162,922 research outputs found

    Computational design of rare-earth reduced permanent magnets

    Get PDF
    Multiscale simulation is a key research tool in the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density product of a magnet made from a novel magnetic material composition. Iron (Fe)-rich magnetic phases suitable for permanent magnets can be found by means of adaptive genetic algorithms. The intrinsic properties computed by ab intro simulations are used as input for micromagnetic simulations of the hysteresis properties of permanent magnets with a realistic structure. Using machine learning techniques, the magnet's structure can be optimized so that the upper limits for coercivity and energy density product for a given phase can be estimated. Structure property relations of synthetic permanent magnets were computed for several candidate hard magnetic phases. The following pairs (coercive field (T), energy density product (kJ.m(-3))) were obtained for iron-tin-antimony (Fe3Sn0.75Sb0.25): (0.49, 290), L1(0) -ordered iron-nickel (L1(0) FeNi): (1, 400), cobalt-iron-tantalum (CoFe6Ta): (0.87, 425), and manganese-aluminum (MnAl): (0.53, 80).Web of Science6215314

    Towards Fully Additively-Manufactured Permanent Magnet Synchronous Machines: Opportunities and Challenges

    Get PDF
    With the growing interest in electrification and as hybrid and pure electric powertrains are adopted in more applications, electrical machine design is facing challenges in terms of meeting very demanding performance metrics for example high specific power, harsh environments, etc. This provides clear motivation to explore the impact of advanced materials and manufacturing on the performance of electrical machines. This paper provides an overview of additive manufacturing (AM) approaches that can be used for constructing permanent magnet (PM) machines, with a specific focus on additively-manufactured iron core, winding, insulation, PM as well as cooling systems. Since there has only been a few attempts so far to explore AM in electrical machines (especially when it comes to fully additively-manufactured machines), the benefits and challenges of AM have not been comprehensively understood. In this regard, this paper offers a detailed comparison of multiple multi-material AM methods, showing not only the possibility of fully additively-manufactured PM machines but also the potential significant improvements in their mechanical, electromagnetic and thermal properties. The paper will provide a comprehensive discussion of opportunities and challenges of AM in the context of electrical machines

    Wood wasp inspired space and earth drill

    Get PDF
    In this chapter, we explain why the low gravity encountered on Mars or on the Moon and the low mass of the probes, landers and rovers that carry drilling devices limit classical drilling techniques. Novel boring solutions optimised in mass and power consumption are thus needed for space applications. Biologists have identified the wood wasp, an insect that is capable of "drilling" into wood to lay its eggs. A low mass and low power system, like an insect, capable of drilling into wood is of the highest interest for planetary drilling and terrestrial drilling alike. The general working principle of the wood wasp drill ("dual reciprocating drilling") will be exposed and the potential benefits of imitating the wood wasp for planetary drilling will be highlighted. Since the nature of wood is highly fibrous but the nature of extraterrestrial and terrestrial soils are not, it is necessary to adapt the wood wasp ovipositor to our target soils. A test bench to evaluate the influence of the different geometries and operational parameters was produced and is presented here. The dual reciprocating drilling experimental results obtained on this test bench are also highlighted. They should lead to a new and enhanced model and comprehension of dual-reciprocating-drilling

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    TBM pressure models: observations, theory and practice

    Get PDF
    Mechanized tunnelling in soft ground has evolved significantly over the last 20 years. However, the interaction between the tunnel boring machine (TBM) and the ground is often understood through idealized concepts, focused mostly on the machine actions in detriment of the reactions from the ground. These concepts cannot be used to explain several mechanisms that have been observed during the construction of mechanized tunnels. Therefore, this paper presents the path from field observations to the theoretical developments to model the TBM-ground interaction more realistically. Some ideas on how these developments can be applied into practice are presented. Finally, a discussion is proposed about how an effective collaboration between academia and industry can alleviate the current concentration of knowledge in the state of practice

    Using natural means to reduce surface transport noise during propagation outdoors

    Get PDF
    This paper reviews ways of reducing surface transport noise by natural means. The noise abatement solutions of interest can be easily (visually) incorporated in the landscape or help with greening the (sub)urban environment. They include vegetated surfaces (applied to faces or tops of noise walls and on building façades and roofs ), caged piles of stones (gabions), vegetation belts (tree belts, shrub zones and hedges), earth berms and various ways of exploiting ground-surface-related effects. The ideas presented in this overview have been tested in the laboratory and/or numerically evaluated in order to assess or enhance the noise abatement they could provide. Some in-situ experiments are discussed as well. When well-designed, such natural devices have the potential to abate surface transport noise, possibly by complementing and sometimes improving common (non-green) noise reducing devices or measures. Their applicability strongly depends on the available space reserved for the noise abatement and the receiver position

    Hybrid sliding mode control for motorised space tether spin-up when coupled with axial oscillation

    Get PDF
    A specialised hybrid controller is applied for the control of motorised space tether spin-up coupled with an axial oscillation phenomenon. A six degree of freedom dynamic model of a motorised momentum exchange tether is used as the basis for interplanetary payload exchange in the context of control. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A simulation with a given initial condition data has been devised in a connecting programme between control code written in MATLAB and dynamics simulation code constructed within MATHEMATICA. It is shown that there is an enhanced level of spin-up control for the six degree of freedom motorised momentum exchange tether system using the specialised hybrid controller

    Synthesis of strontium ferrite/iron oxide exchange coupled nano-powders with improved energy product for rare earth free permanent magnet applications

    Full text link
    We present a simple, scalable synthesis route for producing exchange coupled soft/hard magnetic composite powder that outperforms pure soft and hard phase constituents. Importantly, the composites is iron oxide based (SrFe12O19 and Fe3O4) and contain no rare earth or precious metal. The two step synthesis process consists of first precipitating, an Iron oxide/hydroxide precursor directly on top of SrFe12O19 nano-flakes, ensuring a very fine degree of mixing between the hard and the soft magnetic phases. We then use a second step that serves to reduce the precursor to create the proper soft magnetic phase and create the intimate interface necessary for exchange coupling. We establish a clear processing window; at temperatures below this window the desired soft phase is not produced, while higher temperatures result in deleterious reaction at the soft/hard phase interfaces, causing an improper ratio of soft to hard phases. Improvements of Mr, Ms, and (BH)max are 42%, 29% and 37% respectively in the SrFe12O19/Fe3O4 composite compared to pure hard phase (SrFe12O19). We provide evidence of coupling (exchange spring behavior) with hysteresis curves, first order reversal curve (FORC) analysis and recoil measurements.Comment: in J. Mater. Chem. C, 201
    corecore