101 research outputs found

    Low Noise, Narrow Optical Linewidth Semiconductor-based Optical Comb Source And Low Noise Rf Signal Generation

    Get PDF
    Recently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth from the mode-locked laser, it is critical to know the free spectral range (FSR) of the etalon precisely. First the etalon FSR is measured by using the modified Pound-Drever-Hall (PDH) based method and obtained a resolution of 1 part in 106 , which is 2 order of magnitude better than the standard PDH based method. After optimizing the cavity length, RF driving frequency and PDH cavity locking point, the mode-locked laser had an integrated timing jitter of 3 fs (1 Hz- 100 MHz) which is, to the best of our knowledge, the lowest jitter ever reported from a semiconductor based multigigahertz comb source. The modelocked laser produces ~ 100 comb lines with 10 GHz spacing, a linewidth of ~500 Hz and 75 dB optical signal-to-noise ratio. The same system can also be driven as a regeneratively modelocked laser with greatly improved noise performance. Another way of generating a low noise RF tone is using an opto-electronic oscillator which uses an optical cavity as a high Q element. Due to the harmonic nature of OEOs, a mode selection element is necessary. Standard OEOs use an RF filter having drawbacks such as broad pass band, high loss, and high thermal noise. In our work, a novel optoelectronic scheme which uses an optical filter (Fabry-Perot etalon) as the mode filter instead of an RF filter is demonstrated. This method has the advantage of having ultra-narrow filtering bandwidths ( ~ 10 iv kHz for a 10 GHz FSR and 106 finesse) and an extremely low noise RF signal. Experimental demonstration of the proposed method resulted in a 5-10 dB decrease of the OEO noise compared to the conventional OEO setup. Also, by modifying the etalon-based OEO, and using single side band modulation, an optically tunable optoelectronic oscillator is achieved with 10-20 dB lower noise than dual side band modulation. Noise properties of the OEO as a function of optical frequency detuning is also analyzed theoretically and the results are in agreement with experimental results. The thesis concludes with comments on future work and directions

    An Optoelectronic Oscillator Using A High Finesse Etalon

    Get PDF
    An optoelectronic oscillator (OEO) is used to provide a continuous, high Q, modulated signal for a variety of purposes, including a carrier wave for communications, and radar emissions. The OEO of this invention replaces an RF filter in the conventional OEO with an interferometer, preferably a high finesse Fabry-Perot etalon as the mode selector, providing lower phase noise and higher RF frequency stability

    Simultaneous low noise radio frequency tone and narrow linewidth optical comb generation from a regeneratively mode-locked laser

    Get PDF
    A regeneratively mode-locked laser with simultaneous low noise radio frequency (RF) tone and optical comb generation is presented. The laser does not need any external RF signal and emits a pulse train at similar to 10 GHz repetition rate with a 1.5-ps optical pulse width after compression. The generated RF tone has a signal-to-noise ratio of 121 dB/Hz and an RF fluctuation of 10(-9) over 0.1 s. The optical frequency comb spacing is also at similar to 10 GHz and the optical comb tooth has a linewidth of \u3c 1 kHz. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE

    Optoelectronic Logic Gate for Real Time Data Mining in a Bit Stream

    Get PDF
    Invention is an optoelectronic logic gate, which can perform both XNOR and XOR operations at the same time. The main advantage the invention offers is that it can handle multiple input signals simultaneously realizing real parallel processing in multiple channels. The invention has been built and successfully tested. We have demonstrated detecting and locating a 2 bit long target bit sequence inside a streaming input data in real time, without requiring recording of the streaming input data. A prototype is located in CREOL Lab 256. See attached manuscript for details of the invention

    Supermodes for optical transmission

    Get PDF
    In this paper, the concept of supermode is introduced for long-distance optical transmission systems. The supermodes exploit coupling between the cores of a multi-core fiber, in which the core-to-core distance is much shorter than that in conventional multi-core fiber. The use of supermodes leads to a larger mode effective area and higher mode density than the conventional multi-core fiber. Through simulations, we show that the proposed coupled multi-core fiber allows lower modal dependent loss, mode coupling and differential modal group delay than few-mode fibers. These properties suggest that the coupled multi-core fiber could be a good candidate for both spatial division multiplexing and single-mode operation

    Think Outside the Fiber: Imaging Amplifier for Space-Multiplexed Optical Transmission

    Get PDF
    This paper proposes a simple and practical method to amplify signals for space-multiplexed optical transmission. In this amplification technique, the output facet of the multicore or multimode fiber is mapped back to the same type of fiber after passing through an imaging and bulk amplifying region. Simulations are carried out for a seven-core multicore fiber with the signal lasers amplified by a bulk erbium-ytterbium-doped phosphate glass amplifier. Amplifier gain of similar to 20 dB is achieved at an input power of 6 mW for each individual core with an optical power conversion efficiency of 32.5%. The proposed amplifier technique does not have a core or mode count limit for multicore and multimode fibers

    Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser

    Get PDF
    A lidar system based on the coherent detection of oppositely chirped pulses generated using a 20 MHz mode locked laser and chirped fiber Bragg gratings is presented. Sub millimeter resolution ranging is performed with \u3e 25 dB signal to noise ratio. Simultaneous, range and Doppler velocity measurements are experimentally demonstrated using a target moving at \u3e 330 km/h inside the laboratory

    Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb

    Get PDF
    We report Carrier Envelope Offset (CEO) frequency measurements of a 10 GHz harmonically mode-locked, Fabry-Perot etalon-stabilized, semiconductor optical frequency comb source. A modified multi-heterodyne mixing technique with a reference frequency comb was utilized for the measurement. Also, preliminary results from an attempt at f-2f self-referencing measurement are presented. The CEO frequency was found to be similar to 1.47 GHz for the particular etalon that was used

    Range resolved lidar for long distance ranging with sub-millimeter resolution

    Get PDF
    A lidar technique employing temporally stretched, frequency chirped pulses from a 20 MHz mode locked laser is presented. Sub-millimeter resolution at a target range of 10.1 km (in fiber) is observed. A pulse tagging scheme based on phase modulation is demonstrated for range resolved measurements. A carrier to noise ratio of 30 dB is observed at an unambiguous target distance of 30 meters in fiber

    Dynamic line-by-line pulse shaping with GHz update rate

    Get PDF
    We introduce a novel scheme for dynamic line-by-line pulse shaping with GHz update rates. Four lines of an optical frequency comb source are used to injection-lock four individual VCSEL, which are subsequently electrically modulated at 0.4 to 1GHz through current modulation. This concept could be considered a completely new way of pulse shaping as the light is not simply modified, but rather regenerated with the desired properties. We also discuss an important drawback of line-by-line pulse shapers that ultimately limits the modulation speed capability
    • …
    corecore