628 research outputs found

    Nonhomogeneous Wavelet Systems in High Dimensions

    Full text link
    It is of interest to study a wavelet system with a minimum number of generators. It has been showed by X. Dai, D. R. Larson, and D. M. Speegle in [11] that for any d×dd\times d real-valued expansive matrix M, a homogeneous orthonormal M-wavelet basis can be generated by a single wavelet function. On the other hand, it has been demonstrated in [21] that nonhomogeneous wavelet systems, though much less studied in the literature, play a fundamental role in wavelet analysis and naturally link many aspects of wavelet analysis together. In this paper, we are interested in nonhomogeneous wavelet systems in high dimensions with a minimum number of generators. As we shall see in this paper, a nonhomogeneous wavelet system naturally leads to a homogeneous wavelet system with almost all properties preserved. We also show that a nonredundant nonhomogeneous wavelet system is naturally connected to refinable structures and has a fixed number of wavelet generators. Consequently, it is often impossible for a nonhomogeneous orthonormal wavelet basis to have a single wavelet generator. However, for redundant nonhomogeneous wavelet systems, we show that for any d×dd\times d real-valued expansive matrix M, we can always construct a nonhomogeneous smooth tight M-wavelet frame in L2(Rd)L_2(R^d) with a single wavelet generator whose Fourier transform is a compactly supported CC^\infty function. Moreover, such nonhomogeneous tight wavelet frames are associated with filter banks and can be modified to achieve directionality in high dimensions. Our analysis of nonhomogeneous wavelet systems employs a notion of frequency-based nonhomogeneous wavelet systems in the distribution space. Such a notion allows us to separate the perfect reconstruction property of a wavelet system from its stability in function spaces

    Exact reconstruction with directional wavelets on the sphere

    Get PDF
    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of the wavelet formalism developed by Antoine & Vandergheynst (1999) and Wiaux et al. (2005). The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation is firstly identified. A scale discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background (CMB) data, such as the imprint of topological defects, in particular cosmic strings, and for their reconstruction after separation from the other signal components.Comment: 22 pages, 2 figures. Version 2 matches version accepted for publication in MNRAS. Version 3 (identical to version 2) posted for code release announcement - "Steerable scale discretised wavelets on the sphere" - S2DW code available for download at http://www.mrao.cam.ac.uk/~jdm57/software.htm

    Convex Optimization In Identification Of Stable Non-Linear State Space Models

    Full text link
    A new framework for nonlinear system identification is presented in terms of optimal fitting of stable nonlinear state space equations to input/output/state data, with a performance objective defined as a measure of robustness of the simulation error with respect to equation errors. Basic definitions and analytical results are presented. The utility of the method is illustrated on a simple simulation example as well as experimental recordings from a live neuron.Comment: 9 pages, 2 figure, elaboration of same-title paper in 49th IEEE Conference on Decision and Contro

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Frames for the solution of operator equations in Hilbert spaces with fixed dual pairing

    Get PDF
    For the solution of operator equations, Stevenson introduced a definition of frames, where a Hilbert space and its dual are {\em not} identified. This means that the Riesz isomorphism is not used as an identification, which, for example, does not make sense for the Sobolev spaces H01(Ω)H_0^1(\Omega) and H1(Ω)H^{-1}(\Omega). In this article, we are going to revisit the concept of Stevenson frames and introduce it for Banach spaces. This is equivalent to 2\ell^2-Banach frames. It is known that, if such a system exists, by defining a new inner product and using the Riesz isomorphism, the Banach space is isomorphic to a Hilbert space. In this article, we deal with the contrasting setting, where H\mathcal H and H\mathcal H' are not identified, and equivalent norms are distinguished, and show that in this setting the investigation of 2\ell^2-Banach frames make sense.Comment: 23 pages; accepted for publication in 'Numerical Functional Analysis and Optimization
    corecore