9,027 research outputs found

    Improving consistency in AHP decision-making processes

    Full text link
    Decision making in engineering is becoming increasingly complex due to the large number of alternatives and multiple conflicting goals. Powerful decision-support expert systems powered by suitable software are increasingly necessary. In this paper, the multiple attribute decision method known as analytical hierarchy process (AHP), which uses pairwise comparisons with numerical judgments, is considered. Since judgments may lack a minimum level of consistency, mechanisms to improve consistency are necessary. A method to achieve consistency through optimisation is described in this paper. This method has the major advantage of depending on just n decision variables – the number of compared elements – and so is less computationally expensive than other optimisation methods, and can be easily implemented in virtually any existing computer environment. The proposed approach is exemplified by considering a simplified version of one of the most important problems faced by water supply managers, namely, the minimisation of water loss. 2012 Elsevier Inc. All rights reserved.This work has been performed under the support of project IDAWAS, DPI2009-11591 of the Direccionn General de Investigacion del Ministerio de Educacion y Ciencia (Spain) and ACOMP/2011/188 of the Conselleria de Educacion de la Generalitat Valenciana. The first author was supported by Spanish project MTM2010-18539. The third author is also indebted to the Universitat Politecnica de Valencia for the sabbatical leave granted during the first semester of 2011. The use of English in this paper was revised by John Rawlins.Benítez López, J.; Delgado Galván, XV.; Izquierdo Sebastián, J.; Pérez García, R. (2012). Improving consistency in AHP decision-making processes. Applied Mathematics and Computation. 219(5):2432-2441. https://doi.org/10.1016/j.amc.2012.08.079S24322441219

    Hesitant Fuzzy Linguistic Analytic Hierarchical Process With Prioritization, Consistency Checking, and Inconsistency Repairing

    Get PDF
    Analytic hierarchy process (AHP), as one of the most important methods to tackle multiple criteria decision-making problems, has achieved much success over the past several decades. Given that linguistic expressions are much closer than numerical values or single linguistic terms to a human way of thinking and cognition, this paper investigates the AHP with comparative linguistic expressions. After providing the snapshot of classical AHP and its fuzzy extensions, we propose the framework of hesitant fuzzy linguistic AHP, which shows how to yield a decision for qualitative decision-making problems with complex linguistic expressions. First, the comparative linguistic expressions over criteria or alternatives are transformed into hesitant fuzzy linguistic elements and then the hesitant fuzzy linguistic preference relations (HFLPRs) are constructed. Considering that HFLPRs may be inconsistent, we conduct consistency checking and improving processes after obtaining priorities from the HFLPRs based on a linear programming method. Regarding the consistency-improving process, we develop a new way to establish a perfectly consistent HFLPR. The procedure of the hesitant fuzzy linguistic AHP is given in stepwise. Finally, a numerical example concerning the used-car management in a lemon market is given to illustrate the ef ciency of the proposed hesitant fuzzy linguistic AHP method.This work was supported in part by the National Natural Science Foundation of China under Grant 71771156, in part by the 2019 Sichuan Planning Project of Social Science under Grant SC18A007, in part by the 2019 Soft Science Project of Sichuan Science and Technology Department under Grant 2019JDR0141, and in part by the Project of Innovation at Sichuan University under Grant 2018hhs-43

    Pairwise comparison matrices and the error-free property of the decision maker

    Get PDF
    Pairwise comparison is a popular assessment method either for deriving criteria-weights or for evaluating alternatives according to a given criterion. In real-world applications consistency of the comparisons rarely happens: intransitivity can occur. The aim of the paper is to discuss the relationship between the consistency of the decision maker—described with the error-free property—and the consistency of the pairwise comparison matrix (PCM). The concept of error-free matrix is used to demonstrate that consistency of the PCM is not a sufficient condition of the error-free property of the decision maker. Informed and uninformed decision makers are defined. In the first stage of an assessment method a consistent or near-consistent matrix should be achieved: detecting, measuring and improving consistency are part of any procedure with both types of decision makers. In the second stage additional information are needed to reveal the decision maker’s real preferences. Interactive questioning procedures are recommended to reach that goal

    Characterisation of the consistent completion of AHP comparison matrices using graph theory

    Full text link
    [EN] Decision-making is frequently affected by uncertainty and/or incomplete information, which turn decision-making into a complex task. It is often the case that some of the actors involved in decision-making are not sufficiently familiar with all of the issues to make the appropriate decisions. In this paper, we are concerned about missing information. Specifically, we deal with the problem of consistently completing an analytic hierarchy process comparison matrix and make use of graph theory to characterize such a completion. The characterization includes the degree of freedom of the set of solutions and a linear manifold and, in particular, characterizes the uniqueness of the solution, a result already known in the literature, for which we provide a completely independent proof. Additionally, in the case of nonuniqueness, we reduce the problem to the solution of nonsingular linear systems. In addition to obtaining the priority vector, our investigation also focuses on building the complete pairwise comparison matrix, a crucial step in the necessary process (between synthetic consistency and personal judgement) with the experts. The performance of the obtained results is confirmed.Benítez López, J.; Carpitella, S.; Certa, A.; Izquierdo Sebastián, J. (2019). Characterisation of the consistent completion of AHP comparison matrices using graph theory. Journal of Multi-Criteria Decision Analysis. 26(1-2):3-15. https://doi.org/10.1002/mcda.1652S315261-2Benítez, J., Carrión, L., Izquierdo, J., & Pérez-García, R. (2014). Characterization of Consistent Completion of Reciprocal Comparison Matrices. Abstract and Applied Analysis, 2014, 1-12. doi:10.1155/2014/349729Benítez, J., Delgado-Galván, X., Gutiérrez, J. A., & Izquierdo, J. (2011). Balancing consistency and expert judgment in AHP. Mathematical and Computer Modelling, 54(7-8), 1785-1790. doi:10.1016/j.mcm.2010.12.023Benítez, J., Delgado-Galván, X., Izquierdo, J., & Pérez-García, R. (2011). Achieving matrix consistency in AHP through linearization. Applied Mathematical Modelling, 35(9), 4449-4457. doi:10.1016/j.apm.2011.03.013Benítez, J., Delgado-Galván, X., Izquierdo, J., & Pérez-García, R. (2015). Consistent completion of incomplete judgments in decision making using AHP. Journal of Computational and Applied Mathematics, 290, 412-422. doi:10.1016/j.cam.2015.05.023Benítez, J., Delgado-Galván, X., Izquierdo, J., & Pérez-García, R. (2012). Improving consistency in AHP decision-making processes. Applied Mathematics and Computation, 219(5), 2432-2441. doi:10.1016/j.amc.2012.08.079Benítez, J., Izquierdo, J., Pérez-García, R., & Ramos-Martínez, E. (2014). A simple formula to find the closest consistent matrix to a reciprocal matrix. Applied Mathematical Modelling, 38(15-16), 3968-3974. doi:10.1016/j.apm.2014.01.007Beynon, M., Curry, B., & Morgan, P. (2000). The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega, 28(1), 37-50. doi:10.1016/s0305-0483(99)00033-xBozóki, S., Csató, L., & Temesi, J. (2016). An application of incomplete pairwise comparison matrices for ranking top tennis players. European Journal of Operational Research, 248(1), 211-218. doi:10.1016/j.ejor.2015.06.069Bozóki, S., Fülöp, J., & Rónyai, L. (2010). On optimal completion of incomplete pairwise comparison matrices. Mathematical and Computer Modelling, 52(1-2), 318-333. doi:10.1016/j.mcm.2010.02.047Certa, A., Enea, M., Galante, G. M., & La Fata, C. M. (2013). A Multistep Methodology for the Evaluation of Human Resources Using the Evidence Theory. International Journal of Intelligent Systems, 28(11), 1072-1088. doi:10.1002/int.21617Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29(4), 387-405. doi:10.1016/0022-2496(85)90002-1Dong, M., Li, S., & Zhang, H. (2015). Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP. Expert Systems with Applications, 42(21), 7846-7857. doi:10.1016/j.eswa.2015.06.007Ergu, D., Kou, G., Peng, Y., Li, F., & Shi, Y. (2014). Data Consistency in Emergency Management. International Journal of Computers Communications & Control, 7(3), 450. doi:10.15837/ijccc.2012.3.1386Ergu, D., Kou, G., Peng, Y., & Zhang, M. (2016). Estimating the missing values for the incomplete decision matrix and consistency optimization in emergency management. Applied Mathematical Modelling, 40(1), 254-267. doi:10.1016/j.apm.2015.04.047Floricel, S., Michela, J. L., & Piperca, S. (2016). Complexity, uncertainty-reduction strategies, and project performance. International Journal of Project Management, 34(7), 1360-1383. doi:10.1016/j.ijproman.2015.11.007Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. doi:10.1016/s0377-2217(97)00244-0Guitouni, A., & Martel, J.-M. (1998). Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research, 109(2), 501-521. doi:10.1016/s0377-2217(98)00073-3Harker, P. T. (1987). Alternative modes of questioning in the analytic hierarchy process. Mathematical Modelling, 9(3-5), 353-360. doi:10.1016/0270-0255(87)90492-1Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004Homenda, W., Jastrzebska, A., & Pedrycz, W. (2016). Multicriteria decision making inspired by human cognitive processes. Applied Mathematics and Computation, 290, 392-411. doi:10.1016/j.amc.2016.05.041Hsu, W.-K. K., Huang, S.-H. S., & Tseng, W.-J. (2016). Evaluating the risk of operational safety for dangerous goods in airfreights – A revised risk matrix based on fuzzy AHP. Transportation Research Part D: Transport and Environment, 48, 235-247. doi:10.1016/j.trd.2016.08.018Hua, Z., Gong, B., & Xu, X. (2008). A DS–AHP approach for multi-attribute decision making problem with incomplete information. Expert Systems with Applications, 34(3), 2221-2227. doi:10.1016/j.eswa.2007.02.021Karanik, M., Wanderer, L., Gomez-Ruiz, J. A., & Pelaez, J. I. (2016). Reconstruction methods for AHP pairwise matrices: How reliable are they? Applied Mathematics and Computation, 279, 103-124. doi:10.1016/j.amc.2016.01.008Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Systems with Applications, 65, 398-422. doi:10.1016/j.eswa.2016.08.064Liu, S., Chan, F. T. S., & Ran, W. (2016). Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes. Expert Systems with Applications, 55, 37-47. doi:10.1016/j.eswa.2016.01.059Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classification and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5-6), 275-285. doi:10.1002/mcda.1620Massanet, S., Vicente Riera, J., Torrens, J., & Herrera-Viedma, E. (2016). A model based on subjective linguistic preference relations for group decision making problems. Information Sciences, 355-356, 249-264. doi:10.1016/j.ins.2016.03.040Ortiz-Barrios, M. A., Aleman-Romero, B. A., Rebolledo-Rudas, J., Maldonado-Mestre, H., Montes-Villa, L., De Felice, F., & Petrillo, A. (2017). The analytic decision-making preference model to evaluate the disaster readiness in emergency departments: The A.D.T. model. Journal of Multi-Criteria Decision Analysis, 24(5-6), 204-226. doi:10.1002/mcda.1629Pandey, A., & Kumar, A. (2016). A note on ‘‘Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP”. Information Sciences, 346-347, 1-5. doi:10.1016/j.ins.2016.01.054Qazi, A., Quigley, J., Dickson, A., & Kirytopoulos, K. (2016). Project Complexity and Risk Management (ProCRiM): Towards modelling project complexity driven risk paths in construction projects. International Journal of Project Management, 34(7), 1183-1198. doi:10.1016/j.ijproman.2016.05.008Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. doi:10.1016/0022-2496(77)90033-5Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 102(2), 251-318. doi:10.1007/bf03191825Seiti, H., Tagipour, R., Hafezalkotob, A., & Asgari, F. (2017). Maintenance strategy selection with risky evaluations using RAHP. Journal of Multi-Criteria Decision Analysis, 24(5-6), 257-274. doi:10.1002/mcda.1618Shiraishi, S., Obata, T., & Daigo, M. (1998). PROPERTIES OF A POSITIVE RECIPROCAL MATRIX AND THEIR APPLICATION TO AHP. Journal of the Operations Research Society of Japan, 41(3), 404-414. doi:10.15807/jorsj.41.404Srdjevic, B., Srdjevic, Z., & Blagojevic, B. (2014). First-Level Transitivity Rule Method for Filling in Incomplete Pair-Wise Comparison Matrices in the Analytic Hierarchy Process. Applied Mathematics & Information Sciences, 8(2), 459-467. doi:10.12785/amis/080202Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1-29. doi:10.1016/j.ejor.2004.04.028Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1-3), 229-241. doi:10.1016/s0165-0114(83)80082-7van Uden , E. 2002 Estimating missing data in pairwise comparison matrices Texts in Operational and Systems Research in the Face to Challenge the XXI Century, Methods and Techniques in Information Analysis and Decision Making Academic Printing House WarsawVargas, L., De Felice, F., & Petrillo, A. (2017). Editorial journal of multicriteria decision analysis special issue on «Industrial and Manufacturing Engineering: Theory and Application using AHP/ANP». Journal of Multi-Criteria Decision Analysis, 24(5-6), 201-202. doi:10.1002/mcda.1632Wang, T.-C., & Chen, Y.-H. (2008). Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Information Sciences, 178(19), 3755-3765. doi:10.1016/j.ins.2008.05.028Wang, Z.-J., & Tong, X. (2016). Consistency analysis and group decision making based on triangular fuzzy additive reciprocal preference relations. Information Sciences, 361-362, 29-47. doi:10.1016/j.ins.2016.04.047Wang, H., & Xu, Z. (2016). Interactive algorithms for improving incomplete linguistic preference relations based on consistency measures. Applied Soft Computing, 42, 66-79. doi:10.1016/j.asoc.2015.09.058Weiss-Cohen, L., Konstantinidis, E., Speekenbrink, M., & Harvey, N. (2016). Incorporating conflicting descriptions into decisions from experience. Organizational Behavior and Human Decision Processes, 135, 55-69. doi:10.1016/j.obhdp.2016.05.005Xu, Y., Chen, L., Rodríguez, R. M., Herrera, F., & Wang, H. (2016). Deriving the priority weights from incomplete hesitant fuzzy preference relations in group decision making. Knowledge-Based Systems, 99, 71-78. doi:10.1016/j.knosys.2016.01.047Zhang, H. (2016). Group decision making based on multiplicative consistent reciprocal preference relations. Fuzzy Sets and Systems, 282, 31-46. doi:10.1016/j.fss.2015.04.009Zhang, H. (2016). Group decision making based on incomplete multiplicative and fuzzy preference relations. Applied Soft Computing, 48, 735-744. doi:10.1016/j.asoc.2016.07.04

    Improving the process of coal extraction based on the parameter optimization of mining equipment

    Get PDF
    The aim of this paper is to develop and validate methods of choosing the means of the mining face mechanization. This paper analyses existing methods of optimizing processes in mining. It was established that the effectiveness of the performance map of coal field is formed by a group of technological, operational, and economic parameters which can be represented as a vector of solutions. To find the optimal solution, it was suggested to use network models and graphs. The essence of the technique is to represent the input and output (production level, prime cost) resource flows in an organized structure. Regularities of forming technological schemes of coalfield operation with a given level of performance, taking into account the relationship between technological parameters of mining face, operational parameters of the stoping equipment, technical and economic performance are defined. We developed the system for decision- making support, which allows optimizing operational parameters, reducing the production prime cost, and selecting the structure of the mechanized complex of stoping equipment with a specified level of performance. This paper describes approaches that can be used at the design stage of mining face and in the process of operation

    Electronic information sharing in local government authorities: Factors influencing the decision-making process

    Get PDF
    This is the post-print version of the final paper published in International Journal of Information Management. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Local Government Authorities (LGAs) are mainly characterised as information-intensive organisations. To satisfy their information requirements, effective information sharing within and among LGAs is necessary. Nevertheless, the dilemma of Inter-Organisational Information Sharing (IOIS) has been regarded as an inevitable issue for the public sector. Despite a decade of active research and practice, the field lacks a comprehensive framework to examine the factors influencing Electronic Information Sharing (EIS) among LGAs. The research presented in this paper contributes towards resolving this problem by developing a conceptual framework of factors influencing EIS in Government-to-Government (G2G) collaboration. By presenting this model, we attempt to clarify that EIS in LGAs is affected by a combination of environmental, organisational, business process, and technological factors and that it should not be scrutinised merely from a technical perspective. To validate the conceptual rationale, multiple case study based research strategy was selected. From an analysis of the empirical data from two case organisations, this paper exemplifies the importance (i.e. prioritisation) of these factors in influencing EIS by utilising the Analytical Hierarchy Process (AHP) technique. The intent herein is to offer LGA decision-makers with a systematic decision-making process in realising the importance (i.e. from most important to least important) of EIS influential factors. This systematic process will also assist LGA decision-makers in better interpreting EIS and its underlying problems. The research reported herein should be of interest to both academics and practitioners who are involved in IOIS, in general, and collaborative e-Government, in particular

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404

    Land suitability analysis for emerging fruit crops in central Portugal using GIS

    Get PDF
    Fruit production is an important component of agricultural production in Portugal, and it has a positive impact on the economy, especially in rural areas. In recent years, there has been increased investment in so-called ‘emerging crops’. It is agreed that using the crops that are best suited to the soil and climate conditions as well as the socio-economic environment promotes sustainable use in rural areas. The objective of this study is to determine the suitability of different emerging fruit crops for cultivation in the Beira Baixa region based on analysis of soil and climate factors. The pistachio tree (Pistacia vera L.), strawberry tree (Arbutus unedo L.), almond tree (Prunus dulcis (Mill.) DA Webb) and walnut tree (Juglans regia L.) were checked against the biophysical criteria for cultivation. The results were processed using a geographic information system. Analysis was performed using the analytical hierarchy process (AHP). Thus, after dividing the problem into hierarchical levels of decision-making, a pairwise comparison of criteria was performed to evaluate the weights of these criteria based on a scale of importance. Then, the consistency of these operations was validated. The AHP was adequate for evaluation of fruit tree species’ suitability since it enabled integration of several criteria, decision-making and problem resolution. It is essential to be aware of the suitability and resilience of new crops in order to meet the need to adapt to climate change.info:eu-repo/semantics/publishedVersio

    Farming Differentiation in the Rural-urban Interface of the Middle Mountains, Nepal: Application of Analytic Hierarchy Process (AHP)Modeling

    Get PDF
    This article investigates the dominant factors of farming differentiation in the rural-urban interface of the densely populated Kathmandu Valley, using the Analytic Hierarchy Process (AHP) modeling. The rural-urban interface in the Kathmandu Valley is an important vegetable production pocket which supplies a large amount of the vegetables in the city core. While subsistence farming in the rural area is characterized by a system which integrates livestock and forestry with agriculture, the intensification in the urban fringe is characterized by triple crop rotations and market-oriented intensive vegetable production. Seven factors which were supposed to cause farming variation in the interface were incorporated in the AHP framework and then subjected to the farmers’ judgment in distinctly delineated three farming zones. These factors played crucial yet differing roles in different farming zones. Inaccessibility and use of local resources; higher yield and accessibility and agro-ecological consideration and quality production are the key impacting factors of subsistence, commercial inorganic and smallholder organic farming respectively. The quantification of such factors of farming differentiation through AHP is an important piece of information that will contribute in modeling farming in the rural-urban interface of developing countries which are characterized by a high diversity of farming practices and are undergoing a rapid change in the land use pattern
    corecore