7,474 research outputs found

    Neutrality: A Necessity for Self-Adaptation

    Full text link
    Self-adaptation is used in all main paradigms of evolutionary computation to increase efficiency. We claim that the basis of self-adaptation is the use of neutrality. In the absence of external control neutrality allows a variation of the search distribution without the risk of fitness loss.Comment: 6 pages, 3 figures, LaTe

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Scuba Search : when selection meets innovation

    Get PDF
    We proposed a new search heuristic using the scuba diving metaphor. This approach is based on the concept of evolvability and tends to exploit neutrality in fitness landscape. Despite the fact that natural evolution does not directly select for evolvability, the basic idea behind the scuba search heuristic is to explicitly push the evolvability to increase. The search process switches between two phases: Conquest-of-the-Waters and Invasion-of-the-Land. A comparative study of the new algorithm and standard local search heuristics on the NKq-landscapes has shown advantage and limit of the scuba search. To enlighten qualitative differences between neutral search processes, the space is changed into a connected graph to visualize the pathways that the search is likely to follow

    Incorporating characteristics of human creativity into an evolutionary art algorithm (journal article)

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Incorporating characteristics of human creativity into an evolutionary art algorithm

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Towards the Evolution of Multi-Layered Neural Networks: A Dynamic Structured Grammatical Evolution Approach

    Full text link
    Current grammar-based NeuroEvolution approaches have several shortcomings. On the one hand, they do not allow the generation of Artificial Neural Networks (ANNs composed of more than one hidden-layer. On the other, there is no way to evolve networks with more than one output neuron. To properly evolve ANNs with more than one hidden-layer and multiple output nodes there is the need to know the number of neurons available in previous layers. In this paper we introduce Dynamic Structured Grammatical Evolution (DSGE): a new genotypic representation that overcomes the aforementioned limitations. By enabling the creation of dynamic rules that specify the connection possibilities of each neuron, the methodology enables the evolution of multi-layered ANNs with more than one output neuron. Results in different classification problems show that DSGE evolves effective single and multi-layered ANNs, with a varying number of output neurons

    Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution

    Get PDF
    Many real-world control and classification tasks involve a large number of features. When artificial neural networks (ANNs) are used for modeling these tasks, the network architectures tend to be large. Neuroevolution is an effective approach for optimizing ANNs; however, there are two bottlenecks that make their application challenging in case of high-dimensional networks using direct encoding. First, classic evolutionary algorithms tend not to scale well for searching large parameter spaces; second, the network evaluation over a large number of training instances is in general time-consuming. In this work, we propose an approach called the Limited Evaluation Cooperative Co-evolutionary Differential Evolution algorithm (LECCDE) to optimize high-dimensional ANNs. The proposed method aims to optimize the pre-synaptic weights of each post-synaptic neuron in different subpopulations using a Cooperative Co-evolutionary Differential Evolution algorithm, and employs a limited evaluation scheme where fitness evaluation is performed on a relatively small number of training instances based on fitness inheritance. We test LECCDE on three datasets with various sizes, and our results show that cooperative co-evolution significantly improves the test error comparing to standard Differential Evolution, while the limited evaluation scheme facilitates a significant reduction in computing time

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
    corecore