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ABSTRACT

Context-aware framework is basic context-aware that utilizes contexts such as

user with their individual activities, location and time, which are hidden information

derived from smartphone sensors. These data are used to monitor a situation in a crowd

scenario. Its application using embedded sensors has the potential to monitor tasks that

are practically complicated to access. Inaccuracies observed in the individual activity

recognition (IAR) due to faulty accelerometer data and data classification problem have

led to its inefficiency when used for prediction. This study developed a solution to this

problem by introducing a method of feature extraction and selection, which provides a

higher accuracy by selecting only the relevant features and minimizing false negative

rate (FNR) of IAR used for crowd condition prediction. The approach used was the

enhanced context-aware framework (EHCAF) for the prediction of human movement

activities during an emergency. Three new methods to ensure high accuracy and low

FNR were introduced. Firstly, an improved statistical-based time-frequency domain

(SBTFD) representing and extracting hidden context information from sensor signals

with improved accuracy was introduced. Secondly, a feature selection method (FSM)

to achieve improved accuracy with statistical-based time-frequency domain (SBTFD)

and low false negative rate was used. Finally, a method for individual behaviour

estimation (IBE) and crowd condition prediction in which the threshold and crowd

density determination (CDD) was developed and used, achieved a low false negative

rate. The approach showed that the individual behaviour estimation used the best

selected features, flow velocity estimation and direction to determine the disparity

value of individual abnormality behaviour in a crowd. These were used for individual

and crowd density determination evaluation in terms of inflow, outflow and crowd

turbulence during an emergency. Classifiers were used to confirm features ability to

differentiate individual activity recognition data class. Experimenting SBTFD with

decision tree (J48) classifier produced a maximum of 99.2% accuracy and 3.3% false

negative rate. The individual classes were classified based on 7 best features, which

produced a reduction in dimension, increased accuracy to 99.1% and had a low false

negative rate (FNR) of 2.8%. In conclusion, the enhanced context-aware framework

that was developed in this research proved to be a viable solution for individual and

crowd condition prediction in our society.
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ABSTRAK 

Rangka kerja kesedaran-konteks adalah kerangka kerja asas kesedaran-

konteks yang menggunakan konteks seperti pengguna dengan aktiviti individu 

mereka, lokasi dan masa yang merupakan maklumat tersembunyi yang diperoleh 

dari sensor telefon. Data ini digunakan untuk memantau keadaan dalam senario 

kelompok manusia. Aplikasinya menggunakan sensor terbenam mempunyai 

potensi untuk memantau tugasan yang secara praktikalnya sukar untuk diakses. 

Ketidaktepatan yang dihasilkan dalam aktiviti pengecaman individu (IAR) 

disebabkan masalah peranti meter-kepecutan dan masalah pengklasifikasian data 

telah menyebabkan kesan kepada ketidakcekapan peramalan. Kajian ini 

mengemukakan penyelesaian kepada masalah ini dengan memperkenalkan kaedah 

pengekstrakan dan pemilihan ciri-ciri yang menghasilkan ketepatan yang lebih 

tinggi dengan hanya memilih ciri-ciri yang berkaitan bagi mengurangkan kadar 

negatif palsu (FNR) bagi IAR yang digunakan untuk meramal keadaan kelompok 

manusia. Pendekatan yang digunakan adalah berdasarkan rangka kerja kesedaran-

konteks (EHCAF) yang digunakan untuk meramal aktiviti pergerakan manusia 

semasa kecemasan. Tiga kaedah baru untuk memastikan ketepatan yang tinggi dan 

FNR yang rendah telah diperkenalkan. Pertama, penambahbaikan domain 

kekerapan masa berdasarkan statistik (SBTFD) yang mewakili dan mengekstrak 

maklumat konteks tersembunyi dari isyarat sensor dengan peningkatan ketepatan 

isyaratnya. Kedua, kaedah pemilihan ciri (FSM) dapat mencapai ketepatan yang 

lebih baik dengan domain kekerapan masa berdasarkan statistik (SBTFD) dan 

kadar negatif palsu yang rendah digunakan. Akhirnya, satu kaedah bagi ramalan 

tingkah laku individu (IBE) dan ramalan rempuhan manusia di mana ambang dan 

penentuan kepadatan kerumunan (CDD) telah dibangunkan dan digunakan, 

menghasilkan kadar negatif palsu yang rendah. Pendekatan menunjukkan bahawa 

pengiraan tingkah laku individu menggunakan ciri-ciri pengelasan terbaik, 

anggaran halaju aliran dan arah untuk menentukan nilai kelakuan abnormal 

individu dalam kelompok manusia. Ini digunakan untuk penilaian penentuan 

ketumpatan individu dan kelompok manusia dari segi aliran masuk, aliran keluar 

dan pergolakan kelompok semasa kecemasan. Pengelas digunakan untuk 

mengesahkan keupayaan ciri untuk membezakan data kelas pengecaman aktiviti 

individu. Eksperimen SBTFD dengan pengelas pepohon keputusan (J48) 

menghasilkan ketepatan maksimum 99.2% dan kadar negatif palsu 3.3%. Kelas 

individu diklasifikasikan berdasarkan 7 ciri terbaik yang menghasilkan 

pengurangan dimensi, peningkatan ketepatan sebanyak 99.1% dan kadar negatif 

palsu yang rendah (FNR) sebanyak 2.8%. Kesimpulannya, rangka kerja kesedaran-

konteks yang telah dibangunkan dalam penyelidikan ini terbukti menjadi 

penyelesaian yang baik untuk ramalan keadaan individu dan kelompok manusia 

dalam masyarakat kita. 
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CHAPTER 1

INTRODUCTION

1.1 Overview

The field of context-aware computing is one area with active research activities

in recent time as the martket presently worth US$120 billion this year (MAM, 2018).

The context-aware approach is possible, due to the rise in the number of mobile

phone device users across the world and its direct connection to pervasive computing

(Diaconita, 2018). Nowadays, it is hard to see an organization where the presence

of mobile phone and its application is absent. This state of affairs allows context-

aware applications through embedded sensors with direct synchronization of contextual

information in the environment (Jung, 2013).

In recent times, different concepts in context-aware research have been proposed

with various techniques in other domains. These include education (Gallego et al.,

2013; Neves et al., 2014), building automation (Han et al., 2013), health care (Fenza et

al., 2012), Library management (Shatte et al., 2014), vehicle safety (Bohmlander et al.,

2017) to mention just a few. Disasters are of different types namely: crime, terrorism,

fire, and crowd for example. Disaster management is a serious challenge in any

organization (Othman and Beydoun, 2013; Othman et al., 2014). Current individual

and crowd monitoring approach for individual abnormality, crowd behaviour, and

human activity prediction were studied in (Roggen et al. 2011b; Zhang et al., 2013;

Ramesh et al., 2014). Human activity recognition (HAR), using smartphones equipped

with inbuilt sensors, were bases for context-aware mobile computing (Ramesh et al.,

2014; Cao et al., 2017).

Individual Activity Recognition (IAR) has proven to be relevant to many

domains, including vehicle safety (Bohmalander et al., 2017), health monitoring and

fitness tracking (Cao et al., 2017), etc. However, the methods are immature for crowd
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disaster mitigation, such as a recent stampede that claimed lives of over 100 people in

India (Ramesh et al., 2014). Crowd disaster mitigation utilizes IAR to predict the onset

of a stampede via the movement of participants and their behavioural patterns using

IAR (Ramesh et al., 2014). The problem with smartphone sensor signals is that noise

is caused by random information and interference (Faragher, 2012). This is a major

challenge because inaccurate and noisy data can hamper detection and recognition

(Ramesh et al., 2014).

The hottest research is currently the mitigation of crowd disasters which is the

state-of-the-art (baseline) on context-aware computing and wireless sensor network

(Ramesh et al., 2014). The existing multi-context fusion is a context-aware framework

developed by Ramesh et al., (2014) which utilized a multi-context fusion procedure is

treated in this study as a Basic Context-Aware Framework (BCF). The said study on

context-aware computing and wireless sensor network i.e. the BCF proposed employed

machine learning techniques for individual activity recognition and classification.

Ramesh et al., (2014) and Roggen et al., (2011a) used a smartphone as a mobile

phone sensing to monitor activity recognition of an individual. The monitored activity

is to provide safety control measure to people in case of unforeseen incidents in an

emergency situation in a crowd.

However, people find it difficult to ascertain the population that constitutes a

crowd (Franke et al., 2015). A crowd is determined by the number of individuals based

on space occupied in a particular area at any point in time (Helbing and Johasson, 2007;

Franke et al., 2015). According to Franke et al. (2015), a crowd is four (4) persons per

square meter while six (6) persons are overcrowded. This framework is achieved using

a smartphone equipped with sensors to monitor individual behaviour based on activity

recognition to make decisions in case of any critical situation. However, the BCF by

Ramesh et al.,(2014) suffers from the following problems:

i. Inadequate activity recognition accuracy of 92%used for prediction of stampede

in a crowd due to classification problem with less effective features.

ii. Unpaid attention to the effect of false negative rate, which often caused high

false alarm as the number of people grows exponentially in a crowd for reliable
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stampede prediction..

iii. Unreliable prediction of crowd disasters with the use of inaccuracy from context

information that create false negative alarm with election leader and distributed

consensus algorithm for stampede prediction.

iv. Unclear crowd density definition and wrong feedback to victims due to

inaccurate context -aware notification which amount to high risk than safety

in a crowd disaster situation.

The aforementioned problems bring about the motivation to extend the basic

context-aware framework by Ramesh et al., (2014) with an improved feature extraction

and feature selection method to improve the performance in terms of accuracy and false

negative rate.

1.1.1 Definition of Context-aware Framework

In this study, the context-aware framework is defined as a framework that

utilizes contexts such as user (individual) activities, location and time which are hidden

information derived from smartphone sensors as a form of data used to monitor the

situation in crowd scenarios. In other word context is produced anytime, anywhere by

everything and anyone: hence it is volatile and subjective (Denzil, 2014).

The enhanced framework comprises of effective features used to obtain hidden

context information with an improved feature extraction and feature selection methods

based on individual activity recognition to monitor crowd situation and generate

accurate context-awareness sensitization alert to avoid the occurrence of abnormal

movement with minimal risk of danger to human lives.

Crowd disaster is usually triggered by inadequate space and individual loss of

physiological and psychological control (Ramesh et al., 2014). This could be guided

with crowd monitoring by means of context sensing and acquisition of sensor signals

using a smartphone in the focus Enhanced Context-aware Framework (EHCAF).
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1.2 Background of the Problem

This section presents inaccuracy and false negative alarm problems. The causes

of inaccuracy and high false alarm arising from individual activity recognition are

discussed. The implication of these problems using context-aware computing with

individual activity recognition is described.

1.2.1 Inaccuracy Problem in Activity Recognition: Feature Extraction Methods

Guha-sapri et al., (2015) acknowledged stampede related problems and confirm

that 22,765 crowd-related deaths occur from 2005 to 2015 and a financial loss of about

US$70.3 billion incurred. Rodrigues (2016) defines human stampede as a disaster

caused by massive movement (within a limited space) of individuals in response to

a perceived danger. For instance, Italy in June 2017 recorded 1,500 injured persons

and Saudi Arabia in July 2016 recorded a stampede of 2,297 pilgrims. Helbing and

Mukerji (2012) stated that the incidence of crowd accumulation is inevitable but the

effort should be made to put the risk under check.

Fruin (1993) presented Force (F), Information (I), Space (S) and Time (T) as a

FIST model and as relevant variables in crowd monitoring and disaster prevention.

Davies et al., (1995) adopt Close Circuit Television with pattern recognition but

Bouguessa et al., (2015) assert that it lacks a feedback mechanism unless security

personnel are attached. Gomez et al., (2009) proposed a Wireless Sensor Network

using wireless communication technique but yet, the evolving problems of crowd

monitoring systems is still unresolved.

Roggen et al., (2011b) present a crowd behaviour recognition chain method,

an Individual Activity Recognition Chain (IARC) which uses mobile sensors data

collected from an ensemble of ten users activity. The pattern analysis and the graph

is a representation of individuals walking independently, in a group and those walking

in two or more groups. The crowd behaviour is obtained by inference. Roggen et al.,

(2011b) assert that 80% accuracy is sufficient for activity recognition despite IARC
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limitations in the area of two user data collection and the use of variance as a feature

extraction method.

Although they suggested that IARC could be useful in future for crowd disaster

prevention but failed to present an empirical proof for the suggestion. These problems in

Roggen et al., (2011b) establish the rationale for Ramesh et al., (2014) study. Ramesh et

al., (2014) improved upon Roggen et al., (2011b) by adopting context-aware computing

and a wireless sensor network to investigate activity recognition accuracy for crowd

disaster prediction. Other added activities include standing, fall, jogging, climb down,

climb up, and peak shake while standing (Ramesh et al., 2014; Mehrang et al., 2018).

The reported results of Ramesh et al., (2014) provide an insight with estimated values

for the Time Domain (TD) parameter (mean, standard deviation, root mean square and

correlation coefficient).

Fast Fourier Transform (FFT) of the rootmean square and correlation coefficient

is the Frequency Domain (FD). The FD values were very useful in the feature extraction

process. This led to a 92% accuracy result compared to 80% presented by Roggen et

al., (2011b). Su et al., (2014) and Cao et al., (2017) observed that the classification

accuracy of human activity recognition scheme is relatively low, hence 92% of Ramesh

et al., (2014) is not good enough because of the high incidence of false alarm, thus;

further research is recommended.

Ramesh et al., (2014) uses four algorithms for participant identification using

Smartphone (S) as a node on a sample population of 20, the flow direction and flow

velocity of the node S are noted and recorded. Stampede prediction was obtained

from the individual behaviour estimation and election leader algorithm. Clogging

of real-time simulation of participants on the Crowd Abnormality Monitor (CAM) is

based on the Android operating system. Simulation of CAM with a basic context-

aware framework for mitigation of crowd disasters was implemented and serves as an

improvement over the study of (Roggen et al., 2011b).

Ramesh et al., (2014) assert that an inadequate high rate of FalseNegativeAlarm

(FNA) led to inadequate real-time information dissemination and inefficient stampede
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prediction. Otebolaku et al., (2016) stated that lack of individual effect observations

of the feature extraction contributed to the low accuracy observed in Ramesh et al.,

(2014) but no effort was made to proffer solution to the problem.

The result of Ramesh et al., (2014) has low accuracy performance, high FNA

for stampede prediction and the crowd density value was not estimated for individual

abnormality detection. These are the problems that affect the efficient stampede

prediction in Ramesh et al., (2014). Actually, Anguital et al., (2013a) and Mehrang et

al., (2018) suggested feature extraction but the approach was a statistical-based feature

extraction method. The effort of Ramesh et al., (2014), a distinct follow up on the work

of Roggen et al., (2011b) and the observed problems encountered therein constitute my

source of inspiration and motivation in this study.

1.2.2 High Dimensionality of Features Space on Mobile Device in Activity

Recognition due to unclear Feature Extraction Methods

In Activity Recognition (AR) and machine learning research, knowing the right

features that would be capable of generalizing the classification model in its best form

is a challenge (Quesada et al., 2015). It has been observed that the problem also

occurs due to unclear feature extraction methods usually employed in AR (Suto et al.,

2017). The aforementioned problems emanated from the issue of inaccuracy in AR.

The inaccuracy problem in AR, which is yet to be addressed completely is investigated

further. However, the likely problem which may occur with an improved statistical-

based feature extraction method with time-frequency domain features as earlier stated

is the tendency of having redundant features in the feature vector, which could lower

the accuracy performance (Attal et al., 2015).

Given this, when the dimensionality of features on the mobile device increases

the computational cost also increases exponentially (Holgersson and Akerberg, 2015).

Consequently, when the features are less and effective, the processing time and memory

utilization of the smartphone device required to monitor and recognize individual

abnormality behaviour in a crowd will reduce (Riboni and Bettini, 2011). Therefore,
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when the number of participant monitors with such device grows as a result of less

number of features; then, the battery life of the device will be durable. Overcoming the

above problem requires finding ways to reduce the number of features to be considered

in this research, using the Feature Selection Method (FSM). Feature selection method

for activity recognition has been proposed by Ravi et al., (2005); Lara and Labrador,

(2012); Saputri et al., (2014) and Suto et al., 2017 using 24, 9, 21 and 6 features to

achieve a corresponding accuracy results of 77.33%, 67%, 93% and 93% respectively

with decision tree as classification algorithm.

This study found that with the use of different feature selection techniques and

the success recorded across domains which have facilitated early onset detection of

dengue fever (Devi et al., 2016), pattern (Wen et al., 2015) and stroke (Gonzalez et al.,

2015). This could also help for reliable prediction of crowd disasters in a disaster-prone

area if the technique is carefully chosen and introduced to improve upon the existing

basic context-aware framework. It has been found that there has been a scarce study

that applied or investigated feature selection in AR for individual abnormality monitor;

using context-aware approach for crowd disaster mitigation.

The proposed solution will investigate the benefit of Minimum Redundancy

Maximum Relevance and Information Gain (MRMR-IG), Correlation-based Feature

Selection (CBFS), ChiSquare Feature Selection (CHIFS) specifically in the first stage

of this study, as the second method suggested for the second objective to enhance the

proposed approach since it was not part of the basic context-aware framework (Ramesh

et al., 2014).

1.2.3 High False Alarm for Crowd Condition Prediction due to Inaccuracy with

Context-aware issue on Individual Behaviour Estimation

According to Okoli and Nnorom (2007), the human stampede situation is an

example of disasters in any nation. The stampede incident which often leads to a

crowd disaster is common across the world. The implication of this danger in a disaster

situation represents a critical challenge to the national security of any nation. In the
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study of Fruin (1993), the main causes of mass death and injury worldwide were

traced to human stampede (Still, 2014). Early context-aware frameworks by Schilit and

Theimer, (1994) and Ravindran et al., (2014) do not consider the use of monitoring

individuals using activity recognition in public place to identify possible occurrences

of dangers.

Based on the analysis of the previous studies, it was very clear that stampede

was the cause of crowd disasters in small or public places (Fruin, 2002; Okoli and

Nnorom, 2007, Michael et al., 2014). However, the previous studies did not use

activity recognition based on the individual to investigate inaccuracy, and the effect of

false negative alarm for stampede prediction, consequently it was also not the priority

in the existing study by Ramesh et al., (2014). Given this, it suffices that a higher

classification performance can help to improve the accuracy used in the existing study.

The cause of unreliable stampede prediction in the basic context-aware

framework is the problems of inaccuracy and high false negative alarm arising from

high dimensionality of features based on inadequate context information from the sensor

signals from a smartphone as presented in Section 1.2. The problems highlighted above

are very crucial to the proposed framework towards improving the baseline as the focus

in this study.

In recent time, authors have proposed various applications using context-aware

framework which includes:

i. CamWAF: Framework for lightweight context-aware mobile applications (Luo

and Feng, 2016).

ii. CAAC: Framework for context-aware access control to information resources

(Kayes et al., 2017).

iii. Framework for exploiting internet of things for contextAware trust-based

personalized services (Otebolaku and Gyu, 2018).

The frameworks were found in different domains due to the importance of

context-aware computing and its application across many disciplines. However, none
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of such context-aware framework for mitigation of crowd disaster was found in the

literature to the best knowledge of the researcher. Apart from the work of Ramesh et al.,

(2014) usually referred to as crowd abnormality monitor for onset stampede prediction

in a crowd scenario. The work used activity recognition of individual through a

smartphone as a monitoring device to determine the occurrence of abnormal situation

among individuals in a crowd. Given this, the current study proposed an enhanced

context-aware framework by utilizing the proposed method achieved in Subsection

1.2.2 alongside other algorithms that will be implemented for individual behaviour

estimation as the last part of this research. The advantage of the proposed framework

is the ability to provide efficient stampede prediction using improved accuracy with

low false negative rate to minimize the risk of danger to human life in crowded places.

The approach also promises prompt and reliable feedback to likely victims of danger

in case of an unforeseen situation with reduced features utilized to improve the BCF by

Ramesh et al., (2014).

Most importantly, failure to detect the crowd behaviour at the right time could

lead to unnecessary injuries and fatalities (Yassen et al., 2013). Yassen et al., (2013)

observed and pointed out that real-time accurate estimation of density in different areas,

within the space occupied in a crowd could help to improve the decision-making process.

This will provide a more accurate prediction of the crowd dynamics using crowd count

in terms of Crowd Density Determination (CDD). The proposed EHCAF will adapt the

use of CDD as part of the component suggested as solution presented in this thesis. The

CDD will help to determine the inflow, outflow, and crowd turbulence during a critical

situation of individual activity recognition monitor in a crowd condition. This is done

in addition to other parameters needed for Individual Behaviour Estimation (IBE) in

objective 3. The problems addressed in this thesis is summarized in Figure 1.1.

1.3 Problem Statement

Recently, various signal processing techniques are studied to analyse the sensor

signals from a smartphone. The use of the sensor signals plays a prominent role,

towards representing the hidden information from individual behaviour movement in a
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Individual Activity Recognition (IAR) 

from sensor signal data

Extraction of salient feature causing 

inaccuracy from classification of IAR 

is the major challenge to prediction 

of crowd disasters

(Ravi et al., 2005; Figo et al., 2010; 

Su et al. 2014; Ramesh et al., 2014; 

Mehrang et al., 2018) 

High dimensionality of feature space 

due to unclear feature extraction 

method use.

Redundant features hinders accuracy 

performance

(Peng et al., 2011; Quesada et al., 

2015; Suto et al., 2017; Twomey et al., 

2018)  

 

Unreliable prediction of crowd 

abnormality using 92% of IAR accuracy 

and high false alarm.

 Lack of feedback issue using low 

quality of sensor signals data of 

contextual information from 

smartphone

(Fruin, 1993;2002; Ramesh et al., 

2014;  Bouguessa et al., 2015; 

Twomey et al., 2018); 

Previous studies in activity recognition and context-aware for crowd 

abnormality monitoring

Existing feature extraction 

techniques

(Phan, 2014; Ramesh et al., 2014; 

Mehrang et al., 2018)

Existing feature dimension reduction 

techniques 

(Holgersson and Akerberg, 2015; 

Twomey et al., 2018)

Existing context-aware techniques 

(Bouguessa et al., 2015; Otebolaku et 

al., 2016; Diaconita, 2018)

Limitations

 Time domain (TD) based 

features suffer from salient ones 

not considered (Lara and 

Labrador, 2013)

 Combining both time domain 

frequency domain (TDFD) 

undermining the effect of salient 

features on the effects of TD, FD 

separately prior to TDFD 

combination (Berneck et al., 

2012; Anguita et al., 2013b; 

Kwon et al., 2014; Erdas et al., 

2016; Mehrang et al., 2018)

Limitations

 High dimensionality and 

redundancy of extracted 

features (Kohavi and John, 

1997; Singh et al., 2010)

 High computational task, 

Prolong classification leading to 

delay in recognition abnormal 

activity (Holgersson and 

Akerberg, 2015; Erdas et al., 

2016; Du et al., 2017; Twomey 

et al., 2018)

Limitations

 Victims of danger suffers from 

inappropriate sensitization in 

real time due to poor contextual 

information through high false 

alarm (Fruin 2002;  Ravindran et 

al., 2014; Ramesh et al., 2014; 

Bouguessa et al., 2015;)

 Unclear definition of crowd 

density and lack of feedback 

(Ramesh et al., 2014).

 Victims suffers from unreliable 

safety measure due to relatively 

low accuracy of HAR scheme 

(Cao et al., 2017; Diaconita, 

2018).

Activity recognition and basic context-aware framework research issues and their limitations

Figure 1.1 The recent research problems in activity recognition.

crowd using context recognition for human activity recognition (Ramesh et al., 2014;

Otebolaku et al., 2016). The major drawbacks observed was inaccuracy and hidden

information present in the raw dataset from sensor signals. Consequently, the existing

feature extraction methods result in not providing accurate information and unsuitable

choice of time, frequency domain features that often result in false information, thus,

produces the wrong prediction of individual behaviour. Besides, many important

extracted salient features are overlooked due to an unclear method of feature extraction

used (Suto et al., 2017). This brings about high dimensionality when computation and

prediction take place through mobile device since there is no rule guiding the number
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of features required for any activity recognition, machine learning and data mining

researchers (Quesada et al., 2015). The high dimension i.e. any numbers of features

could be reduced by filtering technique based on the proper choice of feature selection

in activity recognition such as correlation, chi-square and information gain to name

a few. After the features have been extracted from the user’s context based on raw

sensor signals, models can be constructed from these data using artificial intelligence

and the traditional machine learning algorithms for individual activity recognition

classification. In order to extract the features, different processor speed, battery power

on the device may not be sufficient when a number of people increases. As a result

of the highlighted problems, less number of effective features is required to minimize

the processing time, computational task and classification process (Riboni and Bettini,

2011). Hence, the BCF for crowd abnormality monitor using the classification of

individual activity recognition has recently become a common approach in machine

learning (Ramesh et al., 2014; Bouguessa et al., 2015). However, results show that it

easily suffers from inaccuracy, high false negative alarm and lack of feedback to victims

of danger in a disaster-prone situation addressed in this study. Figure 1.2 shows an

example of a crowd disaster that occurred in Saudi Arabia with several loss of lives. In

the light of the aforementioned incidences, it is desirable to minimize the continuous

death occurrence from human gathering in our society.

Figure 1.2 Cross-section of casualties reported in Mina stampede during hajj
september, 2015 (Jola, 2015).
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How can the accuracy performance of activity recognition in basic context-

aware framework be improved for efficient prediction of individual and crowd condition

with the low false negative rate? In order to overcome the aforementioned problems, the

study provides an answer to themainResearchQuestion (RQ) through the sub-questions

as follows:

i. In what forms are sensor signals data of individual activity from smartphone

recognized?

ii. How can the use of feature extraction methods adequately represent hidden

context information of sensor signals from a smartphone for classification of

individual activity recognition to improve on the accuracy performance?

iii. How accurate are the existing classifiers?

iv. Which feature selection based on feature extraction methods can reduce high

dimensionality of features on the mobile device, as well as remove redundant

features to improve accuracy and reduce false negative rate performance for

individual and crowd condition prediction?

v. What other parameters can be utilizedwith features selected in the basic context-

aware framework for individual and crowd condition prediction?

1.4 Research Aim

The study aims to develop an enhanced context-aware framework (EHCAF)

using relevant feature sets of activity recognition to improve accuracy and reduce

false negative rate performance that is capable of providing an efficient prediction for

individual and crowd condition.

1.5 Research Objectives

i. To propose an improved feature extraction method using a statistical-based

time-frequency domain that can represent hidden context information from
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smartphones sensor signals for individual activity recognition in order to

improve accuracy for individual and crowd condition prediction.

ii. To propose a feature selection method, which is a sub-component of individual

behaviour estimation based on feature extraction to reduce the dimensionality of

features on a mobile device with an improved accuracy to reduce false negative

rate performance for individual and crowd condition prediction.

iii. To propose an enhanced context-aware framework using the selected features

and individual behaviour estimation to provide a reliable prediction for

individual and crowd condition.

1.6 Research Scope

The extent of this study is limited to the following:

i. The proposed study focuses on studies related to individual activity recognition

chain, crowd behaviour recognition chain, inaccuracy in activity recognition,

high dimensionality issue, feature; extraction, selection and classification

techniques, context-aware, crowd condition and prediction.

ii. Statistical based time-frequency domain methods are applied as feature

extraction in a crowd scenario; whileminimum redundancymaximum relevance

and information gain, correlation based and chi-square are employed as feature

selection methods.

iii. Decision tree (J48), Random Forest (RF), Sequential Minimal Optimization

(SMO), and Naive Bayes (NB) are employed as classification algorithms. The

k-means, Kalman filter algorithms for FlowVelocity (Vsi), FlowDirection (Dsi)

determination and pairwise behaviour estimation are adopted from the literature

based on Euclidean distance and vincenty formula are applied for individual

behaviour estimation in the proposed Enhanced Context-Aware Framework

(EHCAF).

iv. Evaluation of the approach is based on Accuracy, Precision, Recall, F-Measure,

Specificity, Negative Prediction Value, Mathew Correlation Coefficients,
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Macro-average and false negative Analysis of variance and paired sample t-

test statistical tests were applied for validation of results. The comparison was

done with Crowd abnormality monitor (CAM) by Ramesh et al., (2014) as

Basic Context-Aware Framework (BCF).

v. Activity recognition of individual such as walking, standing, fall, climb down,

climb up, peak shake while standing, jogging and still widely used are employed

as simple activity type (Lara and Labrador, 2013; Sztyler and Stuckenschmidt,

2016). What if the non-simultaneous activity assumption is out the scope of

this study.

vi. Implementations of algorithms are done using Python and WEKA (Hall et al.

2009 and WML, 2018). Software development and a simulation of crowd

movement behaviour using the toolbox, ground truth of positive and negative

dataset for stampede evaluation and validation, stampede prediction or crowd

disaster prediction are out of the scope of this work.

vii. One public dataset of activity recognition from the UC Irvine machine learning

repository UCI, (2015) has been used with real-time sensor dataset collected in

this study with developed android context-aware mobile application.

1.7 Significance of the Research

The crowd is the coming together of people in a place. This same crowd

is a common event in public, private and government organizations of any nation.

However, the safety of the people is very important to the growth and the development

of any nation across the world. Therefore, the priceless nature of the people cannot

be overemphasized, as the safety control measure technology or system as a step

to minimize risk (HSE, 2018). This research is proposed to give an insight to the

inaccuracy and high false negative alarm effects on a context-aware framework using

activity recognition. The insight was done through discussion on how to improve the

performance of accuracy to reduce the false negative rate, especially within the context

of inaccuracy and high dimensionality of feature space in activity recognition.
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The issues regarding inaccuracy and high dimensionality of feature space for

stampede prediction in a crowd are presented in this research. This study shows that

Enhancement of Context-aware Framework (EHCAF) with feature selection method,

can improve the accuracy of activity recognition and reduce false negative alarm

significantly. It serves as an alternative to other techniques found in this domain in

literature. It will also, facilitate risk of danger minimization (reduction of false negative

rate) during an emergency in a crowded place. The proposed EHCAF of prediction for

individual and crowd condition if implemented can be useful in Hajj, sports complex,

airport, shopping complex and praying ground such as mosque, churches and concerts

to mention a few.

1.8 Summary and Organization of the Thesis

The chapter has described the motivation of the research by presenting the

background of the problem and also outlines the purpose and aim of the research. The

chapter also presented the possible contributions of the research. The remaining part

of the thesis are briefly discussed as follows:

Chapter 2: Literature reviews discuss past and current studies in the research

area related to context-aware computing, activity recognition, feature extraction and

selection methods utilized, sensor fusion with an emphasis on crowd disaster are

discussed. The strengths, weaknesses of existing basic context-aware framework’s

gaps and related study were highlighted in the chapter.

Chapter 3: Research methodology presents the research methodology flow

used in this study. It consists of the general overview of the research in addition to

the steps required to carry out this research in an orderly form. It also contained a

description of the datasets acquired for the experimental purposes of the study. Chapter

4: Presents first objective where feature extractions were explored in the chapter for the

enhancement of activity recognition accuracy using statistical-based time-frequency

domain features for classification of activity recognition for individual and crowd

condition prediction. Corresponding results and evaluation are also presented in the

15



chapter along with a statistical test to confirm the results.

Chapter 5: discuss the second objective as the newly proposed feature selection

method based on the minimum redundancy maximum relevance, information gain,

correlation and chi-square separately. The objective helps to reduce features to the best

seven relevant features. Four classification algorithms were utilized for individual

activity recognition. It covers the experimental setup, relevant discussions, and

comparisons of the method. The statistical tests were presented to validate the results.

Chapter 6: Enhanced context-aware framework. Addresses the third objective

of the research. It presents the development of an improved context-aware framework

by utilizing the individual behaviour estimation based on each class (activity) of an

individual with feature selection method for higher activity recognition accuracy, and

low false negative rate achieved in objective 2. The detail of additional parameters

derived from individual behaviour estimation based on algorithms adopted from the

literature is presented. The benchmark of the proposed and existing approaches was

also presented in this chapter. The result is validated using a statistical test.

Chapter 7: Conclusion and future works. Concludes the research, highlights

the list of contributions, states the limitations of the proposed approach, and shows the

objectives 1, 2, 3 deliverables of the thesis and presents recommendations for future

study.
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