403 research outputs found

    Kontextsensitive Körperregulierung für redundante Roboter

    Get PDF
    In the past few decades the classical 6 degrees of freedom manipulators' dominance has been challenged by the rise of 7 degrees of freedom redundant robots. Similarly, with increased availability of humanoid robots in academic research, roboticists suddenly have access to highly dexterous platforms with multiple kinematic chains capable of undertaking multiple tasks simultaneously. The execution of lower-priority tasks, however, are often done in task/scenario specific fashion. Consequently, these systems are not scalable and slight changes in the application often implies re-engineering the entire control system and deployment which impedes the development process over time. This thesis introduces an alternative systematic method of addressing the secondary tasks and redundancy resolution called, context aware body regulation. Contexts consist of one or multiple tasks, however, unlike the conventional definitions, the tasks within a context are not rigidly defined and maintain some level of abstraction. For instance, following a particular trajectory constitutes a concrete task while performing a Cartesian motion with the end-effector represents an abstraction of the same task and is more appropriate for context formulation. Furthermore, contexts are often made up of multiple abstract tasks that collectively describe a reoccurring situation. Body regulation is an umbrella term for a collection of schemes for addressing the robots' redundancy when a particular context occurs. Context aware body regulation offers several advantages over traditional methods. Most notably among them are reusability, scalability and composability of contexts and body regulation schemes. These three fundamental concerns are realized theoretically by in-depth study and through mathematical analysis of contexts and regulation strategies; and are practically implemented by a component based software architecture that complements the theoretical aspects. The findings of the thesis are applicable to any redundant manipulator and humanoids, and allow them to be used in real world applications. Proposed methodology presents an alternative approach for the control of robots and offers a new perspective for future deployment of robotic solutions.Im Verlauf der letzten Jahrzehnte wich der Einfluss klassischer Roboterarme mit 6 Freiheitsgraden zunehmend denen neuer und vielfältigerer Manipulatoren mit 7 Gelenken. Ebenso stehen der Forschung mit den neuartigen Humanoiden inzwischen auch hoch-redundante Roboterplattformen mit mehreren kinematischen Ketten zur Verfügung. Diese überaus flexiblen und komplexen Roboter-Kinematiken ermöglichen generell das gleichzeitige Verfolgen mehrerer priorisierter Bewegungsaufgaben. Die Steuerung der weniger wichtigen Aufgaben erfolgt jedoch oft in anwendungsspezifischer Art und Weise, welche die Skalierung der Regelung zu generellen Kontexten verhindert. Selbst kleine Änderungen in der Anwendung bewirken oft schon, dass große Teile der Robotersteuerung überarbeitet werden müssen, was wiederum den gesamten Entwicklungsprozess behindert. Diese Dissertation stellt eine alternative, systematische Methode vor um die Redundanz neuer komplexer Robotersysteme zu bewältigen und vielfältige, priorisierte Bewegungsaufgaben parallel zu steuern: Die so genannte kontextsensitive Körperregulierung. Darin bestehen Kontexte aus einer oder mehreren Bewegungsaufgaben. Anders als in konventionellen Anwendungen sind die Aufgaben nicht fest definiert und beinhalten eine gewisse Abstraktion. Beispielsweise stellt das Folgen einer bestimmten Trajektorie eine sehr konkrete Bewegungsaufgabe dar, während die Ausführung einer Kartesischen Bewegung mit dem Endeffektor eine Abstraktion darstellt, die für die Kontextformulierung besser geeignet ist. Kontexte setzen sich oft aus mehreren solcher abstrakten Aufgaben zusammen und beschreiben kollektiv eine sich wiederholende Situation. Durch die Verwendung der kontextsensitiven Körperregulierung ergeben sich vielfältige Vorteile gegenüber traditionellen Methoden: Wiederverwendbarkeit, Skalierbarkeit, sowie Komponierbarkeit von Konzepten. Diese drei fundamentalen Eigenschaften werden in der vorliegenden Arbeit theoretisch mittels gründlicher mathematischer Analyse aufgezeigt und praktisch mittels einer auf Komponenten basierenden Softwarearchitektur realisiert. Die Ergebnisse dieser Dissertation lassen sich auf beliebige redundante Manipulatoren oder humanoide Roboter anwenden und befähigen diese damit zur realen Anwendung außerhalb des Labors. Die hier vorgestellte Methode zur Regelung von Robotern stellt damit eine neue Perspektive für die zukünftige Entwicklung von robotischen Lösungen dar

    Anticipatory models of human movements and dynamics: the roadmap of the AnDy project

    Get PDF
    International audienceFuture robots will need more and more anticipation capabilities, to properly react to human actions and provide efficient collaboration. To achieve this goal, we need new technologies that not only estimate the motion of the humans, but that fully describe the whole-body dynamics of the interaction and that can also predict its outcome. These hardware and software technologies are the goal of the European project AnDy. In this paper, we describe the roadmap of AnDy, which leverages existing technologies to endow robots with the ability to control physical collaboration through intentional interaction. To achieve this goal, AnDy relies on three technological and scientific breakthroughs. First, AnDy will innovate the way of measuring human whole-body motions by developing the wearable AnDySuit, which tracks motions and records forces. Second, AnDy will develop the AnDyModel, which combines ergonomic models with cognitive predictive models of human dynamic behavior in collaborative tasks, learned from data acquired with the AnDySuit. Third, AnDy will propose AnDyControl, an innovative technology for assisting humans through pre-dictive physical control, based on AnDyModel. By measuring and modeling human whole-body dynamics, AnDy will provide robots with a new level of awareness about human intentions and ergonomy. By incorporating this awareness on-line in the robot's controllers, AnDy paves the way for novel applications of physical human-robot collaboration in manufacturing, health-care, and assisted living

    Generating whole body movements for dynamics anthropomorphic systems under constraints

    Get PDF
    Cette thèse étudie la question de la génération de mouvements corps-complet pour des systèmes anthropomorphes. Elle considère le problème de la modélisation et de la commande en abordant la question difficile de la génération de mouvements ressemblant à ceux de l'homme. En premier lieu, un modèle dynamique du robot humanoïde HRP-2 est élaboré à partir de l'algorithme récursif de Newton-Euler pour les vecteurs spatiaux. Un nouveau schéma de commande dynamique est ensuite développé, en utilisant une cascade de programmes quadratiques (QP) optimisant des fonctions coûts et calculant les couples de commande en satisfaisant des contraintes d'égalité et d'inégalité. La cascade de problèmes quadratiques est définie par une pile de tâches associée à un ordre de priorité. Nous proposons ensuite une formulation unifiée des contraintes de contacts planaires et nous montrons que la méthode proposée permet de prendre en compte plusieurs contacts non coplanaires et généralise la contrainte usuelle du ZMP dans le cas où seulement les pieds sont en contact avec le sol. Nous relions ensuite les algorithmes de génération de mouvement issus de la robotique aux outils de capture du mouvement humain en développant une méthode originale de génération de mouvement visant à imiter le mouvement humain. Cette méthode est basée sur le recalage des données capturées et l'édition du mouvement en utilisant le solveur hiérarchique précédemment introduit et la définition de tâches et de contraintes dynamiques. Cette méthode originale permet d'ajuster un mouvement humain capturé pour le reproduire fidèlement sur un humanoïde en respectant sa propre dynamique. Enfin, dans le but de simuler des mouvements qui ressemblent à ceux de l'homme, nous développons un modèle anthropomorphe ayant un nombre de degrés de liberté supérieur à celui du robot humanoïde HRP2. Le solveur générique est utilisé pour simuler le mouvement sur ce nouveau modèle. Une série de tâches est définie pour décrire un scénario joué par un humain. Nous montrons, par une simple analyse qualitative du mouvement, que la prise en compte du modèle dynamique permet d'accroitre naturellement le réalisme du mouvement.This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements

    Object Handovers: a Review for Robotics

    Full text link
    This article surveys the literature on human-robot object handovers. A handover is a collaborative joint action where an agent, the giver, gives an object to another agent, the receiver. The physical exchange starts when the receiver first contacts the object held by the giver and ends when the giver fully releases the object to the receiver. However, important cognitive and physical processes begin before the physical exchange, including initiating implicit agreement with respect to the location and timing of the exchange. From this perspective, we structure our review into the two main phases delimited by the aforementioned events: 1) a pre-handover phase, and 2) the physical exchange. We focus our analysis on the two actors (giver and receiver) and report the state of the art of robotic givers (robot-to-human handovers) and the robotic receivers (human-to-robot handovers). We report a comprehensive list of qualitative and quantitative metrics commonly used to assess the interaction. While focusing our review on the cognitive level (e.g., prediction, perception, motion planning, learning) and the physical level (e.g., motion, grasping, grip release) of the handover, we briefly discuss also the concepts of safety, social context, and ergonomics. We compare the behaviours displayed during human-to-human handovers to the state of the art of robotic assistants, and identify the major areas of improvement for robotic assistants to reach performance comparable to human interactions. Finally, we propose a minimal set of metrics that should be used in order to enable a fair comparison among the approaches.Comment: Review paper, 19 page

    Synthesis of Subject-Specific Human Balance Responses using a Task-Level Neuromuscular Control Platform

    Get PDF
    Many activities of daily living require a high level of neuromuscular coordination and balance control to avoid falls. Complex musculoskeletal models paired with detailed neuromuscular simulations complement experimental studies and uncover principles of coordinated and uncoordinated movements. Here, we created a closed-loop forward dynamic simulation framework that utilizes a detailed musculoskeletal model (19 degrees of freedom, and 92 Muscles) to synthesize human balance responses after support-surface perturbation. In addition, surrogate response models of task-level experimental kinematics from two healthy subjects were provided as inputs to our closedloop simulations to inform the design of the task-level controller. The predicted muscle EMGs and the resulting synthesized subject joint angles showed good conformity with the average of experimental trials. The simulated whole-body center of mass displacements, generated from a single kinematics trial per perturbation direction, were on average, within 7 mm (anterior perturbations) and 13 mm (posterior perturbations) of experimental displacements. Our results confirmed how a complex subject-specific movement can be reconstructed by sequencing and prioritizing multiple task-level commands to achieve desired movements. By combining the multidisciplinary approaches of robotics and biomechanics, the platform demonstrated here offers great potential for studying human movement control and subject-specific outcome prediction

    Intelligent humanoids in manufacturing to address worker shortage and skill gaps: Case of Tesla Optimus

    Full text link
    Technological evolution in the field of robotics is emerging with major breakthroughs in recent years. This was especially fostered by revolutionary new software applications leading to humanoid robots. Humanoids are being envisioned for manufacturing applications to form human-robot teams. But their implication in manufacturing practices especially for industrial safety standards and lean manufacturing practices have been minimally addressed. Humanoids will also be competing with conventional robotic arms and effective methods to assess their return on investment are needed. To study the next generation of industrial automation, we used the case context of the Tesla humanoid robot. The company has recently unveiled its project on an intelligent humanoid robot named Optimus to achieve an increased level of manufacturing automation. This article proposes a framework to integrate humanoids for manufacturing automation and also presents the significance of safety standards of human-robot collaboration. A case of lean assembly cell for the manufacturing of an open-source medical ventilator was used for human-humanoid automation. Simulation results indicate that humanoids can increase the level of manufacturing automation. Managerial and research implications are presented

    Enabling Human-Robot Collaboration via Holistic Human Perception and Partner-Aware Control

    Get PDF
    As robotic technology advances, the barriers to the coexistence of humans and robots are slowly coming down. Application domains like elderly care, collaborative manufacturing, collaborative manipulation, etc., are considered the need of the hour, and progress in robotics holds the potential to address many societal challenges. The future socio-technical systems constitute of blended workforce with a symbiotic relationship between human and robot partners working collaboratively. This thesis attempts to address some of the research challenges in enabling human-robot collaboration. In particular, the challenge of a holistic perception of a human partner to continuously communicate his intentions and needs in real-time to a robot partner is crucial for the successful realization of a collaborative task. Towards that end, we present a holistic human perception framework for real-time monitoring of whole-body human motion and dynamics. On the other hand, the challenge of leveraging assistance from a human partner will lead to improved human-robot collaboration. In this direction, we attempt at methodically defining what constitutes assistance from a human partner and propose partner-aware robot control strategies to endow robots with the capacity to meaningfully engage in a collaborative task

    The Anthropomorphic Hand Assessment Protocol (AHAP)

    Get PDF
    The progress in the development of anthropomorphic hands for robotic and prosthetic applications has not been followed by a parallel development of objective methods to evaluate their performance. The need for benchmarking in grasping research has been recognized by the robotics community as an important topic. In this study we present the Anthropomorphic Hand Assessment Protocol (AHAP) to address this need by providing a measure for quantifying the grasping ability of artificial hands and comparing hand designs. To this end, the AHAP uses 25 objects from the publicly available Yale-CMU-Berkeley Object and Model Set thereby enabling replicability. It is composed of 26 postures/tasks involving grasping with the eight most relevant human grasp types and two non-grasping postures. The AHAP allows to quantify the anthropomorphism and functionality of artificial hands through a numerical Grasping Ability Score (GAS). The AHAP was tested with different hands, the first version of the hand of the humanoid robot ARMAR-6 with three different configurations resulting from attachment of pads to fingertips and palm as well as the two versions of the KIT Prosthetic Hand. The benchmark was used to demonstrate the improvements of these hands in aspects like the grasping surface, the grasp force and the finger kinematics. The reliability, consistency and responsiveness of the benchmark have been statistically analyzed, indicating that the AHAP is a powerful tool for evaluating and comparing different artificial hand designs
    corecore