527 research outputs found

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    A survey of evaluation platforms for ad hoc routing protocols: a resilience perspective

    Full text link
    Routing protocols allow for the spontaneous formation of wireless multi-hop networks without dedicated infrastructure, also known as ad hoc networks. Despite significant technological advances, difficulties associated with the evaluation of ad hoc routing protocols under realistic conditions, still hamper their maturation and significant roll out in real world deployments. In particular, the resilience evaluation of ad hoc routing protocols is essential to determine their ability of keeping the routing service working despite the presence of changes, such as accidental faults or malicious ones (attacks). However, the resilience dimension is not always addressed by the evaluation platforms that are in charge of assessing these routing protocols. In this paper, we provide a survey covering current state-of-the-art evaluation platforms in the domain of ad hoc routing protocols paying special attention to the resilience dimension. The goal is threefold. First, we identify the most representative evaluation platforms and the routing protocols they have evaluated. Then, we analyse the experimental methodologies followed by such evaluation platforms. Finally, we create a taxonomy to characterise experimental properties of such evaluation platforms.This work is partially supported by the Spanish Project ARENES (TIN2012-38308-C02-01), the ANR French Project AMORES (ANR-11-INSE-010), and the Intel Doctoral Student Honour Programme 2012.Friginal López, J.; Andrés Martínez, DD.; Ruiz García, JC.; Martínez Raga, M. (2014). A survey of evaluation platforms for ad hoc routing protocols: a resilience perspective. Computer Networks. 75(A):395-413. https://doi.org/10.1016/j.comnet.2014.09.010S39541375

    A RPL based adaptive and scalable data-collection protocol module for NS-3 simulation platform

    Get PDF
    International audienceThis paper presents data-collection protocol framework based on RPL (IPv6 Routing Protocol for Low Power and Lossy Networks) for NS-3 (Network Simulator 3) simulation platform. Its design, implementation, simple examples of operations and evaluations will also be demonstrated. The conclusions and future developments are located in the final part of this paper

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Simulation and experimental testbed for adaptive video streaming in ad hoc networks

    Full text link
    [EN] This paper presents a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive method for streaming scalable video (H.264/SVC). For effective adaptation a new cross-layer routing protocol is introduced. This protocol provides an efficient algorithm for available bandwidth estimation. With this information, the video source adjusts its bit rate during the video transmission according to the network state. We also propose a free simulation framework that supports evaluation studies for scalable video streaming. The simulation experiments performed in this study involve the transmission of SVC streams with Medium Grain Scalability (MGS) as well as temporal scalability over different network scenarios. The results reveal that the rate-adaptive strategy helps avoid or reduce the congestion in MANETs obtaining a better quality in the received videos. Additionally, an actual ad hoc network was implemented using embedded devices (Raspberry Pi) in order to assess the performance of the proposed adaptive transmission mechanism in a real environment. Additional experiments were carried out prior to the implementation with the aim of characterizing the wireless medium and packet loss profile. Finally, the proposed approach shows an important reduction in energy consumption, as the study revealed.This paper was performed with the support of the National Secretary of Higher Education, Science, Technology and Innovation (SENESCYT)–Ecuador Government (scholarship 195-2012) and the Multimedia Communications Group (COMM) belong to the Institute of Telecommunications and Multimedia Applications (iTEAM)-Universitat Politècnica de València.Gonzalez-Martinez, SR.; Castellanos Hernández, WE.; Guzmán Castillo, PF.; Arce Vila, P.; Guerri Cebollada, JC. (2016). Simulation and experimental testbed for adaptive video streaming in ad hoc networks. Ad Hoc Networks. 52:89-105. https://doi.org/10.1016/j.adhoc.2016.07.007S891055

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Design and evaluation of a self-configuring wireless mesh network architecture

    Get PDF
    Wireless network connectivity plays an increasingly important role in supporting our everyday private and professional lives. For over three decades, self-organizing wireless multi-hop ad-hoc networks have been investigated as a decentralized replacement for the traditional forms of wireless networks that rely on a wired infrastructure. However, despite the tremendous efforts of the international wireless research community and widespread availability of devices that are able to support these networks, wireless ad-hoc networks are hardly ever used. In this work, the reasons behind this discrepancy are investigated. It is found that several basic theoretical assumptions on ad-hoc networks prove to be wrong when solutions are deployed in reality, and that several basic functionalities are still missing. It is argued that a hierarchical wireless mesh network architecture, in which specialized, multi-interfaced mesh nodes form a reliable multi-hop wireless backbone for the less capable end-user clients is an essential step in bringing the ad-hoc networking concept one step closer to reality. Therefore, in a second part of this work, algorithms increasing the reliability and supporting the deployment and management of these wireless mesh networks are developed, implemented and evaluated, while keeping the observed limitations and practical considerations in mind. Furthermore, the feasibility of the algorithms is verified by experiment. The performance analysis of these protocols and the ability to deploy the developed algorithms on current generation off-the-shelf hardware indicates the successfulness of the followed research approach, which combines theoretical considerations with practical implementations and observations. However, it was found that there are also many pitfalls to using real-life implementation as a research technique. Therefore, in the last part of this work, a methodology for wireless network research using real-life implementation is developed, allowing researchers to generate more reliable protocols and performance analysis results with less effort
    corecore