This paper describes an experimental comparison of seven different learning
algorithms on the problem of learning to disambiguate the meaning of a word
from context. The algorithms tested include statistical, neural-network,
decision-tree, rule-based, and case-based classification techniques. The
specific problem tested involves disambiguating six senses of the word ``line''
using the words in the current and proceeding sentence as context. The
statistical and neural-network methods perform the best on this particular
problem and we discuss a potential reason for this observed difference. We also
discuss the role of bias in machine learning and its importance in explaining
performance differences observed on specific problems.Comment: 10 page