551 research outputs found

    Representation learning on relational data

    Get PDF
    Humans utilize information about relationships or interactions between objects for orientation in various situations. For example, we trust our friend circle recommendations, become friends with the people we already have shared friends with, or adapt opinions as a result of interactions with other people. In many Machine Learning applications, we also know about relationships, which bear essential information for the use-case. Recommendations in social media, scene understanding in computer vision, or traffic prediction are few examples where relationships play a crucial role in the application. In this thesis, we introduce methods taking relationships into account and demonstrate their benefits for various problems. A large number of problems, where relationship information plays a central role, can be approached by modeling data by a graph structure and by task formulation as a prediction problem on the graph. In the first part of the thesis, we tackle the problem of node classification from various directions. We start with unsupervised learning approaches, which differ by assumptions they make about the relationship's meaning in the graph. For some applications such as social networks, it is a feasible assumption that densely connected nodes are similar. On the other hand, if we want to predict passenger traffic for the airport based on its flight connections, similar nodes are not necessarily positioned close to each other in the graph and more likely have comparable neighborhood patterns. Furthermore, we introduce novel methods for classification and regression in a semi-supervised setting, where labels of interest are known for a fraction of nodes. We use the known prediction targets and information about how nodes connect to learn the relationships' meaning and their effect on the final prediction. In the second part of the thesis, we deal with the problem of graph matching. Our first use-case is the alignment of different geographical maps, where the focus lies on the real-life setting. We introduce a robust method that can learn to ignore the noise in the data. Next, our focus moves to the field of Entity Alignment in different Knowledge Graphs. We analyze the process of manual data annotation and propose a setting and algorithms to accelerate this labor-intensive process. Furthermore, we point to the several shortcomings in the empirical evaluations, make several suggestions on how to improve it, and extensively analyze existing approaches for the task. The next part of the thesis is dedicated to the research direction dealing with automatic extraction and search of arguments, known as Argument Mining. We propose a novel approach for identifying arguments and demonstrate how it can make use of relational information. We apply our method to identify arguments in peer-reviews for scientific publications and show that arguments are essential for the decision process. Furthermore, we address the problem of argument search and introduce a novel approach that retrieves relevant and original arguments for the user's queries. Finally, we propose an approach for subspace clustering, which can deal with large datasets and assign new objects to the found clusters. Our method learns the relationships between objects and performs the clustering on the resulting graph

    LASAGNE: Locality And Structure Aware Graph Node Embedding

    Full text link
    In this work we propose Lasagne, a methodology to learn locality and structure aware graph node embeddings in an unsupervised way. In particular, we show that the performance of existing random-walk based approaches depends strongly on the structural properties of the graph, e.g., the size of the graph, whether the graph has a flat or upward-sloping Network Community Profile (NCP), whether the graph is expander-like, whether the classes of interest are more k-core-like or more peripheral, etc. For larger graphs with flat NCPs that are strongly expander-like, existing methods lead to random walks that expand rapidly, touching many dissimilar nodes, thereby leading to lower-quality vector representations that are less useful for downstream tasks. Rather than relying on global random walks or neighbors within fixed hop distances, Lasagne exploits strongly local Approximate Personalized PageRank stationary distributions to more precisely engineer local information into node embeddings. This leads, in particular, to more meaningful and more useful vector representations of nodes in poorly-structured graphs. We show that Lasagne leads to significant improvement in downstream multi-label classification for larger graphs with flat NCPs, that it is comparable for smaller graphs with upward-sloping NCPs, and that is comparable to existing methods for link prediction tasks

    Cooperation after War: International Development in Bosnia, 1995 to 1999

    Get PDF
    This paper discusses how predispositions, incentives, the number and heterogeneity of participants, and leadership (Faerman et al. 2001) jointly influenced the international effort to develop Bosnia and Herzegovina. International coalitions, task forces, and advisory groups are increasingly charged with implementing reforms following civil conflict. This requires a complex web of interorganizational relationships among NGOS, donors and host nations at both global and ‘ground’ levels. To better understand development assistance, attention must be paid to the relationships between these varied players. We find that four factors influenced relationships between policy, donor, and implementing organizations; and those strained relationships, in turn, affected development success. The paper draws on interviews, conducted in Bosnia, with 43 development professionals, observation of development meetings in Tuzla and Sarajevo, and review of related documents from international development programs.international development, interorganizational relationships and cooperation

    Features of control systems analysis with discrete control devices using mathematical packages

    Get PDF
    The article contains presentation of basic provisions of the theory of automatic pulse control systems as well as methods of analysis of such systems using the mathematical software widespread in the academic environment. The pulse systems under research are considered as analogues systems interacting among themselves, including sensors, amplifiers, controlled objects, and discrete parts. To describe such systems, one uses a mathematical apparatus of difference equations as well as discrete transfer functions. To obtain a transfer function of the open-loop system, being important from the point of view of the analysis of control systems, one uses mathematical packages Mathcad and Matlab. Despite identity of the obtained result, the way of its achievement from the point of view of user's action is various for the specified means. In particular, Matlab uses a structural model of the control system while Mathcad allows only execution of a chain of operator transforms. It is worth noting that distinctions taking place allow considering transformation of signals during interaction of the linear and continuous parts of the control system from different sides. The latter can be used in an educational process for the best assimilation of the course of the control system theory by students

    Automation of data processing and calculation of retention parameters and thermodynamic data for gas chromatography

    Get PDF
    The analyses of automation patterns is performed and the programming solution for the automation of data processing of the chromatographic data and their further information storage with a help of a software package, Mathcad and MS Excel spreadsheets, is developed. The offered approach concedes the ability of data processing algorithm modification and does not require any programming experts participation. The approach provides making a measurement of the given time and retention volumes, specific retention volumes, a measurement of differential molar free adsorption energy, and a measurement of partial molar solution enthalpies and isosteric heats of adsorption. The developed solution is focused on the appliance in a small research group and is tested on the series of some new gas chromatography sorbents. More than 20 analytes were submitted to calculation of retention parameters and thermodynamic sorption quantities. The received data are provided in the form accessible to comparative analysis, and they are able to find sorbing agents with the most profitable properties to solve some concrete analytic issues
    corecore