1,012 research outputs found

    Diverse personalized recommendations with uncertainty from implicit preference data with the Bayesian Mallows Model

    Full text link
    Clicking data, which exists in abundance and contains objective user preference information, is widely used to produce personalized recommendations in web-based applications. Current popular recommendation algorithms, typically based on matrix factorizations, often have high accuracy and achieve good clickthrough rates. However, diversity of the recommended items, which can greatly enhance user experiences, is often overlooked. Moreover, most algorithms do not produce interpretable uncertainty quantifications of the recommendations. In this work, we propose the Bayesian Mallows for Clicking Data (BMCD) method, which augments clicking data into compatible full ranking vectors by enforcing all the clicked items to be top-ranked. User preferences are learned using a Mallows ranking model. Bayesian inference leads to interpretable uncertainties of each individual recommendation, and we also propose a method to make personalized recommendations based on such uncertainties. With a simulation study and a real life data example, we demonstrate that compared to state-of-the-art matrix factorization, BMCD makes personalized recommendations with similar accuracy, while achieving much higher level of diversity, and producing interpretable and actionable uncertainty estimation.Comment: 27 page

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions

    Get PDF
    This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes various limitations of current recommendation methods and discusses possible extensions that can improve recommendation capabilities and make recommender systems applicable to an even broader range of applications. These extensions include, among others, an improvement of understanding of users and items, incorporation of the contextual information into the recommendation process, support for multcriteria ratings, and a provision of more flexible and less intrusive types of recommendations

    MACHINE LEARNING AND CAUSALITY FOR INTERPRETABLE AND AUTOMATED DECISION MAKING

    Get PDF
    This abstract explores two key areas in decision science: automated and interpretable decision making. In the first part, we address challenges related to sparse user interaction data and high item turnover rates in recommender systems. We introduce a novel algorithm called Multi-View Interactive Collaborative Filtering (MV-ICTR) that integrates user-item ratings and contextual information, improving performance, particularly for cold-start scenarios. In the second part, we focus on Student Prescription Trees (SPTs), which are interpretable decision trees. These trees use a black box teacher model to predict counterfactuals based on observed covariates. We experiment with a Bayesian hierarchical binomial regression model as the teacher and employ statistical significance testing to control tree growth, ensuring interpretable decision trees. Overall, our research advances the field of decision science by addressing challenges in automated and interpretable decision making, offering solutions for improved performance and interpretability

    Exploiting the conceptual space in hybrid recommender systems: a semantic-based approach

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, octubre de 200

    Marketing Applications of Social Tagging Networks

    Get PDF
    This dissertation focuses on marketing applications of social tagging networks. Social tagging is a new way to share and categorize content, allowing users to express their perceptions and feelings with respect to concepts such as brands and firms with their own keywords, “tags.” The associative information in social tagging networks provides marketers with a rich source of information reflecting consumers’ mental representations of a brand/firm/product. The first essay presents a methodology to create “social tag maps,” brand associative networks derived from social tags. The proposed approach reflects a significant improvement towards understanding brand associations compared to conventional techniques (e.g., brand concept maps and recent text mining techniques), and helps marketers to track real-time updates in a brand’s associative network and dynamically visualize the relative competitive position of their brand. The second essay investigates how information contained in social tags acts as proxy measures of brand assets that track and predict the financial valuation of firms using the data collected from a social bookmarking website, del.icio.us, for 61 firms across 16 industries. The results suggest that brand asset metrics based on social tags explain stock return. Specifically, an increase in social attention and connectedness to competitors is shown to be positively related to stock return for less prominent brands, while for prominent brands associative uniqueness and evaluation valence is found to be more significantly related to stock return. The findings suggest to marketing practitioners a new way to proactively improve brand assets for impacting a firm’s financial performance. The third essay investigates whether the position of products on social tagging networks can predict sales dynamics. We find that (1) books in long tail can increase sales by being strongly linked to well-known keywords with high degree centrality and (2) top sellers can be better sellers by creating dense content clusters rather than connecting them to well-known keywords with high degree centrality. Our findings suggest that marketing managers better understand a user community’s perception of products and potentially influence product sales by taking into account the positioning of their products within social tagging networks

    A Distributed, Architecture-Centric Approach to Computing Accurate Recommendations from Very Large and Sparse Datasets

    Get PDF
    The use of recommender systems is an emerging trend today, when user behavior information is abundant. There are many large datasets available for analysis because many businesses are interested in future user opinions. Sophisticated algorithms that predict such opinions can simplify decision-making, improve customer satisfaction, and increase sales. However, modern datasets contain millions of records, which represent only a small fraction of all possible data. Furthermore, much of the information in such sparse datasets may be considered irrelevant for making individual recommendations. As a result, there is a demand for a way to make personalized suggestions from large amounts of noisy data. Current recommender systems are usually all-in-one applications that provide one type of recommendation. Their inflexible architectures prevent detailed examination of recommendation accuracy and its causes. We introduce a novel architecture model that supports scalable, distributed suggestions from multiple independent nodes. Our model consists of two components, the input matrix generation algorithm and multiple platform-independent combination algorithms. A dedicated input generation component provides the necessary data for combination algorithms, reduces their size, and eliminates redundant data processing. Likewise, simple combination algorithms can produce recommendations from the same input, so we can more easily distinguish between the benefits of a particular combination algorithm and the quality of the data it receives. Such flexible architecture is more conducive for a comprehensive examination of our system. We believe that a user's future opinion may be inferred from a small amount of data, provided that this data is most relevant. We propose a novel algorithm that generates a more optimal recommender input. Unlike existing approaches, our method sorts the relevant data twice. Doing this is slower, but the quality of the resulting input is considerably better. Furthermore, the modular nature of our approach may improve its performance, especially in the cloud computing context. We implement and validate our proposed model via mathematical modeling, by appealing to statistical theories, and through extensive experiments, data analysis, and empirical studies. Our empirical study examines the effectiveness of accuracy improvement techniques for collaborative filtering recommender systems. We evaluate our proposed architecture model on the Netflix dataset, a popular (over 130,000 solutions), large (over 100,000,000 records), and extremely sparse (1.1\%) collection of movie ratings. The results show that combination algorithm tuning has little effect on recommendation accuracy. However, all algorithms produce better results when supplied with a more relevant input. Our input generation algorithm is the reason for a considerable accuracy improvement
    • …
    corecore