116,194 research outputs found

    Conformal Prediction: a Unified Review of Theory and New Challenges

    Full text link
    In this work we provide a review of basic ideas and novel developments about Conformal Prediction -- an innovative distribution-free, non-parametric forecasting method, based on minimal assumptions -- that is able to yield in a very straightforward way predictions sets that are valid in a statistical sense also in in the finite sample case. The in-depth discussion provided in the paper covers the theoretical underpinnings of Conformal Prediction, and then proceeds to list the more advanced developments and adaptations of the original idea.Comment: arXiv admin note: text overlap with arXiv:0706.3188, arXiv:1604.04173, arXiv:1709.06233, arXiv:1203.5422 by other author

    A Comparative Study of the Application of Different Learning Techniques to Natural Language Interfaces

    Full text link
    In this paper we present first results from a comparative study. Its aim is to test the feasibility of different inductive learning techniques to perform the automatic acquisition of linguistic knowledge within a natural language database interface. In our interface architecture the machine learning module replaces an elaborate semantic analysis component. The learning module learns the correct mapping of a user's input to the corresponding database command based on a collection of past input data. We use an existing interface to a production planning and control system as evaluation and compare the results achieved by different instance-based and model-based learning algorithms.Comment: 10 pages, to appear CoNLL9

    Philosophy and the practice of Bayesian statistics

    Full text link
    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework.Comment: 36 pages, 5 figures. v2: Fixed typo in caption of figure 1. v3: Further typo fixes. v4: Revised in response to referee

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning

    Full text link
    This paper describes an experimental comparison of seven different learning algorithms on the problem of learning to disambiguate the meaning of a word from context. The algorithms tested include statistical, neural-network, decision-tree, rule-based, and case-based classification techniques. The specific problem tested involves disambiguating six senses of the word ``line'' using the words in the current and proceeding sentence as context. The statistical and neural-network methods perform the best on this particular problem and we discuss a potential reason for this observed difference. We also discuss the role of bias in machine learning and its importance in explaining performance differences observed on specific problems.Comment: 10 page

    Large statistical learning models effectively forecast diverse chaotic systems

    Full text link
    Chaos and unpredictability are traditionally synonymous, yet recent advances in statistical forecasting suggest that large machine learning models can derive unexpected insight from extended observation of complex systems. Here, we study the forecasting of chaos at scale, by performing a large-scale comparison of 24 representative state-of-the-art multivariate forecasting methods on a crowdsourced database of 135 distinct low-dimensional chaotic systems. We find that large, domain-agnostic time series forecasting methods based on artificial neural networks consistently exhibit strong forecasting performance, in some cases producing accurate predictions lasting for dozens of Lyapunov times. Best-in-class results for forecasting chaos are achieved by recently-introduced hierarchical neural basis function models, though even generic transformers and recurrent neural networks perform strongly. However, physics-inspired hybrid methods like neural ordinary equations and reservoir computers contain inductive biases conferring greater data efficiency and lower training times in data-limited settings. We observe consistent correlation across all methods despite their widely-varying architectures, as well as universal structure in how predictions decay over long time intervals. Our results suggest that a key advantage of modern forecasting methods stems not from their architectural details, but rather from their capacity to learn the large-scale structure of chaotic attractors.Comment: 5 pages, 3 figure
    • …
    corecore