

Cobot Programming for Collaborative
Industrial Tasks: An Overview
El Zaatari, S., Marei, M., Li, W. & Usman, Z.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

El Zaatari, S, Marei, M, Li, W & Usman, Z 2019, 'Cobot Programming for Collaborative
Industrial Tasks: An Overview', Robotics and Autonomous Systems, vol. 116, pp. 162-
180.
https://dx.doi.org/10.1016/j.robot.2019.03.003

DOI 10.1016/j.robot.2019.03.003
ISSN 0921-8890

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in
Robotics and Autonomous Systems. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have
been made to this work since it was submitted for publication. A definitive version
was subsequently published in Robotics and Autonomous Systems, [116], (2010)
DOI: 10.1016/j.robot.2019.03.003

© 2019, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228157445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1016/j.robot.2019.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cobot Programming for Collaborative Industrial Tasks:

An Overview
Shirine El Zaataria, Mohamed Mareia, Weidong Lia, Zahid Usmanb

a Faculty of Engineering, Environment and Computing, Coventry University, UK
b Rolls Royce, UK

Abstract

Collaborative robots (cobots) have been increasingly adopted in industries to facilitate human-robot

collaboration. Despite this, it is challenging to program cobots for collaborative industrial tasks as the

programming has two distinct elements that are difficult to implement: (1) an intuitive element to ensure

that the operations of a cobot can be composed or altered dynamically by an operator, and (2) a human-

aware element to support cobots in producing flexible and adaptive behaviours dependent on human

partners. In this area, some research works have been carried out recently, but there is a lack of a

systematic summary on the subject. In this paper, an overview of collaborative industrial scenarios and

programming requirements for cobots to implement effective collaboration is given. Then, detailed

reviews on cobot programming, which are categorised into communication, optimisation, and learning,

are conducted. Additionally, a significant gap between cobot programming implemented in industry

and in research is identified, and research that works towards bridging this gap is pinpointed. Finally,

the future directions of cobots for industrial collaborative scenarios are outlined, including potential

points of extension and improvement.

Keywords: Human-Robot Collaboration, Intuitive Programming, Human-awareness, Cobot

1. Introduction

Manufacturing in the Industry 4.0 era necessitates rapid, proactive responses to ever-changing

consumers' demands. This had led to a trend of mass customisation, where certain aspects of the

product, hence manufacturing processes, are tailored to meet the requirements of individual customers.

Meanwhile, manufacturers need to continuously improve sustainability, production efficiency and

quality throughout the product life cycle to ensure their competitive edge. Industrial automation is

capable of maintaining high efficiency and repeatability for mass production. However, it lacks

flexibility to deal with uncertainties in work spaces resulting from mass customisation. While humans,

in such situations, can deal with such uncertainties and variability, they are restricted by their physical

capabilities, in terms of repeatability, physical strength, stamina, speed etc. [1]. These limitations often

result in reduced efficiency and quality [2]. A balance of automation and flexibility is thus required to

achieve these overarching manufacturing goals during mass customisation. That promotes research in

combining the benefits of automation and manual labour. This research has culminated in Human-Robot

Collaboration (HRC), a promising robotics discipline focusing on enabling robots and humans to

operate jointly to complete collaborative tasks.

HRC refers to application scenarios where a robot, usually a collaborative robot (cobot), and a

human occupy the same workspace and interact to accomplish collaborative tasks [3]. Following the

introduction of the UR5, a cobot produced by Universal Robotics in 2008 [4], industrial interest in

applying HRC and cobots to factory floors has escalated. Many other robotics manufacturers, such as

KUKA, ABB and Rethink Robotics, have also developed their own cobots, each tackling a particular

niche. An overview of cobots on the market is discussed [5], comparing their costs, payload capabilities,

and safety features. Since cobots are built for close-proximity interaction with humans, they must adhere

to stringent safety requirements, such as power and speed limiting, soft padding, and the absence of trap

points (i.e. points that can trap body parts or clothing) (ISO-TS 15066 [6]). Considering the

distinguishing characteristics of cobots over regular robots, they are envisioned to pave the way for

mass customisation, decrease required floor space, increase product quality and production efficiency

and improve working conditions for humans [1, 7].

Relevant research in HRC and cobots has revolved around enhancing particular enabling functions

like visual perception, action recognition, intent prediction, safe on-line motion planning, etc. These

technologies enable human-awareness, which result in flexible cobot behaviour as opposed to

traditional fixed action-sequence cobot programs. Another line of research has revolved around

Learning from Demonstration (LfD), Reinforcement Learning (RL), human-robot communication,

collaborative task semantics, etc. These fields enable intuitive cobot programming, allowing non-expert

operators to create and alter robot programs quickly and intuitively. This paper explores the union

between these two research directions, resulting in human-aware, intuitive robot programs for

collaborative industrial tasks. Imbuing cobots with flexibility, reliability and autonomy is indeed a

persistent research bottleneck for HRC scenarios in industry and elsewhere.

It is noted that several papers have provided related literature reviews, such as on HRC applications

[8], methods for safe HRC [9] and more specific topics such as LfD [10,11], gesture recognition [12]

and Augmented Reality [13]. Bauer et al. reviewed the technologies enabling HRC such as machine

learning, action planning and intention estimation [14], which are all relevant to the programming of

cobots. However, their review only covers works until 2008, prompting an update considering the surge

of relevant recent works.

The goal of this paper is to provide research communities with a guide on deploying cobots in

collaborative industrial scenarios. In particular, programming features that support cobots for

collaborative scenarios will be reviewed. The work scopes and contributions of this paper are:

 an overview of collaborative industrial scenarios

 a general structure for a cobot programming, including safety measures and on-line/off-line

human involvement

 a review of three main programming features for cobots; communication, optimisation and

learning

This paper is organised as follows. Section 2 presents an overview of HRC scenarios, applied safety

measures and general program structure. Sections 3, 4 and 5 elaborates on cobot programming features

used for collaborative industrial scenarios. Section 6 concludes the work by providing recommendation

regarding the deployment of cobots in industrial settings and providing general guidance for the

advancement of HRC-related research towards expanding and improving HRC industrial

implementations.

2. Overview on Collaborative Scenarios and Cobot Programming

A human operator and a cobot can collaborate on a variety of industrial tasks, which are defined

here as collaboration scenarios. In such a scenario, the human operator and the cobot share the same

workspace to perform manufacturing processes on work pieces, such as pick-and-place, assembly,

screwing or inspection. That is, each scenario involves a cobot, a human operator, work piece(s) and

manufacturing process(es). Collaboration scenarios, safety measures, and cobot programming to

support the scenarios are summarised below.

2.1. Collaborative Scenarios

Definitions have varied over what constitutes human-robot “collaboration”, versus “interaction” and

“cooperation”. For example, Haddadin and Croft defined their categorisation on physical proximity

between a human and a robot and deem a cooperative robot works at a closer proximity to a human than

a collaborative robot does [15]. Sylla and Mehta defined their categorisation on the type of allowed

contact between a human and a robot. They state that a human can contact a cooperative robot if it is

static, whereas the human can contact the collaborative robot even if it is moving [16]. In this paper, we

adopt the most lenient opinion in [17], which states that any robot operating without a fence alongside

a human is a collaborative robot. This definition is in line with the market definition of a cobot. This

also achieves the widest scope in this review.

2.1.1. Categories of Collaborative Scenarios

This paper builds up on the categorisation in [17], which divides tasks according to the relation

between a cobot, an operator, work piece(s) and the process(es) being performed on the work piece(s).

That is, the categorisation is defined according to the degree of task intersection and dependency

between the operator and the cobot (Figure 1). This categorisation draws a clear line between the various

required capabilities of a cobot in different industrial scenarios. This is helpful to programmers and

researchers trying to define a direction for their work/research. The categories are:

 Independent: An operator and a cobot operate on separate workpieces (W1 and W2 illustrated

in Figure 1) independently for their individual manufacturing processes (P1 for W1 and P2 for

W2). The collaborative element is due to the co-presence of the operator and cobot in the same

workspace without a fence or guard. That is, safety is achieved through the cobot's intrinsic

safety and/or added hardware/software safety elements. Therefore, the cobot is aware of the

operator's presence and acts safely.

 Simultaneous: An operator and a cobot operate on separate processes (P1 and P2 respectively)

on the same work piece (W) at the same time. There is no time or task dependency between

them. However, the cobot needs to be spatially aware of the operator and his/her task

requirements in order to respect the operator's space. Being able to concurrently operate on the

work piece will minimise the transmit time of the work piece between the cobot and human,

thereby improving productivity and space utilisation.

 Sequential: An operator and a cobot perform sequential manufacturing processes (P1 and P2)

on the same work piece. There are time dependencies between the cobot and operator for their

processes. For instance, the cobot works on P1 for the work piece as an input to support the

operator to carry on P2 for the work piece. In most cases, the cobot is arranged to handle tedious

processes to improve the operator's working conditions.

 Supportive: An operator and a cobot work towards the same process (P) on the same work piece

(W) interactively. There is dependency between the actions of the cobot and the operator. That

is, without one, another cannot perform the task. The cobot needs to understand the operator's

intent and the task requirements in order to provide appropriate assistance. For instance, the

operator fastens screws on a toolbox while the cobot holds it in place [18]. The role of the cobot

is to physically assist the operator with work pieces which improves ergonomics.

Figure 1: Degrees of collaboration in industrial scenarios

2.1.2. Examples from Industry

Manufacturing companies are eager to deploy cobots due to their affordability, built-in safety and

intuitive User Interfaces (UIs). That is especially true for SMEs that have difficulties automating their

manufacturing using traditional robots [19]. Mass production companies, particularly the automotive

manufactureres, are equally eager to implement HRC to boost their competitiveness and take their

factories to the next level of automation and manufacturing advancement, i.e. Industry 4.0. For instance,

the BMW Group's Spartanburg site introduced cobots to improve ergonomics by taking over the

repetitive and precise task of equipping the inside of car doors with sound and moisture insulation [20].

Audi introduced a UR3 cobot to apply an adhesive on a car roof, which saves factory floor space since

the cobot doesn't have to be separated from the human by a fence [21]. The Volkswagen plant in

Wolfsburg introduced a KUKA cobot to perform screwing on a drive train in locations that are

inconvenient to reach by a human operator [22]. The cobot works alongside the human, who is screwing

at other easily accessible locations. Nissan's large-scale Yokohama plant deployed UR10 cobots to

loosen bolts and carry heavy components to relieve the workforce of these arduous tasks and speed up

the manufacturing process [23]. Skoda also introduced a KUKA cobot to work alongside humans in the

production of direct-shift-gearboxes [24]. In all the aforementioned tasks, cobots are required to operate

safely alongside humans, which is a built-in feature in cobots. However, they do not strictly require

advanced perception, human-awareness or decision-making capabilities since the parts handled are kept

in pre-determined positions, the tasks of the human and the cobot are relatively independent, and the

cobot adheres to a relatively fixed action/motion plan. Therefore, it is noticeable that industrial

implementation of HRC scenarios fall under the category “Independent” or “Simultaneous”. However,

by enforcing additional constraints upon the cobots' environment (in terms of fixed parts or equipment

positions), most of such implementations fail to showcase the utility and versatility of cobots in a

partially unstructured work environment.

2.1.3. Examples from Research

As research strives to explore new potential use cases for HRC and cobots in industry, a wider range

of HRC scenarios can be found in academia. Table 1 highlights a few examples of references that have

included interesting set-ups of HRC scenarios in their experiments.

Scenario E.g. Human Task Cobot Task

Co-manipulation [25] The human and the cobot both hold and move an object.

The human guides the object's

path.

The cobot handles the object's

weight.

Fixture [26] The human polishes the held box. The cobot hold the box in a

position according to learnt

human preference.

Handover [27] The human takes objects from

the cobot and places them aside.

The cobot hands objects to the

human. Handover pace changes

according to the human's

readiness to take an object.

Assembly [28] Assembly actions are distributed between the human and the cobot

according to expected workload and energy consumed.

Pick-and-place [29] The human chooses objects

randomly to pick and place.

The cobot chooses objects to

pick and place while accounting

for distance, reachability and the

human's predicted motion plans.

Fetch [30] The human takes the table part

from the cobot and performs

assembly actions.

The cobot fetches table part

according to the human's

progress in the assembly task.

Soldering [31] The human adjusts the pose at

which the cobot is holding the

solder wire, and then he performs

soldering.

The cobot holds the soldering

wire at the tip of soldering point,

in human-controlled orientation

and position.

Illumination [32] The human operates on parts on

a table.

The cobot, with a light source

mounted as a tool, provides

direct illumination on the

human's work space while

avoiding collision.

Inspection [33] The human screws bolts in holes. The cobot inspects if all holes

are screwed and issues a

warning in case of missing bolt.

Drilling [34] The human specifies the drill

location, during run-time.

The cobot drills a hole in

specified location while having

motion automatically

constrained to drill bit's axis.

Surface Finish [34] The human specified surface to

sand.

The cobot sands the surface,

while having motion

automatically constrained

parallel to the surface.

Screwing [35] The human inserts bolts in holes

on one side of a plate.

The cobot tightens the bolts

from the other side of the plate.

Table1: Examples of HRC scenarios from research.

Most HRC-related research works fall under the categories of “Sequential” or “Supportive”,

generally focusing on involving a human in a cobot's task plan more than industrial examples have

permitted so far. The research topics include understanding human intent and social cues, natural

human-robot communication, optimising behaviour for human comfort and trust and learning tasks

from humans, all of which enable cobot flexible behaviour.

To enable collaboration, equipping a cobot with cognitive abilities is essential. In traditional non-

collaborative scenarios, programming a robot to follow fixed paths and sequences of actions sufficed

to perform tasks successfully. However, with humans in close proximity, such as in an Independent or

Simultaneous scenario, special safety measures should be taken. This can be achieved using the

embedded safety features in cobots, such as limiting velocity and detecting collisions, or using distance

sensors that allow a cobot to slow down or stop when something/one is in close proximity, e.g. [36].

More sophisticated research works achieved safety by detecting objects/people and planning real-time

optimised collision-free paths, e.g. [37]. As the degree of collaboration increases, such as in Sequential

or Supportive tasks, a cobot needs to have semantic understanding of the task goal and the human's

actions and intent. Moreover, the human needs to be able to communicate with the cobot through

intuitive ways such as body language, speech and intuitive UIs. This communication should be reliably

understood by the cobot to act upon. Moreover, the human needs to be able to teach the cobot new tasks

intuitively. If the task is complicated beyond what the human can coordinate, the cobot should be able

to autonomously select and execute an optimal action, while accounting for the human's choices, actions

and task goal. Hence, more advanced programming techniques, such as optimisation and learning, are

imperative to address the above abilities that enable sequential and supportive HRC scenarios and

improve independent and simultaneous HRC scenarios.

2.2. Safety Measures for HRC

Sylla and Mehta summarised four scenarios of HRC [16], adapted from ISO 10218-1 [38], for

collaborative operation requirements. The categorisation for collaboration is defined mainly from the

perspectives of the safety strategy and the spatial relation between a cobot and a human operator. That

is,

 Safety Monitored Stop: A cobot operates normally on a work piece in a well-defined

workspace. If an operator enters the workspace, the cobot completely stops so that the operator

can perform operations on the work piece.

 Hand Guiding: A cobot is compliant and moved manually by a human. This allows intuitive

easier path teaching. It makes complex and interactive collaboration possible.

 Speed and Separation Monitoring: A cobot's workspace is divided into zones. The closer a

human operator gets, the slower the cobot moves. The cobot reaches a complete halt at a certain

threshold. This will enhance the safety between the operator and cobot.

 Power and Force Limiting: A cobot is programmed to operate only within tolerable levels of

force and torque. An operator can be as spatially close to the cobot as needed without relying

on external safety sensors.

Most cobots come with built-in features that ensure the above safety requirements [5]. For example,

the MRK SYSTEM-KR 5 SI and the COMAU are equipped with tactile sensors to detect contact. The

BOSCH APAS has smart capacitive skin that detects the proximity of a human and stops before contact.

In general, most cobots are built to comply with ISO 10218-1 [38] for the safety requirements of robotic

devices and ISO/TS 15066 [6], which is more specific for cobots.

Despite that, cobots still need to undergo risk assessment before being implemented on a factory

floor, such as in [39]. That is because dangers might arise from the nature of the task rather than from

the cobot itself. For example, even if a cobot moves with a safe speed and force, and stops upon

collision, the cobot is dangerous if it is holding sharp tools or parts. Moreover, the cobot cannot discern

whether it is colliding with the human's arm, which is uncomfortable but permissible, or with his/her

head, which is unacceptable regardless of speed and force. Therefore, a cobot should be enhanced with

additional intelligence and perception abilities to be fully safe. A lot of work has been done on collision

avoidance [32, 37, 40, 41], human motion prediction [42, 43], risk assessment through simulation and

VR [44] and other safety enabling technologies. However, what might be holding back the

implementation of collaborative systems, in terms of safety, is that many of the safety enabling systems

have not been officially certified. A tighter collaboration between the industry, academia and

standardisation bodies is needed to approve and launch safety-related research work. Moreover, an

added burden on industrial parties is the cost of training staff on new certified safety systems and risk

assessment techniques. Therefore, researchers should also consider their developed safety systems from

a user-perspective.

2.3. Cobot Programming

The programming process entails providing a cobot with the ability to understand the state of the

environment and perform actions that advance the system towards a planned collaborative goal.

Traditionally, a human, the programmer, is only involved off-line for an industrial robot program. These

programs are inflexible and not human-aware, and cannot be altered during runtime, unless an error

occurs and debugging is needed. Based on that, a robot functions in a deterministic environment in

which an operator is not part of. However, in HRC, an operator adds stochasticity and unpredictability

to the environment. The human involvement in the cobot's program goes beyond the programmer's

traditional off-line role. The operator also becomes involved in the cobot's program during run-time, or

on-line.

An operator can be involved in modifying or affecting a cobot's program either explicitly or

implicitly. Explicit involvement occurs in the form of direct communication, i.e., the human sends

information or instructions to the cobot. Implicit involvement occurs such that the cobot observes the

human's states and alters its policy accordingly. The policy can be learnt from prior data or modelled

manually by programmers. Based on these different modes of operator involvement, this paper

identifies three different programming features that give the cobot the ability to act flexibly and/or be

programmed intuitively. These programming features are especially essential for Sequential and

Supportive HRC scenarios. The programming features identified are:

 Communication: An operator controls a cobot through a communication channel that can be

verbal (speech) or non-verbal. Non-verbal communication includes gestures, gaze, head pose,

haptics and UIs. The off-line role of the programmer is to program and define possible cobot

actions and the underlying motion control. The on-line involvement of the operator is mostly

explicit, triggering the cobot into pre-defined actions.

 Optimisation: Important aspects of a cobot's surroundings, such as obstacles and tool positions,

are mathematically modelled as a function of the cobot's actions. Those form cost functions that

are optimised to generate desirable performance. The cobot's program can be made to minimise

an operator's workload, energy consumed and time wasted, or maximise physical comfort and

trust, product quality, etc. During off-line development, the programmer designs cost functions

and optimisation algorithms. During runtime, the operator usually impacts the cobot's

performance implicitly, since he/she will be a part of a cost function. The advantage of this

method is the higher likelihood of performing more optimally than a human operator.

 Learning: A cobot learns a skill similar to how a human would, e.g., through observing

demonstrations, trial and error, receiving feedback and asking questions. The off-line role of a

programmer is to design the learning algorithm and provide initial data for the cobot to learn

from. That could be in the form of demonstrations, trial-and-error iterations (resulting in a

policy), training data, etc. During runtime, an operator might be able to explicitly affect the

cobot's policy by providing additional data, such as feedback, answers to questions,

personalised demonstrations, etc. Moreover, the operator might serve as a prior in the cobot's

probabilistic learning algorithm, i.e., affecting the cobot implicitly by being part of the observed

environment.

Table 2 details some examples of cobot programs found in literature, highlighting the above three

different features above. Sections 3, 4, and 5 elaborate on these programming features, their variations

and implementation in HRC scenarios.

Feature Off-line programmer role On-line operator role

Communication e.g. [45] Design speech recognition

algorithm and define task plan

Use verbal commands to trigger

actions from the task plan

(explicit involvement)

Optimisation e.g. [29] Design cost function and

optimisation algorithm to make

the cobot choose optimal object

to grasp

Pick up objects which affects

the cobot's cost function and

hence, changes which object the

cobot picks up (implicit

involvement)

Learning e.g. [18] Design an interactive learning

algorithm and provide initial

policy

Provide feedback which alters

the cobot's assembly action

sequence (explicit

involvement)

Learning e.g. [46] Design LfD algorithm and

provide demonstrations

Act similar to demonstrations.

The cobot observes the human

and provides complementary

movements according to

demonstrations (implicit

involvement)

Table 2: Examples of HRC programs with different programming features, showing the distribution of roles

between the programmer and the operator.

3. Communication

Humans rely heavily on communication to work in teams and complete tasks fluently and efficiently.

Communication can be made to issue orders, convey intention and ask/answer questions. Researchers

have been working on enabling communication between humans and cobots such that the human is able

to command the cobot through different communication modes. The works mentioned in this subsection

are categorised by communication mode: body language and speech, user interfaces and haptics.

3.1. Body Language and Speech

Body language as a means of commanding a cobot includes using gestures, pointing, head pose, and

gaze. Speech refers to uttering commands verbally. These two communication modes are combined in

the same subsection since they share a similar algorithmic pipeline: First, a communication guideline

must be defined, i.e. in what ways of language/words/gestures, will the operator communicate with the

cobot? Communication signals are detected, recognised and mapped to executable actions for a cobot.

The rest of this subsection tackles the different research works done towards these different steps in the

'body language and speech' communication pipeline.

3.1.1. Communication Guideline

Defining an effective communication guideline involves specifying usable communication signals,

such as a set of gestures or phrases, and when and why to use them. Various approaches have been

found in the literature to define a communication guideline. To begin with, a set of usable gestures or

phrases can be predefined strictly in a fixed set. A gesture lexicon can be extracted from observing

human-human interactions [47, 48, 49]. However, gestures extracted from observing human-human

interactions will not necessarily be easy to recognise and differentiate. That is because many of them

tend to be very subtle, context-specific and sometimes person-specific.

In other cases, a set of gesturing rules is used to create a gesture set. Berattini et al. proposed a

standard set of gestures for a given task (the gestures must be distinct from other task actions), and

evaluated a gesture recognition algorithm on the proposed set [50]. However, even with optimally

chosen gestures, having to memorise and adhere to a fixed set of signals can be mentally draining and

unintuitive for the operator.

Figure2: An example of a gesture lexicon adapted from [50]

Allowing a human to communicate with a cobot in his/her own way results in more effective, natural

and intuitive communication. Cheng et al. designed a framework to extract robotic operations from

natural language based on relationships between mentioned work pieces and representing the

relationships in matrix form [51]. She and Chai used interactive learning to learn verb semantics in a

noisy incomplete environment [52]. The cobot is capable of asking the right questions to learn required

actions and corresponding objects, states and tools. Maurtua et al. also analysed natural language in

light of task ontology to extract commands [53].

Generating a natural language system is challenging since the language use differs drastically as the

operator progresses with work. Nakata et al. showed that in a collaborative task where only verbal

communication is allowed, the frequency of morphemes (i.e. words belonging to these certain types:

object, modifier, robot action, user action) decreases as the number of task trials increase [54]. That is

because humans naturally start emitting words as they become accustomed to the task. They naturally

start considering and accommodating their team-mates’ needs without those needs being explicitly

expressed. Kobayashi et al. also showed that the use of descriptive words decreases as the number of

task trials increase [55]. Therefore, any language model between a human and a cobot should account

for the change in human language as the human becomes more accustomed to the task.

3.1.2. Multi-modal Communication

Different research works have shown that communication modes can be concatenated in different

ways for better context understanding. Using multi-modal communication can outperform single mode

communication. Multi-modal communication can sometimes be complementary such as a point-and-

command system. It can also be redundant such as a same-command speech and gesture system [53].

The challenge lies in how to combine information from different communication modes to successfully

draw conclusions. Srimal et al. used fuzzy logic to combine pointing gestures with speech in order to

identify pointing targets or execute spatial commands [56]. Giuliani and Knoll used a score-based

system to identify which action to perform on which object [57]. They represent an object, its

corresponding action, and a score R as o.ne tuple. When a speech or pointing command is uttered

mentioning an object or an action, the scores of the tuples including the object or the action are

increased. When the score exceeds a threshold, the action is executed on the object.

Maurtua et al. used a fusion engine to ensure voice and pointing commands are not contradictory

and combine them into a single command output to the execution manager [53]. They designed a

gesture, including pointing, and voice command system with safety functions integrated and

implemented it on a KUKA IIWA. Their system was rated promisingly in terms of naturalness,

usefulness and reliability in an extensive study.

It is important to consider if/when multi-modal communication is needed, before considering how

to implement it. Admoni et al. worked on determining when a pointing gesture is necessary along with

a verbal description to identify an object on a table [58]. A gesture only be necessary, for example, if

there were several objects of the same verbal description in close proximity. Their work can be used to

guide and prompt communication to only when it is needed, which would improve efficiency and lessen

chances of error and confusion.

3.1.3. From Communicated Signals to Executable Actions

After specifying a communication guideline, the permissible communicated signals must be mapped

to executable cobot actions, i.e. a signal should be made a command. This can be done manually or

through learning:

 Manually: A programmer manually assigns gestures to cobot actions off-line according to task

needs [50]. Human-human interactions can help programmers understand which gestures map

best to which actions [47, 48]. If the action domain is continuous such as in [31], then the

gesture-action mapping is done through calibration.

 Learning: Interactive learning can be used so that an operator plays a role in the signal-action

mapping. Shukla et al. taught a cobot required actions to perform given a gesture using

incremental human feedback [59]. However, this can present unnecessary complications in an

industrial environment where insufficient variability in the mapping is expected. In a

continuous action domain, such as in [60], the gaze-object associations are obtained by a pre-

trained Support Vector Machine (SVM) in order to ultimately predict the human's intent (i.e.

the object the human is looking at). This helps the cobot start acting towards the object before

an explicit command is uttered. This is particularly useful when the communication channel

domain is continuous, such as gaze direction, and requires segmentation before mapping.

3.1.4. Signal Recognition

Delving into the technicalities of signal recognition, whether it is gestures, speech, haptics, etc. is

beyond the scope of this paper and will only be discussed briefly, as numerous relevant reviews already

exist. Readers are referred to [12] for an extensive review on gesture recognition technologies in light

of industrial HRC. Similarly, Benzeghiba et al. provided a review on speech recognition technologies

[61].

To recognise gestures, the human skeletal frame, or pose, must be detected. Table 3 shows the

advantages and disadvantages of different sensing technologies for pose detection. Given recent

advancements in deep learning pose detection algorithms, such as OpenPose [62], the prospects of 2D

cameras being the most suitable option is increasing.

Sensor Advantages Disadvantages

3D-cameras, e.g. Kinect

v2 [63, 33] and ASUS

Xtion PRO Live [64]

Non-intrusive, easy to setup Restricted detection region, prone to

occlusion, dependent on lighting

conditions, detection algorithm

dependent on 3D sensing output

(point cloud, depth map...)

RGB cameras Non-intrusive, easy and

affordable to setup, availability

of reliable algorithms

Restricted detection region, prone to

occlusion, dependent on lighting

conditions

IMU Jackets, e.g. [65] No occlusion, no dependency on

lighting and environmental

factors

Restrict mobility, not one-size-fits-

all, doesn't measure hand gestures

Wrist bands, e.g. [66] No occlusion, no dependency on

lighting and environmental

factors

Restrict mobility, difficult time-

consuming setup

Motion Capture, e.g.

[46]

High accuracy, computationally

effective, less prone to occlusion

Expensive and time-consuming

setup, restricted detection region

Table 3: Advantages and disadvantages of different pose detection technologies.

Modelling the gesture depends on whether it is static or dynamic. Static gestures are modelled as

single poses. For a pose to be detected as a static gesture, its temporal length needs to exceed a specific

threshold [64]. Then, the angles of the different segments of the human skeleton are thresholded to

classify the gesture. In the case of dynamic gestures, the human pose sequence, sampled at a certain

rate, is modelled as a time series (such as Hidden Markov Models, Recurrent Neural Networks…) which

is then used for detection.

Pointing gestures are different since they are related to the space and objects. Recognising or

classifying them constitutes identifying the object or location being pointed at. In [53], Euclidean cluster

extraction was used to detect the human's forearm. The forearm is modelled as a cylinder, and the

pointing target is identified as the cylinder’s axis intersection with the workspace. Srimal et al. also

used skeletal tracking obtained from a 3D depth sensor to detect the direction of pointing in a similar

manner [56].

For speech recognition, some have used Google API [53] or the Microsoft Speech API [45, 60] for

speech to text transformation. In the case of natural language, morphological analysis is performed to

identify word morphemes and understand context. For example, Maurtua et al. [53] used FreeLing for

morphosyntactic analysis while Nakata et al. [67] used the MOR and the POST program of CLAN.

Nevertheless, Gustavsson et al. pointed out that relying on speech commands can be very problematic

in the presence of background noise and chatter [45].

The intuitiveness of body language and speech communication is often traded with reliability.

Therefore, exploring less human-like but more reliable communication modes, such as haptics and

Graphical User Interfaces (GUIs), might be more suitable for industrial scenarios.

3.2. User Interfaces

Since cobots work closely with operators, cobots need to be equipped with intuitive UIs. These

interfaces are used by operators to alter/create/customise cobot programs, whether off-line or on-line.

The previous works related to cobot UIs and research challenges are discussed below.

3.2.1. User Interface Mediums

A UI is an essential differentiator of a cobot from traditional robots. Besides the user-interfaces being

developed in research communities, several industrial solutions are already available. UIs are

categorisied such as:

 Cobot teaching pendant: Market cobots, such as Universal Robots (UR), ABB's YuMi and

KUKA LBR iiwa, are labelled as intuitive and user-friendly due to their modular symbolic

programming UIs. For example, the UR UI allows a user to specify way points and create

arrayed motion patterns. The YuMi teaching interface is similar, with commands for both arms

easily synchronised and parametrised. Teaching pendants are the easiest to utilise since they

are built-in with the cobot. However, at a surface level, their capabilities are limited and do not

enable human-awareness and action plan flexibility.

 Icon-based programming: A visual library of built-in functionalities can be utilised to create

the program. For example, in MORPHA, the icons are connected to form a series of cobot

commands. In LabVIEW, a data flow diagram is created in which values flow across the icons

and trigger actions on hardware. Although an icon-based program is easy to build (in small-

scale programs), it is difficult to debug, maintain and alter. Therefore, they haven't been popular

in the manufacturing industry [68]. Moreover, these methods haven't yet provided options to

easily integrate the operator within the cobot's program so that the cobot is human-aware.

 CAD-based programming: Robot manufacturers and third parties have provided solutions such

as V-REP, Visual Components and ABB's RobotStudio, in which performance can be validated

and assessed. V-REP and Visual Components come with integrated human models that can also

be programmed to help in validating the cobot's safety and collaborative functions around

humans. In V-REP, a human can move according to a real-life actor through augmenting 3D

sensor data, such as from Kinect v2, of a real-life human into the simulation. In Visual

Components, the human can experience 3D simulation using VR which can be useful for

training operators. However, since simulation has to match the real environment in order to

achieve valid results, using CAD-based tools might be time consuming when changing work

space design and reiterating the program, unless an automated method is devised to scan, map

and build the environment.

 Task-based programming: This is the most popular research direction in intuitive cobot

programming and will be further discussed in this subsection. The developed approach is based

on a primitive-skill-task hierarchy [69]: Primitives are cobot motion commands or sensory

inputs values, such as open gripper and sense torque. Skills are object-oriented and achieve

goals such as pick object and tighten screw. Tasks are a sequence of skills and achieve the over-

all goal, which is the industrial scenario being implemented.

3.2.2. Skill Architectures

Skills are the building blocks of task-based programming. They present a balance between

specificity and abstraction, i.e. skills are general enough to be building blocks of a wide range of tasks

while maintaining a level of abstraction understandable to humans. The skill structure, in Figure

\ref{skill-architecture}, was designed by Schou et al. [70]. A skill transfers the environment from a state

to another. Skills have preconditions that need to be checked before implementation. They also have

post conditions that are checked to make sure that the skill is correctly implemented. Moreover, skills

need to be parameterised depending on their input states, and continuous evaluation takes place during

execution to ensure safety and right progress. Steinmetz et al. identified four key considerations for

efficient skill parametrisation [71]:

 It is better to teach a parameter when needed so that an operator can assess the environment

and choose the parameter accordingly.

 If the cobot fails to perform a task after parametrisation, it should solicit the operator to edit the

parameter.

 To avoid excessive parametrisation, static knowledge about relationships between parameters

can be utilised to reliably derive some parameters from others.

 Instead of being specified by shop-floor operators, some parameters should be set at defaults.

Figure 3: “Skill” architecture derived from [70]

3.2.3. UI Capabilities

For more sophisticated behaviour, researchers have worked on incorporating smarter motion

generalisation, information display and cognitive abilities (including perception) in GUI architectures.

 Guerin et al. designed a GUI that allows the user to specify cobot capabilities and constraints

[34]. Constraints include tool linear or planar path constraints. The user is also able to record

tool affordances which include movement primitives (recorded paths). For example, using their

GUI, the user is able to record a drilling action (straight constrained motion along the drill axis)

and reproduce the action in novel drill locations.

 Pedersen et al. represented a small set of skills needed in industrial cobots in a GUI [64]. A set

of high-level skills (e.g. pick-and-place) can be parametrised by a single input (object or

location) through pointing gestures. The skill set supported is limited, but they elaborated on

their work in Pedersen et al. [72].

 Steinmetz et al. improved on the skill architecture (Figure 3) and parametrisation to support

more complex skills, such as screwing [71]. Their work was formalised as a UI called RAZER

(Figure 4) and evaluated in [73]. RAZER allows an expert user to intuitively design new cobot

skills and parametrise them. It presents these skills and parameter options to shop-floor

operators for easy task-programming.

 Schou et al. designed an interface that allows users to sequence skills and specify some pre-

defined parameters [69]. Locational parameters, e.g. having to do with the location of pick up,

are specified using kinaesthetic teaching.

 Koch et al. incorporated the skill architecture (Figure 3) in a software system named Skill Based

System (SBS) that enables the creation of skills for complex tasks such as screwing and

assembly [74].

 Paxton et al. designed the GUI for cobot programming, based on Robot Operating System

(ROS), which is symbolic, modular and expandable [75]. Objects and agents (humans and

cobots) are represented in a natural abstraction the human understands. These abstractions are

used to generate Behaviour tree-based task planners using pre-defined actions. The operator

can also specify way points for the cobot's path.

Figure 4: The front panel of the RAZER interface from [73]. The figure shows an order of pre-defined

parametrised skills for the task of drilling a plate.

The aforementioned UIs provide intuitive solutions for programming a cobot for industrial tasks by

workers with minimal programming experience. A flexible cobot behaviour obtained by the UI is a

result of its use on-the-fly according to the operator's plans. In some cases in task-based programming,

an expert designs the skill sequence and leaves some of the parametrisation to be done by the operator

on-line. This parametrisation is done by inputting values on the UI, by kinaesthetic teaching or by

pointing gestures. The last two are only available for specifying locational parameters. A UI is an

essential part of programming a cobot system whether by an expert or an operator, unlike the other

technologies discussed in this paper that can be scenario/task-specific and optional.

3.3. Haptics and Force

Commercial cobots come with a built-in “compliant” mode, i.e. the cobot moves according to the

forces the human exerts on its body. It can be considered, thus, that the human commands the cobot

explicitly through touch and force. Researchers have extended on the default “compliant” mode to

increase the cobot’s intelligence and user-friendliness. That is, beyond detecting a force, understanding

and reacting to it, researchers have worked on predicting user intent and negotiating plans.

3.3.1. Reactive Compliance: Understanding and Reacting to the Force

In reactive compliance, a cobot senses the forces exerted on its body and actively moves such that

the forces are minimised. The challenge in reactive compliance is correctly mapping between the forces

sensed by the cobot and the required motion to be done.

Most cobots are not equipped with tactile sensors on their bodies, which makes it hard to interpret

exerted forces and understand the intent behind them. The cobot, for example, can't identify the point

at which contact with the human occurs and whether this contact is accidental or deliberate [76]. Magrini

et al.'s work helps localise the forces being applied on the cobot [77]. That allows the cobot to respond

to the contact force as desired or regulate it. Kouris et al. differentiated between collision and

cooperation contact in a computationally efficient manner by thresholding the Fourier transform of the

applied force/torque [78]. Gaz et al. differentiate between forces applied due to a polishing task and

forces applied to move the cobot body by using a model-based approach [79]. This allows the human

to smoothly and safely switch from moving the cobot compliantly and performing the polishing task.

Forces can also be difficult to interpret when they are exerted on the object a cobot is holding rather

than directly on its body. The force that a human exerts on an object can signify an intent of motion in

different directions. Wojtara et al. devised algorithms that differentiate between rotation and translation

motion intent in a collaborative object-positioning scenario [80]. The first algorithm relies on degree-

of-freedom (DOF) switching where the human explicitly specifies his/her intent (rotation or translation)

and the cobot acts such that the right DOF are varied or fixed. In another algorithm, “Partner-that-

follows”, Wojtara et al. interpreted force as translation and torque as rotation intent above the human's

axis [80]. The results section is used to assess the different algorithms proposed and compare them. All

the algorithms present a reliable way of controlling a cobot for co-manipulation. However, there is no

evolutionary element that allows the cobot to adjust with time to its human partner and the algorithm is

very human-led. However, the work of Wojtara et al. is the closest to industrial feasibility due to its

reliability and predictability [80].

As the number of potential directions of motion increase, it becomes difficult to manually toggle

between them. Dumora et al. used learning algorithms to map from sensed forces to required direction

of motion [81]. A Naive Bayes classifier is trained with the input vector of static forces on hand-held

nob, and the output being the intent of direction of motion. The cobot then provides compliance in the

intended direction.

Reactive compliance produces reliable results, which increases the level of trust the operator has in

the cobot. However, since the cobot only moves under the influence of the operator, he still carries a

mental and physical burden. To decrease this burden, the deeper understanding of the human intent and

goal are needed in order to take a more proactive role.

3.3.2. Proactive Compliance: Predicting the Human's Intent

Researchers have worked on deepening the cobot's understanding of the human's exerted forces to

behave in a more proactive manner. The challenge in this degree of compliance is the accuracy of the

inferences made from the exerted forces and the validity of their utilisation. For example, Li et al. used

force to estimate desired target positions [82]. Estimating the human's desired target position decreases

the amount of force he/she should exert as the cobot takes a more proactive role. This is achieved by

integrating the predicted motion intent of the human into an impedance controller. The algorithm,

however, assumes that the human's intended motion path is smooth and continuous. Therefore, a sharp

change in intent results in higher needed torque and more time than a regular impedance controller.

Lichiardopol et al. worked on decreasing the physical load on the human while assigning the cognitive

responsibility to him/her [25], i.e. the human guides the path of the co-manipulation task with minimal

exerted force. They assumed that the object's weight is unknown and potentially time-varying.

Therefore, the algorithm estimates the force the human is applying based on the cobot’s control torque

and the position change. Then, the cobot amplifies its torque to decrease the estimated human exerted

force. Moreover, the mentioned estimation and amplification steps happen in periodic cycles to cater

for changing object weight.

Incorporating more intelligence and inference/prediction abilities in cobot programs decreases the

physical and mental load on the operator. However, it also increases the probability of failure and

unexpected cobot motions. Therefore, a more clear-cut between autonomy and reactive compliance

would potentially avoid uncertainty and relieve the human of burden at the same time.

3.3.3. Mixed-Initiative Compliance: Trading-off Between the Cobot's and Human's Plans

A cobot has a goal path or position and acts autonomously to fulfil the goal. When an operator exerts

force on the cobot, the system assesses how autonomous it should be as opposed to compliant. In some

cases, the switch between the two modes is clear-cut, while in other cases the trade-off is smooth. The

trade-off can be done by adjusting the stiffness values in impedance control or by weighting the

autonomous and compliant components to achieve a combined result.

For example, consider the case where a cobot knows a predefined path while the human's intended

path does not fully align with it. In such a case, the cobot must know when to favour its own path and

when to switch to being compliant to the human, i.e., when to use its control torque input and when to

use the human's applied control force. Li et al. solved this using a game theoretic approach in which

the reliance on the two control inputs is weighted [83]. The weights are adjusted to minimise the

difference between the applied human force and the “optimal human force” given the current motion

direction. Briefly, when the applied human force matches the pseudo-force applied in the direction of

motion, the cobot relies more on its own controllers to maintain the direction of motion. However, when

the human force changes and isn't aligned with the current direction of motion, the cobot becomes

compliant and relies more on the forces to move rather than on its torques. This is similar to an

impedance controller with autonomously varying damping and stiffness. The proposed algorithm

creates smoother compliant motion while relieving the human from the continuous needed effort to

push the cobot (Figure 5).

Figure 5: Results from [83] showing that path is smoothest when a cobot switches modes between compliant and

autonomous. The switching occurs according to the human's exerted force with respect to the expected path. When

the force is in accordance with the path, the cobot tends to autonomy. When the force opposes the path, the cobot

tends to compliance.

However, in an industrial scenario, an operator will perform similar compliant motions for numerous

times. The algorithm can also incorporate a learning element that compiles observed motion patterns

and seeks to reproduce them while also being flexible to deviate from learned paths according to the

human's current plans. An example scenario is co-moving a heavy object from Zone A and performing

a precise positioning in Zone B. When approaching the object of an uncertain position, the human would

naturally lead the cobot since he/she is equipped with better perception skills that allow more precise

positioning. Similarly, the human would tend to take the lead when precisely positioning the object in

Zone B. However, moving between zones can be done by the cobot after being led a few times by the

human. Rozo et al. implemented a “learning from demonstration” algorithm that learns cobot stiffness

from a set of kinaesthetic demonstrations [84]. The demonstrations are parametrised according to the

position of objects, obstacles and the human and represented as a Gaussian Mixture Model (GMM).

This algorithm proved more robust against unobserved positions and varying forces exerted by the

human, as opposed to control algorithms with fixed stiffness.

Agravante et al. combined reactive and proactive behaviours by relying on both haptic and visual

inputs [85]. The task handled is co-lifting a table while keeping a ball on it. The impedance controller

which relies on haptic information, i.e. the forces sensed from the human, provides compliant behaviour

in all 6 DOF. The vision controller only controls 2 DOF (z and φx) such that the ball is “attracted” to

the centre of the table. In the case of intent conflict, the impedance parameters are adjusted such that

the cobot becomes more compliant and less stiff. Sheng et al. also merged proactive and reactive

behaviours [86]. In the problem, a cobot has to grasp a table side (gross motion) and then co-lift it with

a human such that it remains horizontal (fine motion). The cobot learns how to approach and grasp the

table using LfD. When the cobot successfully holds the table, is uses an RL-based reactive controller to

keep the table horizontal with the human. A proactive controller predicts the human's position (equal to

the cobot’s required action) in future time steps using a Kalman filter and assuming constant

acceleration. A behaviour gain controller then merges the suggested next-step action from the reactive

and proactive controllers. The integrated algorithm combining the reactive and proactive performed

better than just reactive algorithms. In conclusion, the trade-off degree of compliance provides a balance

between minimising mental and physical load on the operator while also yielding predictable

controllable cobot actions.

Aside from the challenges of designing the communication channel between a human and a cobot,

Unhelkar et al. tackled the issues related to decision making in communication [87]. That includes the

question of if and when to communicate, which relates to the cost and benefit of communication and

the estimation of the human's mental state. They present open questions of how to quantise the cost of

communication and its benefit to decide whether/how communication should be used. Since

communication required explicit involvement from the operator, it can be mentally and physically tiring

in repetitive long industrial tasks. Incorporating flexible autonomy through optimisation or learning,

which will be discussed below, is an alternative.

4. Optimisation

Optimality is a primary goal during industrial design processes (product, process and production line

design) since it ultimately yields a “maximum” profit. The main challenge in HRC scenarios is to

optimise around the human, i.e. modelling and incorporating the human in the cost function. This

subsection reviews the works done on optimising different aspects to yield optimal and semi-optimal

cobot action in different industrial HRC scenarios.

4.1. Modelling different human states

Usually in repetitive non-collaborative industrial scenarios, processes are optimised with regard to

minimising time, waste and maximising quality and profit. Obtained parameters from the optimisation

process are incorporated in programs and control algorithms that dictate cobot actions. In HRC

scenarios, however, the human is a central part of the cobot's surrounding, affecting its performance.

Modelling the human is a challenge due to the high number of factors and their unpredictable variability.

Researchers have attempted to quantify or estimate human factors such as trust, physical load and

mental state using observable and measurable states.

Since ergonomics is a main driver of implementing HRC, much has revolved around producing

cobot behaviour that maximises humans’ physical comfort and health. Modelled human factors related

to the human’s physical state include:

 Static ergonomic posture according to REBA: Busch et al. optimised cobot pose during

handover to achieve human ergonomic posture [88]. They account for left/right handedness and

avoid intimate body parts, all while keeping the human body in a safe comfortable posture

according to the Rapid Entire Body Assessment (REBA).

 Muscle fatigue: Peternel et al. measured human muscle fatigue in order to adjust cobot’s

behaviours such that it handles more physical load and the human takes a more supervisory role

[89]. The cobot does not take on all the physically-loaded tasks from the start since it needs to

learn them from the human first. Hu et al. estimated dynamic human fatigue (varying with time

as the human works more) per assembly action and accordingly distributes tasks between

operator and cobot [90].

 Human joint torques: A key work in optimising co-manipulation for ergonomics is done by

Peternel et al. [7], a follow-up work of [91]. In both, the human's pose is optimised during co-

manipulation or handover task, such that the torque on the human joints are minimised. Table

4 highlights the main differences between the two works. An extension of these works would

be to merge the benefits of both together by mathematically remodelling the problem.

Kim et al. [91] Peternel et al. [7]

Only semi-static forces applied on the human

were accounted for.

Forces obtained from dynamic motion were also

acccounted for.

The centre of pressure (CoP) was measured using

a pressure sensor plate the human stands on.

The CoP was estimated using the weight of held

object.

The forces need to be applied on the human

before they can be minimised.

The forces are predicted and optimised before

applying them on the human.

Can be used in co-manipulation scenarios. Can only be used in handover scenarios in which

the human carries the entire load.

Any force applied on the human by the object or

the cobot can be accounted for.

Only vertical forces applied by weights of the

object held are accounted for.

Table 4: Comparison between [91] and [7].

Figure 6: The force modelling used to calculate the human's joint torques [7]. The model is used to optimise the

cobot’s position such that the joint torques are minimised. Only the held object's weight is accounted for in the

model. Reaction forces from tools, such as a drill, are not accounted for.

Optimising for ergonomics also includes accounting for the human's mental model/state, including:

 Human knowledge of task: A mental model includes the human's knowledge of a task which,

if known, helps the cobot assist only where and when needed. Milliez et al. designed a task

planner that enables a cobot to decide when to instruct the human through a task, when to do

the task itself and when to monitor the human's performance [92]. Their planner accounts for

the human's expertise which is based on successful task attempts. Such a planner is useful in

industrial situations since the cobot can know how much interference in the task is required

depending on operator experience. Devin and Alami designed a framework that estimates the

human's mental states, i.e. the human's knowledge of the environment, plans, progress and goal,

and triggers the cobot to only communicate with new information to the human when needed

[93]. In tasks where several goals are possible, Zhu et al. estimated the goal belief of the human

and optimised their action sequence such that the wrong goal of the highest probability is

eliminated [94]. Several other works studied the preference of humans for proactive (perform

sub-tasks autonomously) versus reactive (perform tasks when triggered or asked for help)

cobots [95, 96].

 Trust in cobot: The mental state also includes a human's emotional state, i.e. stress/trust level.

Sadrfaridpour et al. controlled the cobot joint velocity while accounting for the estimated

human trust level [97]. The trust level is estimated based on the progress of the human along

his path while working alongside the cobot. For instance, a human is moving unusually slowly

is being wary and careful and thus assigned a low trust value. The trust value is then fed into a

non-linear model predictive controller (NMPC) to obtain control inputs. Compared to a

controller that only aims at synchronising the human and cobot’s motions, the trust-integrated

NMPC resulted in a higher trust level and less perceived workload for the co-worker human.

In scenarios where the human and the cobot co-lift a work piece, the human performs better

with a cobot that moves along a path in a biological velocity pattern rather than a fixed velocity

[98]. Huang et al. created an algorithm that slows down its motion to match the human's pace

and task progress [27]. It shows that this is preferable as opposed to a cobot that executed its

motion at a fixed pace and remains idle until the human catches up. Research was also done to

produce legible cobot behaviour, which helps the human anticipate the cobot’s intentions and

increases the trust level [99, 100].

4.2. Balancing between Human and Task Benefits

However, as mentioned earlier, the goal of optimisation from the industry’s standpoint is not merely

to ensure better comfort for the human operator. Task parameters should be selected to minimise loss

and time. Besides accommodating the human operator, the industry is interested in optimising towards

task efficiency, i.e. improving product quality and decreasing production time (which can be estimated

[101]). Faber et al. used CAD information to optimise assembly sequence to achieve low mental and

physical load on the human, and minimise the number of cobot tool switches and human-cobot switches

[102]. Johannsmeier and Haddadin distributed assembly sub-tasks between a human and a cobot as to

minimise workload or energy consumption per subtask [28]. Hawkins et al. predicted human actions

probabilistically to optimally enlist cobot help and minimise wait time [103]. This probabilistic

prediction is based on observations of the human's previous actions and observation reliability and trust.

The advantage of using optimisation is that it yields optimal cobot behaviours. However, an optimal

behaviour may sometimes conflict with the human's plans or preferences. Game theory enables

cooperation between agents (humans and cobots) such that mutual benefit is realised, which is why it

has been utilised to produce rational cobot behaviour accommodating human interest. It combines

intelligence and rationality in persuading one’s goal while considering the plans and benefit of other

agents. Gabler et al. modelled a human-cobot close proximity pick-and-place problem as a two-player

game and uses a Nash Equilibrium to solve a cost function that accounts for travel effort, object

reachability, object preference as well as collision risk [29]. Li et al. used game theory to switch the

cobot role from leading (assuming a predetermined path) to compliant (deflecting from the planned

path) in a co-manipulation task, based on forces exerted by the human [83]. Gombolay et al. extended

a dynamic scheduling algorithm, Tercio, to accommodate human preference, workload and situational

awareness [104], applied in object fetching.

Banziger et al. used a simulation tool in order to optimise task allocation in several collaborative

tasks [105]. The use of a simulation tool allows to calculate several human and task parameters such as

ergonomics and production time. It also allows to measure these parameters in multiple task

distributions, which enables finding the optimal task allocation.

The prevalent limitation with optimisation is that optimisation models are manually designed.

Human states, although can be captured in a model, remain relatively simple. This gives rise to learning

algorithms that allow the modelling of actions and human states automatically learnt from data.

5. Learning

Humans learn new tasks by observing them being done, by trying to do them and by asking questions

and receiving feedback on performance. A human teacher serves to demonstrate a task, answer

questions and provide feedback, all of which do not require programming skills. Researchers have

attempted to enable a learner-teacher relationship between the cobot and the operator due to its

naturalness and wide potential. In HRC, it is advisable to equip the cobot with learning capabilities

since the operator might have to expand its skill set due to unforeseen working circumstances.

Moreover, learning provides a balance between allowing the operator to make decisions first, then

relieving him/her of the mental load as the cobot learns to operate autonomously.

5.1. Learning from Demonstration

LfD is a very popular programming method in HRC due to its apparent intuitiveness and

convenience. Research focus has revolved around capturing demonstrations reliably and easily, and

encoding accurate state-action information to reproduce the task robustly in a new environment.

5.1.1. Recording Demonstrations

Recording or displaying demonstrations can be done in several ways, each with advantages and

disadvantages (Table 5). Aside from human demonstrations, kinaesthetic teaching is the fastest way of

recording a demonstration [106] and is generally preferred by users [107]. Teleoperation is highly

dependent on the device used and it would yield comparable results to kinaesthetic teaching depending

on the design [106].

Method Advantages Disadvantages

Human demonstration, e.g.

[108]: the human records

him/herself doing the task. The

cobot needs to extract object-

goal relations or other useful

information from the observed

demo or relevant human joint

paths to replicate.

Easiest for the human to

perform

Not applicable to scenarios only

done by the cobot (lifting heavy

objects), detecting the human

pose might be inaccurate,

mapping the human pose to

cobot pose is a challenge

(correspondence problem)

Kinaesthetic teaching: the

human holds the cobot and

moves it as required by the task.

The cobot is in compliant mode.

Straight-forward to perform and

setup since compliant mode is a

built-in feature for market

cobots

Is difficult to perform with

bulky or heavy cobots (e.g.

UR10), may generate a shaky

paths, not suitable for high

precision tasks, not suitable

when there are spatial

constraints around the cobot

Teleoperation, e.g. [106]: the

cobot is controlled remotely

using an external device and the

path generated is recorded as

the task demonstration.

Might be intuitive and fun for

some operators, can yield very

smooth and precise paths

depending on the device used,

its sensitivity and calibration

Setting up and calibrating the

device is a lengthy process prior

recording the demonstrations,

causes discomfort for some

operators who find cobot

motion “unpredictable”

User-Interface: the cobot is

controlled using teaching

pendent, whether by joint

movement or end-effector

movement.

Some movements are easier

such as gripper rotation,

predictive and consistent

Not instinctive, takes a long

time, tedious, reaches a lot of

singularities and needs resetting

often

Table 5: Method of recording demonstrations and their advantages and disadvantages.

Other solutions might fall in a grey area between the aforementioned methods. When teaching by

kinaesthetic demonstration, the human is often in an uncomfortable position moving the cobot and

teaching the cobot's path causing unnecessary jerks. Also, only the trajectory knowledge is transferred

and not stiffness information. Therefore, Yang et al. presented a hand bracket interface that allows a

human to naturally and comfortably move a cobot [109]. Moreover, electromyography (EMG) signals

are measured from the human's muscles which are transferred to the cobot as stiffness information for

the impedance control and as open/close commands for the gripper state control. However, with their

current hardware design (Figure 7), the cobot must have two arms. Different methods can also be used

concurrently in the same system, to learn different aspects of the task [110]. This depends on the

demonstration encoding requirements and the pros and cons of the different methods.

Figure 7: Demonstration-capturing interface designed by [109].

5.1.2. Encoding Information from Demonstrations

LfD algorithms differ in what information they encode from the demonstrations, making it difficult

to design one that caters for all expected variability in the environment and capture all requirements.

Encodings can be motion-level or task-level. Motion-level encodings include:

 Motion with respect to obstacles: Ghalamzan and Ragaglia encoded obstacle presence from

demonstrations, so that the reproduced cobot actions could avoid moving obstacles to reach a

target location [111].

 Motion of two agents (humans or cobots) with respect to each other: Vogt et al. encoded

correlation-based interaction meshes (Figure 8) from one human-human demonstration where

one human led whereas the other followed. Then, they reproduced cobot motion that matches

the human follower's pose with respect to the human leader while avoiding the correspondence

problem [46].

 Constrained position and path with respect to objects and tools: Perez-D'Arpino and Shah

encoded required postural (relative to work pieces) and path constraints for multi-step tasks

[112].

 Compliance level (Stiffness) as a function of path: In a co-manipulation task, Rozo et al.

encoded compliance level (stiffness) given force and position inputs and could therefore

reproduce co-manipulation behaviour with the right stiffness [84].

 Path dependent on position of landmarks: In task-parametrised LfD [113], the path of the cobot

is encoded with respect to multiple landmarks as opposed to one. The importance/relevance of

these landmarks to the path is automatically calculated from the variance of the path between

multiple demonstrations. Task parametrised LfD has been used to generate trajectories for

assembly tasks [114].

Figure 8: Left: Fully connected interaction mesh. Middle: Interaction mesh created using Delaunay triangulation.

Right: Correlation-based interaction mesh from [46]. Figure adapted from [46].

Task-level encodings include:

 Encoding action preconditions and effects: Liang et al. encoded task-level information from

kinaesthetic demonstrations [115]. The task preconditions and effects were extracted and used

to create action models. During run-time, pre-conditions were identified by the cobot and the

suitable action model chosen to create the desired effect.

 Encoding action sequence: Maeda et al. used demonstrations to encode different sequences of

human-robot actions to accomplish the same task [30]. During runtime, a lookup table is used

to identify the most likely sequence followed according to the human's observed actions to

predict and provide the complimentary cobot actions. Also, Hamabe et al. also generated the

task finite state machine (FSM) from a set of demonstrations which was used during runtime

to identify the required supportive action [116].

Other algorithms encode both motion and task-level information. For example, Gu et al. created the

Portable Assembly Demonstration (PAD) system that learns task-level and motion-level skills from

human demonstrations and kinaesthetic teaching, respectively [110]. The system detects parts and tools

and automatically recognises assembly states, actions and parts/tools involved, after observing the

human demonstration. Kinaesthetic teaching was used to learn primitive actions that enabled these

skills. Their system is robust to occlusions and environment changes, and is able to handle complex

assembly tasks such as screwing, wrenching and hammering.

5.1.3. Time Aligning Demonstrations

Time alignment is important when demonstrations and execution are not guaranteed to run exactly

the same rate. Time alignment, such as dynamic time warping (DTW) [46], is used to temporally match

the demonstration with the sequence of states observed so far. However, problems might arise when the

performance velocity differs drastically from demonstration to execution. Therefore, Maeda et al. rely

on phase estimation instead which accommodates different velocities of human motion [117].

5.1.4. Expanding the Demonstration Set

Another challenge in LfD is how to generate enough demonstrations showing the right variability,

as doing so is time consuming. Moreover, how should one make sure that demonstrations are being

generated usefully, and are not being redundant? Forbes et al. relied on a seed demonstration and then

solicited a crowd to edit the demonstration using a GUI for all the scenarios this demonstration would

fail in [118]. Luo et al. used on-line learning to expand the library of demonstrations when required

[119]. Arm reaching motions are encoded as a GMM library, and during run-time, the partial trajectory

is identified in the GMM. A GMR is used to predict the rest of it, allowing the prediction of reaching

target. When a new reaching motion that does not resemble the existing GMM is recognised, the GMM

library grows. Mohan and Bhat presented a growing, multi-modal memory framework that encodes

diverse experiences of the cobot in HRC settings [120]. It recalls past experiences in present context to

plan future action. Their framework contains a perception system that stores object information as well

as an action system that stores motion plans. The two systems interact together and with the Episodic

Memory system that encodes experiences, infers goals and plans.

LfD is a special case of supervised learning, in which a set of truths are given and learned from.

Supervised learning can also be used to map between states and required actions. For example, in [81],

a Naive Bayes classifier was trained to output the direction of cobot compliant motion when given a

vector of static human-applied forces on end effector.

5.2. Reinforcement Learning

RL has been used to teach intelligent robots skills such as walking [121], grasping objects of

irregular shapes [122] and flipping a UAV [123]. Robots are left for extended periods of time training

the RL policy. In some cases, [124], for grasping tasks, several robots are trained at the same time and

knowledge is shared. In an industrial situation, such training time and resources might not be available.

To combat the time limitation, demonstrations are incorporated in RL in order to facilitate and guide

the learning process. Rajeswaran et al. used a human demonstration and RL to teach a robotic hand

dexterous tasks, such as nail hammering [125]. The demonstrations are used to initialise the RL policy,

which facilitates convergence towards optimality. The demonstrations are also augmented in the loss

function so that the converged policy maintains a similarity to them. In [126], the cobot uses active

learning to expand the applicability of a given basic behaviour to convert state A to state B, i.e. perform

a certain task. In other words, given state C, the cobot autonomously explored a set of actions that would

change it to state A so that the basic behaviour can be applied to convert to state B. Moreover, the cobot

autonomously finds suitable perceptual actions that capture useful information about the environment

given the task at hand. Their method was also integrated within a GUI that allows the user to easily

program the initial basic behaviour [127].

In HRC cases where a human is part of the cobot's environment (observed states) specifically,

standard (or “vanilla”) RL is used since the operator cannot reasonably complete the numerous learning

iterations with the cobot. In [26], cross-training (in which the human and the cobot switch roles during

the training process to facilitate learning) is used to learn the reward function for the cobot's

collaborative actions. Gu et al. used RL to collaboratively balance a table with a human. The reward,

rather than being human feedback, is the change of slope of the table [128]. Sheng et al. added to that a

proactive element to predict the human's intention and varies the table's slope accordingly [86].

6. Discussion and Conclusion

6.1. Recommendations for Industrial Parties

Different programming features enable different degrees and forms of cobot autonomy. As cobot

autonomy increases, an operator is more likely to feel unease due to the cobot's decreased predictability.

However, as the cobot autonomy decreases, the operator is required to make decisions on behalf of

both, which increases the mental workload. Therefore, one programming feature is not strictly better

than the other, but can be mixed to exploit their benefits while negating, or limiting, their drawbacks.

The programming feature supported should also be chosen in light of industrial scenario complexity

and the operator's knowledge of the task.

Communication-based programming, where an operator commands or designs the cobot's program

through communication mediums, gives a level of direct authority from the operator. Whether that is

desirable or not depends on the complexity of the task, the knowledge of the operator and the industrial

party's choice. However, it would certainly increase an operator's trust in a cobot and the willingness to

work alongside it. This would aid in the introduction and normalisation of cobots in manufacturing.

However, communication mediums vary drastically in intuitiveness and reliability. The following are

recommendations regarding communication features:

 Attempting to use natural speech and gesture communication in an industrial environment is

problematic since there is not enough industry-specific data to train models. Therefore, until

natural speech and gesture understanding reaches a reliable level for industrial use, it is

advisable to stick to a fixed set of verbal or non-verbal commands which are easier to recognise.

However, issuing such commands should not be in each task iteration, since that would be

mentally and physically tedious on the operator. But rather, that should be in special cases such

as error handling. Moreover, such a communication scheme is especially suitable for

Independent and Simultaneous scenarios in which the action sequence is more or less fixed and

only occasional interference in required.

 A UI is essential during the operation of a cobot in different scenarios, due to the high chance

of needed human interference. UIs are used to pre-specify an action sequence, or trigger an

action and specify parameters on-the-fly. If other technologies are used to create/alter the

cobot's program, a UI is still necessary to override any of them since it is the most reliable

means of controlling the cobot.

 Haptics, coupled with the compliant mode in cobots, is a reliable method to move the cobot as

desired. It can be especially useful in Supportive scenarios in which the operator can adjust the

cobot's pose as needed. Works such as [25] would ensure that ergonomic benefit is attained

during cobot compliance in supportive scenarios. Works such as [84] would ensure that even

when the cobot is in compliance, it can follow optimal/learnt paths (achieved through other

programming features), to relief the human of repetitively moving the cobot.

In optimisation-based programming, the main decision maker during run-time is the intelligent

strategies the cobot is equipped with. Therefore, the mental load on the operator decreases as the cobot

gains more autonomy. However, that may also increase the operator's level of discomfort and alertness

if the cobot becomes more unpredictable and the operator loses direct authority. The programmer is

needed to redesign optimisation objectives and algorithms when optimisation requirements are changed.

However, optimisation features remain highly requested by industrial parties that seek optimal

performance and outcomes from manufacturing processes. The following are recommendation

regarding incorporating optimisation features in cobot programs:

 Optimising for the benefit of the human's physical health and safety is one of the industrial

priorities. This includes optimising paths for human collision avoidance, which is especially

essential for Independent and Simultaneous tasks. In Sequential (namely handover tasks) and

Supportive tasks, works such as [7] can ensure that the cobot's pose yields a healthy human

posture.

 Accounting for the human's mental model/state might be regarded as an overshoot by industrial

parties. Moreover, since the mental state/model is estimated rather than measured, this presents

unnecessary uncertainties in manufacturing processes, especially when a task-level decision is

being made. However, during a motion-level decisions, giving indications of the cobot's intent

is desirable since it boosts the human's comfort and trust in the cobot. This can be done by

moving in a legible path [100], by communicating through light signals [129], by displaying

facial expressions [130].

 The question of optimal task distribution is key when discussing HRC, especially Simultaneous

and Sequential scenarios. The work in [105] is a good example of distributing tasks according

to human and cobot capabilities, based on offline calculations. The work in [29] is a great

example on assigning cobot tasks according to real-time conditions, such as positions of objects

and the human, while leaving freedom of choice to the human.

Learning-related program features provide autonomy, while enabling the operator to intuitively

program the cobot via learning data. The cobot doesn't need continuous commanding from the operator,

yet behaves while showing awareness to the operator's presence and actions. Moreover, the operator

can choose to alter the cobot's program by providing new training data, such as new demonstrations for

the LfD algorithms. However, as aforementioned, since such algorithms are sensitive to the quality of

data, not all data provided by an operator can yield desirable results. Moreover, since policies generated

by such algorithms are usually probabilistic, unexpected outlier results might occasionally be

encountered. The following are recommendations regarding learning features:

 LfD is the most promising way of teaching a cobot, since it doesn't require a large set of data

to train, can capture a wide range of task dependencies (depending on the chosen LfD

algorithm) and is relatively intuitive for operators to perform. Although the process of using

LfD is intuitive, operators are still encouraged to understand the theory behind it, since there

are many decisions that need to be taken by them that require knowledge of how LfD works.

 Task parametrised LfD is effective at capturing dependencies between different states in the

environment, such as positions of objects and humans, and producing a cobot action

accordingly. For Independent and Simultaneous scenarios, if objects have predetermined

positions, then it is advisable to program the cobot by specifying fixed key points using built-

in options in the cobot's teaching pendant. If positions of objects vary, TP-LfD can cater for

this variance provided that the cobot is able to detect the positions of these objects. TP-LfD can

even cater for position of the human's hand with respect to these objects.

 One problem with LfD is that most algorithms need accurate perception abilities, i.e. the cobot

should detect objects in the environment. This requires at least one camera setup, and being

mindful of avoiding occlusion and maintaining acceptable lighting conditions. Moreover, the

detection of large objects especially with regular shapes and outlines (e.g. plates, boxes,

wheels...) can be reliably done using sticker markers (e.g. ArUco). However, small objects (e.g.

bolts, batteries...) present a real challenge and might need customised image processing or

machine learning vision algorithms. Therefore, it is advisable, given the current state of

computer vision solutions available, to use learning programming features when humans and

large objects are involved in the task, rather than small objects.

 LfD is good when variations in the positions of objects is expected. However, even when it

isn't, LfD can be useful for capturing fixed path constrained motions, such as in [112], or

capturing compliant motion segments, such as in [84].

Regardless of which programming features are used in the cobot’s program, or a combination of

thereof, the cobot’s safety functionalities such as collision avoidance, should always be overlayed on

the program and given priority. Finally, although HRC is becoming increasingly popular in

manufacturing, the question of whether it adds value to a manufacturing process is case-dependent.

Careful considerations for data security should also be taken. This is especially true when considering

computationally expensive algorithms that require data to be transmitted and shared from shop floors

to remote clouds.

6.2. Future Research Directions

The main goal of the technologies, i.e. the programming features, mentioned in sections 3, 4 and 5

is to aid an operator in programming a cobot intuitively and/or to enable the cobot to act flexibly around

the operator. These two program attributes are what expand the applicability of HRC in a wider range

of industrial scenarios. We identify four major research directions that help achieve this goal.

First, researchers should output their work in ready-to-use software and UIs. This requires tighter

collaboration with industrial parties and start-ups that are willing to work on creating products rather

than answer research questions. These solutions need to be and approved by industrial standards to

relieve industries of legal pressures. Moreover, this requires extensive user-studies. That's because

some of the programming algorithms that are deemed intuitive might not be easy to use by operators

that don't understand underlying theory. For example, choosing gestures for human-robot

communication might be thought of as an easy intuitive task. However, gestures chosen should stand

out from other task actions and ensure a high recognition accuracy. Therefore, a systematic, similar to

[50], yet automated way of choosing pre-defined gestures is needed. Moreover, setting up LfD

algorithms, i.e. recording demonstrations, etc., has been done by researchers that understand the

underlying theory of LfD, which helped boost the performance of the algorithms. For operators,

however, LfD algorithms should be presented in a more understandable way. This can be through

providing UIs that explain algorithms and their parameters to enable non-experts to use these algorithms

to train cobots. This can be in the form of guiding and assessing the demonstrations provided for an

LfD algorithm, or by presenting the learnt policy in a user-friendly and editable way through a UI.

Moreover, even though the "learning" in learning algorithms is automated, the operator, i.e. teacher, is

still a main decision maker. He/she records the demonstrations and specifies parameters. For example,

in task-parametrised LfD, the operator needs to specify the landmarks with respect to which the cobot

path will be encoded. If researchers automate more processes in the learning pipeline such that less

decisions are made by the operator, this will yield more optimal results, free of human error. Indeed,

learning-related program features have many capabilities and are still rapidly advancing, but need a

bridge to enable the non-expert user to fully exploit their capabilities. Therefore, in parallel to working

on advancing these algorithm, i.e. increasing training speed, accuracy and applications, it is important

to recognise the specific industrial requirements and creating UIs that allow industrial parties to utilise

these technologies.

Another main research direction is evaluating technologies in experimental setups that are similar to

industrial scenarios. Experimental setups are often overly simplified versions of industrial scenarios.

The main reason behind this is limitations in perception abilities. When perception is irrelevant to the

research question at hand, researchers choose to utilise easy vision solutions such that objects and tools

in the experiment are simplified. Therefore, bringing reliable perception solutions for industrial

scenarios is necessary, such as Zidek et al.'s convolutional neural network for detecting generic

industrial parts (screws, nuts, etc.) [131]. This brings forward the need for more annotated data relevant

to industrial collaborative tasks, potentially through a platform to share and evaluate data sets. However,

a challenge arises since such data related to the industry comes with intellectual property restrictions

that might render it confidential. Alternatively, non-supervised or semi-supervised learning algorithms

that do not require ground labelled data can be utilised. For some applications, such as activity

recognition in an work cell, non/semi-supervised algorithms are proven to perform almost as accurately

as supervised algorithms [132].

The third setback of deploying cobots with intelligent programs is the lack of trust and understanding

from operators and industrial parties. Therefore, a needed research direction, applicable to

communication, optimisation and learning, is to improve the representation of a cobot's mental model.

Most HRC programs can not be briefly summed up and represented in a set of rule-based commands.

This makes understanding errors and predicting behaviour a difficult task for operators. For that, several

research efforts revolved around providing visual indications around cobot motion intent [133], which

presents intent in rough granularity, or verbal description of the cobot's policy [134], which doesn't

operate continuously but only when prompted. Therefore, an advisable direction of research is to display

a cobot's “thought process” and plan real time in a digital-twin user-interface. This should be done after

surveying industrial needs and requirements as to what elements of the cobot's mental model should be

displayed. For example, representing a cobot's mental model can include an interface showing

perception information, i.e. detected objects and recognised human actions. Not only can it show what

is detected, but also more detailed cues concerning the detection accuracy and prominent visual features

that aided with detection. This would help the operator implicitly understand the perception abilities of

the cobot and its limitation. The operator will be able to move and hold objects to maximise the cobot's

perception. This brings forward the need for a flexible ontological representation of HRC tasks. This

ontological representation would be needed to overlay preset rules on probabilistic policies obtained

from optimisation problems or machine learning algorithms. These preset rules would increase the

industry's confidence in non-traditional cobot programs, i.e. those incorporating probabilistic command

outcomes.

6.3. Conclusion

Human-robot collaboration and cobots are emerging technologies in supporting increasingly flexible

and complex manufacturing processes. Among which, intuitive and human-aware programming

technologies that can support cobots in collaborating with human operators more intelligently and

adaptively, are the key enablers. In this topic, research has been actively conducted in recent years. In

this paper, the latest research on cobot programming is summarised. Firstly, an overview of

collaborative industrial scenarios and programming requirements for cobot applications is provided.

Then, the cobot programming technologies are categorised into three features, that are communication,

optimisation and learning features, and relevant research works on the defined features are reviewed in

detail. Communication features enable a collaborative human operator to transfer intent or commands

directly to a cobot, thus affecting its course of action to support collaboration. Optimisation features are

algorithms developed by programmers on-line enabling a cobot to observe its collaborative operator

and behave adaptively according to a pre-modelled optimised policy. Learning features allow a cobot

to learn its own policy after receiving guidance from its collaborative operator. In the review, how

intuitive and human-aware elements are considered in the communication, optimisation and learning

features are elaborated. Furthermore, gaps from viewpoints of industrial requirements and the-state-of-

art research for cobot programming are identified. Finally, future research directions and

recommendations for cobot programming to better support industrial collaborative scenarios are

outlined.

Acknowledgement

This work is part of a project funded by Coventry University, Unipart Powertrain Applications ltd. and

High Speed Sustainable Manufacturing Institute (HSSMI).

References

[1] R. Muller, M. Vette, and O. Mailahn, “Process-oriented task assignment for assembly processes

with human-robot interaction,” Procedia CIRP, vol. 44, pp. 210 – 215, 2016.

[2] M. Rußmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, and M. Harnisch, “Industry

4.0: The future of productivity and growth in manufacturing industries,” Boston Consulting Group, vol.

9, 2015.

[3] A. Bicchi, M. A. Peshkin, and J. E. Colgate, “Safety for physical human–robot interaction,” in

Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer Berlin Heidelberg, 2008, pp.

1335–1348.

[4] Universal Robotics, “Our history,” 2018. [Online]. Available: https: //www.universal-

robots.com/about-universal-robots/our-history/

[5] Robotiq, “Cobots EBook,” 2018. [Online]. Available: https: //blog.robotiq.com/collaborative-robot-

ebook

[6] Robots and robotic devices – Collaborative robots, ISO Standard ISO/TS 15066:2016, 2016.

[7] L. Peternel, W. Kim, J. Babic, and A. Ajoudani, “Towards ergonomic control of human-robot co-

manipulation and handover,” in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics

(Humanoids). IEEE, 2017.

[8] B. Chandrasekaran and J. M. Conrad, “Human-robot collaboration: A survey,” in SoutheastCon

2015. IEEE, 2015, pp. 1–8.

[9] P. A. Lasota, T. Fong, J. A. Shah et al., “A survey of methods for safe human-robot interaction,”

Foundations and Trends® in Robotics, vol. 5, no. 4, pp. 261–349, 2017.

[10] J. Lee, “A survey of robot learning from demonstrations for humanrobot collaboration,” arXiv

preprint arXiv:1710.08789, 2017.

[11] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic assembly: A survey,” Robotics,

vol. 7, no. 2, p. 17, 2018.

[12] H. Liu and L. Wang, “Gesture recognition for human-robot collaboration: A review,” International

Journal of Industrial Ergonomics, vol. 68, pp. 355–367, 2018.

[13] S. A. Green, M. Billinghurst, X. Chen, and J. G. Chase, “Human-robot collaboration: A literature

review and augmented reality approach in design,” International Journal of Advanced Robotic Systems,

vol. 5, no. 1, pp. 1–18, 2008.

[14] A. Bauer, D. Wollherr, and M. Buss, “Human-robot collaboration: A survey,” International

Journal of Humanoid Robotics, vol. 5, no. 1, pp. 47–66, 2008.

[15] S. Haddadin and E. Croft, “Physical human–robot interaction,” in Springer Handbook of Robotics,

B. Siciliano and O. Khatib, Eds. Springer International Publishing, 2016, pp. 1835–1874.

[16] N. Sylla and S. Mehta, “Implementation of collaborative robot applications: A report from the

industrial working group,” High Speed Sustainable Manufacturing Institute, Tech. Rep., 2017.

[17] A. Cesta, A. Orlandini, G. Bernardi, and A. Umbrico, “Towards a planning-based framework for

symbiotic human-robot collaboration,” in 2016 IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA), 2016, pp. 1–8.

[18] T. Munzer, M. Toussaint, and M. Lopes, “Efficient behavior learning in human–robot

collaboration,” Autonomous Robots, vol. 42, no. 5, pp. 1103–1115, 2017.

[19] E. Commission, “Periodic reporting for period 1 - colrobot (collaborative robotics for assembly

and kitting in smart manufacturing),” Tech. Rep., 2018.

[20] BMW Group. (2013) Innovative human-robot cooperation in BMW group production. [Online].

Available: https://www.press.bmwgroup.com/global/article/detail/T0209722EN/innovative-human-

robot-cooperation-in-bmw-group-production?language=en

[21] Nadine Winkelmann, “Human-robot cooperation at Audi,” 2017. [Online]. Available:

https://www.springerprofessional.de/en/manufacturing/production---production-technology/human-

robot-cooperation-at-audi/14221870

[22] KUKA, “Many wrenches make light work: KUKA flexFELLOW will provide assistance during

drive train pre-assembly,” 2016. [Online]. Available: https://www.kuka.com/en-

gb/press/news/2016/10/20160926vwsetztaufmensch-roboter-kollaboration

[23] Universal Robots, “UR10 cobots offer aging workforce solution and reduce relief worker costs for

global car manufacturer.” 2018. [Online]. Available: https://www.universal-robots.com/case-stories/

nissan-motor-company/

[24] Robotics and Automation News, “Innovative Skoda factory introduces human-robot collaboration

with KUKA LBR iiwa,” 2017. [Online]. Available:

https://roboticsandautomationnews.com/2017/02/16/ innovative-skoda-factory-introduces-human-

robot-collaboration-with-kuka-lbr-iiwa/ 11404/

[25] S. Lichiardopol, N. van de Wouw, and H. Nijmeijer, “Control scheme for human-robot co-

manipulation of uncertain, time-varying loads,” in 2009 American Control Conference, 2009, pp. 1485–

1490.

[26] S. Nikolaidis, P. Lasota, R. Ramakrishnan, and J. Shah, “Improved human-robot team performance

through cross-training, an approach inspired by human team training practices,” International Journal

of Robotics Research, vol. 34, no. 14, pp. 1711–1730, 2015.

[27] C.-M. Huang, M. Cakmak, and B. Mutlu, “Adaptive coordination strategies for human-robot

handovers.” in Robotics: Science and Systems, 2015.

[28] L. Johannsmeier and S. Haddadin, “A hierarchical human-robot interaction-planning framework

for task allocation in collaborative industrial assembly processes,” IEEE Robotics and Automation

Letters, vol. 2, no. 1, pp. 41–48, 2017.

[29] V. Gabler, T. Stahl, G. Huber, O. Oguz, and D. Wollherr, “A game theoretic approach for adaptive

action selection in close proximity human robot collaboration,” in IEEE International Conference on

Robotics and Automation, 2017.

[30] G. Maeda, A. Maloo, M. Ewerton, R. Lioutikov, and J. Peters, “Anticipative interaction primitives

for human-robot collaboration,” in 2016 AAAI Fall Symposium Series, 2016.

[31] M. Wongphati, H. Osawa, and M. Imai, “Gestures for manually controlling a helping hand robot,”

International Journal of Social Robotics, vol. 7, no. 5, pp. 731–742, 2015.

[32] C. Lenz, M. Rickert, G. Panin, and A. Knoll, “Constraint task-based control in industrial settings,”

in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3058–3063.

[33] I. E. Makrini, K. Merckaert, D. Lefeber, and B. Vanderborght, “Design of a collaborative

architecture for human-robot assembly tasks,” in 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2017, pp. 1624–1629.

[34] K. R. Guerin, S. D. Riedel, J. Bohren, and G. D. Hager, “Adjutant: A framework for flexible

human-machine collaborative systems,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2014, pp. 1392–1399.

[35] A. Cherubini, R. Passama, P. Fraisse, and A. Crosnier, “A unified multimodal control framework

for human-robot interaction,” Robotics and Autonomous Systems, vol. 70, pp. 106–115, 2015.

[36] H. Ding, M. Schipper, and B. Matthias, “Collaborative behavior design of industrial robots for

multiple human-robot collaboration,” in 2013 44th International Symposium on Robotics (ISR). IEEE,

2013, pp. 1–6.

[37] R. Meziane, M. J.-D. Otis, and H. Ezzaidi, “Human-robot collaboration while sharing production

activities in dynamic environment: SPADER system,” Robotics and Computer-Integrated

Manufacturing, vol. 48, pp. 243–253, 2017.

[38] Robots and robotic devices Safety requirements for industrial robots Part 1: Robots, ISO Standard

ISO 10 218-1:2011, 2011.

[39] A. Realyvasquez-Vargas, K. C. Arredondo-Soto, J. L. Garcia-Alcaraz, B. Y. Marquez-Lobato, and

J. Cruz-Garcia, “Introduction and configuration of a collaborative robot in an assembly task as a means

to decrease occupational risks and increase efficiency in a manufacturing company,” Robotics and

Computer-Integrated Manufacturing, vol. 57, pp. 315–328, 2019.

[40] L. Wang, B. Schmidt, and A. Y. C. Nee, “Vision-guided active collision avoidance for human-

robot collaborations,” Manufacturing Letters, vol. 1, no. 1, pp. 5–8, 2013.

[41] B. Schmidt and L. Wang, “Depth camera based collision avoidance via active robot control,”

Journal of Manufacturing Systems, vol. 33, no. 4, pp. 711–7118, 2014.

[42] Y. Wang, X. Ye, Y. Yang, and W. Zhang, “Collision-free trajectory planning in human-robot

interaction through hand movement prediction from vision,” in 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids), 2017, pp. 305–310.

[43] K. H. Dinh, O. Oguz, G. Huber, V. Gabler, and D. Wollherr, “An approach to integrate human

motion prediction into local obstacle avoidance in close human-robot collaboration,” in 2015 IEEE

International Workshop on Advanced Robotics and its Social Impacts (ARSO), 2015, pp. 1–6.

[44] E. Matsas, G. C. Vosniakos, and D. Batras, “Prototyping proactive and adaptive techniques for

human-robot collaboration in manufacturing using virtual reality,” Robotics and Computer-Integrated

Manufacturing, vol. 50, pp. 168–180, 2018.

[45] P. Gustavsson, A. Syberfeldt, R. Brewster, and L. Wang, “Humanrobot collaboration demonstrator

combining speech recognition and haptic control,” Procedia CIRP, vol. 63, pp. 396–401, 2017.

[46] D. Vogt, S. Stepputtis, S. Grehl, B. Jung, and H. B. Amor, “A system for learning continuous

human-robot interactions from human-human demonstrations,” in IEEE International Conference on

Robotics and Automation (ICRA), 2017, pp. 2882–2889.

[47] C. Pohlt, S. Hell, T. Schlegl, and S. Wachsmuth, “Impact of spontaneous human inputs during

gesture based interaction on a real-world manufacturing scenario,” in Proceedings of the 5th

International Conference on Human Agent Interaction. ACM, 2017, pp. 347–351.

[48] B. Gleeson, K. MacLean, A. Haddadi, E. Croft, and J. Alcazar, “Gestures for industry intuitive

human-robot communication from human observation,” in 2013 8th ACM/IEEE International

Conference on Human-Robot Interaction (HRI), 2013, pp. 349–356.

[49] E. Calisgan, A. Haddadi, H. F. M. V. der Loos, J. A. Alcazar, and E. A. Croft, “Identifying

nonverbal cues for automated human-robot turn-taking,” in 2012 IEEE RO-MAN: The 21st IEEE

International Symposium on Robot and Human Interactive Communication, 2012, pp. 418–423.

[50] P. Barattini, C. Morand, and N. M. Robertson, “A proposed gesture set for the control of industrial

collaborative robots,” in 2012 IEEE ROMAN: The 21st IEEE International Symposium on Robot and

Human Interactive Communication, 2012, pp. 132–137.

[51] Y. Cheng, J. Bao, Y. Jia, Z. Deng, Z. Sun, S. Bi, C. Li, and N. Xi, “Modelling robotic operations

controlled by natural language,” Control Theory and Technology, vol. 15, no. 4, pp. 258–266, 2017.

[52] L. She and J. Chai, “Interactive learning of grounded verb semantics towards human-robot

communication,” in Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), vol. 1, 2017, pp. 1634–1644.

[53] I. Maurtua, I. Fernndez, A. Tellaeche, J. Kildal, L. Susperregi, A. Ibarguren, and B. Sierra, “Natural

multimodal communication for human-robot collaboration,” International Journal of Advanced Robotic

Systems, vol. 14, no. 4, pp. 1–12, 2017.

[54] S. Nakata, H. Kobayashi, T. Yasuda, M. Kumata, S. Suzuki, and H. Igarashi, “Relation between

skill acquisition and task specific human speech in collaborative work,” in 2011 RO-MAN, 2011, pp.

337–342.

[55] H. Kobayashi, T. Yasuda, H. Igarashi, and S. Suzuki, “Language use in joint action: The means of

referring expressions,” International Journal of Social Robotics, pp. 1–9, 2018.

[56] P. A. S. Srimal, M. V. J. Muthugala, and A. B. P. Jayasekara, “Deictic gesture enhanced fuzzy

spatial relation grounding in natural language,” in Fuzzy Systems (FUZZ-IEEE), 2017 IEEE

International Conference on. IEEE, 2017, pp. 1–8.

[57] M. Giuliani and A. Knoll, “Using embodied multimodal fusion to perform supportive and

instructive robot roles in human-robot interaction,” International Journal of Social Robotics, vol. 5, no.

3, pp. 345– 356, 2013.

[58] H. Admoni, T. Weng, B. Hayes, and B. Scassellati, “Robot nonverbal behavior improves task

performance in difficult collaborations,” in 2016 11th ACM/IEEE International Conference on Human-

Robot Interaction (HRI), 2016, pp. 51–58.

[59] D. Shukla, O. Erkent, and J. Piater, “Proactive, incremental learning of gesture-action associations

for human-robot collaboration,” in 2017 26th IEEE International Symposium on Robot and Human

Interactive Communication (RO-MAN), 2017, pp. 346–353.

[60] C. M. Huang and B. Mutlu, “Anticipatory robot control for efficient human-robot collaboration,”

in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2016, pp. 83–

90.

[61] M. Benzeghiba, R. D. Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fissore, P. Laface, A.

Mertins, C. Ris, R. Rose, V. Tyagi, and C. Wellekens, “Automatic speech recognition and speech

variability: A review,” Speech Communication, vol. 49, no. 10, pp. 763 – 786, 2007.

[62] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: realtime multi-person 2D

pose estimation using Part Affinity Fields,” in arXiv preprint arXiv:1812.08008, 2018.

[63] D. Kumicakova, A. Rengevic, M. Cisar, and V. Tlach, “Utilisation of kinect sensors for the design

of a human-robot collaborative workcell,” Advances in Science and Technology Research Journal, vol.

11, no. 4, pp. 270–278, 2017.

[64] M. R. Pedersen, D. L. Herzog, and V. Kruger, “Intuitive skill-level programming of industrial

handling tasks on a mobile manipulator,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2014, pp. 4523–4530.

[65] J. de Gea Fernandez, D. Mronga, M. Gunther, T. Knobloch, M. Wirkus, M. Schroer, M. Trampler,

S. Stiene, E. Kirchner, V. Bargsten, T. Banziger, J. Teiwes, T. Kruger, and F. Kirchner, “Multimodal

sensor-based whole-body control for human-robot collaboration in industrial settings,” Robotics and

Autonomous Systems, vol. 94, pp. 102– 119, 2017.

[66] X. Chen, X. Zhang, Z. Y. Zhao, J. H. Yang, V. Lantz, and K. Q. Wang, “Multiple hand gesture

recognition based on surface EMG signal,” in 2007 1st International Conference on Bioinformatics and

Biomedical Engineering, 2007, pp. 506–509.

[67] S. Nakata, H. Kobayashi, M. Kumata, and S. Suzuki, “Human speech ontology changes in virtual

collaborative work,” in 2011 4th International Conference on Human System Interactions (HSI), 2011,

pp. 363– 368.

[68] G. F. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. A. Fuhlbrigge, “Easy robot

programming concepts: An industrial perspective,” in 2013 IEEE International Conference on

Automation Science and Engineering (CASE), 2013, pp. 1119–1126.

[69] C. Schou, J. S. Damgaard, S. Bogh, and O. Madsen, “Human-robot interface for instructing

industrial tasks using kinesthetic teaching,” in 2013 44th International Symposium on Robotics (ISR).

IEEE, 2013, pp. 1–6.

[70] C. Schou, R. S. Andersen, D. Chrysostomou, S. Bogh, and O. Madsen, “Skill-based instruction of

collaborative robots in industrial settings,” Robotics and Computer-Integrated Manufacturing, vol. 53,

pp. 72–80, 2018.

[71] F. Steinmetz and R. Weitschat, “Skill parametrization approaches and skill architecture for human-

robot interaction,” in 2016 IEEE International Conference on Automation Science and Engineering

(CASE), 2016, pp. 280–285.

[72] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bgh, V. Kruger, and O. Madsen,

“Robot skills for manufacturing: From concept to industrial deployment,” Robotics and Computer-

Integrated Manufacturing, vol. 37, pp. 282 – 291, 2016.

[73] F. Steinmetz, A. Wollschlager, and R. Weitschat, “RAZER: A HRI for visual task-level

programming and intuitive skill parameterization,” IEEE Robotics and Automation Letters, vol. 3, no.

3, pp. 1362–1369, 2018.

[74] P. J. Koch, P. D. Marike K. van Amstel, M. A. Thormann, A. J. Tetzlaff, S. Bogh, and D.

Chrysostomou, “A skill-based robot co-worker for industrial maintenance tasks,” Procedia

Manufacturing, vol. 11, pp. 83–90, 2017.

[75] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar: Instructing collaborative

robots with behavior trees and vision,” in 2017 IEEE International Conference on Robotics and

Automation (ICRA), 2017, pp. 564–571.

[76] E. Noohi, M. Zefran, and J. L. Patton, “A model for human-human collaborative object

manipulation and its application to human-robot interaction,” IEEE Transactions on Robotics, vol. 32,

no. 4, pp. 880– 896, 2016.

[77] E. Magrini, F. Flacco, and A. D. Luca, “Control of generalized contact motion and force in physical

human-robot interaction,” in 2015 IEEE International Conference on Robotics and Automation (ICRA),

2015, pp. 2298–2304.

[78] A. Kouris, F. Dimeas, and N. Aspragathos, “A frequency domain approach for contact type

distinction in human-robot collaboration,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.

720–727, 2018.

[79] C. Gaz, E. Magrini, and A. D. Luca, “A model-based residual approach for human-robot

collaboration during manual polishing operations,” Mechatronics, vol. 55, 2018.

[80] T. Wojtara, M. Uchihara, H. Murayama, S. Shimoda, S. Sakai, H. Fujimoto, and H. Kimura,

“Human-robot collaboration in precise positioning of a three-dimensional object,” Automatica, vol. 45,

no. 2, pp. 333–342, 2009.

[81] J. Dumora, F. Geffard, C. Bidard, N. A. Aspragathos, and P. Fraisse, “Robot assistance selection

for large object manipulation with a human,” in 2013 IEEE International Conference on Systems, Man,

and Cybernetics, 2013, pp. 1828–1833.

[82] Y. Li and S. S. Ge, “Human-robot collaboration based on motion intention estimation,”

IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1007–1014, 2014.

[83] Y. Li, K. P. Tee, W. L. Chan, R. Yan, Y. Chua, and D. K. Limbu, “Role adaptation of human and

robot in collaborative tasks,” in 2015 IEEE International Conference on Robotics and Automation

(ICRA), 2015, pp. 5602–5607.

[84] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras, “Learning physical collaborative

robot behaviors from human demonstrations,” IEEE Transactions on Robotics, vol. 32, no. 3, pp. 513–

527, 2016.

[85] D. J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Kheddar, “Collaborative human-

humanoid carrying using vision and haptic sensing,” in 2014 IEEE International Conference on

Robotics and Automation (ICRA), 2014, pp. 607–612.

[86] W. Sheng, A. Thobbi, and Y. Gu, “An integrated framework for human-robot collaborative

manipulation,” IEEE Transactions on Cybernetics, vol. 45, no. 10, pp. 2030–2041, 2015.

[87] V. V. Unhelkar, X. J. Yang, and J. A. Shah, “Challenges for communication decision-making in

sequential human-robot collaborative tasks,” in Workshop on Mathematical Models, Algorithms, and

Human-Robot Interaction at R: SS, 2017.

[88] B. Busch, G. Maeda, Y. Mollard, M. Demangeat, and M. Lopes, “Postural optimization for an

ergonomic human-robot interaction,” in 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2017, pp. 2778–2785.

[89] L. Peternel, N. Tsagarakis, D. Caldwell, and A. Ajoudani, “Adaptation of robot physical behaviour

to human fatigue in human-robot co-manipulation,” in 2016 IEEE-RAS 16th International Conference

on Humanoid Robots (Humanoids), 2016, pp. 489–494.

[90] B. Hu and J. Chen, “Optimal task allocation for human-machine collaborative manufacturing

systems,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1933–1940, 2017.

[91] W. Kim, J. Lee, L. Peternel, N. Tsagarakis, and A. Ajoudani, “Anticipatory robot assistance for

the prevention of human static joint overloading in human-robot collaboration,” IEEE Robotics and

Automation Letters, vol. 3, no. 1, pp. 68–75, 2018.

[92] G. Milliez, R. Lallement, M. Fiore, and R. Alami, “Using human knowledge awareness to adapt

collaborative plan generation, explanation and monitoring,” in 2016 11th ACM/IEEE International

Conference on Human-Robot Interaction (HRI), 2016, pp. 43–50.

[93] S. Devin and R. Alami, “An implemented theory of mind to improve human-robot shared plans

execution,” in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI),

2016, pp. 319–326.

[94] H. Zhu, V. Gabler, and D. Wollherr, “Legible action selection in human-robot collaboration,” in

2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-

MAN), 2017, pp. 354–359.

[95] J. Baraglia, M. Cakmak, Y. Nagai, R. Rao, and M. Asada, “Initiative in robot assistance during

collaborative task execution,” in 2016 11th ACM/IEEE International Conference on Human-Robot

Interaction (HRI), 2016, pp. 67–74.

[96] R. Schulz, P. Kratzer, and M. Toussaint, “Building a bridge with a robot: A system for collaborative

on-table task execution,” in Proceedings of the 5th International Conference on Human Agent

Interaction. ACM, 2017, pp. 399–403.

[97] B. Sadrfaridpour, H. Saeidi, and Y. Wang, “An integrated framework for human-robot

collaborative assembly in hybrid manufacturing cells,” in 2016 IEEE International Conference on

Automation Science and Engineering (CASE), 2016, pp. 462–467.

[98] P. Maurice, M. E. Huber, N. Hogan, and D. Sternad, “Velocitycurvature patterns limit human-

robot physical interaction,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 249–256, 2018.

[99] C. Bodden, D. Rakita, B. Mutlu, and M. Gleicher, “Evaluating intentexpressive robot arm motion,”

in 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-

MAN), 2016, pp. 658–663.

[100] B. Busch, J. Grizou, M. Lopes, and F. Stulp, “Learning legible motion from human–robot

interactions,” International Journal of Social Robotics, vol. 9, no. 5, pp. 765–779, 2017.

[101] S. Pellegrinelli, F. L. Moro, N. Pedrocchi, L. M. Tosatti, and T. Tolio, “A probabilistic approach

to workspace sharing for human-robot cooperation in assembly tasks,” CIRP Annals, vol. 65, no. 1, pp.

57 – 60, 2016.

[102] M. Faber, A. Mertens, and C. M. Schlick, “Cognition-enhanced assembly sequence planning for

ergonomic and productive human–robot collaboration in self-optimizing assembly cells,” Production

Engineering, vol. 11, no. 2, pp. 145–154, 2017.

[103] K. P. Hawkins, N. Vo, S. Bansal, and A. F. Bobick, “Probabilistic human action prediction and

wait-sensitive planning for responsive human-robot collaboration,” in 2013 13th IEEE-RAS

International Conference on Humanoid Robots (Humanoids), 2013, pp. 499–506.

[104] M. Gombolay, A. Bair, C. Huang, and J. Shah, “Computational design of mixed-initiative human-

robot teaming that considers human factors: situational awareness, workload, and workflow

preferences,” The International Journal of Robotics Research, vol. 36, no. 5-7, pp. 597–617, 2017.

[105] T. Banziger, A. Kunz, and K. Wegener, “Optimizing human-robot task allocation using a

simulation tool based on standardized work descriptions,” Journal of Intelligent Manufacturing, pp. 1–

14, 2018.

[106] K. Fischer, F. Kirstein, L. C. Jensen, N. Kruger, K. Kuklinski, M. V. aus der Wieschen, and T. R.

Savarimuthu, “A comparison of types of robot control for programming by demonstration,” in 2016

11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2016, pp. 213–220.

[107] B. Akgun and K. Subramanian, “Robot learning from demonstration: Kinesthetic teaching vs.

teleoperation.”

[108] J. F. Lafleche, S. Saunderson, and G. Nejat, “Robot cooperative behavior learning using single-

shot learning from demonstration and parallel Hidden Markov Models,” IEEE Robotics and Automation

Letters, vol. 4, no. 2, pp. 193 – 200, 2019.

[109] C. Yang, C. Zeng, P. Liang, Z. Li, R. Li, and C. Y. Su, “Interface design of a physical human-

robot interaction system for human impedance adaptive skill transfer,” IEEE Transactions on

Automation Science and Engineering, vol. 15, no. 1, pp. 329–340, 2018.

[110] Y. Gu, W. Sheng, C. Crick, and Y. Ou, “Automated assembly skill acquisition and

implementation through human demonstration,” Robotics and Autonomous Systems, vol. 99, pp. 1 – 16,

2018.

[111] A. M. Ghalamzan and M. Ragaglia, “Robot learning from demonstrations: Emulation learning in

environments with moving obstacles,” Robotics and Autonomous Systems, vol. 101 pp. 45-56, 2018.

[112] C. Perez-D’Arpino and J. A. Shah, “C-learn: Learning geometric constraints from demonstrations

for multi-step manipulation in shared autonomy,” in 2017 IEEE International Conference on Robotics

and Automation (ICRA), 2017, pp. 4058–4065.

[113] S. Calinon, “A tutorial on task-parameterized movement learning and retrieval,” Intelligent

Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

[114] D. A. Duque, F. A. Prieto, and J. G.Hoyos, “Trajectory generation for robotic assembly operations

using learning by demonstration,” Robotics and Computer-Integrated Manufacturing, vol. 57, pp. 292–

302, 2019.

[115] Y. S. Liang, D. Pellier, H. Fiorino, and S. Pesty, “Evaluation of a robot programming framework

for non-experts using symbolic planning representations,” in 2017 26th IEEE International Symposium

on Robot and Human Interactive Communication (RO-MAN), 2017, pp. 1121– 1126.

[116] T. Hamabe, H. Goto, and J. Miura, “A programming by demonstration system for human-robot

collaborative assembly tasks,” in 2015 IEEE International Conference on Robotics and Biomimetics

(ROBIO), 2015, pp. 1195–1201.

[117] G. Maeda, M. Ewerton, G. Neumann, R. Lioutikov, and J. Peters, “Phase estimation for fast action

recognition and trajectory generation in human-robot collaboration,” International Journal of Robotics

Research, vol. 36, no. 13-14, pp. 1579–1594, 2017.

[118] M. Forbes, M. J.-Y. Chung, M. Cakmak, and R. P. Rao, “Robot programming by demonstration

with crowdsourced action fixes,” in Second AAAI Conference on Human Computation and

Crowdsourcing, 2014.

[119] R. Luo, R. Hayne, and D. Berenson, “Unsupervised early prediction of human reaching for

human–robot collaboration in shared workspaces,” Autonomous Robots, vol. 42, no. 3, pp. 631–648,

2018.

[120] V. Mohan and A. A. Bhat, “Joint goal human robot collaboration from remembering to inferring,”

Procedia Computer Science, vol. 123, pp. 579 – 584, 2018.

[121] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, A. Eslami, M.

Riedmiller et al., “Emergence of locomotion behaviours in rich environments,” arXiv preprint

arXiv:1707.02286, 2017.

[122] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic

manipulation with asynchronous off-policy updates,” in 2017 IEEE International Conference on

Robotics and Automation (ICRA), pp. 3389–3396, 2017.

[123] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforcement learning to

aerobatic helicopter flight,” in Advances in neural information processing systems, 2007, pp. 1–8.

[124] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning handeye coordination for robotic

grasping with deep learning and large-scale data collection,” CoRR, vol. abs/1603.02199, 2016.

[125] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine,

“Learning complex dexterous manipulation with deep reinforcement learning and demonstrations,”

arXiv preprint arXiv:1709.10087, 2017.

[126] S. Hangl, V. Dunjko, H. J. Briegel, and J. Piater, “Skill learning by autonomous robotic playing

using active learning and creativity,” arXiv preprint arXiv:1706.08560, 2017.

[127] S. Hangl, A. Mennel, and J. Piater, “A novel skill-based programming paradigm based on

autonomous playing and skill-centric testing,” arXiv preprint arXiv:1709.06049, 2017.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7960754
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7960754

[128] Y. Gu, A. Thobbi, and W. Sheng, “Human-robot collaborative manipulation through imitation

and reinforcement learning,” in 2011 IEEE International Conference on Information and Automation

(ICIA), 2011, pp. 151–156.

[129] G. Tang, P. Webb, and J. Thrower, “The development and evaluation of robot light skin: A novel

robot signalling system to improve communication in industrial humanrobot collaboration,” Robotics

and Computer-Integrated Manufacturing, vol. 56, pp. 85–94, 2019.

[130] M. E. Reyes, I. V. Meza, and L. A. Pineda, “Robotics facial expression of anger in collaborative

humanrobot interaction,” International Journal of Advanced Robotic Systems, vol. 16, no. 1, 2019.

[131] K. Zidek, A. Hosovsky, J. Pitel, and S. Bednar, “Recognition of assembly parts by convolutional

neural networks,” Advances in Manufacturing Engineering and Materials, pp. 281–289, 2019.

[132] D. J. Rude, S. Adams, and P. A. Beling, “Task recognition from joint tracking data in an

operational manufacturing cell,” Journal of Intelligent Manufacturing, vol. 29, no. 6, pp. 1203–1217,

2015.

[133] G. Bejerano, G. LeMasurier, and H. A. Yanco, “Methods for providing indications of robot intent

in collaborative human-robot tasks,” in Companion of the 2018 ACM/IEEE International Conference

on Human-Robot Interaction, 2018, pp. 65–66.

[134] B. Hayes and J. A. Shah, “Improving robot controller transparency through autonomous policy

explanation,” in Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot

Interaction (HRI), 2017, pp. 303–312.

	Cobot Programming cs
	Cobot Programming pdf

