78,975 research outputs found

    Integrating Evolutionary Computation with Neural Networks

    Get PDF
    There is a tremendous interest in the development of the evolutionary computation techniques as they are well suited to deal with optimization of functions containing a large number of variables. This paper presents a brief review of evolutionary computing techniques. It also discusses briefly the hybridization of evolutionary computation and neural networks and presents a solution of a classical problem using neural computing and evolutionary computing technique

    EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching from Scratch

    Full text link
    Designing the structure of neural networks is considered one of the most challenging tasks in deep learning, especially when there is few prior knowledge about the task domain. In this paper, we propose an Ecologically-Inspired GENetic (EIGEN) approach that uses the concept of succession, extinction, mimicry, and gene duplication to search neural network structure from scratch with poorly initialized simple network and few constraints forced during the evolution, as we assume no prior knowledge about the task domain. Specifically, we first use primary succession to rapidly evolve a population of poorly initialized neural network structures into a more diverse population, followed by a secondary succession stage for fine-grained searching based on the networks from the primary succession. Extinction is applied in both stages to reduce computational cost. Mimicry is employed during the entire evolution process to help the inferior networks imitate the behavior of a superior network and gene duplication is utilized to duplicate the learned blocks of novel structures, both of which help to find better network structures. Experimental results show that our proposed approach can achieve similar or better performance compared to the existing genetic approaches with dramatically reduced computation cost. For example, the network discovered by our approach on CIFAR-100 dataset achieves 78.1% test accuracy under 120 GPU hours, compared to 77.0% test accuracy in more than 65, 536 GPU hours in [35].Comment: CVPR 201

    Improved detection of Probe Request Attacks : Using Neural Networks and Genetic Algorithm

    Get PDF
    The Media Access Control (MAC) layer of the wireless protocol, Institute of Electrical and Electronics Engineers (IEEE) 802.11, is based on the exchange of request and response messages. Probe Request Flooding Attacks (PRFA) are devised based on this design flaw to reduce network performance or prevent legitimate users from accessing network resources. The vulnerability is amplified due to clear beacon, probe request and probe response frames. The research is to detect PRFA of Wireless Local Area Networks (WLAN) using a Supervised Feedforward Neural Network (NN). The NN converged outstandingly with train, valid, test sample percentages 70, 15, 15 and hidden neurons 20. The effectiveness of an Intruder Detection System depends on its prediction accuracy. This paper presents optimisation of the NN using Genetic Algorithms (GA). GAs sought to maximise the performance of the model based on Linear Regression (R) and generated R > 0.95. Novelty of this research lies in the fact that the NN accepts user and attacker training data captured separately. Hence, security administrators do not have to perform the painstaking task of manually identifying individual frames for labelling prior training. The GA provides a reliable NN model and recognises the behaviour of the NN for diverse configurations

    EDEN: Evolutionary Deep Networks for Efficient Machine Learning

    Full text link
    Deep neural networks continue to show improved performance with increasing depth, an encouraging trend that implies an explosion in the possible permutations of network architectures and hyperparameters for which there is little intuitive guidance. To address this increasing complexity, we propose Evolutionary DEep Networks (EDEN), a computationally efficient neuro-evolutionary algorithm which interfaces to any deep neural network platform, such as TensorFlow. We show that EDEN evolves simple yet successful architectures built from embedding, 1D and 2D convolutional, max pooling and fully connected layers along with their hyperparameters. Evaluation of EDEN across seven image and sentiment classification datasets shows that it reliably finds good networks -- and in three cases achieves state-of-the-art results -- even on a single GPU, in just 6-24 hours. Our study provides a first attempt at applying neuro-evolution to the creation of 1D convolutional networks for sentiment analysis including the optimisation of the embedding layer.Comment: 7 pages, 3 figures, 3 tables and see video https://vimeo.com/23451009

    Using genetic algorithms with grammar encoding to generate neural networks

    Get PDF
    Kitano's approach to neural network design is extended in the sense that not just the neural network structure, but also the values of the weights are coded in the chromosome. Experimental results are presented demonstrating the capability of the technique in the solution of a standard test problem

    Gradient-free activation maximization for identifying effective stimuli

    Full text link
    A fundamental question for understanding brain function is what types of stimuli drive neurons to fire. In visual neuroscience, this question has also been posted as characterizing the receptive field of a neuron. The search for effective stimuli has traditionally been based on a combination of insights from previous studies, intuition, and luck. Recently, the same question has emerged in the study of units in convolutional neural networks (ConvNets), and together with this question a family of solutions were developed that are generally referred to as "feature visualization by activation maximization." We sought to bring in tools and techniques developed for studying ConvNets to the study of biological neural networks. However, one key difference that impedes direct translation of tools is that gradients can be obtained from ConvNets using backpropagation, but such gradients are not available from the brain. To circumvent this problem, we developed a method for gradient-free activation maximization by combining a generative neural network with a genetic algorithm. We termed this method XDream (EXtending DeepDream with real-time evolution for activation maximization), and we have shown that this method can reliably create strong stimuli for neurons in the macaque visual cortex (Ponce et al., 2019). In this paper, we describe extensive experiments characterizing the XDream method by using ConvNet units as in silico models of neurons. We show that XDream is applicable across network layers, architectures, and training sets; examine design choices in the algorithm; and provide practical guides for choosing hyperparameters in the algorithm. XDream is an efficient algorithm for uncovering neuronal tuning preferences in black-box networks using a vast and diverse stimulus space.Comment: 16 pages, 8 figures, 3 table

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    • 

    corecore