1,950 research outputs found

    mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences

    Get PDF
    The mitochondrial genome, contained in the subcellular mitochondrial network, encodes a small number of peptides pivotal for cellular energy production. Mitochondrial genes are highly polymorphic and cataloguing existing variation is of interest for medical scientists involved in the identification of mutations causing mitochondrial dysfunction, as well as for population genetics studies. Human Mitochondrial Genome Database (mtDB) (http://www.genpat.uu.se/mtDB) has provided a comprehensive database of complete human mitochondrial genomes since early 2000. At this time, owing to an increase in the number of published complete human mitochondrial genome sequences, it became necessary to provide a web-based database of human whole genome and complete coding region sequences. As of August 2005 this database contains 2104 sequences (1544 complete genome and 560 coding region) available to download or search for specific polymorphisms. Of special interest to medical researchers and population geneticists evaluating specific positions is a complete list of (currently 3311) mitochondrial polymorphisms among these sequences. Recent expansions in the capabilities of mtDB include a haplotype search function and the ability to identify and download sequences carrying particular variant

    Simulated case management of home telemonitoring to assess the impact of different alert algorithms on work-load and clinical decisions

    Get PDF
    © 2017 The Author(s). Background: Home telemonitoring (HTM) of chronic heart failure (HF) promises to improve care by timely indications when a patient's condition is worsening. Simple rules of sudden weight change have been demonstrated to generate many alerts with poor sensitivity. Trend alert algorithms and bio-impedance (a more sensitive marker of fluid change), should produce fewer false alerts and reduce workload. However, comparisons between such approaches on the decisions made and the time spent reviewing alerts has not been studied. Methods: Using HTM data from an observational trial of 91 HF patients, a simulated telemonitoring station was created and used to present virtual caseloads to clinicians experienced with HF HTM systems. Clinicians were randomised to either a simple (i.e. an increase of 2 kg in the past 3 days) or advanced alert method (either a moving average weight algorithm or bio-impedance cumulative sum algorithm). Results: In total 16 clinicians reviewed the caseloads, 8 randomised to a simple alert method and 8 to the advanced alert methods. Total time to review the caseloads was lower in the advanced arms than the simple arm (80 ± 42 vs. 149 ± 82 min) but agreements on actions between clinicians were low (Fleiss kappa 0.33 and 0.31) and despite having high sensitivity many alerts in the bio-impedance arm were not considered to need further action. Conclusion: Advanced alerting algorithms with higher specificity are likely to reduce the time spent by clinicians and increase the percentage of time spent on changes rated as most meaningful. Work is needed to present bio-impedance alerts in a manner which is intuitive for clinicians

    mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences

    Get PDF
    The mitochondrial genome, contained in the subcellular mitochondrial network, encodes a small number of peptides pivotal for cellular energy production. Mitochondrial genes are highly polymorphic and cataloguing existing variation is of interest for medical scientists involved in the identification of mutations causing mitochondrial dysfunction, as well as for population genetics studies. Human Mitochondrial Genome Database (mtDB) () has provided a comprehensive database of complete human mitochondrial genomes since early 2000. At this time, owing to an increase in the number of published complete human mitochondrial genome sequences, it became necessary to provide a web-based database of human whole genome and complete coding region sequences. As of August 2005 this database contains 2104 sequences (1544 complete genome and 560 coding region) available to download or search for specific polymorphisms. Of special interest to medical researchers and population geneticists evaluating specific positions is a complete list of (currently 3311) mitochondrial polymorphisms among these sequences. Recent expansions in the capabilities of mtDB include a haplotype search function and the ability to identify and download sequences carrying particular variants

    The role of the coaching relationship in the coaching process

    Get PDF
    Ole Michael Spaten interviews Dr Kristina Gyllensten on the coaching relationship, newer findings and future research. In this interview, Gyllensten emphasizes the importance of coaches being aware of and working with the coaching relationship since it is valuable to coachee’s perception of the coaching process. Additionally, she states that Coaching relationship dependents on trust and is improved by transparency. Moreover, Gyllensten defines coaching relationship as a unique, co-created and evolving relationship that consists of the coaching alliance and additional client and coach contributions. Finally, she suggested that future research could focus on the negative effect of coaching

    The physiotherapists' experience of Basic Body Awareness Therapy in patients with schizophrenia and schizophrenia spectrum disorders.

    Get PDF
    Scandinavian physiotherapists (PT) treat patients with schizophrenia and schizophrenia spectrum disorder, mainly because of the latter's bodily difficulties. One commonly used method is Basic Body Awareness Therapy (BBAT), targeting the difficulties with sensory motor dysfunction and disembodiment. The aim of the study is to describe the physiotherapist's experiences of using BBAT for patients with Schizophrenia

    Early indication of decompensated heart failure in patients on home-telemonitoring: a comparison of prediction algorithms based on daily weight and noninvasive transthoracic bio-impedance

    Get PDF
    Background: Heart Failure (HF) is a common reason for hospitalization. Admissions might be prevented by early detection of and intervention for decompensation. Conventionally, changes in weight, a possible measure of fluid accumulation, have been used to detect deterioration. Transthoracic impedance may be a more sensitive and accurate measure of fluid accumulation. Objective: In this study, we review previously proposed predictive algorithms using body weight and noninvasive transthoracic bio-impedance (NITTI) to predict HF decompensations. Methods: We monitored 91 patients with chronic HF for an average of 10 months using a weight scale and a wearable bio-impedance vest. Three algorithms were tested using either simple rule-of-thumb differences (RoT), moving averages (MACD), or cumulative sums (CUSUM). Results: Algorithms using NITTI in the 2 weeks preceding decompensation predicted events (P<.001); however, using weight alone did not. Cross-validation showed that NITTI improved sensitivity of all algorithms tested and that trend algorithms provided the best performance for either measurement (Weight-MACD: 33%, NITTI-CUSUM: 60%) in contrast to the simpler rules-of-thumb (Weight-RoT: 20%, NITTI-RoT: 33%) as proposed in HF guidelines. Conclusions: NITTI measurements decrease before decompensations, and combined with trend algorithms, improve the detection of HF decompensation over current guideline rules; however, many alerts are not associated with clinically overt decompensation

    Physiotherapy Assessments in Mental Health Care - Are we measuring the right things in a societal perspective?

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Downloa
    corecore