1,026 research outputs found

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference

    Optical frequency comb technology for ultra-broadband radio-frequency photonics

    Full text link
    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.Comment: to appear in Laser and Photonics Review

    Ultrafast electrooptic dual-comb interferometry

    Get PDF
    The femtosecond laser frequency comb has enabled the 21st century revolution in optical synthesis and metrology. A particularly compelling technique that relies on the broadband coherence of two laser frequency combs is dual-comb interferometry. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~ kHz. Here we demonstrate a novel dual-comb interferometer that is based on electrooptic frequency comb technology and measures consecutive complex spectra at a record-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance

    Reconfigurable RF-Waveform Generation Based on Incoherent-Filter Design

    Get PDF
    Radio-frequency (RF) waveform generators are key devices for a variety of applications, including radar, ultra-wideband communications, and electronic test measurements. Following advances in broadband coherent pulsed sources and pulse-shaping technologies, reconfigurable RF waveform generators operating at bandwidths 1 GHz have become a reality. In this work, we demonstrate reconfigurable RF waveform generation using broadband spectrally incoherent optical sources. This is achieved in two steps. First, we implement an RF incoherent filter. The energy spectrum of the optical source is conveniently apodized using a commercially available computer-controlled D-WDM channel selector with 100-GHz resolution. The channel controller provides high flexibility for shaping the optical source energy spectrum and, hence, high reconfigurability capabilities in terms of the RF filter. Second, we show that by applying a short baseband electrical waveform to the input of the RF filter, the output RF spectrum of the electrical signal is a mapped version of the designed RF filter transfer function. Specifically, we illustrate the capabilities of our technique by generating RF signals with 10 GHz bandwidth and tunable repetition rate. Finally, we discuss how this method can be scaled up to the millimeter-wave range with current technolog

    UWB Signal Generation and Modulation Based on Photonic Approaches

    Get PDF
    Demands for efficient and reliable wireless communications between computers, mobile phones, and other portable electronic devices in short distances are increasing very fast. Ultra-wideband impulse radio is one of the promising techniques, which has gained much research interests in recent years. It covers a wide scope of applications in short-reach wireless communications. Conventionally, the low-bandwidth electronics can process the UWB signals very well. More recently, microwave photonics has enabled a new paradigm for developing UWB techniques in photonic domain. The photonic approaches offer much higher bandwidth and seamless compatibility with optical fiber networks, which allow for scaling the UWB technology to more advanced application scenarios. This chapter is included because photonic approaches have become a unique and effective technique in microwave signal processing. We do not attempt to offer a comprehensive review of UWB photonics, but rather to introduce the typical photonic solutions for UWB signal generation, modulation, transmission, down conversion, and so on

    Time-varying Huygens' meta-devices for parametric waves

    Full text link
    Huygens' metasurfaces have demonstrated almost arbitrary control over the shape of a scattered beam, however, its spatial profile is typically fixed at fabrication time. Dynamic reconfiguration of this beam profile with tunable elements remains challenging, due to the need to maintain the Huygens' condition across the tuning range. In this work, we experimentally demonstrate that a time-varying metadevice which performs frequency conversion can steer transmitted or reflected beams in an almost arbitrary manner, with fully dynamic control. Our time-varying Huygens' metadevice is made of both electric and magnetic meta-atoms with independently controlled modulation, and the phase of this modulation is imprinted on the scattered parametric waves, controlling their shapes and directions. We develop a theory which shows how the scattering directionality, phase and conversion efficiency of sidebands can be manipulated almost arbitrarily. We demonstrate novel effects including all-angle beam steering and frequency-multiplexed functionalities at microwave frequencies around 4 GHz, using varactor diodes as tunable elements. We believe that the concept can be extended to other frequency bands, enabling metasurfaces with arbitrary phase pattern that can be dynamically tuned over the complete 2\pi range
    • …
    corecore