373 research outputs found

    Feasibility of a second iteration wrist and hand supported training system for self-administered training at home in chronic stroke

    Get PDF
    Telerehabilitation allows continued rehabilitation at home after discharge. The use of rehabilitation technology supporting wrist and hand movements within a motivational gaming environment could enable patients to train independently and ultimately serve as a way to increase the dosage of practice. This has been previously examined in the European SCRIPT project using a first prototype, showing potential feasibility, although several usability issues needed further attention. The current study examined feasibility and clinical changes of a second iteration training system, involving an updated wrist and hand supporting orthosis and larger variety of games with respect to the first iteration. Nine chronic stroke patients with impaired arm and hand function were recruited to use the training system at home for six weeks. Evaluation of feasibility and arm and hand function were assessed before and after training. Median weekly training duration was 113 minutes. Participants accepted the six weeks of training (median Intrinsic Motivation Inventory = 4.4 points and median System Usability Scale = 73%). After training, significant improvements were found for the Fugl Meyer assessment, Action Research Arm Test and self-perceived amount of arm and hand use in daily life. These findings indicate that technology-supported arm and hand training can be a promising tool for self-administered practice at home after stroke.Final Accepted Versio

    A modular telerehabilitation architecture for upper limb robotic therapy

    Get PDF
    Several factors may prevent post-stroke subjects from participating in rehabilitation protocols, for example, geographical location of rehabilitation centres, socioeconomic status, economic burden and lack of logistics surrounding transportation. Early supported discharge from hospitals with continued rehabilitation at home represents a well-defined regimen of post-stroke treatment. Information-based technologies coupled with robotics have promoted the development of new technologies for telerehabilitation. In this article, the design and development of a modular architecture for delivering upper limb robotic telerehabilitation with the CBM-Motus, a planar unilateral robotic machine that allows performing state-of-the-art rehabilitation tasks, have been presented. The proposed architecture allows a therapist to set a therapy session on his or her side and send it to the patient's side with a standardized communication protocol; the user interacts with the robot that provides an adaptive assistance during the rehabilitation tasks. Patient's performance is evaluated by means of performance indicators, which are also used to update robot behaviour during assistance. The implementation of the architecture is described and a set of validation tests on seven healthy subjects are presented. Results show the reliability of the novel architecture and the capability to be easily tailored to the user's needs with the chosen robotic device

    Interactive IIoT-Based 5DOF Robotic Arm for Upper Limb Telerehabilitation

    Get PDF
    Significant advancements in contemporary telemedicine applications enforce the demand for effective and intuitive telerehabilitation tools. Telerehabilitation can minimize the distance, travel burden, and costs between rehabilitative patients and therapists. This research introduces an interactive novel telerehabilitation system that integrates the Industrial Internet of Things (IIoT) platform with a robotic manipulator named xARm-5, aiming to deliver rehabilitation therapies to individuals with upper limb dysfunctions. With the proposed system, a therapist can provide upper limb rehab exercises remotely using an augmented reality (AR) user interface (UI) developed using Vuforia Studio, which transmits bidirectional data through the IIoT platform. The proposed system has a stable communication architecture and low teleoperation latency. Experimental results revealed that with the developed telerehabilitation framework, the xArm-5 could be teleoperated from the developed AR platform and/or use a joystick to provide standard upper limb rehab exercises. Besides, with the designed AR-based UI, a therapist can monitor rehab/robot trajectories along with the AR digital twin of the robot, ensuring that the robot is providing passive therapy for shoulder and elbow movements

    A Qualitative Study on the User Acceptance of a Home-Based Stroke Telerehabilitation System

    Get PDF
    Objective: This paper reports a qualitative study of a home-based stroke telerehabilitation system. The telerehabilitation system delivers treatment sessions in the form of daily guided rehabilitation games, exercises, and stroke education in the patient’s home. The aims of the current report are to investigate patient perceived benefits of and barriers to using the telerehabilitation system at home. Methods: We used a qualitative study design that involved in-depth semi-structured interviews with 13 participants who were patients in the subacute phase after stroke and had completed a six-week intervention using the home-based telerehabilitation system. Thematic analysis was conducted to analyze the data. Results: Participants mostly reported positive experiences with the telerehabilitation system. Benefits included observed improvements in limb functions, cognitive abilities, and emotional well-being. They also perceived the system easy to use due to the engaging experience and the convenience of conducting sessions at home. Meanwhile, participants pointed out the importance of considering technical support and physical environment at home. Further, family members’ support helped them sustain in their rehabilitation. Finally, adjusting difficulty levels and visualizing patients’ rehabilitation progress might help them in continued use of the telerehabilitation system. Conclusion: Telerehabilitation systems can be used as an efficient and user-friendly tool to deliver home-based stroke rehabilitation that enhance patients’ physical recovery and mental and social-emotional wellbeing. Such systems need to be designed to offer engaging experience, display of recovery progress, and flexibility of schedule and location, with consideration of facilitating and social factors

    A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting

    Get PDF
    Neuroscience and neurotechnology are transforming stroke rehabilitation. Robotic devices, in addition to telerehabilitation, are increasingly being used to train the upper limbs after stroke, and their use at home allows us to extend institutional rehabilitation by increasing and prolonging therapy. The aim of this study is to assess the usability of the MERLIN robotic system based on serious games for upper limb rehabilitation in people with stroke in the home environment.This research is part of a MERLIN project, which has received funding from EIT Health (Grant no. 20649). EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union which receives support from the European Union’s Horizon 2020 Research and innovation programme

    HoMEcare aRm rehabiLItatioN (MERLIN): telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke

    Get PDF
    HoMEcare aRm rehabiLItatioN (MERLIN) is an unactuated version of the robotic device ArmAssist combined with a telecare platform. Stroke patients are able to train the upper limb function using serious games at home. The aim of this study is to investigate the effect of MERLIN training on the upper limb function of patients with unilateral upper limb paresis in the chronic phase of stroke (> 6 months post stroke). Patients trained task specific serious games for three hours per week during six weeks using an unactuated version of a robotic device. Progress was monitored and game settings were tailored through telerehabilitation. Measurements were performed six weeks pre-intervention (T0), at the start (T1), end (T2) and six weeks post-intervention (T3). Primary outcome was the Wolf Motor Function Test (WMFT). Secondary outcomes were other arm function tests, quality of life, user satisfaction and motivation.This research is part of MERLIN project (19094 and 20649) that has received funding from EIT Health. EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union receives support from the European Union´s Horizon 2020 Research and innovation program

    Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke

    Get PDF
    © 2015 Nijenhuis et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Assistive and robotic training devices are increasingly used for rehabilitation of the hemiparetic arm after stroke, although applications for the wrist and hand are trailing behind. Furthermore, applying a training device in domestic settings may enable an increased training dose of functional arm and hand training. The objective of this study was to assess the feasibility and potential clinical changes associated with a technology-supported arm and hand training system at home for patients with chronic stroke. METHODS: A dynamic wrist and hand orthosis was combined with a remotely monitored user interface with motivational gaming environment for self-administered training at home. Twenty-four chronic stroke patients with impaired arm/hand function were recruited to use the training system at home for six weeks. Evaluation of feasibility involved training duration, usability and motivation. Clinical outcomes on arm/hand function, activity and participation were assessed before and after six weeks of training and at two-month follow-up. RESULTS: Mean System Usability Scale score was 69 % (SD 17 %), mean Intrinsic Motivation Inventory score was 5.2 (SD 0.9) points, and mean training duration per week was 105 (SD 66) minutes. Median Fugl-Meyer score improved from 37 (IQR 30) pre-training to 41 (IQR 32) post-training and was sustained at two-month follow-up (40 (IQR 32)). The Stroke Impact Scale improved from 56.3 (SD 13.2) pre-training to 60.0 (SD 13.9) post-training, with a trend at follow-up (59.8 (SD 15.2)). No significant improvements were found on the Action Research Arm Test and Motor Activity Log. CONCLUSIONS: Remotely monitored post-stroke training at home applying gaming exercises while physically supporting the wrist and hand showed to be feasible: participants were able and motivated to use the training system independently at home. Usability shows potential, although several usability issues need further attention. Upper extremity function and quality of life improved after training, although dexterity did not. These findings indicate that home-based arm and hand training with physical support from a dynamic orthosis is a feasible tool to enable self-administered practice at home. Such an approach enables practice without dependence on therapist availability, allowing an increase in training dose with respect to treatment in supervised settings. TRIAL REGISTRATION: This study has been registered at the Netherlands Trial Registry (NTR): NTR3669 .Peer reviewe

    Home-based therapy programmes for upper limb functional recovery following stroke

    Get PDF
    Background: With an increased focus on home-based stroke services and the undertaking of programmes, targeted at upper limb recovery within clinical practice, a systematic review of home-based therapy programmes for individuals with upper limb impairment following stroke was required. Objectives: To determine the effects of home-based therapy programmes for upper limb recovery in patients with upper limb impairment following stroke. Search methods: We searched the Cochrane Stroke Group's Specialised Trials Register (May 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to May 2011), EMBASE (1980 to May 2011), AMED (1985 to May 2011) and six additional databases. We also searched reference lists and trials registers. Selection criteria: Randomised controlled trials (RCTs) in adults after stroke, where the intervention was a home-based therapy programme targeted at the upper limb, compared with placebo, or no intervention or usual care. Primary outcomes were performance in activities of daily living (ADL) and functional movement of the upper limb. Secondary outcomes were performance in extended ADL and motor impairment of the arm. Data collection and analysis: Two review authors independently screened abstracts, extracted data and appraised trials. We undertook assessment of risk of bias in terms of method of randomisation and allocation concealment (selection bias), blinding of outcome assessment (detection bias), whether all the randomised patients were accounted for in the analysis (attrition bias) and the presence of selective outcome reporting. Main results: We included four studies with 166 participants. No studies compared the effects of home-based upper limb therapy programmes with placebo or no intervention. Three studies compared the effects of home-based upper limb therapy programmes with usual care. Primary outcomes: we found no statistically significant result for performance of ADL (mean difference (MD) 2.85; 95% confidence interval (CI) -1.43 to 7.14) or functional movement of the upper limb (MD 2.25; 95% CI -0.24 to 4.73)). Secondary outcomes: no statistically significant results for extended ADL (MD 0.83; 95% CI -0.51 to 2.17)) or upper limb motor impairment (MD 1.46; 95% CI -0.58 to 3.51). One study compared the effects of a home-based upper limb programme with the same upper limb programme based in hospital, measuring upper limb motor impairment only; we found no statistically significant difference between groups (MD 0.60; 95% CI -8.94 to 10.14). Authors' conclusions: There is insufficient good quality evidence to make recommendations about the relative effect of home-based therapy programmes compared with placebo, no intervention or usual care

    Development and implementation of technologies for physical telerehabilitation in Latin America:

    Get PDF
    La telerehabilitation ha surgido debido a la inclusión de tecnologías emergentes para la captura, transmisión, análisis y visualización de patrones de movimiento asociados a pacientes con trastornos músculo-esqueléticos. Esta estrategia permite llevar a cabo procesos de diagnóstico y tratamientos de rehabilitación a distancia. Este artículo presenta una revisión sistemática del desarrollo e implementación actual de las tecnologías de telerehabilitación en la región latinoamericana. El objetivo principal es explorar, a partir de la literatura científica reportada y fuentes divulgativas, si las tecnologías de telerehabilitación han logrado ser introducidas en esta región. Asimismo, este trabajo revela los prototipos actuales o sistemas que están en desarrollo o que ya están siendo usados. Se llevó a cabo una revisión sistemática, mediante dos búsquedas diferentes. La primera implicó una búsqueda bibliográfica rigurosa en los repositorios digitales científicos más relevantes en el área y la segunda incluyó proyectos y programas de telerehabilitación implementados en la región, encontrados a partir de una búsqueda avanzada en Google. Se encontró un total de 53 documentos de seis países (Colombia, Brasil, México, Ecuador, Chile y Argentina); la mayoría de ellos estaban enfocados en iniciativas académicas y de investigación para el desarrollo de prototipos tecnológicos para telerehabilitación de pacientes pediátricos y adultos mayores, afectados por deficiencias motoras o funcionales, parálisis cerebral, enfermedades neurocognitivas y accidente cerebrovascular. El análisis de estos documentos reveló la necesidad de un extenso enfoque integrado de salud y sistema social para aumentar la disponibilidad actual de iniciativas de telerehabilitación en la región latinoamericana.Telerehabilitation has arised by the inclusion of emerging technologies for capturing, transmitting, analyzing and visualizing movement patterns associated to musculoskeletal disorders. This therapeutic strategy enables to carry out diagnosis processes and provide rehabilitation treatments. This paper presents a systematic review of the current development and implementation of telerehabilitation technologies in Latin America. The main goal is to explore the scientific literature and dissemination sources to establish if such technologies have been introduced in this region. Likewise, this work highlights existing prototypes or systems that are to being used or that are still under development. A systematic search strategy was conducted by two different searches: the first one involves a rigorous literature search from the most relevant scientific digital repositories; the second one included telerehabilitation projects and programs retrieved by an advanced Google search. A total of 53 documents from six countries (Colombia, Brazil, Mexico, Ecuador, Chile and Argentina) were found. Most of them were focused on academic and research initiatives to develop in-home telerehabilitation technologies for pediatric and elderly populations affected by motor and functional impairment, cerebral palsy, neurocognitive disorders and stroke. The analysis of the findings revealed the need for a comprehensive approach that integrates health care and the social system to increase the current availability of telerehabilitation initiatives in Latin America

    Assessment and training in home-baesd telerehabilitation ofr arm mobility impairment

    Get PDF
    The aging population and limited healthcare capacities call for a change in how rehabilitation care is provided. There is a need to provide more autonomous and scalable care that can be more easily transferred out of the clinic and into home environments. One important barrier to this objective is achieving reliable assessment of motor performance using low-cost technology. Toward this end, an assessment framework and methodology is proposed. The framework uses 4 sequential games to measure aspects of range of motion, range of force, control of motion, and control of force. Parameters derived from the range of motion task are used to define motion requirements in all subsequent assessment games, while parameters derived from the range of force task are used to define subsequent lifting force requirements. A 12-week usability study was conducted in which 9 patients completed the clinical testing phase and 6 therapists and 7 patients completed the questionnaire. Feedback from the questionnaire shows the system is easy to use and integrates well in the clinical setting. The most commonly requested modifications were the inclusion of more games and the incorporation of hand training. Some initial position and force data are shown for one subject and discussion on implications for mobility assessment using the developed device are provided.Peer Reviewe
    corecore