A substantial school in the philosophy of science identifies Bayesian
inference with inductive inference and even rationality as such, and seems to
be strengthened by the rise and practical success of Bayesian statistics. We
argue that the most successful forms of Bayesian statistics do not actually
support that particular philosophy but rather accord much better with
sophisticated forms of hypothetico-deductivism. We examine the actual role
played by prior distributions in Bayesian models, and the crucial aspects of
model checking and model revision, which fall outside the scope of Bayesian
confirmation theory. We draw on the literature on the consistency of Bayesian
updating and also on our experience of applied work in social science.
Clarity about these matters should benefit not just philosophy of science,
but also statistical practice. At best, the inductivist view has encouraged
researchers to fit and compare models without checking them; at worst,
theorists have actively discouraged practitioners from performing model
checking because it does not fit into their framework.Comment: 36 pages, 5 figures. v2: Fixed typo in caption of figure 1. v3:
Further typo fixes. v4: Revised in response to referee