17 research outputs found

    Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Get PDF
    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks

    Interference-Aware Routing in Wireless Multihop Networks

    No full text
    Nowadays, wireless multihop networks, providing mesh connectivity emerge as alternative network infrastructure for numerous applications such as shared broadband Internet access, monitoring for emergency, medical and security reasons, distributed backup and multimedia applications. Since these networks are highly decentralized and self-organized, routing becomes a critical factor for their performance and efficiency. The work in this thesis focuses on interference-aware routing. Interference is an inherent property of wireless networks determining boundaries for spectrum reuse and directly affecting the network capacity as well as protocol performance. Estimating interference in a wireless network and circumventing its effects is not a trivial task. The amount of interference depends on many factors including the radio propagation environment, spatial node distribution, MAC protocol dynamics. Therefore, adding interference-awareness to the routing protocol decisions is challenging. The first contribution of this thesis is a quantitative comparison of multipath routing protocols proposed for wireless multihop networks.Multipath routing represents a promising alternative to single-path routing in that it enables load balancing and resilience to route failures. We show that multipath routing outperforms single-path in networks with high node density and network load and the use of two, maximum three, paths represents the best tradeoff between routing overhead and performance. Nevertheless, the requirement for efficient data scheduling remains equally important for both multipath and single-path routing protocols. The role of interference in that is critical. Therefore, much of our work addresses interference modeling. We derive an analytical model for the probability that a transmission destined to an arbitrary network node is successful in the presence of interference from other nodes in the network. Our analytical expression for the data loss probability is a function of the network density, node transmission probability, radio propagation environment, and network card hardware. We validate our interference model against experiments in a real testbed, set up for this purpose in our indoor office environment, showing good match of the experimental results with the analytical predictions. Our work concludes with the design of an interference-aware routing metric that explicitly takes interference into account via our analytical derivation. Contrary to measurement-based models, our derivation only requires information that is locally available to the nodes, avoiding all measurement-related pitfalls. We show that its performance compares favorably with those achieved by the state-of-the-art probe-based routing metric. Vermaschte drahtlose Multihop-Netzwerke sind heute als alternative Netzwerk-Strukturen im Aufkommen und finden Einsatz auf Gebieten wie dem gemeinsamen Zugang zu Breitband-Internet, Überwachung medizinischer und sicherheitstechnischer NotfĂ€lle, verteiltes Backup und Multimedia-Anwendungen. Da solche Netzwerke weitgehend dezentralisiert sind und sich selbst organisieren, ist das Routing ein kritischer Faktor in Bezug auf ihre LeistungsfĂ€higkeit und Effizienz. Der Fokus der vorliegenden Dissertation ist das Routing unter BerĂŒcksichtigung von Interferenz. Interferenz ist eine inhĂ€rente Eigenschaft drahtloser Netzwerke, die die Wiederverwendung des Spektrums einschrĂ€nkt und die KapazitĂ€t des Netzwerks als auch die LeistungsfĂ€higkeit des Protokolls direkt beeinflusst. Die Bestimmung und Vermeidung von Interferenz in einem drahtlosen Netzwerk ist keine triviale Aufgabe. Der Umfang der Interferenz hĂ€ngt von mehreren Faktoren wie der Funkwellenausbreitung, der rĂ€umlichen Knotenpunktverteilung und der Dynamik des MACProtokolls ab. Daher ist die BerĂŒcksichtigung von Interferenz in einem Routing-Protokoll eine Herausforderung. Der erste Beitrag dieser Arbeit ist ein quantitativer Vergleich mehrerer Multipath Routing Protokolle, die fĂŒr drahtlose Multihop Netzwerke verwendet werden können. Multipath Routing ist eine vielversprechende Alternative zu Singlepath-Routing, da es den Lastausgleich ermöglicht und die Ausfallsicherheit erhöht wird. Wir zeigen, dass Multipath-Routing in Netzwerken mit hoher Knotendichte und Belastung das Singlepath-Routing ĂŒbertrifft und der Einsatz von zwei, höchstens drei Pfaden der beste Kompromiss zwischen dem Zusatzaufwand durch Routing und der LeistungsfĂ€higkeit ist. Dennoch ist die Anforderung fĂŒr effizienten Datenaustausch an Multipath und Single-path Routing Protokolle gleich hoch. Interferenz spielt hierbei eine kritische Rolle. Ein grosser Teil unserer Arbeit ist daher der Modellierung der Interferenz gewidmet. Wir leiten ein analytisches Modell her, das die Wahrscheinlichkeit einer erfolgreichen Sendung angibt, die fšur einen zufĂ€lligen Netzwerkknoten bestimmt ist und unter dem Einfluss der Interferenz anderer Knoten erfolgt. Unser analytischer Ausdruck fĂŒr dieWahrscheinlichkeit von Datenverlust ist eine Funktion von Netzdichte, Sendewahrscheinlichkeit eines Knotens, Funkwellenausbreitung und Eigenschaften der Netzwerkkarte. Wir validieren unser Interferenz-Modell mitMessungen in einer reellen Testumgebung, die eigens hierfĂŒr in unseren Laborršaumlichkeiten aufgestellt wurde. DieMessergebnisse zeigen eine gute Übereinstimmung mit den analytischen Voraussagen. Diese Arbeit schliesst mit der Erstellung einer Routing-Gewichtung mit expliziter Beršucksichtigung der Interferenz, wie sie analytisch hergeleitet wurde. Im Gegensatz zu Modellen, die auf Messungen basieren, benötigt unsere Herleitung Informationen, die von jedem Knoten lokal erhĂ€ltlich sind, und umgeht ausserdem alle Nachteile, die aus Messungen resultieren. Wir zeigen, dass es leistungsfĂ€higer ist als andere moderne Routing-Gewichtungen, die auf Messungen basieren

    An Integrated Architecture for Synchronous and Asynchronous Distance Learning

    No full text
    Distance learning offers the potentiality of continuing education by eliminating temporal and geographical barriers. Despite extensive research and experimentation efforts in developing synchronous and asynchronous distance learning systems, integration of the concerned systems has not been realized. In this paper we identify the requirements of integrating a synchronous distance learning platform with asynchronous distance learning systems such as Learning Management Systems (LMS) and Educational Brokerage Systems, presenting a novel architecture promoting new learning experiences and encouraging group collaboration. We have developed a prototype integrating the Easy Teach and Learn (ET&L) synchronous distance learning platform with a SCORM-compliant LMS and a brokerage system, showing the feasibility and the applicability of the integrated architecture

    Activity Sensing Floor Control in Multimedia Collaborative Applications

    No full text
    The present paper introduces a novel approach to coordinate access to shared resources in a computer-mediated collaborative session. Our work borrows activity sensing and collision detection concepts from Ethernet-like protocols and delivers a fully distributed concurrency control (floor control) protocol. The control algorithm offers enhanced robustness and can be parameterized for network environments with varying quality of service characteristics. Additionally, it minimizes human intervention by coordinating a session in a fully automated way. To evaluate the protocol performance, we first model the behavior of collaborators in the context of floor control. Subsequently, we use the derived models to develop a simulation tool for our protocol, covering a comprehensive set of interactions seen in real-life collaborative sessions. Our results indicate high throughput and interactive response times for small group sizes. We finally propose minor alterations to the initial design to improve the responsiveness for larger groups
    corecore