7 research outputs found

    On-line anomaly detection and resilience in classifier ensembles

    Get PDF
    Detection of anomalies is a broad field of study, which is applied in different areas such as data monitoring, navigation, and pattern recognition. In this paper we propose two measures to detect anomalous behaviors in an ensemble of classifiers by monitoring their decisions; one based on Mahalanobis distance and another based on information theory. These approaches are useful when an ensemble of classifiers is used and a decision is made by ordinary classifier fusion methods, while each classifier is devoted to monitor part of the environment. Upon detection of anomalous classifiers we propose a strategy that attempts to minimize adverse effects of faulty classifiers by excluding them from the ensemble. We applied this method to an artificial dataset and sensor-based human activity datasets, with different sensor configurations and two types of noise (additive and rotational on inertial sensors). We compared our method with two other well-known approaches, generalized likelihood ratio (GLR) and One-Class Support Vector Machine (OCSVM), which detect anomalies at data/feature level. We found that our method is comparable with GLR and OCSVM. The advantages of our method compared to them is that it avoids monitoring raw data or features and only takes into account the decisions that are made by their classifiers, therefore it is independent of sensor modality and nature of anomaly. On the other hand, we found that OCSVM is very sensitive to the chosen parameters and furthermore in different types of anomalies it may react differently. In this paper we discuss the application domains which benefit from our method

    Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review.

    Get PDF
    Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on controlled environments with the aim of increasing the types of identifiable activity subjects complete and improving recognition accuracy and system robustness by means of novel body-worn sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to open and connected uncontrolled environments by connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently known about whether traditional PARM technologies can tackle the new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand the use of IoT technologies in PARM studies, this paper will give a systematic review, critically examining PARM studies from a typical IoT layer-based perspective. It will firstly summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, including sensory, feature extraction and recognition techniques. The paper goes on to identify some new research trends and challenges of PARM studies in the IoT environments, and discusses some key enabling techniques for tackling them. Finally, this paper consider some of the successful case studies in the area and look at the possible future industrial applications of PARM in smart healthcare

    Enhanced context-aware framework for individual and crowd condition prediction

    Get PDF
    Context-aware framework is basic context-aware that utilizes contexts such as user with their individual activities, location and time, which are hidden information derived from smartphone sensors. These data are used to monitor a situation in a crowd scenario. Its application using embedded sensors has the potential to monitor tasks that are practically complicated to access. Inaccuracies observed in the individual activity recognition (IAR) due to faulty accelerometer data and data classification problem have led to its inefficiency when used for prediction. This study developed a solution to this problem by introducing a method of feature extraction and selection, which provides a higher accuracy by selecting only the relevant features and minimizing false negative rate (FNR) of IAR used for crowd condition prediction. The approach used was the enhanced context-aware framework (EHCAF) for the prediction of human movement activities during an emergency. Three new methods to ensure high accuracy and low FNR were introduced. Firstly, an improved statistical-based time-frequency domain (SBTFD) representing and extracting hidden context information from sensor signals with improved accuracy was introduced. Secondly, a feature selection method (FSM) to achieve improved accuracy with statistical-based time-frequency domain (SBTFD) and low false negative rate was used. Finally, a method for individual behaviour estimation (IBE) and crowd condition prediction in which the threshold and crowd density determination (CDD) was developed and used, achieved a low false negative rate. The approach showed that the individual behaviour estimation used the best selected features, flow velocity estimation and direction to determine the disparity value of individual abnormality behaviour in a crowd. These were used for individual and crowd density determination evaluation in terms of inflow, outflow and crowd turbulence during an emergency. Classifiers were used to confirm features ability to differentiate individual activity recognition data class. Experimenting SBTFD with decision tree (J48) classifier produced a maximum of 99:2% accuracy and 3:3% false negative rate. The individual classes were classified based on 7 best features, which produced a reduction in dimension, increased accuracy to 99:1% and had a low false negative rate (FNR) of 2:8%. In conclusion, the enhanced context-aware framework that was developed in this research proved to be a viable solution for individual and crowd condition prediction in our society

    The adARC pattern analysis architecture for adaptive human activity recognition systems

    No full text
    Most approaches to recognize human activities rely on pattern recognition techniques that are trained once at design time, and then remain unchanged during usage. This reflects the assumption that the mapping between sensor signal patterns and activity classes is known at design-time. This cannot be guaranteed in mobile and pervasive computing, where unpredictable changes can often occur in open-ended environments. Run-time adaptation can address these issues. We introduce and formalize a data processing architecture extending current approaches that allows for a wide range of realizations of adaptive activity recognition systems. The adaptive activity recognition chain (adARC) includes self-monitoring, adaptation strategies and external feedback as components of the now closed-loop recognition system. We show an adARC capable of unsupervised self-adaptation to run-time changing class distributions. It improves activity recognition accuracy when sensors suffer from on-body displacement. We show an adARC capable of adaptation to changing sensor setups. It allows for scalability by enabling a recognition systems to autonomously exploit newly introduced sensors. We discuss other adaptive recognition systems within the adARC architecture. The results outline that this architecture frames a useful solution space for the real-world deployment of adaptive activity recognition systems. It allows to present and compare recognition systems in a coherent and modular manner. We discuss the challenges and new research directions resulting from this new perspective on adaptive activity recognition.ISSN:1868-5137ISSN:1868-514
    corecore