4,116 research outputs found

    Optical Spectra of SNR Candidates in NGC 300

    Full text link
    We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from optical spectra, we find that of 28 objects previously proposed as SNRs from optical observations, 22 meet this criterion with six showing [SII]/Ha of less than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated with the 28 previously proposed SNRs. Of these four, three (included in the 22 above) meet the criterion. In all, 22 of the 51 nebular objects meet the [SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc

    A Study of Optical Observing Techniques for Extra-Galactic Supernova Remnants: Case of NGC 300

    Get PDF
    We present the results of a study of observational and identification techniques used for surveys and spectroscopy of candidate supernova remnants (SNRs) in the Sculptor Group galaxy NGC 300. The goal of this study was to investigate the reliability of using [Sii]/Halpha > 0.4 in optical SNR surveys and spectra as an identifying feature of extra-galactic SNRs (egSNRs) and also to investigate the effectiveness of the observing techniques (which are hampered by seeing conditions and telescope pointing errors) using this criterion in egSNR surveys and spectrographs. This study is based on original observations of these objects and archival data obtained from the Hubble Space Telescope which contained images of some of the candidate SNRs in NGC 300. We found that the reliability of spectral techniques may be questionable and very high-resolution images may be needed to confirm a valid identification of some egSNRs.Comment: 27 Figures, 10 table

    Communicating hands: ERPs elicited by meaningful symbolic hand postures.

    Get PDF
    Meaningful and meaningless hand postures were presented to subjects who had to carry out a semantic discrimination task while electrical brain responses were recorded. Both meaningful and control sets of hand postures were matched as closely as possible. The ERPs elicited by meaningless hand postures showed an anteriorly distributed N300 and a centro-posteriorly distributed N400 component. The N300 probably reflects picture-specific processes, whereas the N400-effect probably reflects processing in an amodal semantic network. The scalp-distribution of the N400-effect, which is more posterior than usually reported in picture processing, suggests that the semantic representations of the concepts expressed by meaningful hand postures have similar properties to those of abstract words

    Modeling CO Emission: I. CO as a Column Density Tracer and the X-Factor in Molecular Clouds

    Full text link
    Theoretical and observational investigations have indicated that the abundance of carbon monoxide (CO) is very sensitive to intrinsic properties of the gaseous medium, such as density, metallicity, and the background UV field. In order to accurately interpret CO observations, it is thus important to understand how well CO traces the gas, which in molecular clouds (MCs) is predominantly molecular hydrogen (H2). Recent hydrodynamic simulations by Glover & Mac Low have explicitly followed the formation and destruction of molecules in model MCs under varying conditions, confirming that CO formation strongly depends on the cloud properties. Conversely, the H2 formation is primarily determined by the age of the MC. We apply radiative transfer calculations to these MC models in order to investigate the properties of CO line emission. We focus on integrated CO (J=1-0) intensities emerging from individual clouds, including its relationship to the total, H2, and CO column densities, as well as the "X factor," the ratio of H2 column density to CO intensity. Models with high CO abundances have a threshold CO intensity ~65 K km/s at sufficiently large extinctions. Clouds with low CO abundances show no such intensity thresholds. The distribution of H2 column densities are well described as log-normal functions, though the distributions of CO intensities and column densities are usually not log-normal. In general, the PDFs of the integrated intensity do not follow the distribution functions of CO column densities. In the model with Milky Way-like conditions, the X factor is in agreement with the near constant value determined from observations. In clouds with lower CO abundances the X factor can vary appreciably - sometimes by > 4 orders of magnitude. In models with high densities, the CO line is fully saturated, so that the X factor is directly proportional to the molecular column density.Comment: 17 pages, including 7 figures, Updated with proof correction

    The ACS Nearby Galaxy Survey Treasury

    Full text link
    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D<4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small & large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of ~10^4 in luminosity and star formation rate. The survey data consists of images taken with ACS on HST, supplemented with archival data and new WFPC2 imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m_F475W=28.0 mag, m_F606W=27.3 mag, and m_F814W=27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both the ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.Comment: 54 pages, including 24 pages of figures and 16 pages of tables. Project website and data available at http://www.nearbygalaxies.org/ . Data is also available through MAST. Scheduled to appear in the Astrophysical Journal Supplements. (Replaced to fix several figures that were damaged during compression

    Discovery of Precursor LBV Outbursts in Two Recent Optical Transients: The Fitfully Variable Missing Links UGC 2773-OT and SN 2009ip

    Full text link
    We present progenitor-star detections, light curves, and optical spectra of SN2009ip and the 2009 optical transient in UGC2773 (U2773-OT), which were not genuine SNe. Precursor variability in the decade before outburst indicates that both of the progenitor stars were LBVs. Their pre-outburst light curves resemble the S Doradus phases that preceded giant eruptions of eta Carinae and SN1954J (V12 in NGC2403), with intermediate progenitor luminosities. HST detections a decade before discovery indicate that the SN2009ip and U2773-OT progenitors were supergiants with likely initial masses of 50-80 Msun and \ga20 Msun, respectively. Both outbursts had spectra befitting known LBVs, although in different physical states. SN 2009ip exhibited a hot LBV spectrum with characteristic speeds of 550 km/s, plus faster material up to 5000 km/s, resembling the slow Homunculus and fast blast wave of eta Carinae. U2773-OT shows a forest of narrow absorption and emission lines comparable to that of S Dor in its cool state, plus [CaII] emission and an IR excess indicative of dust, similar to SN2008S and N300-OT. [CaII] emission is probably tied to a dusty pre-outburst environment, and not the outburst mechanism. SN2009ip and U2773-OT may provide a critical link between historical LBV eruptions, while U2773-OT may provide a link between LBVs and SN2008S and N300-OT. Future searches will uncover more examples of precursor LBV variability of this kind, providing key clues that may help unravel the instability driving LBVs.Comment: 18 pages, 13 Figures, accepted AJ. added significant material while revising after referee repor

    Modeling CO Emission: II. The Physical Characteristics that Determine the X factor in Galactic Molecular Clouds

    Full text link
    We investigate how the X factor, the ratio of H_2 column density (NH2) to velocity-integrated CO intensity (W), is determined by the physical properties of gas in model molecular clouds (MCs). We perform radiative transfer calculations on chemical-MHD models to compute X. Using integrated NH2 and W reproduces the limited range in X found in observations, resulting in a mean value X=2\times10^20 s/cm^2/K^1/km^1 from the Galactic MC model. However, in limited velocity intervals, X can take on a much larger range due to CO line saturation. Thus, X strongly depends on both the range in gas velocities and volume densities. The temperature (T) variations within individual MCs do not strongly affect X, as dense gas contributes most to setting X. For fixed velocity and density structure, gas with higher T has higher W, yielding X ~ T^-1/2 for T~20-100 K. We demonstrate that the linewidth-size scaling relation does not influence the X factor - only the range in velocities is important. Clouds with larger linewidths, regardless of the linewidth-size relation, have a higher W, corresponding to a lower value of X, scaling roughly as X ~ sigma^-1/2. The "mist" model, consisting of optically thick cloudlets with well-separated velocities, does not accurately reflect the conditions in a turbulent MC. We propose that the observed cloud-average values of X ~ XGal is simply a result of the limited range in NH2, temperatures, and velocities found in Galactic MCs - a ~constant value of X therefore does not require any linewidth-size relation, or that MCs are virialized objects. Since gas properties likely differ (slightly) between clouds, masses derived through a standard X should only be considered as a rough first estimate. For temperatures T~10-20 K, velocity dispersions ~1-6 km/s, and NH2~2-20\times10^21 cm^-2, we find cloud-averaged X ~ 2-4\times10^20 s/cm^2/K^1/km^1 for Solar-metallicity models.Comment: 24 pages, including 21 Figures, Accepted to MNRA

    Principal Component Analysis of Molecular Clouds: Can CO reveal the dynamics?

    Full text link
    We use Principal Component Analysis (PCA) to study the gas dynamics in numerical simulations of typical MCs. Our simulations account for the non-isothermal nature of the gas and include a simplified treatment of the time-dependent gas chemistry. We model the CO line emission in a post-processing step using a 3D radiative transfer code. We consider mean number densities n_0 = 30, 100, 300 cm^{-3} that span the range of values typical for MCs in the solar neighbourhood and investigate the slope \alpha_{PCA} of the pseudo structure function computed by PCA for several components: the total density, H2 density, 12CO density, 12CO J = 1 -> 0 intensity and 13CO J = 1 -> 0 intensity. We estimate power-law indices \alpha_{PCA} for different chemical species that range from 0.5 to 0.9, in good agreement with observations, and demonstrate that optical depth effects can influence the PCA. We show that when the PCA succeeds, the combination of chemical inhomogeneity and radiative transfer effects can influence the observed PCA slopes by as much as ~ +/- 0.1. The method can fail if the CO distribution is very intermittent, e.g. in low-density clouds where CO is confined to small fragments.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    Luminous Blue Variable eruptions and related transients: Diversity of progenitors and outburst properties

    Full text link
    We present new light curves and spectra for a number of extragalactic optical transients or "SN impostors" related to giant eruptions of LBVs, and we provide a comparative discussion of LBV-like giant eruptions known to date. New data include photometry and spectroscopy of SNe1999bw, 2000ch, 2001ac, 2002bu, 2006bv, and 2010dn. SN2010dn resembles SN2008S and NGC 300-OT, whereas SN2002bu shows spectral evolution from a normal LBV at early times to a twin of these cooler transients at late times. SN2008S, NGC300-OT, and SN2010dn appear to be special cases of a broader eruptive phenomenon where the progenitor star was enshrouded by dust. Examining the full sample, SN impostors have range of timescales from a day to decades, potentially suffering multiple eruptions. The upper end of the luminosity distribution overlaps with the least luminous SNe. The low end of the luminosity distribution is poorly defined, and a distinction between various eruptions is not entirely clear. We discuss observational clues concerning winds or shocks as the relevant mass-loss mechanism, and we evaluate possible ideas for physical mechanisms. Although examples of these eruptions are sufficient to illustrate their diversity, their statistical distribution will benefit greatly from upcoming transient surveys. Based on the distribution of eruptions, we propose that SN1961V was not a member of this class of impostors, but was instead a true core-collapse SNIIn preceded by a giant LBV eruption. (abridged)Comment: 36(!) journal pages, 16 figures. submitted to MNRAS on october 12. coments welcome. updated reference
    corecore