250 research outputs found

    Profiling unauthorized natural resource users for better targeting of conservation interventions

    Get PDF
    Unauthorized use of natural resources is a key threat to many protected areas. Approaches to reducing this threat include law enforcement and integrated conservation and development (ICD) projects, but for such ICDs to be targeted effectively, it is important to understand who is illegally using which natural resources and why. The nature of unauthorized behavior makes it difficult to ascertain this information through direct questioning. Bwindi Impenetrable National Park, Uganda, has many ICD projects, including authorizing some local people to use certain nontimber forest resources from the park. However, despite over 25 years of ICD, unauthorized resource use continues. We used household surveys, indirect questioning (unmatched count technique), and focus group discussions to generate profiles of authorized and unauthorized resource users and to explore motivations for unauthorized activity. Overall, unauthorized resource use was most common among people from poor households who lived closest to the park boundary and farthest from roads and trading centers. Other motivations for unauthorized resource use included crop raiding by wild animals, inequity of revenue sharing, and lack of employment, factors that created resentment among the poorest communities. In some communities, benefits obtained from ICD were reported to be the greatest deterrents against unauthorized activity, although law enforcement ranked highest overall. Despite the sensitive nature of exploring unauthorized resource use, management‐relevant insights into the profiles and motivations of unauthorized resource users can be gained from a combination of survey techniques, as adopted here. To reduce unauthorized activity at Bwindi, we suggest ICD benefit the poorest people living in remote areas and near the park boundary by providing affordable alternative sources of forest products and addressing crop raiding. To prevent resentment from driving further unauthorized activity, ICDs should be managed transparently and equitably

    Gorillas in the crossfire: population dynamics of the Virunga mountain gorillas over the past three decades

    Get PDF
    Small populations are particularly susceptible to disturbance. Routine censusing to monitor changes is important for understanding both population dynamics and the effectiveness of conservation strategies. Mountain gorillas Gorilla beringei beringei in the Virunga Volcanoes region of Rwanda, Uganda and the Democratic Republic of Congo have been censused five times since 1970. However, due to war and political unrest in the region since 1990, no census had been conducted since 1989, when the population was thought to number 324 gorillas. In 2000 we estimated population size using repeated observations of 17 habituated groups and information on 15 unhabituated groups obtained during patrols. The minimum population was 359 gorillas, and a best-case scenario correcting for groups that might not have been counted was 395. Using the minimum population and best-case scenario respectively, this represents a 0.9% or 1.8% annual growth rate over the last decade and 1.0% or 1.3% annual growth rate since 1972. This is lower than growth estimates made in several population viability analyses, but approximately 5% of the 1989 population is known to have died due to military activity over the last decade. Different subsets of the population exhibited different responses to disturbance caused by war. We discuss conservation strategies that are likely to have contributed to an increase in the gorilla population during this time of turmoil. While the population has grown, the results should be viewed with caution, not only because all known growth during the last decade can be attributed to one subset of the population, but also because the region is still plagued by political unrest

    Characterization and epitope mapping of human monoclonal antibodies to PDC-E2, the immunodominant autoantigen of primary biliary cirrhosis

    Get PDF
    Further to define the epitopes of PDC-E2, the major autoantigen in primary biliary cirrhosis (PBC), we have developed and characterized five human monoclonal antibodies. These antibodies were derived by fusing a regional hepatic lymph node from a patient with PBC with the mouse human heterohybrid cell line F3B6. Previous studies of epitope mapping of PDC-E2 have relied on whole sera and have suggested that the immunodominant epitope lies within the inner lipoyl domain of the molecule. However, selective absorption studies using whole sera and a series of overlapping recombinant peptides of PDC-E2 have suggested that the epitope may also include a large conformational component. Moreover, several laboratories have suggested that autoantibodies against the 2-oxo acids dehydrogenase autoantigens are cross-reactive. The five monoclonal antibodies generated included three IgG2a and two IgM antibodies and were studied for antigen specificity using recombinant PDC-E2, recombinant BCKD-E2, histone, dsDNA, IgG (Fc), collagen and a recombinant irrelevant liver specific control, the F alloantigen. The antibodies were also used to probe blots of human, bovine, mouse and rat mitochondria. Finally, fine specificity was studied by selective ELISA and absorption against overlapping expressing fragments of PDC-E2. All five monoclonals, but none of the other mitochondrial autoantigens were specific for PDC-E2. In fact, although affinity purified antibodies to PDC-E2 from patients with PBC cross-reacted with protein X, the human monoclonals did not, suggesting that protein X contains an epitope distinct from that found on PDC-E2. Additionally, all three IgG2 monoclonals recognized distinct epitopes within the inner lipoyl domain of PDC-E2. © 1992

    A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Actinidia </it>(kiwifruit) consists of woody, scrambling vines, native to China, and only recently propagated as a commercial crop. All species described are dioecious, but the genetic mechanism for sex-determination is unknown, as is the genetic basis for many of the cluster of characteristics making up the unique fruit. It is, however, an important crop in the New Zealand economy, and a classical breeding program would benefit greatly by knowledge of the trait alleles carried by both female and male parents. The application of marker assisted selection (MAS) in seedling populations would also aid the accurate and efficient development of novel fruit types for the market.</p> <p>Results</p> <p>Gene-rich female, male and consensus linkage maps of the diploid species <it>A. chinensis </it>have been constructed with 644 microsatellite markers. The maps consist of twenty-nine linkage groups corresponding to the haploid number n = 29. We found that sex-linked sequence characterized amplified region (SCAR) markers and the 'Flower-sex' phenotype consistently mapped to a single linkage group, in a subtelomeric region, in a section of inconsistent marker order. The region also contained markers of expressed genes, some of unknown function. Recombination, assessed by allelic distribution and marker order stability, was, in the remainder of the linkage group, in accordance with other linkage groups. Fully informative markers to other genes in this linkage group identified the comparative linkage group in the female map, where recombination ratios determining marker order were similar to the autosomes.</p> <p>Conclusion</p> <p>We have created genetic linkage maps that define the 29 linkage groups of the haploid genome, and have revealed the position and extent of the sex-determining locus in <it>A. chinensis</it>. As all <it>Actinidia </it>species are dioecious, we suggest that the sex-determining loci of other <it>Actinidia </it>species will be similar to that region defined in our maps. As the extent of the non-recombining region is limited, our result supports the suggestion that the subtelomeric region of an autosome is in the early stages of developing the characteristics of a sex chromosome. The maps provide a reference of genetic information in <it>Actinidia </it>for use in genetic analysis and breeding programs.</p

    An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population

    Get PDF
    Background Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour. Results Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals. A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia. The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays. Conclusions The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits

    Back-action Evading Measurements of Nanomechanical Motion

    Get PDF
    When performing continuous measurements of position with sensitivity approaching quantum mechanical limits, one must confront the fundamental effects of detector back-action. Back-action forces are responsible for the ultimate limit on continuous position detection, can also be harnessed to cool the observed structure, and are expected to generate quantum entanglement. Back-action can also be evaded, allowing measurements with sensitivities that exceed the standard quantum limit, and potentially allowing for the generation of quantum squeezed states. We realize a device based on the parametric coupling between an ultra-low dissipation nanomechanical resonator and a microwave resonator. Here we demonstrate back-action evading (BAE) detection of a single quadrature of motion with sensitivity 4 times the quantum zero-point motion, back-action cooling of the mechanical resonator to n = 12 quanta, and a parametric mechanical pre-amplification effect which is harnessed to achieve position resolution a factor 1.3 times quantum zero-point motion.Comment: 19 pages (double-spaced) including 4 figures and reference

    Quantifying compressible groundwater storage by combining cross-hole seismic surveys and head response to atmospheric tides

    Get PDF
    Groundwater specific storage varies by orders of magnitude, is difficult to quantify, and prone to significant uncertainty. Estimating specific storage using aquifer testing is hampered by the nonuniqueness in the inversion of head data and the assumptions of the underlying conceptual model. We revisit confined poroelastic theory and reveal that the uniaxial specific storage can be calculated mainly from undrained poroelastic properties, namely, uniaxial bulk modulus, loading efficiency, and the Biot-Willis coefficient. In addition, literature estimates of the solid grain compressibility enables quantification of subsurface poroelastic parameters using field techniques such as cross-hole seismic surveys and loading efficiency from the groundwater responses to atmospheric tides. We quantify and compare specific storage depth profiles for two field sites, one with deep aeolian sands and another with smectitic clays. Our new results require bulk density and agree well when compared to previous approaches that rely on porosity estimates. While water in clays responds to stress, detailed sediment characterization from a core illustrates that the majority of water is adsorbed onto minerals leaving only a small fraction free to drain. This, in conjunction with a thorough analysis using our new method, demonstrates that specific storage has a physical upper limit of (Formula presented.) m&minus;1. Consequently, if larger values are derived using aquifer hydraulic testing, then the conceptual model that has been used needs reappraisal. Our method can be used to improve confined groundwater storage estimates and refine the conceptual models used to interpret hydraulic aquifer tests

    Significant loss of mitochondrial diversity within the last century due to extinction of peripheral populations in eastern gorillas

    Get PDF
    Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer's (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer's gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • 

    corecore