained from the denoised images, 

and the ratios obtained from the noise-free images. However, a detailed analy-

sis requires the use of more sophisticated methods that provide a clearer picture 

of the effect of denoising on log-intensity ratio estimation. For instance, one may 

use a new measure such as Kolmogorov-Smirnov distance or Kullback-Leibler 

divergence that depends on the PDF of the log-intensity ratios. Further, one 

might perform standard parametric or nonparametric tests of significance to 

determine if the two samples of log-intensity ratios obtained from the noise-free 

and denoised images arise from the same population. In addition to examining 

the effect on the log-intensity ratio, one may also investigate the effect of de-

noising on downstream analysis, such the performance of clustering algorithms. 
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2. The algorithms proposed in this thesis have been developed considering a joint 

prior function for the noise-free coefficients in both the channels. More specif-

ically, we have considered the bivariate Gaussian PDF to model the noise-free 

DWT coefficients and magnitude components of the CWT coefficients of mi-

croarray images. In Chapter 4, it was seen that the proportion of magnitude 

components in a subband i.e., Xr and Xg, which satisfied the bivariate Gaussian 

assumption was comparatively low in the subbands of the third level of decom-

position. Although this does not seriously degrade the overall denoising perfor-

mance, one may investigate whether better results could be obtained by defining 

a more appropriate joint prior function for the subbands in the third level. We 

suggest two approaches for specifying the level-specific joint prior functions. 

First, a more appropriate 'parametric' prior may be chosen for the magnitude 

components of the CWT coefficients. In the second approach, MMSE estimators 

for the magnitude components may be derived by considering bivariate 'non-

parametric' prior functions for the local neighboring magnitude components. In 

order to obtain such a prior function, nonparametric density estimation tech-

niques, such as, the kernel density estimator or the smooth estimator of the 

density function proposed by Babu and Chaubey (2006) based on Bernstein 

polynomials are required. 

3. In this thesis, we have constructed algorithms for reducing AGN in microarray 

images. However, these images may be corrupted with mixtures of various noise 

types such as a combination of Gaussian noise and Poisson noise. In future, 

we would like to develop unified wavelet-based algorithms for simultaneously 

reducing the mixtures of noise in images. 

4. Although the wavelet coefficients in the red and green channel images are known 

to have a linear dependency, other types of dependencies may exist as well. A 
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thorough investigation is necessary to determine what other types of associations 

exist between the two images and how these relationships could be exploited in 

developing more efficient joint estimators for the wavelet coefficients. 

5. Noise contamination is a type of point degradation. A closely related problem 

is blurring, which is a type of spatial degradation that occurs in a microarray 

image when the size of the physical space represented by the pixel (i.e., pixel 

size) is smaller than the spot size of the laser (Stekel, 2003). Blurring is a 

weakness in the practical imaging system and is undesirable because the pixel 

intensities in a blurred image are distorted. Thus, an important problem in 

bioinformatics is the development of an effective wavelet-based algorithm that 

performs denoising and deblurring of the image simultaneously. 
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