12,445 research outputs found

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    A semantic enhanced hybrid recommendation approach: A case study of e-Government tourism service recommendation system

    Full text link
    © 2015 Elsevier B.V.All rights reserved. Recommender systems are effectively used as a personalized information filtering technology to automatically predict and identify a set of interesting items on behalf of users according to their personal needs and preferences. Collaborative Filtering (CF) approach is commonly used in the context of recommender systems; however, obtaining better prediction accuracy and overcoming the main limitations of the standard CF recommendation algorithms, such as sparsity and cold-start item problems, remain a significant challenge. Recent developments in personalization and recommendation techniques support the use of semantic enhanced hybrid recommender systems, which incorporate ontology-based semantic similarity measure with other recommendation approaches to improve the quality of recommendations. Consequently, this paper presents the effectiveness of utilizing semantic knowledge of items to enhance the recommendation quality. It proposes a new Inferential Ontology-based Semantic Similarity (IOBSS) measure to evaluate semantic similarity between items in a specific domain of interest by taking into account their explicit hierarchical relationships, shared attributes and implicit relationships. The paper further proposes a hybrid semantic enhanced recommendation approach by combining the new IOBSS measure and the standard item-based CF approach. A set of experiments with promising results validates the effectiveness of the proposed hybrid approach, using a case study of the Australian e-Government tourism services

    A hybrid recommendation approach for hierarchical items

    Full text link
    Recommender systems aim to recommend items that are likely to be of interest to the user. In many business situations, complex items are described by hierarchical tree structures, which contain rich semantic information. To recommend hierarchical items accurately, the semantic information of the hierarchical tree structures must be considered comprehensively. In this study, a new hybrid recommendation approach for complex hierarchical tree structured items is proposed. In this approach, a comprehensive semantic similarity measure model for hierarchical tree structured items is developed. It is integrated with the traditional item-based collaborative filtering approach to generate recommendations. © 2010 IEEE

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    A Review of Movie Recommendation System : Limitations, Survey and Challenges

    Get PDF
    Recommendation System is a major area which is very popular and useful for people to take proper decision. It is a method that helps user to find out the information which is beneficial for the user from variety of data available. When it comes to Movie Recommendation System, recommendation is done based on similarity between users (Collaborative Filtering) or by considering particular user's activity (Content Based Filtering) which he wants to engage with. So to overcome the limitations of collaborative and content based filtering generally, combination of collaborative and content based filtering is used so that a better recommendation system can be developed. Also various similarity measures are used to find out similarity between users for recommendation. In this paper, we have reviewed different similarity measures. Various companies like face book which recommends friends, LinkedIn which recommends job, Pandora recommends music, Netflix recommends movies, Amazon recommends products etc. use recommendation system to increase their profit and also benefit their customers. This paper mainly concentrates on the brief review of the different techniques and its methods for movie recommendation, so that research in recommendation system can be explored

    Hybrid mobile computing for connected autonomous vehicles

    Get PDF
    With increasing urbanization and the number of cars on road, there are many global issues on modern transport systems, Autonomous driving and connected vehicles are the most promising technologies to tackle these issues. The so-called integrated technology connected autonomous vehicles (CAV) can provide a wide range of safety applications for safer, greener and more efficient intelligent transport systems (ITS). As computing is an extreme component for CAV systems,various mobile computing models including mobile local computing, mobile edge computing and mobile cloud computing are proposed. However it is believed that none of these models fits all CAV applications, which have highly diverse quality of service (QoS) requirements such as communication delay, data rate, accuracy, reliability and/or computing latency.In this thesis, we are motivated to propose a hybrid mobile computing model with objective of overcoming limitations of individual models and maximizing the performances for CAV applications.In proposed hybrid mobile computing model three basic computing models and/or their combinations are chosen and applied to different CAV applications, which include mobile local computing, mobile edge computing and mobile cloud computing. Different computing models and their combinations are selected according to the QoS requirements of the CAV applications.Following the idea, we first investigate the job offloading and allocation of computing and communication resources at the local hosts and external computing centers with QoS aware and resource awareness. Distributed admission control and resource allocation algorithms are proposed including two baseline non-cooperative algorithms and a matching theory based cooperative algorithm. Experiment results demonstrate the feasibility of the hybrid mobile computing model and show large improvement on the service quality and capacity over existing individual computing models. The matching algorithm also largely outperforms the baseline non-cooperative algorithms.In addition, two specific use cases of the hybrid mobile computing for CAV applications are investigated: object detection with mobile local computing where only local computing resources are used, and movie recommendation with mobile cloud computing where remote cloud resources are used. For object detection, we focus on the challenges of detecting vehicles, pedestrians and cyclists in driving environment and propose three methods to an existing CNN based object detector. Large detection performance improvement is obtained over the KITTI benchmark test dataset. For movie recommendation we propose two recommendation models based on a general framework of integrating machine learning and collaborative filtering approach.The experiment results on Netix movie dataset show that our models are very effective for cold start items recommendatio
    corecore