
Università degli Studi di Pisa

Dipartimento di Ingegneria Informatica

Dottorato di Ricerca in Ingegneria dell’Informazione

Ph.D. Thesis

Cross-layer Peer-To-Peer Computing
in Mobile Ad Hoc Networks

Giovanni Turi

Supervisor

Prof. Giuseppe Anastasi

Dott. Marco Conti

February 2006

Abstract

The future information society is expected to rely heavily on wireless technology.
Mobile access to the Internet is steadily gaining ground, and could easily end up
exceeding the number of connections from the fixed infrastructure. Picking just
one example, ad hoc networking is a new paradigm of wireless communication for
mobile devices. Initially, ad hoc networking targeted at military applications as well
as stretching the access to the Internet beyond one wireless hop. As a matter of
fact, it is now expected to be employed in a variety of civilian applications. For
this reason, the issue of how to make these systems working efficiently keeps the
ad hoc research community active on topics ranging from wireless technologies to
networking and application systems.

In contrast to traditional wire-line and wireless networks, ad hoc networks are
expected to operate in an environment in which some or all the nodes are mobile,
and might suddenly disappear from, or show up in, the network. The lack of any
centralized point, leads to the necessity of distributing application services and re-
sponsibilities to all available nodes in the network, making the task of developing
and deploying application a hard task, and highlighting the necessity of suitable
middleware platforms.

This thesis studies the properties and performance of peer-to-peer overlay man-
agement algorithms, employing them as communication layers in data sharing ori-
ented middleware platforms. The work primarily develops from the observation
that efficient overlays have to be aware of the physical network topology, in order
to reduce (or avoid) negative impacts of application layer traffic on the network
functioning. We argue that a cross-layer cooperation between overlay management
algorithms and the underlying layer-3 status and protocols, represents a viable al-
ternative to engineer effective decentralized communication layers, or eventually
re-engineer existing ones to foster the interconnection of ad hoc networks with In-
ternet infrastructures. The presented approach is twofold. Firstly, we present an
innovative network stack component that supports, at an OS level, the realization
of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize
overlay management algorithms in unstructured, structured, and publish/subscribe
platforms.

4

To Gaia

Contents

1 Introduction 1
1.1 P2P Computing: history, characteristics and paradigms 2

1.1.1 A brief history . 3
1.1.2 Properties and Issues . 7
1.1.3 Paradigms . 10

1.2 Deploying Services by Overlaying . 11
1.3 Thesis outline . 13

2 An Architecture for Flexible Cross Layering 17
2.1 Introduction . 17
2.2 Architectural Functionalities . 19
2.3 Designing the cross-layer interface . 20
2.4 Using the Cross-layer Interface . 22

2.4.1 The Proto Library . 22
2.4.2 Improving the performance of data transfer 25
2.4.3 Improving the quality of unstructured overlays 27

2.5 Implementation guidelines . 29
2.5.1 Synchronous interactions . 30
2.5.2 Asynchronous interactions . 31

2.6 Conclusions . 32

3 A Cross-Layer Approach for Unstructured P2P Computing 33
3.1 Why Gnutella on ad hoc? . 33
3.2 The Gnutella protocol . 36

3.2.1 State maintenance . 36
3.2.2 Peer discovery, pong caching and queries 38
3.2.3 Performance evaluation . 39
3.2.4 Key issues . 44

3.3 Cross-Layer Gnutella . 45
3.3.1 Peer discovery and link selection 47
3.3.2 Performance evaluation . 48

3.4 Related work . 53
3.5 Conclusions . 53

ii CONTENTS

4 A Cross-Layer Approach for Publish/Subscribe 57
4.1 Introduction and Background . 57

4.1.1 Related Work . 58
4.1.2 Contribution . 58

4.2 Q’s Overlay Network . 59
4.2.1 Connecting publishers and subscribers 60
4.2.2 Reconfiguration . 61
4.2.3 Node Exit and Failure . 63

4.3 Content-Based Filtering through Mobile Code 63
4.3.1 Composition of Filters . 64
4.3.2 Mobility of Filters . 65

4.4 Simulation . 66
4.5 Conclusion . 68

5 Structured P2P Computing 71
5.1 Introduction . 71
5.2 Background on key-based message routing 72
5.3 A case-study: evaluation of Pastry 73

5.3.1 Key-based message routing . 74
5.3.2 State representation . 74
5.3.3 State management . 75
5.3.4 Performance evaluation . 76

5.4 Cross-layering and key-based message routing 79
5.5 Conclusions . 81

6 Laying Tuple Spaces over Structured P2P Platforms 83
6.1 Introduction . 83
6.2 Tuple Space programming . 85

6.2.1 Linda . 85
6.2.2 Overview of Lime . 86

6.3 Merging tuple spaces and key-based routing 91
6.3.1 A case study with Lime . 92

6.4 Discussion and Related Works . 99

7 Conclusions 101
7.1 Concluding remarks . 101
7.2 Future directions . 103

Bibliography 105

List of Figures

1.1 Napster, an example of centralized P2P architecture. 4
1.2 Gnutella, an example of fully decentralized P2P architecture. 5
1.3 Pastry, an efficient message routing substrate. 6

2.1 The ProtoLib framework. 23
2.2 Cross-layer data. 25
2.3 Cross-layer events. 25
2.4 Cross-layer interaction between the network and the transport layer. . 26
2.5 Mean TCP throughput as function of the percentage of misbehaving

nodes. 26
2.6 Event-based cross layer interaction for Gnutella peer discovery. 28
2.7 Comparison of the average path stretch produced by Gnutella and

XL-Gnutella under increasing peer densities. 28
2.8 Schematic representation of a system network stack. 30

3.1 Different overlays on the same physical network. 35
3.2 Gnutella handshaking procedure. 37
3.3 Classification of the average overhead, as a function of the network

size. The bars show the amount of traffic generated by Gnutella and
the routing protocols in each set of scenarios. 39

3.4 Behavior of the Gnutella peer discovery protocol with different rout-
ing schemes, as a function of the network size. 40

3.5 Classification of the average overhead, with patterns of increasing
nodes mobility. The bars show the amount of traffic generated by
Gnutella and the routing protocols in each set of scenarios. 41

3.6 Behavior of the Gnutella peer discovery protocol with different rout-
ing schemes, when nodes move with patterns of increasing mobility. . 42

3.7 Analysis of the effect of network partitions on the behavior of Gnutella
peer discovery procedures. 43

3.8 Cross-layer (XL) architecture used to optimize Gnutella performance. 45
3.9 Analysis of the benefits of cross-layering on the overlay management,

as a function of the network size. 47
3.10 Study of the benefits of cross-layering on Gnutella overlay manage-

ment, when mobility comes into play. 49

iv LIST OF FIGURES

3.11 Cross-layering helps Gnutella overlay in dealing with network partitions. 50
3.12 Cross-layering improves tolerance to high rates of node churns in

Gnutella overlays. 51
3.13 Analysis of the path stretch and query success rate generated by

Gnutella and XL-Gnutella, as a function of increasing peer densities. 52

4.1 Network with three subscribers (S1, S2, and S3) and one publisher
(P). Arrows show the direction of subscriptions (events flow in the
opposite way). One-hop communication links are also shown. 61

4.2 Examples of reconfiguration. a) S1 unsubscribes from D3 and be-
comes a direct consumer of P, while S2 unsubscribes from D4 and
becomes a consumer of D1; b) to improve the topology of the over-
lay network, S1 unsubscribes from D3 and becomes a consumer of
N1, which is activated as dispatcher; c) D3, a dispatcher, starts a
reconfiguration process by unsubscribing from D2 and subscribing to
D1. 62

4.3 Communication between D1 and D2 becomes multi-hop: N3 acts as a
router. The overlay network is reconfigured by D2 that unsubscribes
from D1 and send a SF message to N3, which becomes a dispatcher. . 63

4.4 Propagation and composition of filters. 66
4.5 Delivery ratio of event notifications with 1 publisher and 1 subscriber 67
4.6 Packets per notification with 1 publisher and 1 subscriber 67
4.7 Delivery ratio of event notifications with 1 publisher and 5 subscribers 68
4.8 Packets per notification with 1 publisher and 5 subscribers 68

5.1 Evaluation of Pastry in MANET environments. 78

6.1 Lime architectural overview. 90
6.2 Architectural overview of Lime over CommonAPI compliant KBR

platforms. 92
6.3 Two examples of index updates when peers out tuples in their lo-

cal tuple space. Upon receiving UPDATE messages, peers are able to
store information about remote slices. Peers route UPDATE messages
towards the keys obtained from the new tuples. 93

6.4 Peers look up remote indexes before sending instructions for remotely
executing a primitive. This approach narrows down the set of peers
where the primitive might be executed with success. 94

6.5 Peers use the KBR platform to set up a subscription scheme for reac-
tions and blocking primitives. Reaction descriptors are routed in the
logical space using keys obtained from templates. 95

6.6 Peers periodically replicate on logical neighbors those entries of their
remote indexes associated to keys for which they are root. This ap-
proach enhances remote lookup resiliency upon peer departure. 98

List of Tables

3.1 Gnutella protocol parameters. 38
3.2 Comparison of Gnutella and XL-Gnutella average overlay partitioning

rate under increasing peer densities. 51

6.1 Accessing different portions of the federated tuple space by using
location parameters. In the table, O and L are host identifiers. 88

vi LIST OF TABLES

Chapter 1

Introduction

Mobile ad hoc networks (MANETs) represent complex distributed systems made of
wireless mobile nodes that can freely and dynamically self-organize into arbitrary
and temporary, “ad-hoc” network topologies. This spontaneous form of network-
ing allows people and devices to seamlessly exchange information in areas with no
pre-existing infrastructure, like for example disaster recovery environments. While
early MANET applications and deployments have been military-oriented, civilian
applications are also gaining interest in this emerging form of mobile computing. Es-
pecially in the past few years, with the rapid advances in mobile ad hoc networking
research, MANETs have attracted considerable attention and interests from com-
mercial business industry, as well as standardization communities. The introduction
of new technologies, such as the Bluetooth and IEEE 802.11, greatly facilitates the
deployment of the ad hoc technology outside of military domains, generating a re-
newed and growing interest in the research and development of MANETs for several
applicative scenarios like, for example, in personal area and home networking, law
enforcement and search-and-rescue operations, commercial and educational applica-
tions, and sensor networks.

Currently developed mobile ad hoc systems adopt the approach of not having a
middleware, relying on application developers to write code able to handle all the
services it needs. This constitutes a major complexity/inefficiency in the develop-
ment of MANET applications. Indeed, most of the research in this area concentrated
on enabling technologies (i.e. MAC), and on networking protocols (mainly routing),
while research on middleware platforms for MANETs is still in its infancy [CCL03].

Recently, interesting proposals for MANET middleware appeared in [BCM05]
[ZCME02] [MPR01]. Lime [MPR01] uses tuple space, reactive programming and
mobile agent abstractions, to support coordination between software agents running
on nodes in communication range. XMIDDLE [ZCME02] provides abstractions for
data replication and reconciliation, organizing data as XML document trees, and
helping applications to carry out disconnected operations. REDMAN [BCM05] deals
with the problem of guaranteeing data and service replication in dense MANET
environments, providing algorithms and protocols for the identification and election

2 CHAPTER 1. INTRODUCTION

of replica managers. While these platforms offer different kinds of abstractions and
services, they all rely on a fully decentralized application’s design and messaging
scheme, inspired to the peer-to-peer computational model.

Ad hoc networking shares many concepts, such as distribution and cooperation,
with the peer-to-peer (P2P) computing model [SGF02]. P2P systems are usually
characterized by the absence of a centralized authority that drives the system’s
components, and base their functioning on the self-organization of the entities that
take part to the system by playing a symmetrical role. For these reasons, the
applications best suited for P2P implementation are those where centralization is
not possible, relations are transient, and resources are highly distributed [PC02].
Another key aspect of P2P systems is the ability to provide inexpensive, but at
the same time scalable, fault tolerant and robust computing infrastructures. For
example, file sharing services like Gnutella [KM02], are distributed systems where
the contribution of many participants with small amounts of disk space results in
a very large distributed database. A further example is the SETI@home project
[SET], where users volunteer their CPU resources, making up a large-scale signal
processing infrastructure to support the research of extraterrestrial life.

All the above aspects of P2P computing fit well with the distributed and dynamic
nature of mobile ad hoc networks, where decentralization, intermittent connectiv-
ity, and resource distribution all begin at the network level, where nodes have to
self-organize in a transient communication infrastructure, in order to support user
applications. This duality suggests to investigate the P2P paradigm as a promising
direction towards efficient middleware platforms for MANET environments.

In this Chapter, we recall the characteristics and paradigms of P2P computing
that are of particular relevance in the context of mobile ad hoc networks.

1.1 P2P Computing: history, characteristics and

paradigms

P2P systems appeared on the Internet to support applications that harness the re-
sources of a large number of autonomous participants (called peers). In many cases,
these peers form self-organizing networks that are layered on top of conventional
Internet protocols and have no centralized structure. Inspired by the successes of
early P2P systems such as Napster, Gnutella, and SETI@home, a large and active
research community continues to explore the principles, technologies, and applica-
tions of such systems.

P2P and classical distributed computing are both concerned with enabling re-
source sharing within distributed communities. However, different base assumptions
have led to distinct requirements and technical directions [FI03]. P2P systems have
focused on resource sharing in environments characterized by potentially millions
of users, most with homogeneous desktop systems and low-bandwidth, intermittent

1.1. P2P COMPUTING: HISTORY, CHARACTERISTICS AND PARADIGMS 3

connections to the Internet. As such, the emphasis has been on global fault-tolerance
and massive scalability. In contrast, classical distributed systems have arisen from
collaboration between generally smaller, better-connected groups of users with dif-
ferent resources to share.

Despite these differences, the long-term evolution of classical distributed com-
puting and P2P seems likely to converge at least in some regards, as distributed
systems expand in scale and incorporate more transient services and resources, and
as P2P researchers consider a broader class of applications [FI03].

1.1.1 A brief history

P2P networking has divided research circles. The traditional distributed computing
community views these young technologies as “upstarts with little regard for, or
memory of, the past”; evidence supports this view in some cases. Others welcome
an opportunity to revisit past results, and to gain practical experience with large-
scale distributed algorithms. An early use of the term “peer-to-peer computing” is
in IBM’s Systems Network Architecture documents over 25 years ago, but publicly
came to fore with the rise and fall of Napster [NAP] file sharing application in 1999.

Beyond the Client-Server Model

P2P systems can be contrasted with asymmetric client/server systems, in which
a server – usually a more powerful and better connected machine – runs for long
periods of time and delivers storage and computational resources to some number
of clients. Thus the server emerges as a performance and reliability bottleneck,
which could be mitigated with techniques such as replication, load balancing, or
request routing, and significant investments in high-end machines, high-bandwidth
connectivity, rack space and so forth. All of that, suggests that the support of a
centralized solution is a viable option provided there is an economic incentive or a
business model that justifies capital and administrative expenses.

A natural evolution of this thinking is to include the clients’ resources in the
system, an approach that becomes increasingly attractive as the performance gap
between desktop and server machines narrows, and broadband networks dramat-
ically improve client connectivity. Thus, P2P systems evolve from client/server
systems by removing the asymmetry in roles: clients are also servers that allows
access to their resources, actively participating to the service’ supply. Work (be it
computation, or file sharing) is partitioned between all peers, so that a peer con-
sumes its own resources on behalf of others (acting as a server), while asking other
peers to do the same for its own benefit (acting as a client). As in the real world,
this cooperative model may break down if peers are not provided with incentives to
participate, which in successful stories like Napster or Gnutella [KM02] turned out
to be just the nature of the content being shared.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Napster, an example of centralized P2P architecture.

Yet another viewpoint from which one can dissect these systems is the use of
intermediaries. The Web (and client/server file systems such as NFS and AFS) uses
caches to reduce average latency and networking load, but these caches are typically
arranged statically. P2P systems partition work dynamically among cooperative
peers to achieve locality oriented load balancing. Content distribution systems such
as PAST [RD01b] and Pasta [MPH02] use demand-driven strategies to distribute
data to peers close in the network to that demand.

The classical distributed systems community would claim that many of these
ideas were present in early work on fault tolerant systems in the 1970s. For example
the Xerox Network System’s name service, Grapevine [MSN84], included many traits
mentioned here. Other systems that can be construed as P2P systems include Net
News (NNTP is certainly not client-server) and the Web’s Inter-cache protocol, ICP.
The Domain Name System also includes zone transfers and other mechanisms that
are not part of its normal client/server resolver behavior.

Napster

The Napster [NAP] file-sharing system started in 1999 allowing users to “share”
audio files (MP3s) stored on their own hard drives. In Napster (see Figure 1.1),
peers stored locally their collection of MP3s, while Napster ran a central server
storing only the index of files available within the peer community. To retrieve
a desired song, users issued keyword-based search requests to this central server
and obtained the IP address of peers storing matching files. The user could then
download the desired files directly from one of these peers.

1.1. P2P COMPUTING: HISTORY, CHARACTERISTICS AND PARADIGMS 5

Figure 1.2: Gnutella, an example of fully decentralized P2P architecture.

Clearly, Napster did not come with a “pure” P2P architecture, as only content
storage and exchange were distributed among the peers, while file indexing and
lookup was on a central location administered by Napster (the company). However,
because it dramatically simplified the task of obtaining music on the Internet, Nap-
ster became popular, reaching nearly 50 Million user within the first year of service.
Over time, Napster’s centralized directory became both a severe bottleneck and a
single point of failure for legal, economic, and political attacks; and Napster was
eventually shut down by court order for helping users infringe copyright.

Napster’s success was attributable to online music sharing being a “killer appli-
cation”. Moreover, it demonstrated the potential in harnessing client resources to
satisfy their need for a service. With the demise of Napster, there arose a desire
within the music-sharing community for a fully decentralized service that would not
be susceptible to a similar legal attack. The projects that rose to the challenge stim-
ulated important technical developments in distributed object location and routing,
distributed searching, and content dissemination.

The second generation: full decentralization

Gnutella [KM02] is a distributed search protocol adopted by several file-sharing
applications, which dispensed with the centralized directory distributing also file
indexing and lookup. Gnutella peers locate content sources flooding their neighbor-
hood with search queries messages (see Figure 1.2). Despite measures to limit and
restrict flooding, several studies and user experience found that sometimes the vol-

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Pastry, an efficient message routing substrate.

ume of query and control traffic caused excessive network load,decreasing the chance
of satisfying a given query, as well as the amount of bandwidth left for actual file
transfers.

Other systems for content location, including Freenet [CSWH01], added mech-
anisms to route requests to the node where the content is likely to be, in a best-
effort partitioning of the networks’ content. Systems for file sharing such as Kazaa
[LRW03], as well as recent Gnutella evolutions, added structure to P2P file-sharing
networks by dynamically electing nodes to become super-peers, caching and serving
common queries or content. These schemes take advantage of the observed Zipf-
like distribution of object popularity and mitigate the difficulties of passing queries
through hosts on high latency, low bandwidth, dial-up connections.

The third generation: efficient routing substrates

Although the range of applications for P2P techniques remained limited by the end
of 2001, a common requirement had emerged. In order for each peer to make a
useful contribution to the global service, a reliable way of partitioning workload and
addressing the responsible nodes was needed. Further, the emphasis on scalability,
and the corresponding observation that in global-scale system peers will be join-
ing, failing, and leaving continually, required these functions to be performed with
knowledge of only a fraction of the global state on each peer, maintained with only
a low communication overhead in the underlying network.

These observations inspired a generation of P2P routing substrates that provided
a distributed message passing, object or key location service. The most popular

1.1. P2P COMPUTING: HISTORY, CHARACTERISTICS AND PARADIGMS 7

approaches adopt a virtual address space, in which nodes are assigned a unique
pseudo-random identifier that determines their position in the space (see Figure
1.3). Messages are then routed toward keys in the same address space, and are
delivered eventually to the closest node. According to the way in which applications
use this service, a message destined for a given key represents a request to provide a
given service with respect to that key. As requests’ keys must be mapped on to the
key space pseudo-randomly, these platforms offer effective partitioning of the work
between peers. Different variants of this basic approach differ as to the structure
of information on nodes and the way messages (or sometimes requests for routing
information) are passed between peers.

1.1.2 Properties and Issues

We now survey various properties of P2P computing, exploring aspects that are
present in current systems, as well as some that are still subject of ongoing work.
In each case, we discuss their relevance in the context of mobile and distributed
computing.

Harnessing Resources

The P2P fault model of an unreliable infrastructure and mutually distrustful partic-
ipants leads P2P systems to treat resources as homogeneous and peers as individu-
ally dispensable. Therein lie many of the strengths and weaknesses of the approach.
Key-based routing platforms embody these assumptions in their design. Any node is
equally likely to be responsible for one particular key, so it is assumed to be equally
suitable to carry out a task related to it. Nodes carry similar numbers of keys, so
it is assumed that their resources for storing or managing these keys are also equal.
Peers, however, are unlikely to have similar resources either in quantity or in qual-
ity. Nor are peer resources likely to have similar reliability characteristics. This last
observation is especially true in the case of mobile settings such as ad hoc networks,
where the user population itself is opportunistic, and comes equipped with hand-
held devices with limited resource capabilities. Systems that recognize these facts
may cause benefits in terms of performance and availability. For example, super-
peering [KM02][CRB+03] in file-sharing systems takes advantage of well-connected
nodes to implement distributed caching and indexing schemes.

User Connectivity

The nature of a peer’s network connection is an essential consideration when design-
ing P2P systems for practical use in target user communities. In many contexts,
mean connection quality is low but presents also high variance, due to differences
between dial-up, broadband, and connections from academic or corporate networks.

8 CHAPTER 1. INTRODUCTION

Thus, the scope for generic inter-node communication is severely limited, and appli-
cations must consider the heterogeneity of their peers’ connections. In the case of
MANETs, P2P systems should assume peers connections to be extremely transient
and intermittent, due to both the mobility of the participants, and the nature of
the wireless transmission media, which is prone to unfair access contention, as well
as to environmental interferences.

Scalability

P2P systems often add resources as they add customers. Thus, they should scale (at
least at the computing and storage resource level, if not networking) linearly, or bet-
ter, with the number of peers. Scalability is not a trivial consideration. While signif-
icant work has been done to achieve scalability in terms of latency and performance
of inter-node communication in Internet-like scenarios [RFH+01][CRB+03][RD01a]
[CCR03], MANETs would initially employ P2P systems in small-scale setups (e.g., in
the order of hundreds of nodes), and could then require different scalability proper-
ties, like for example low overhead generation, or tolerance to frequent node churns.

Proximity

Latency is an important consideration when routing in P2P systems. Poor prox-
imity approximation can result in a message bouncing around the network many
times before reaching its final destination, with disastrous effects in constrained en-
vironments such as MANETs. Several distributed applications aim to automate
the gathering of relevant proximity information, for example by estimating point-
to-point communication latency [ZPS00]. Issues of “stretch” (i.e., distance traveled
relative to the underlying network) become increasingly important in data shar-
ing systems, in which large quantities of data must be transferred between peers.
Furthermore, to minimize the load on the network and increase the rate at which
data may be obtained, systems should attempt to store or replicate the information
located near the place it is accessed.

Availability

P2P networks experience a high rate of nodes joining and leaving, both because of
their large dimension and because of the nature of the user communities. Hence,
the system cannot rely on individual peers to maintain any essential state on their
own. For purposes of redundancy, most systems based on efficient routing substrates
attempt to replicate the state at the k nodes with identifiers numerically closest
to the associated key. This replication is maintained by local node cooperation,
despite nodes joining or failing, and offers automatic fail-over provided that routing
tables are correctly maintained. However, as mentioned in [CRB+03], scenarios
with frequent node churns, like mobile environments, may increase the overhead
associated to replication, and vanish its benefits.

1.1. P2P COMPUTING: HISTORY, CHARACTERISTICS AND PARADIGMS 9

Little attention has been paid to the effect of network partitions on systems in
which partially or wholly independent fragments are formed, update their own state,
and then later rejoin. Quorum systems (e.g., [CL99]) have been used to enforce state
consistency between peers updating replicated data [KBC+00], but the overhead of
these schemes is prohibitive. In mobile ad hoc networks, partitions are frequent
events that are caused by the mobility of the participants. Hence P2P systems
designed to operate in such settings are expected to handle partitions as normal
events, nicely tolerating frequent split and rejoin of system fragments.

Decoupling

One important capability of P2P systems, especially in data sharing applications, is
their ability to decouple peers’ interaction. As discussed in [EFGK03] in the case of
publish/subscribe systems, decoupling can be decomposed along the following three
different dimensions:

Identity Peers do not need to know each other a priori in order to interact, as it is
the system to route service messages from “consumers” toward “producers”.
Once a consumer discovers one or more locations of interest for the requested
service, it could establish direct connections in order to use it. In any case,
neither producers nor consumers hold each other references.

Time Peers do not need to be actively participating in the interaction at the same
time, as long as the service is replicated and distributed somewhere in the
system. Picking up data sharing applications as an example, a producer peer
can put some data in system while an interested consumer is disconnected,
and conversely, the consumer might issue queries and retrieve the data when
the original producer is disconnected.

Synchronization The production and consumption of data does not happen in the
main control flow of producers and consumers, and do not therefore happen
in a synchronous manner. This form of decoupling allows a consumer to issue
a query passing a reference to a call-back function. In this way, it could
be asynchronously notified (using an event-based style of interaction) when
somebody in the system produces data that matches the query.

Decoupling the production and consumption of information increases scalability by
removing all explicit dependencies between the interacting participants. In fact,
removing these dependencies strongly reduces coordination and thus synchronization
between the different entities, and makes the resulting communication infrastructure
well adapted to distributed environments that are asynchronous by nature, such as
mobile ad hoc environments [HGM01].

10 CHAPTER 1. INTRODUCTION

1.1.3 Paradigms

This thesis mainly investigates efficient techniques of information exchange among
nodes of a MANET. As discussed before, the “duality” between ad hoc networks and
P2P systems suggests to organize data sharing in a P2P fashion. In this section, we
revisit the major paradigms of P2P information sharing, which will be considered
in the rest of the thesis.

A key challenge to the usability of a P2P data sharing system is implement-
ing efficient techniques for search and retrieval of shared data. The best search
techniques for a system depend on the needs of the distributed application. Some
applications, like for example web caches or archival systems, focus on performance
and availability. These requirements usually come at the expense of flexibility, as
they are met by using indexes that speed up search procedures. In contrast, other
kinds of application focus on flexibility, requiring the ability to issue rich queries
(e.g., regular expressions or logic predicates), and at the same time respect the au-
tonomy of individual peers, for example without imposing the establishment of a
search index. These requirements relax performance and availability assumptions,
tolerating situations in which the data is not retrieved even if actually present in
the system.

Structured data sharing

Structured platforms are such that peers organize themselves in a distributed search
index, which has the function of mapping each piece of data to its exact location,
in a way often similar to a distributed hash table (DHT). In these systems, each
peer maintains only a partial knowledge of the index, but establishes link relation-
ships with other peers to ensure a complete coverage of the search structure (i.e., a
structured overlay). The main idea is to virtually place peers and data on a single
logical space of identifiers, assuming that each peer gets “responsible” about data
that is close in the logical space. This approach is well suited for a subject-based
system’ organization, allowing for lookup procedures that take data identifiers as
input parameters. Various are the proposals in the area of structured P2P comput-
ing. For example, Pastry [RD01a] and Chord [SMLN+03] organize the overlay as
a ring of identifiers, while CAN [RFH+01] uses quad-tree index organization on an
n-dimensional space. All these platforms achieve optimal lookup performances with
logarithmic bounds, and require each node to establish a little number of relation-
ships in the overlay.

Unstructured data sharing

Unstructured platforms are such that peers do not organize a distributed search
index, and are not required to maintain relevant information about shared con-
tent owned by other entities. Peers establish link relationships in a pseudo-random
fashion (i.e., an unstructured overlay), starting from a given entry point, and base

1.2. DEPLOYING SERVICES BY OVERLAYING 11

their search procedures on message flooding among peers. This approach does not
match availability requirements like in the case of structured platforms, but allows
for content-based lookup procedures using regular expressions or logical predicates.
Content-based lookups are directly applied on the published content, and assume
that a large number of peers get hit by search requests, thanks to query propagation
schemes based on flooding. Platforms like Gnutella [KM02] or KaZaa [Ltd01], wit-
ness the flexibility offered by this approach, and the success they had in supporting
large-scale file sharing applications on the Internet.

Event Publish/Subscribe

Alternatively to the above paradigms, modern distributed applications focus the
interaction among their components on a event-based communication model. The
publish/subscribe paradigm provides entities with the ability to express their interest
(i.e., to subscribe) in an event or a pattern of events. When other entities publish
information that match the subscribers interest, the system delivers it to the correct
subscribers in a transparent fashion. In other words, a publish/subscribe platform
implements a “software bus” [EFGK03], where producers publish information and
consumers subscribe to what they want to receive. The information is typically de-
noted by the term event, and the act of delivering it by the term notification. These
platforms provide full decoupling in time, space, and synchronization between the
interacting entities, and their reactive style of communication makes them suitable
for highly dynamic scenarios like MANETs and peer-to-peer systems.

In the context of P2P computing for mobile ad hoc networks, it is advisable to
consider all the above approaches, as they could better support one or the other kind
of application. Furthermore, an evaluation of the capacity and the performance of
existing platforms in MANET environments would provide an important starting
point for further discussion and new proposals.

1.2 Deploying Services by Overlaying

A common characteristic of the aforementioned P2P systems, is that they provide
abstractions for service interactions between peers by means of overlays. In short,
overlays are virtual networks of nodes and links built on top of existing infrastruc-
tures, with the purpose of deploying new services. An overlay may be as simple
as a collection of static IP-in-IP tunnels, or as complex as a full dynamic VPN
(virtual private network). For example, the Resilient Overlay Network (RON) sys-
tem [ABKM01] is composed by sites that collaborate to find “IP level” paths that
are longer than those provided by the infrastructure, but deliver better properties
(such as throughput or loss) at the application level. This goal is achieved by rout-
ing traffic over a set of dynamically created tunnels among peer machines that run
RON instances. Another example is the Internet itself. In principle the Internet is

12 CHAPTER 1. INTRODUCTION

an overlay network that aims at connecting local area networks using the Internet
Protocol (IP).

Introducing new distributed services by overlaying has clear advantages. This
approach allows service deployment without the installation of new hardware equip-
ment, or modification of existing software and protocols. Hence, overlays enable
fast service bootstrapping in target networking environments. Moreover, services
based on overlays do not necessarily need to be deployed on every node to succeed
in providing the functionality. This gives freedom to node owners who might be not
interested in joining the service all the time, or might have hardware that is not
appropriate to support additional workloads.

However, overlaying presents also drawbacks in terms of overhead and complex-
ity. Overlays cause additional overhead as they are implemented as new software
layers in networking stacks, and therefore introduce additional packet headers and
redundant processing. Just to give an example, IP packet headers contain both IP
and Ethernet addresses, but the latter are also part of Ethernet frames. Complexity
is another concern, as the introduction of new software layers does not eliminate
complexity, but simply attempts to manage it. However, more layers of function-
alities also augment the possibility of unintended interaction between layers. As
an example, let us consider the behavior of TCP in wireless networks. Frequently,
packet dropping due to corruption is misinterpreted as a situation of congestion,
and has negative effects on transfer rates [CGM05].

In this thesis, we deal with the problem of overlay networking in mobile ad hoc
environments. More in details, we aim at investigating innovative methodologies
for the implementation of effective overlay networks, which could then be used to
support P2P systems and applications in ad hoc settings. We intend to study overlay
management protocols under the following aspects:

Overhead and complexity. The devices which form a mobile ad hoc network
have to do a conservative use of both computing and networking resources,
as the processing power, the communication bandwidth, and the available
energy are usually limited. Therefore, overlay management protocols that do
not adhere to these constraints would fail in these settings.

Self-organization and fault-tolerance. The extreme dynamics of MANET set-
tings require a higher level of self-organization and fault-tolerance with re-
spect to standard Internet settings. Therefore overlays should be able to self-
organize without the need of user information (e.g., a bootstrapping peer),
and should handle node churns or network partitions as “normal” conditions,
and not as worst-case situations.

Compatibility with existing protocols. MANETs are expected to complement
Internet wireless coverage beyond the first hop, other than supporting users
opportunistically grouped in an area without infrastructure. Therefore, it

1.3. THESIS OUTLINE 13

is important to maintain compatibility with existing platforms, in order to
guarantee continuity to the supply of P2P Internet services.

We argue that especially in mobile wireless settings, the above properties can be
satisfied by mapping the overlay to the layer-3 network, making it aware about the
current state of the network topology. This approach requires a “strict” coopera-
tion with protocols at the network layer responsible for discovering and maintaining
the network topology (i.e., routing and forwarding agents). Awareness about the
underlying layer-3 network would deliver good performance in terms of stretch (ra-
tio of delay to shortest path delay), and stress (number of duplicate transmissions
over a physical link). However, a strict cooperation with underlying protocols and
data structures would couple overlay agents with network layer agents, spoiling the
modularity and flexibility of classical stack architectures. For these reasons, our
approach is twofold:

1. We propose a flexible networking architecture that enables the design and easy
deployment of cross-layer interactions, but at the same time maintains loose
coupling between the interacting agents;

2. We show how the cross-layer architecture could be used to improve the qual-
ity and the performance of overlays supporting unstructured, structured, and
publish/subscribe platforms.

1.3 Thesis outline

The central focus of this thesis is the design and evaluation of cross-layered P2P
systems, to support efficient distributed computing in MANET environments. A
fundamental component of the work is an innovative network stack architecture,
which enables easy and portable exploitation of cross-layer interactions between
protocols. In addition, we show how to integrate Lime [MPR01], a middleware
for mobile and distributed computing based on tuple space programming, on top
of structured platforms. Accordingly, the remainder of the thesis is organized as
follows:

Chapter 2: An Architecture for Flexible Cross Layering
Cross layering has recently emerged as a new trend to cope with performance
issues of mobile ad hoc networks. The concept behind this technique is to
exploit local information produced by other protocols, so as to enable opti-
mizations and deliver better network performance. This Chapter addresses
cross layering from an architectural standpoint, providing a basis for tack-
ling the semantic problems of interfering optimizations and correct system
implementation. In particular, we claim that new interactions can be realized
maintaining the layer separation principle, with the introduction of a cross-
layer interface (XL-interface) that standardizes vertical interactions and gets

14 CHAPTER 1. INTRODUCTION

rid of tight-coupling from an architectural standpoint. The results related
to the cross-layer architecture have been presented in [CMTG04] [CCMT05]
[CMT06].

Chapter 3: A Cross-Layer Approach for Unstructured P2P Computing
Chapter 3 investigates the performance of Gnutella, one of the most widely
used P2P systems, when put through typical ad hoc conditions like node mo-
bility, frequent network partitioning, etc. We show that a straightforward im-
plementation of the protocol is not satisfactory under the point of view of the
produced overhead and the average overlay connectivity. Finally, we propose
a cross-layer optimization of Gnutella, which enhances its performance up to
the expectations, and makes it more suitable to the degree of self-organization
and self-healing required in ad hoc environments. The evaluation of Gnutella
and the cross-layer optimization have been presented in [CGT05].

Chapter 4: A Cross-Layer Approach for Publish/Subscribe
Chapter 4 presents Q a publish/subscribe service conceived to operate over
MANETs. With Q, the overlay network that routes events from publishers to
subscribers dynamically adapts to the changing topology by means of cross-
layer interaction. Q also supports content-based filtering of events through
mobile code: subscribers can specify in detail the notifications they wish to
receive by denying proper filter classes, then binary code of filters is exchanged
during runtime by participating nodes. The design of Q, and its preliminary
evaluation has been presented in [AVT05].

Chapter 5: Structured P2P Computing
Chapter 5 deals with structured P2P computing and its usage in mobile ad hoc
environments. The structured paradigm provides an effective framework to re-
alize decentralized and scalable applications, and has been designed to support
large sets of users with bounded costs and fairly balanced workload distribu-
tion. In this Chapter, we evaluate the performance of Pastry, highlighting low
tolerance to dynamics such as nodes mobility, and topology reconfiguration.
Finally, we suggest how the system could be redesigned and adapted to work
nicely in emerging mobile computing scenarios. The content of this chapter
originates from the work presented in [CGT04] and [CDT06].

Chapter 6: Laying Tuple Spaces over Structured P2P Platforms
Lime (Linda in a Mobile Environment) is a middleware platform for mobile
computing, based on coordination concepts inspired by those used in Linda.
This platform supports the development of distributed applications for mobile
environments, providing the abstraction of transiently shared tuple spaces.
While Lime exhibits maturity in the set of exported primitives and coordina-
tion algorithms, it uses a basic implementation of messaging between peers,
which does not guarantee scalability. Chapter 6 proposes a re-design of Lime

1.3. THESIS OUTLINE 15

communication concerns, based on structured P2P computing. The new strat-
egy guarantees the semantic defined by Lime, with the prospect of delivering
good performance in both MANET and Internet-like settings.

Chapter 7: Conclusions
Chapter 7 draws the conclusions of this thesis and proposes some future work.

16 CHAPTER 1. INTRODUCTION

Chapter 2

An Architecture for Flexible Cross
Layering

Abstract

Cross layering has recently emerged as a new trend to cope with perfor-
mance issues of mobile ad hoc networks. The concept behind this technique is
to exploit local information produced by other protocols, so as to enable op-
timizations and deliver better network performance. However, the need for a
new interaction paradigm inside the protocol stack has to face with the legacy
aspects of classical architectures (e.g., the Internet), where layer separation
allows for easy standardization and deployment.

In this Chapter, we show that cross layering can be achieved maintain-
ing a clean architectural modularity, making protocols exchange information
through a vertical interface. Specifically, we present the design of a cross-
layer module, providing a functional analysis and a proof of concepts of its
“usability” at different layers of the protocol stack. Finally, we discuss some
guidelines for a possible implementation in a real operating system environ-
ment.

2.1 Introduction

Cross layering is generally intended as a way to let protocols interact beyond what
allowed by standard interfaces. This clashes with the design principles of classical
protocol stacks. Just to provide an example, the Internet architecture layers proto-
cols and network responsibilities, breaking down the networking system into modular
components. The resulting “strict-layered” system is composed by modules that are
independent of each other and interact through well-defined (and static) interfaces,
located between adjacent layers. Although this design principle brings important
benefits in terms of flexibility and maintenance costs, it suffers from several charac-
teristics of wireless networks (e.g., node mobility or power constraints), degrading

18 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

the overall network performance [CCMT05]. Hence, the need of introducing stricter
cooperation among protocols belonging to different layers. This last point sets the
focus of this Chapter, which aims at investigating cross-layer interactions from an
architectural standpoint, in the context of mobile ad hoc networking.

In the ad hoc literature there is much work showing the potential of cross layer-
ing for isolated performance improvements. Most of these solutions focus on specific
problems, as they look at the joint design of two-to-three layers. For example, in
[CSN02] cross-layer interactions between the routing and the middleware layers al-
low the two levels to share information with each other through system profiles,
in order to achieve high quality in accessing data. An analogous example is given
in [SGN03], where a direct interaction between the network and the middleware
layers, termed Mobile Peer Control Protocol, is used to push a reactive routing to
maintain existing routes to members of a peer-to-peer overlay network. In [YLA02]
the authors propose an interaction between the MAC and routing layers, where
information like Signal-to-Noise Ratio, link capacity and MAC packet delay is com-
municated to the routing protocol for the selection of optimal routes. In [LSS05], an
interaction between forwarding and power management is proposed with the goal of
maximizing the amount of delivered packets, with minimum energy consumption.
The fundamental idea is to adapt forwarding decisions according to both current
energy level and amount of energy needed to transmit the packet. Another exam-
ple is the joint balancing of optimal congestion control at the transport layer with
power control at the physical layer proposed in [Chi04]. This work observes how
congestion control is solved in the Internet at the transport layer, assuming link
capacities to be fixed quantities. In ad hoc networks, this is not a good assumption,
as transmission power, and hence throughput, can be dynamically adapted on each
link. Other works propose interactions among multiple layers of the protocol stack
to perform optimization involving a richer set of protocols. An example is given
in [KKT04], where authors propose cross-layer interactions between physical, MAC
and routing layers, to perform joint power control and link scheduling as an opti-
mized objective. Last but not least, a framework to jointly optimize error-resilient
source coding, packet scheduling, stream-based routing, link capacity assignment,
and adaptive link layer techniques is proposed in [SYZ+05].

All these solutions are clear examples of benefits introduced by cross layering.
However, their deployment has to deal with the following issues:

1. Tight-coupling: the design of cross-layer optimizations requires direct modifi-
cation of interfaces, causing the involved protocols to become tightly-coupled,
and therefore mutually dependent.

2. Unbridled stack design: while an individual suggestion for cross-layer design,
in isolation, may appear appealing, combining several of them together could
result in a “spaghetti” stack design [KK05], making architectural maintenance
a challenging task. Moreover, an uncontrolled combination of isolated cross-
layer optimizations may cause mutual interferences, which could lead single

2.2. ARCHITECTURAL FUNCTIONALITIES 19

nodes to unstable and degraded behavior, with negative impacts on the entire
network.

3. Correct system implementation: when introducing new interactions among
protocols, special care has to be taken to maintain a correct execution flow,
without causing critical problems on the internals of the operating system.
In real platforms, network protocols consist of a mixed set of processes ex-
ecuting at both kernel and user levels. For this reason, the implementation
of cross-layer interactions should guarantee a correct interleaving of proto-
cols execution, without introducing failure patterns on synchronization and
scheduling of local system processes.

This Chapter addresses cross-layering from an architectural standpoint, provid-
ing a basis for tackling the semantic problems of interfering optimizations and correct
system implementation. In particular, we claim that new interactions can be real-
ized maintaining the layer separation principle, with the introduction of a cross-layer
interface (XL-interface) that standardizes vertical interactions and gets rid of tight-
coupling from an architectural standpoint. The key aspect is that protocols are still
implemented in isolation inside each layer, offering the advantages of:

• allowing for full compatibility with standards, as the XL-interface does not
modify each layer’s core functions;

• providing a robust upgrade environment, which allows the addition or removal
of protocols belonging to different layers from the stack, without modifying
operations at other layers;

• maintaining the benefits of a modular architecture (layer separation is achieved
by standardizing the usage of the XL-interface).

Engineering the XL-interface presents a great challenge (Section 2.2). This com-
ponent must be general enough to be used at each layer, providing a common set of
primitives to realize local protocol interactions (Section 2.3). To support this novel
paradigm, we classified cross-layer functionalities and extended standard TCP/IP
protocols in order use them. The result of this effort has been implemented in the
ns2 Network Simulator (Section 2.4), realizing a simulative evaluation framework
for the usability of the XL-interface at different layers. Finally, in Section 2.5 we
discuss some implementation guidelines for a real operating system environment,
while in Section 2.6 we conclude the Chapter.

2.2 Architectural Functionalities

We designed the XL-interface with two models of interaction in mind: synchronous
and asynchronous. Protocols interact synchronously when they share private data

20 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

(i.e. internal status collected during their normal functioning). A request for pri-
vate data takes place on-demand, with a protocol issuing a query to retrieve data
produced at other layers, and waiting for the result. Asynchronous interactions char-
acterize the occurrence of specified conditions, to which protocols may be willing to
react. As such conditions are occasional (i.e. not deliberate), protocols are required
to subscribe for their occurrences, and then return to their work. The XL-interface
is in turn responsible for delivering eventual occurrences to the right subscribers.
Specifically, we consider two types of events: internal and external. Internal events
are directly generated inside protocols. Picking just one example, the routing proto-
col notifies the rest of the stack about a “broken route” event, whenever it discovers
the failure of a preexisting route. On the other hand, external events are discovered
inside the XL-interface on the basis of instructions provided by subscriber protocols.
An example of external event is a condition on the host energy level. A protocol
can subscribe for a “battery-low” event, specifying an energy threshold to the XL-
interface, which in turn will notify the protocol when the battery power falls below
the given value. Note that the host energy controller simply provides the current
battery level value, but it is not in charge of checking the threshold and notify
related events.

As the XL-interface represents a level of indirection in the treatment of cross-layer
interactions, an agreement for a common representation of data and events inside
the vertical component is a fundamental requirement in order to guarantee loosely-
coupling. To this end, the XL-interface works with abstractions of data and events,
intended as a set of data structures that comprehensively reflect the relevant (from
a cross-layering standpoint) information and special conditions used throughout the
stack. A straightforward example is the topology information collected by a routing
protocol. In order to abstract from implementation details of particular routing
protocols, topology data can be represented as a graph inside the XL-interface.
Therefore, the XL-interface becomes the provider of shared data, which appear
independent of its origin, and hence usable by each protocol.

How is protocols internal data exported into XL-interface abstractions? This
task is accomplished by using call-back functions, which are defined and installed by
protocols themselves. A call-back is a procedure that is registered to a library at one
point in time, and later on invoked (by the XL-interface). Each call-back contains
the instructions to encode private data into an associated XL-interface abstraction.
In this way, protocol designers provide a tool for transparently accessing protocol
internal data.

2.3 Designing the cross-layer interface

In order to give a technical view of the vertical functionalities, we assume that the
language used by the XL-interface allows for an object oriented representation of
data structures and functions. We adopt the following notation to describe the

2.3. DESIGNING THE CROSS-LAYER INTERFACE 21

XL-interface interface:

XL object.method : (input) → (output)

As described in the previous Section, the XL-interface does not generate shared
data, but simply acts as intermediary. Protocols synchronize on an abstract repre-
sentation of internal data (namely XL data) where one producer protocol specifies
a call-back function to export its private data to the abstract representation.

XL data.seize : (callback()) → ()

On the other hand, consumer protocols access the shared data with read only per-
missions, using

XL data.access : () → (abstractData)

Going back to the example on network topology data, the routing agent plays the
role of the producer protocol, exporting routing tables into an abstract graph rep-
resentation. Consumer protocols living in the scope of other layers, could gather
network topology information calling the access() method, which in turn invokes
the call-back function registered by the routing agent. This makes the interaction
between producer and consumer protocols loosely-coupled, avoiding direct protocol
dependencies.

The remaining functionalities of the XL-interface cope with asynchronous in-
teractions. In the case of internal events, the role of the XL-interface is to collect
subscriptions, wait for notifications, and vertically dispatch event occurrences to
the appropriate subscribers. A protocol subscribes for a cross-layer event (namely
XL event) by calling the function

XL event.subscribe : (handler()) → ()

Note that the subscriber protocol has to specify a handler function, which will be
used by the XL-interface to notify occurrences and triggering event handling. So,
subscriber protocols play again the consumer role, while producer protocol notify
event occurrences by calling

XL event.notify : () → ()

The XL-interface is in charge of maintaining a subscription list for each kind of
cross-layer event, dispatching occurrences to the correct subscribers.

In the case of external events, the XL-interface must additionally act as event
notifier. The idea is that some protocols might be interested in conditions that are
not directly verified by other protocols. To this end, subscriber protocols instruct
the XL-interface on how to detect the event. The detection rules are embedded in a
monitor function, which periodically checks the status of the cross-layer abstractions
under inquiry. When the monitor detects the specified condition, the XL-interface

22 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

dispatches the information to the subscriber protocol. A protocol initiates the mon-
itoring of an external event by passing a monitor and a handler function to the
XL-interface, through the following method of the target data abstraction

XL data.setMonitor : (monitor(), handler()) → ()

The XL-interface serves this call by spawning a persistent computation that executes
the steps described in Algorithm 1.

Algorithm 1 Cross-layer data monitoring.
while true do

freshData = XL data.access()
if monitor(freshData) then

handler()
end if

end while

2.4 Using the Cross-layer Interface

In order to practice the usage of the XL-interface, we realized a simulation frame-
work, based on the Network Simulator ns2 (v. 2.27) [NS2], and a library of ob-
jects and abstractions, called ProtoLib, provided by the Naval Research Laboratory
(NRL) [NRL].

2.4.1 The Proto Library

The protocol Prototyping Library (ProtoLib) is not so much a library as it is a
toolkit. The goal of the ProtoLib is to provide a set of simple, cross-platform C++
classes that allow development of network protocols and applications that can run on
different platforms and in network simulation environments. Although ProtoLib is
principally for research purposes, the code has been constructed to provide robust,
efficient performance and adaptability to real applications. Currently, ProtoLib
supports most Unix platforms (including MacOS X) and WIN32 platforms. The
version used in this thesis also supports building ProtoLib-based code for the ns2
simulation environment.

The approach behind the ProtoLib environment is to provide the programmer
with object-oriented abstractions of common networking tools and components, like
network addresses, sockets and timers, which are then mapped to a target platform
with a specific implementation. Hence, the main idea is to have the programmer
writing its networking code using the abstractions, so as to have it working on a
significant set of real-platforms as well as simulation environments (see Figure 2.1).
This last feature seems to be particularly useful for evaluating and debugging dis-
tributed protocols and algorithms (e.g., forwarding agents like REEF) before moving

2.4. USING THE CROSS-LAYER INTERFACE 23

Figure 2.1: The ProtoLib framework.

on to “real” environments, but maintaining code and data structures unaltered. In
the following descriptions, we go through the main abstractions provided by the
ProtoLib.

ProtoAddress Network address container class with support for IPv4, IPv6, and
“SIM” address types. Also includes functions for name/address resolution.

ProtoSocket Network socket container class that provides consistent interface for
use of operating system (or simulation environment) transport sockets. Pro-
vides support for asynchronous notification to ProtoSocket listener objects.
The ProtoSocket class may be used stand-alone, or with other classes described
below. Currently, a ProtoSocket may be instantiated as a UDP socket, while
TCP sockets will be supported in the future.

ProtoTimer This is a generic timer class which will notify a ProtoTimer listener
object upon timeout.

ProtoTimerMgr This class manages ProtoTimer instances when they are “acti-
vated”.

ProtoTree Flexible implementation of a Patricia tree data structure. It includes
a Item object which may be derived from or used as a container for whatever
data structures and application may require.

ProtoRouteTable Class based on the ProtoTree Patricia tree to store routing
table information. It uses the ProtoAddress class to store network routing

24 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

addresses.

ProtoRouteMgr Base class for providing a consistent interface to manage oper-
ating system (or other) routing engines. Examples include the routing sockets
in UNIX/POSIX platforms.

ProtoApp Provides a base class for implementing Protolib-based command-line
applications. Note that “ProtoApp” and “ProtoSimAgent” are designed such
that subclasses can be derived to reuse the same code in either real-world ap-
plications or as “agent” entities within network simulation environment (e.g.,
ns2, OPNET etc.).

ProtoSimAgent Base class for simulation agent derivations. Currently an ns2
agent base class is derived from this class, but it is possible that other sim-
ulation environments (e.g. OPNET, Qualnet etc.) might be supported in a
similar fashion.

NsProtoSimAgent Simulation agent base class for creating ns2 instantiations of
Protolib-based network protocols and applications.

Another important feature is that the ProtoLib already delivers an implementa-
tion of Optimized Link State Routing protocol (OLSR), compliant with the latest
specification [CJ03].

In the framework resulting from the integration of ns2 and the ProtoLib, it
was a “natural” choice to place the objects of the XL-interface inside the ProtoLib.
We engineered them as abstract classes that other protocols can implement in or-
der to share data and exchange local events. Specifically, we realized interfaces for
XL Data and XL Event objects, respectively for sharing protocol internal data (i.e.,
synchronous interactions) and for subscribing/notifying internal events (i.e., asyn-
chronous interactions). In the following, we briefly describe the functionalities of
the new objects:

ProtoXLData This is a generic class (see Figure 2.2) that identifies internal data
owned (produced) by a protocol and shared to (consumed by) the rest of the
network stack. It offers methods to declare ownership of the data and to
specify a call-back function for “translating” the internal data format used
by the owner, in a cross-layer ontology common to the whole stack. Other
protocols access instances of this class with read-only permissions.

ProtoXLEvent This is a generic class (see Figure 2.3) that identifies conditions
or events detected internally to the protocol, which may result of interest for
the rest of the stack. It offers methods to subscribe interest in events derived
from this class, as well as to notify occurrences of them.

In the following, we present two examples of cross-layer optimization based on the
XL-interface. We show interactions involving network, transport and middleware

2.4. USING THE CROSS-LAYER INTERFACE 25

Figure 2.2: Cross-layer data.

Figure 2.3: Cross-layer events.

layers, to highlight how the objects of the XL-interface suites different levels of the
protocol stack. The two case studies implement their cross-layer interactions by
specializing the base objects presented in the previous Section.

2.4.2 Improving the performance of data transfer

In this Section, we show how the XL-interface has been used to cope with perfor-
mance issues of TCP data transfer. TCP performance degrades in ad hoc environ-
ments due to losses, which are induced by fault conditions (e.g. network partitions,
route failures, and misbehaving nodes), and are erroneously interpreted as effects
of congestion. To deal with this problem, we introduce a forwarding mechanism
able to improve the performance and reliability of data transfer, also in presence of
misbehaving (e.g. selfish) nodes, by means of a cross-layer interaction between the
forwarding and transport agents. This mechanism is based on multi-path forward-
ing and estimates neighbors reliability according to end-to-end acknowledgments.
Specifically, in case of reliable data transfer, TCP acknowledgments are used as de-
livery notifications. The reception of a TCP ack at the transport layer indicates
that the corresponding sent packet has been correctly delivered at destination, and
hence correctly forwarded by intermediate nodes. Each node estimates only neigh-
bors’ reliability, and uses this index to forward packets on most reliable routes, so
as to avoid unreliable paths and minimize congestion events. For further details on
the forwarding mechanism we point the reader to [CGM05].

The realization of the forwarding mechanism in our evaluation framework in-
volves the introduction of a class of cross-layer events of type Recv TCP-ack/nack,

26 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

Figure 2.4: Cross-layer interaction between the network and the transport layer.

 50

 100

 150

 200

 250

 0 10 20 30 40 50

m
ea

n
T

C
P

th
ro

ug
hp

ut
 (

K
bp

s)

% misbehaving nodes

best-route
single path

load-balancing

Figure 2.5: Mean TCP throughput as function of the percentage of misbehaving
nodes.

to which the forwarding agent subscribes for notifications coming from a local TCP
agent (see Figure 2.4). Specifically, the TCP agent notifies a TCP-ack event to
the forwarding agent whenever it receives a valid acknowledgment. Instead, TCP-
nack events are caused by packets retransmissions. An event notification causes the
forwarding agent to update the reliability index associated to the neighbor through
which the packet passed. The update is positive for TCP-ack and negative for TCP-
nack. Reliability indexes are used to send packets on most reliable routes. Specifi-
cally, we implemented a forwarding policy which chooses the route with the smallest
route-length/reliability ratio, namely best-route forwarding. As the simultaneous use
of multiple paths (i.e., load-balancing) degrades TCP performance [LXG03], we com-
pare our best-route forwarding policy with the conventional case in which packet
forwarding is based on single path routing (like in OLSR), where the shortest route
is always chosen (i.e., single path).

The simulation study investigates TCP performance by varying the percentage
of misbehaving nodes. The simulated network is composed of 20 nodes, with 5 active
Telnet sessions. Connection endpoints are generated randomly, and each simulated

2.4. USING THE CROSS-LAYER INTERFACE 27

scenario is characterized by an increasing number of misbehaving nodes that coop-
erate to routing, but do not forward TCP traffic. Figure 2.5 shows how best-route
outperforms single path forwarding whenever misbehaving nodes are present, while
the two method are comparable in cooperative networks. Specifically, the perfor-
mance gain achieved with our forwarding mechanism grows up to 50% in the case
of 20% and 30% of misbehaving nodes. Results also confirms the poor performance
achieved by the load-balancing policy, that increase the chances of encountering
misbehaving nodes.

2.4.3 Improving the quality of unstructured overlays

In this Section, we show how the XL-interface has been used to improve the perfor-
mance of Gnutella, a well-known unstructured overlay platform. Although we used
Gnutella as a case study, a similar approach could be used for other P2P platforms,
so as to make them more reactive and usable in ad hoc environments. Full details
about this application of the XL-interface are reported in [CGT05].

By simulating a fully-fledged Gnutella system in ad hoc environments, we iden-
tified peer discovery as a critical issue. In summary, discovery procedures based on
application layer flooding generate overhead, and decrease the capacity of building
the overlay. Moreover, as peer selection is random, Gnutella overlays are significantly
sensitive to nodes mobility, and fail to react promptly in scenarios with partitioning
or heavy churn rates. Under these observations, we re-designed peer discovery and
link selection in order to interact with the routing agent at the network layer. The
fundamental idea is to exploit node discovery procedures provided by routing agents,
so to jointly perform peer discovery together with gathering topology information.
For example, in a proactive routing protocol like OLSR, nodes periodically issue
Hello and Topology Control messages, containing information about the neighbors
that they currently sense. This information could be enriched with Optional In-
formation (OI), containing peer credentials (e.g., IP address and port number of
the Gnutella service). This approach saves the network resources consumed by an
explicit peer discovery protocol.

We modeled the cross-layer interactions using events between Gnutella peers and
OLSR agents (see Figure 2.6). We initially extended the NRL implementation of
OLSR to handle new messages for optional information, and afterward specialized
two classes of cross-layer events: i) Spread OI events, to which routing agents sub-
scribe, receiving notifications from Gnutella peers. These events are used to ask
OLSR agents to advertise local peer credentials around, along with the next Hello
or Topology Control message (see OLSR RFC [CJ03] for details on the protocol); ii)
Recv OI events, to which Gnutella peers subscribe, in order to receive notifications
from underlying OLSR agents. These events are used to notify Gnutella peers about
incoming credential advertisements of remote peers. This allowed us to realize peer
discovery by making each peer periodically advertise its credentials, and reacting to
events of advertisements reception. The overall discovery procedure became simpler

28 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

Figure 2.6: Event-based cross layer interaction for Gnutella peer discovery.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100 5033 20

A
vg

 P
at

h
St

re
tc

h

Percentage of Peers in the Network

GNU
XL-GNU

Figure 2.7: Comparison of the average path stretch produced by Gnutella and XL-
Gnutella under increasing peer densities.

and easier to control. On receiving cross-layer events, peers were able to fill up a lo-
cal table of advertisement generated by foreign agents. Moreover, as advertisements
travel the network along with routing control packets, it was possible to get accurate
estimates of peers physical distances (in number of hops). This topological infor-
mation enriched the advertisement table, and allowed us to play a smarter overlay
formation protocol, introducing a link selection policy based on physical distances.
The rational behind was to simply prioritize closer connections over further ones,
with the goal of building an overlay topologically closer to the physical network.
In order to give a flavor of the benefits introduced by the XL-interface, Figure 2.7
shows the results obtained by studying the path stretch generated by the legacy and
the cross-layer version of the protocol, defined as the ratio of the number of hops (in
the physical network) along the path connecting two peers in the overlay, to that
along the direct unicast path. This metric measures how far (from a topological
point of view) the overlay is from the physical network, and characterizes the over-
head induced by the former on the latter. By configuring an increasing percentage of
peers in a network of fixed size, we observed that cross-layer Gnutella (XL-Gnutella)
produces better path stretches (e.g., respectively 1.35 against 2.1 of legacy Gnutella

2.5. IMPLEMENTATION GUIDELINES 29

with a 50% of peers), exhibiting a stable behavior with smaller variances.

2.5 Implementation guidelines

In this section, we discuss some issues related to a possible implementation of the
XL-interface, intended as an operating system service that supports programmers
to realize protocols with cross-layer interactions. We structure our discussion on the
base of operating system concepts typical of UNIX/Linux environments.

First of all, we would like to re-emphasize that from an implementation stand-
point, a cross-layer interaction is, as a matter of fact, an exchange of data (syn-
chronous or asynchronous) between two processes (or tasks) running on a system.
Common OS platforms already come with plenty of support for interprocess commu-
nication, so the key role of the XL-interface should be to coordinate and manage the
usage of existing system services to enable cross layering without causing negative
interactions on normal system operation. In particular, in this section we would like
to address the problem of scheduling interferences.

Common UNIX/Linux environments organize computation in processes, making
a clear distinction between kernel and user computations. A computation is said
to live in kernel space, if it is executing code that comes from the kernel image
or a module image. The code has full permissions to do whatever it wants (i.e.,
privileged execution). This may be a task or an invoked interrupt. If it is a task, it
is not pre-emptible, meaning that no entities can schedule the CPU away from it.
If it is an interrupt, it just temporarily uses the CPU. Alternatively, a computation
is said to live in user space, if it is executing code that comes from a normal process
image. This code runs in unprivileged mode, and is protected from affecting other
process’s or the kernel’s address space. In modern architectures, a user process can
enter kernel space by means of system calls, well known points that a process must
invoke in order to enter the kernel. When invoking a system call, the hardware
is switched to the kernel settings, where the process will be executing code from
the kernel image. At this stage, unlike when in user space, it has full powers to
wreak havoc, and becomes no longer pre-emptible. Transfer of data between user
and kernel space only make sense through system calls, and usually requires direct
memory copies.

Given the above considerations, let us come to processes and tasks that make
up a networking stack. As illustrated in Figure 2.8, some protocols run as processes
in user space, while others are implemented as tasks and data structures in kernel
space, and are accessed by system calls. Typically, networking middleware and ap-
plications are user space processes that make use of transport services implemented
in kernel. As underlined in [Kaw04], the networking layer is conceptually split in
two functionalities: i) forwarding consists of taking a packet, consulting the system
forwarding table, and sending the packet towards its destination as determined by
that table; ii) routing, refers to process of building the forwarding table, discovering

30 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

Figure 2.8: Schematic representation of a system network stack.

routes towards given destinations. While the former requires very fast execution,
and therefore lives in kernel space, the latter is a distributed algorithm that lives in
user space. As a result, when discussing how synchronous or asynchronous interac-
tions should be implemented, we have to distinguish four different cases:

Kernel-To-Kernel when both the producer/notifier and consumer/subscriber pro-
tocols are tasks in the kernel space;

Kernel-To-User when the producer/notifier protocol is a kernel space task, while
the consumer/subscriber is a user space process;

User-To-Kernel when the producer/notifier protocol is a user space process, while
the consumer/subscriber is a task living in kernel space;

User-To-User when both the producer/notifier and consumer/subscriber proto-
cols are processes in user space.

In this system picture, the XL-interface lives in kernel space, probably imple-
mented as a loadable module, which exports a set of systems calls for processes in
user space, as well as a kernel API for protocol implemented as kernel tasks. In
the following, we discuss the above four cases for synchronous and asynchronous
interactions.

2.5.1 Synchronous interactions

Let us begin with synchronous interactions, recalling that they represent sharing of
internal protocol data. For this kind of interactions we can differentiate depending
on the nature of the producer protocol. This is because the XL-interface has to
guarantee that a consumer process does not get pre-empted in accessing a shared
object.

A Kernel-To-Kernel interaction requires the simplest handling and management.
When both protocols are kernel tasks, they run in privileged and not pre-emptible
mode, and can directly pass pointers to internal data buffers and functions. So

2.5. IMPLEMENTATION GUIDELINES 31

an access to a shared object causes a call to a XL-interface function in the kernel
API, which in turns invokes the call-back registered by the producer protocol. All
of this happens without changes in context for the consumer task. A Kernel-To-
User interaction can be handled in an analogous way, with the difference that the
consumer process will begin from a system call, that switches it from user to kernel
space mode, making it not pre-emptible. Additionally, this case surely requires a
copy of the abstracted data from kernel to user space, which can be handled at the
end of the system call.

A different discussion applies for User-To-Kernel and User-To-User interactions.
As the producer protocol is a user space process, invoking its call-back would in-
evitably cause the pre-emption of the consumer protocol. A solution to this problem
would be to reserve a shared memory segment for each cross-layer object, and work
around the call-back invocation, having the producer protocol proactively refreshing
the abstract content. To this end, we require an additional system call like

XL Data.refresh()

which is invoked whenever the producer protocol modifies the cross-layer object. In
this way, the shared object may be accessed from the consumer protocol by attaching
the memory segment from either user or kernel space. Probably, in the User-To-
User case, some form of locking on the segment is required (e.g., typically system
semaphores).

2.5.2 Asynchronous interactions

Avoiding scheduling problems in the case of asynchronous interactions, can be solved
with the same mechanisms used by modern kernels to handle interrupts. Any se-
rious interrupt handling is divided in two halves: a top half (i.e., the registered
interrupt routine) catches the interrupt, copies over any relevant data, and sched-
ules a bottom half for execution at safer times in the future. This basically means to
postpone longish and complex interrupt data handling, so that the interrupt service
routine itself quickly finishes the job and minimizes the probability of loosing newly
incoming interrupts. Modern OS’s do provide support for these situations, and par-
ticularly UNIX/Linux kernels export services like task queues and the more recent
tasklets, to postpone task execution at safer time.

In the case of asynchronous interactions, the XL-interface clearly doesn’t need
to install interrupt service routines, but can use task queues or tasklets to postpone
the delivery of a cross-layer event from its notification, and work around scheduling
issues.

Given the above, the notification of a XL Event is translated into the creation
and scheduling of a tasklet with instructions to wake up the right subscriber and
deliver the event. In User-To-User and User-To-Kernel cases this top-half handling
is done inside the appropriate system call XL Event.notify(). The bottom-half

32 CHAPTER 2. AN ARCHITECTURE FOR FLEXIBLE CROSS LAYERING

remains pretty simple for both cases, with the only difference that in one case it
wakes up (probably) a thread in a user process, while in the other a kernel task. For
Kernel-To-Kernel and User-To-Kernel cases, the difference stands in the top-half
processing, which is done in a kernel API function instead of system call.

2.6 Conclusions

Cross layering represents a trendy solution to overcome performance limitations of
mobile ad hoc environments. Current proposals testify the effectiveness of cross
layering in delivering better protocol performances, but they tackle single cases
without prospecting any form of coexistence from an architectural standpoint. The
contribution of this Chapter is the design of an interface able to support several
cross-layer solutions, using common interaction models. This approach decouples
interacting entities, and preserves the flexibility and modularity features of legacy
architectures.

In order to evaluate the usability of the proposed interface, we considered two
case studies, verifying that the cross-layer primitives could be used at different layers
of the stack, for different purposes.

The next step is to deploy the cross-layer interface on a real platform, according
to the guidelines for the guarantee of a clean execution pattern, without mutual
scheduling interferences.

Chapter 3

A Cross-Layer Approach for
Unstructured P2P Computing

Abstract

In recent years, the Internet has witnessed the introduction of many peer-
to-peer systems designed to realize large-scale data sharing. These platforms
exhibit interesting features like self-configuration, self-healing and complete
decentralization, which make them appealing for employment in ad hoc en-
vironments as well. However, the impact of ad hoc dynamics on the per-
formance of these protocols, and the different set of constraints which this
emerging networking paradigm imposes, haven’t been yet carefully evaluated.
This Chapter investigates the performance of Gnutella, one of the most widely
used peer-to-peer systems, when put through typical ad hoc conditions like
node mobility, frequent network partitioning, etc.. We show that a straight-
forward implementation of the protocol is not satisfactory under the point of
view of the produced overhead and the average overlay connectivity. Finally,
we propose a cross-layer optimization of Gnutella, which enhances its perfor-
mance up to the expectations and makes it more suitable to the degree of
self-organization and self-healing required in ad hoc environments.

3.1 Why Gnutella on ad hoc?

The future information society is expected to rely heavily on wireless technology.
Mobile access to the Internet is steadily gaining ground, and it could easily end up
exceeding connections from the fixed infrastructure. Picking just one example, ad
hoc networking is a new paradigm of wireless communication for mobile devices.
While initially targeted at military applications, as well as stretching the access
to the Internet beyond the first wireless hop [CMC99], ad hoc networks are now
expected to be employed in civilian applications. Making these systems working

34CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

autonomously to support opportunistic communications among users, still presents
challenging issues on topics ranging from wireless technologies to middleware plat-
forms and applications. This Chapter focuses at the middleware layer, investigating
on how information sharing could be efficiently realized in ad hoc environments
through P2P systems.

Information (or data) sharing is an application layer task that allows different
devices to share data in order to carry out distributed computations and satisfy user
needs. Data sharing is considered of fundamental importance for mobile ad hoc net-
works, since they have been proposed to enable data access for mobile devices in
the absence of an infrastructure. The big variety of applications that could benefit
from an efficient data sharing technique, suggests to cope with this problem at the
middleware layer. One of the primary roles of middlewares is to provide applica-
tion programmers with a set of high-level instruments and abstractions, in order to
hide the complexity of underlying systems, properly managing resources and criti-
cal operations. In [MCE02] the authors provide a discussion on the characteristics
of middleware for mobile computing, identifying among others the organization of
distributed services with fair workload distribution, tolerance to dynamics such as
the variability of participants to the distributed service, and correct handling of in-
termittent connectivity and devices mobility. Some, but not all of these features are
already offered by P2P file sharing systems recently proposed in the Internet. Open
platforms like Gnutella [KM02], but also research proposals like Pastry [RD01a],
distribute data (e.g., knowledge, music etc.) without the need of any central server.
Under this aspect, ad hoc networks can be considered a computational duality with
P2P systems, where peers self-organize in logical networks (i.e., overlays) and coop-
erate independently to make libraries of digital content. For both P2P systems and
ad hoc networks, the lack of cooperation or an unfair workload distribution could
easily determine severe performance degradation.

The success of a data sharing P2P system lies on the ability to search for and
lookup data efficiently. The best way to search in a given system depends on the
needs of the application. For example, subject-based search techniques (e.g., Pastry)
are well-suited for applications focused on availability, like file or archival systems,
because they guarantee location of content if it exists, with bounded costs. To
provide these goals, subject-based system tightly control the placement of data
among peers, as well as the topology of the overlay network. These features come
at the expense of flexibility, as currently search can only be done by subjects (i.e.,
unique identifiers associated to data items). In contrast, content-based systems, such
as Gnutella, are designed for more flexible applications with richer queries. These
platforms therefore operate under a different set of constraints, avoiding assumptions
on data placement and overlay connectivity, and relaxing both cost bounds and
availability guarantees.

In both subject-based and content-based platforms, peers maintain a set of log-
ical links among them, which all together form the overlay network. Queries, query
results and other control messages are all sent exclusively along overlay links, inde-

3.1. WHY GNUTELLA ON AD HOC? 35

Figure 3.1: Different overlays on the same physical network.

pendently from the physical location of the involved peers. In principle, the graph
topology of an overlay network may look significantly different from that of the un-
derlying physical network (see Figure 3.1). This depends on the way peers discover
themselves and on the policies used to choose and establish logical links. Clearly,
this process has direct impact on the workload imposed on the underlying network,
as each logical link spans across an arbitrary number of physical hops. What is
the impact of current overlay management algorithms on ad hoc networks? Are
platforms like Gnutella or Pastry, ready to be used in infrastructure-less and mobile
environments? Is there any need or room for performance improvement?

This Chapter investigates these questions by looking at the performance of
Gnutella, an open and widely used systems, in ad hoc environments, and proposes
a cross-layer optimization of the protocol to address the last question. We claim
that a cross-layer interaction between a P2P platform and the routing agent at the
network layer, simplifies overlay management and improves the quality of the re-
sulting overlay. The key idea is to exploit the topological knowledge collected by
on-board routing agents at the network layer to simplify peer discovery procedures,
and enable a smarter construction of the overlay. For example, peers may favor the
establishment of closer relationships, instead of peering with far away entities. In
particular, the main targets addressed by this work are: i) to decrease the network
traffic (i.e., overhead) generated for overlay management purposes, making it sta-
ble against increasing mobility and node churns; ii) to improve the quality of the
resulting overlay, making it closer to the underlying network topology and able to
deliver high query success rates; iii) to improve features like self-organization and
self-healing, especially against typical ad hoc situations like network partitioning.
Our contributions are organized as follows:

• We present an overview of the Gnutella protocol (Section 3.2), based on the
specification written by the Gnutella Development Forum [KM02]. Using sim-
ulation (Section 3.2.3), we demonstrate how Gnutella, if implemented in a
straightforward way, can have serious performance problems when employed

36CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

in ad hoc environments.

• We identify the key issues behind the poor scalability of Gnutella, and propose
a cross-layer interaction with the routing agent at the network layer (Section
3.3) to enhance the system performance. We underline the importance of a full
cross-layer protocol stack architecture that makes feasible the implementation
of our proposal in real systems.

• Through further simulation (Section 3.3.2), we demonstrate how the cross-
layer approach enhances the performance and adaptability of Gnutella, making
it suitable for usage in ad hoc environments.

3.2 The Gnutella protocol

In this section, we describe the Gnutella protocol for overlay maintenance and data
lookup. For more details, please refer to the latest specification [KM02]. Some
of the information in this section is not part of the original protocol (e.g., the
behavior of a peer accordingly to its connectivity in the overlay), but represents
implementation details added for clarity. Note that the Gnutella specification makes
distinction between ordinary and super peers. Super-peers are those making up
the overlay and providing the search infrastructure, and are usually represented by
nodes with permanent Internet connection. In contrast, ordinary (or leaf) peers
have intermittent connectivity, so they don’t take part to the overlay formation, but
simply attach themselves to an arbitrary number of super-peers, proxying queries
through them. In the context of this Chapter, we are interested in the general
properties of the overlay formation protocol, so we don’t consider ordinary peers in
our simulation models.

3.2.1 State maintenance

Gnutella operations rely on the existence of an unstructured overlay network. Peers
open and maintain application layer connections among them, and messages dedi-
cated to peer discovery, link control and data lookup, are sent exclusively along the
overlay. As each peer is allowed to open only a limited amount of connections, mes-
sage forwarding is a necessary co-operative task in order achieve a broad coverage
of the overlay. The lifespan of messages is controlled by assigning bounded Time To
Live (i.e., application layer TTL), which decrements at each logical hop.

To establish a connection, a peer P1 initiates a handshaking procedure, send-
ing a request message (see Figure 3.2) to another peer P2. The handshaking ends
up successfully for P1 when it receives an accept from P2, and for P2 when it re-
ceives confirmation from P1. The Gnutella specification assumes that each peer is
given a boot-server as an entry point (i.e., first connection) in the overlay. Usually,
bootserver credentials (i.e., network address and port number) come directly from

3.2. THE GNUTELLA PROTOCOL 37

Figure 3.2: Gnutella handshaking procedure.

the user, or through a lookup against a Gnutella Web Cache1, where on-line peers
publish themselves.

As shown in Figure 3.2, two peers carry out a handshaking procedure to connect
each other. The Gnutella specification assumes that each peer is given a boot-
server as an entry point (i.e., first connection) in the overlay. Usually, bootserver
credentials (i.e., network address and port number) come directly from the user, or
through a lookup against a Gnutella Web Cache2, which lists currently on-line peers.
After the connection to a boot-server, each peer is required to establish more links
in the overlay. The specification imposes no strict limits on the number of per-peer
connections, but suggestion are given to pro-actively open a minimum amount of
connections (e.g., 2 or 3) and then accept incoming connection requests to fill the
remaining slots, assuming that each peer has an upper bound for the number of links
to open. This guarantees that each peer maintains a minimal amount of connectivity
(i.e., a lower bound LB), without overdoing it (i.e., exceeding an upper bound UB)
and consequently abusing network resources. This suggests, as also outlined in
[CCR04], to model the behavior of a Gnutella peer through the following states:

1. While the peer has less than LB active connections, it stays in a connecting
state, where it performs peer discovery, initiates connections towards newly
discovered peers, and accepts connection requests coming from foreign peers.

2. As the peer reaches LB connections, it enters a connected state, where it stops
doing peer discovery, but keeps accepting incoming connection requests, as
long as it has free slots available. Clearly, if the number of active connections
falls back down under LB, the peer goes back in the connecting state.

3. Finally, when the peer reaches UB connections, it enters a full state, and stops
accepting incoming connection requests. Again, by falling down under UB the

1See www.gnucleus.com/gwebcache/ as an example.
2See www.gnucleus.com/gwebcache/ as an example.

38CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

Name Default Value

Probe interval 30 sec.
Probe retries 2
Discovery Ping interval 3 sec.
Pong cache threshold (PT) 5
Pong cache entry lifetime 10 sec.
Lower bound (LB) 4 connections
Upper bound (UB) 8 connections

Table 3.1: Gnutella protocol parameters.

peer returns in the connected state.

In each of the above states, the system looks up for data on demand (i.e., driven
by the user), and periodically probes active connections, using dedicated probe
messages (Ping messages with TTL equal to 1). Connections get terminated after
a specified number of probe Pings expire (i.e., see Probe retries and Probe interval
in Table 3.1), or upon an intentional Bye message.

3.2.2 Peer discovery, pong caching and queries

We now briefly describe how peers discover each other, pointing at Algorithm 2
for a pseudo-code description. After having established their first connection, peers
discover other agents by issuing multi-hop discovery Ping messages (i.e., TTL equal
to 7). At each hop in the overlay, the TTL field of discovery Pings gets decremented,
before the message is forwarded to each active connection listed by the current peer
(except the one where the Ping came from). This bounds the horizon of the flood
to 7 hops, “the edge” where discovery Pings are discarded due to expiration. Peers
receiving a valid discovery Ping, reply back with a Pong message containing their
credentials. Note that this last step is executed only if the peer is not in state full:
in this state it could not even accept incoming connection requests, and hence it
avoids spreading its own credentials around. Pong replies are given enough TTL so
that they are able to reach the Ping originator, which can then use the embedded
credentials to open new connections. Pong replies are back propagated along the
path followed by the Ping. This is possible because Ping originators associate unique
identifiers to discovery messages, allowing intermediate peers to remember where
Pong replies should be back propagated.

The standard discovery procedure can be enhanced with Pong caching. On
receiving Pong messages, a peer stores the embedded credentials in a local cache.
Incoming Ping messages could then be directly answered if the local cache contains
enough items (see Pong cache threshold in Table 3.1), without further forwarding
the discovery Ping. In this case, a certain number of items are selected from the
Pong cache and directly replied to the originator. Otherwise, if the cache does not

3.2. THE GNUTELLA PROTOCOL 39

 0

 10

 20

 30

 40

 50

 60

 70

 50 40 30 20 10

A
vg

 O
ve

rh
ea

d
(k

B
/s

)

Network Size

GNU
AODV
OLSR

Figure 3.3: Classification of the average overhead, as a function of the network size.
The bars show the amount of traffic generated by Gnutella and the routing protocols
in each set of scenarios.

contain enough items, the peer performs standard Ping forwarding. This caching
scheme significantly reduces the discovery overhead.

Queries are handled similarly to discovery Pings. On receiving a Query message,
a peer looks up the locally shared content using the constraints contained in the
Query. If one or more matches are found, the peer replies back with a Query Hit,
providing pointers to local results. In any case, the peer decrements the Query
TTL field, and forwards it to its neighbors if it is still positive. Please note that
subsequent data downloads are carried out outside the overlay through direct file
transfers.

3.2.3 Performance evaluation

To evaluate the performance of Gnutella in ad hoc environments, we used the latest
version of the Network Simulator 2 (version 2.27). In this Section, we study the
overhead produced by peer discovery and overlay maintenance procedures, as well
as the average peer degree (i.e., average number of per-peer active connections) of the
resulting overlays. We implemented the relevant networking and state maintenance
behavior as specified in [KM02], using the PROTOLIB framework [NRL] provided by
the Naval Research Laboratory. PROTOLIB extends ns2 introducing abstractions
for network addresses, sockets, timers and others objects, which are then mapped
onto simulator objects, as well as onto real platforms like UNIX and Windows. This
extension gives the flexibility of writing protocol prototypes that are suitable for
both simulation and real experimentation, with minimal porting efforts.

In order to have our Gnutella implementation achieving the best performance
in ad hoc environments, and ensure a fair comparison with the cross-layer enhance-

40CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

 5

LB

 3

 2

 1

 0 100 200 300 400 500

A
vg

 P
ee

r
D

eg
re

e

Time (s)

10 nodes
30 nodes
50 nodes

(a) Average Gnutella peer degree under
increasing network sizes on AODV.

 5

LB

 3

 2

 1

 0 100 200 300 400 500

A
vg

 P
ee

r
D

eg
re

e

Time (s)

10 nodes
30 nodes
50 nodes

(b) Average Gnutella peer degree under
increasing network sizes on OLSR.

Figure 3.4: Behavior of the Gnutella peer discovery protocol with different routing
schemes, as a function of the network size.

ments (see Section 3.3), we implemented Pong caching as described in the previous
Section, and we tuned the protocol up by introducing further optimizations. First of
all, as peers in state full do not accept incoming connection requests, we programmed
Gnutella to locally remember about fully connected peers, so to not consider them
again in subsequent connection phases. Secondly, we allowed peers to re-consider
unconnected boot-servers as possible candidates for establishing new links, when
they already have an entry point in the overlay, but are still in state connecting.
In fact, the Gnutella specification suggests to consider the bootstrap server only
as entry point (i.e., no other links available). These enhancements significantly re-
duced overlay partitioning, due to the limited amount of peers that an hoc network
can provide (dozens of peers, against hundreds of thousands of Gnutella overlays in
the Internet), and the high latencies introduced by ad hoc routing protocols before
finding valid routes towards the boot-servers. Finally, in order to evenly spread
the bootstrapping workload, we assigned boot servers uniformly at random, feeding
peers at the beginning of each simulated scenario. Table 3.1 lists the default set-
tings used for our Gnutella implementation. In particular, taking into account the
small size of ad hoc networks with respect to real Gnutella overlays, we sized the
connection lower and upper bounds respectively to 4 and 8. The rest of the values
have been fixed as suggested by the specification.

To better understand Gnutella capacity and limitations, we carried out simula-
tions by varying network sizes and mobility, and also putting the protocol through
typical ad hoc situations like network partitioning. Additionally, one of our main
goals was to evaluate the interaction of Gnutella with underlying network protocols,
so as to have a clear picture of the mutual impact. For this reason, we let the
P2P platform operate over two representatives of the reactive and proactive routing
protocol families, namely AODV [PBRD03] and OLSR [CJ03]. We used the imple-

3.2. THE GNUTELLA PROTOCOL 41

 0

 5

 10

 15

 20

 25

 30

fastslowstatic

A
vg

 O
ve

rh
ea

d
(k

B
/s

)

Mobility Pattern

GNU
AODV
OLSR

Figure 3.5: Classification of the average overhead, with patterns of increasing nodes
mobility. The bars show the amount of traffic generated by Gnutella and the routing
protocols in each set of scenarios.

mentation of AODV shipped with ns2, while for OLSR we took the implementation
provided by the Naval Research Lab in the PROTOLIB environment. If not differ-
ently specified, the simulation time was set to 15 minutes (900 s.), each node was
configured with an IEEE 802.11 MAC layer to use the wireless channel, a routing
agent and a Gnutella agent running on top. The results hereafter reported are the
average of 5 different runs on randomly generated scenarios. In the following we
present the performance analysis of Gnutella according to various parameters.

Network size

The first set of experiments aimed at evaluating the effect of increasing network size
on the total overhead produced by routing agents and Gnutella peers, and on the
average peer degree. To this end, we produced random scenarios with an increasing
number of static and equidistant nodes, so as to maintain fixed network densities.
We created 5 different classes of scenarios (i.e., 10, 20, 30, 40 and 50 nodes), where
each node was configured with a Gnutella agent starting at the beginning of the
simulation, immediately after the routing agent. Figure 3.3 presents the total over-
head, measured in kBytes per second, produced by routing and P2P agents, with
both OLSR or AODV. The figure shows that overall, the system produces a compa-
rable amount of traffic for a given network size, independently from which routing
protocol is used. The difference stands in how the overhead is distributed among
the two agents. Clearly, AODV itself produces negligible overhead when compared
alone with OLSR: 2 kB/s against 18 kB/s in the largest scenario. However, the
impact of the two routing protocols on the traffic generated by Gnutella is visibly
different: AODV induces up to 50% additional overhead in the 50 nodes scenario

42CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

 5

LB

 3

 2

 1

 0 100 200 300 400 500

A
vg

 P
ee

r
D

eg
re

e

Time (s)

static
slow
fast

(a) Average Gnutella peer degree with
patterns of increasing mobility, and
AODV routing.

 5

LB

 3

 2

 1

 0 100 200 300 400 500

A
vg

 P
ee

r
D

eg
re

e

Time (s)

static
slow
fast

(b) Average Gnutella peer degree with
patterns of increasing mobility, and
OLSR routing.

Figure 3.6: Behavior of the Gnutella peer discovery protocol with different routing
schemes, when nodes move with patterns of increasing mobility.

when compared to OLSR. Figures 3.4(a) and 3.4(b) show the average number of peer
connections over the time, for scenarios with 10, 30 and 50 nodes. For each size,
independently from the routing protocol, the average peer degree converges to the
lower bound LB as the time goes by. This was the expected behavior as peers stop
doing peer discovery when they reach the connected state. Note that in the smaller
scenarios (i.e., 10 nodes), peers stabilize around an average of 3.7 connections with-
out reaching the LB, because the number of available peers is not enough to cope
with eventual overlay partitioning. This is a problem, as some peers permanently
remain in state connecting and keep on doing peer discovery, wasting energy and net-
work bandwidth without realizing that there are no chances to discover new peers.
Finally, we observe that AODV allows a slightly shorter Gnutella bootstrapping
time, as suggested by the slopes in the first 100 seconds. However, peer connec-
tivity stabilizes with comparable latencies in both cases: around 50 seconds for 10
nodes, 100 seconds for 30 nodes and around 200 seconds for 50 nodes scenarios. To
conclude, we can observe that probably these implementations of OLSR and AODV
are such that the former generates routes of better quality, as Gnutella achieves
comparable results with less effort. This is also verifiable in upcoming experiments
with the two routing protocols.

Nodes mobility

In the following set of experiments we wanted to study the effects of node mobility on
the P2P platform. To this end, we generated random way-point mobility scenarios
using the set-dest utility shipped with ns2, considering a population of 40 nodes
moving at increasing speed, and making shorter pause times inside a rectangular

3.2. THE GNUTELLA PROTOCOL 43

 6

 5

LB

 3

 2

 1

 0 100 200 300 400 500 600

A
vg

 P
ee

r
D

eg
re

e

Time (s)

<-- Partition -->

<-- Partition -->

GNU/AODV
GNU/OLSR

(a) Effects of network partitions on the
average Gnutella peer degree.

 0

 5

 10

 15

 20

 25

 30

 200 250 300 350 400 450 500 550 600

O
ve

rh
ea

d
(k

B
/s

)

Time (s)

<-- Partion -->

GNU/AODV
GNU/OLSR

(b) Effects of network partitions on the
overhead generated by Gnutella peers
during discovery phases.

Figure 3.7: Analysis of the effect of network partitions on the behavior of Gnutella
peer discovery procedures.

area of 1600 by 700 square meters. We created two sets of mobility scenarios: 1) a
slow scenario with node speed uniformly ranging inside [1, 5] m/s and pause times
up to 10 seconds; 2) a fast scenario with speed uniformly ranging inside [5, 15] m/s
and pause times up to 5 seconds. We compared the slow and fast scenarios with
a static network of 40 nodes equidistantly distributed over an area of the same
size. Figure 3.5 shows the trend of the total average overhead produced by routing
and P2P agents. This time AODV slightly suffers nodes mobility generating traffic
up to 2 kB/s in the fast scenario, while OLSR produces a constant overhead of
about 6 kB/s. In any case, the total overhead is largely dominated by the traffic
generated by Gnutella agents, which almost halves at each scenario. This can be
explained by looking at the trends of the average peer degree (see Figures 3.6(a) and
3.6(b)): the “slow” mobility scenario stabilized the average peer degree under LB,
around 3.7 per-peer connections with OLSR and 3 with AODV; the “fast” mobility
scenario made the situation even worse, stabilizing the peer degree around 2 per-
peer connections with both AODV and OLSR. As we observed in the trace files,
nodes mobility caused a proportional amount of link reconfigurations: the faster
the mobility scenario, the more frequent the link reconfiguration. This directly
influenced the validity of routes discovered at the network layer, which resulted less
effective as the mobility increased. The effects on the Gnutella layer were represented
by frequent overlay link drops, which caused severe overlay partitioning. So even if
peers remained in state connecting, they issued discovery Pings on little overlays,
resulting in smaller amounts of generated traffic.

44CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

Network partitioning

The last set of experiments consisted in stressing Gnutella with network partitioning,
in order to see the effects on the overlay. These experiments were carried out for
600 seconds simulation time, leaving a static network of 30 peers stabilize their
activity in the first 200 seconds, forcing a network partitioning around time 270,
and finally resuming the original network around time 430. This was achieved by
placing the 30 nodes in mutual visibility on a static grid, and letting the nodes in the
center move in opposite directions, so as to break the network in two unconnected
groups. Figure 3.7(a) shows the effects of the partitioning on the traffic generated by
Gnutella agents, as well as on the average peer connectivity. Regarding the overhead
(see Figure 3.7(b)), we observed bursts of networking activity in correspondence of
the beginning and termination of the partitioning: up to 300% of traffic increase in
the former, and up to 200% in the latter case. Again, as OLSR provides routes of
better quality, the overhead generated by Gnutella on top of AODV results bigger
of a 10% to 20% factor. The straightforward explanation for this behavior is that
peers transit back in state connecting while the network breaks up in two halves,
and perform even broader discovery procedure when the original connectivity is
restored at the physical layer. These results were confirmed by the analysis on the
average peer degree, which showed almost overlapping behavior for Gnutella over
AODV and OLSR. In both cases, the average peer degree dropped from LB down to
3 in correspondence of the beginning of the partitioning, but completely recovered
when the network resumed at its original state. This was possible by having peers
re-considering unconnected bootstrap servers, as explained at the beginning of this
Section. Finally, we wish to underline that this experiment was a proof of concept for
the self-healing capabilities of the protocol: Gnutella tolerates network partitioning
at the expense of a rise in the generated traffic overhead.

3.2.4 Key issues

From this preliminary set of experiments, we could verify that Gnutella meets im-
portant requirements for the management of data sharing overlay network in ad
hoc environments. In particular, we mention the lack of centralization points, the
co-operation of peers in forwarding each other messages, the self-organization of the
overlay network given the entry points for bootstrapping, and finally the capability
to recover from network partitioning.

However, Gnutella was not designed for ad hoc networks, and suffers from node
mobility, as shown in Section 3.2.3, causing peers not to achieve minimum connectiv-
ity requirements. Moreover, as shown in the experiments with network partitioning
(see Section 3.2.3), the protocol generates traffic bursts in correspondence of topolog-
ical reconfigurations. This is not desirable in situations where the network partitions
frequently, or where groups of nodes enter and leave the network (node churns). Fi-
nally, we have to observe that even if Gnutella peers are able to self-organize in an

3.3. CROSS-LAYER GNUTELLA 45

Figure 3.8: Cross-layer (XL) architecture used to optimize Gnutella performance.

overlay network, they still need the identification of a boot-server to start with. Our
concern is that in opportunistic environments such as autonomous ad hoc networks,
this information could be hard to retrieve. To work around this problem, a solution
could be to perform an initial expanding ring search phase, where peers discover
closer agents to attempt the first connection.

In the next Section we propose an alternative approach based on cross layering,
which addresses the above issues providing satisfactory performances at lower costs.

3.3 Cross-Layer Gnutella

Ad hoc networking heavily relies on the capacity to form a spontaneous communi-
cation infrastructure at the network layer. Ad hoc nodes are autonomous routers,
which discover other entities pro-actively, like in the case of OLSR, or driven on-
demand by the needs of application layer requests, like in the case of AODV. In
other words, ad hoc nodes have already built-in discovery procedures that “silently”
work in the background to fill out system routing tables with topological informa-
tion. Can Gnutella, or other P2P platforms, exploit this feature? For example, the
proposal described in [KP02], is an extension of the AODV routing protocol, where
service route request and response messages are added to the original routing pro-
tocol specification, in order to discover with a single broadcast those nodes offering
a particular service and the routes towards them. We claim that a similar concept
can be introduced for proactive protocols like OLSR. In OLSR, nodes periodically
issue Hello and Topology Control messages, which contains information about the
neighbors that are currently sensed. Ideally, one could add a new type of message
that allows nodes to broadcast optional information (OI), and let the other nodes
react to them as they do for link state messages. A Gnutella peer could then ex-
ploit one or the other extension, depending on which routing protocol is in use, and
perform peer discovery in conjunction with route discovery at the network layer.

46CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

The question is then how such a cross-layer interaction could be feasibly im-
plemented in standard protocol stacks. To solve this problem, we refer to Chapter
2, and the work presented in [CMTG04][CCMT05] and [CMT06], where a vertical
stack component is introduced to extend protocols interaction capabilities beyond
standard layer interfaces. This solution aims at maintaining a clean stack design,
providing protocols with cross-layer interaction primitives to:

• synchronize on shared data structures owned by single protocols, like for ex-
ample routing tables;

• react asynchronously to cross-layer events generated at different layers, through
a local publish/subscribe framework.

Using a cross-layer interface (XL-interface) inspired from this model, Gnutella peers
could initiate, through cross-layer events, peer discovery requests to an on-demand
routing protocol, or ask a proactive routing agent to spread their own credentials
around together with control packets. In the same way, routing agents could notify
local peers about the reception of discovery requests and reply back when neces-
sary, or, in the proactive case, notify local peers about the reception of fresh peer
credentials along with incoming link state updates.

In this work, we adopted the proactive approach by extending the Naval Research
Lab implementation of OLSR to handle new messages for optional information (OI).
Our choice fell on OLSR because it provided the best results during the performance
evaluation described in Section 3.2.3, and because the protocol itself is designed to
be easily extended with new messages. Additionally, it was a natural choice to
implement the cross-layer interface inside the PROTOLIB, so as to provide OLSR
and Gnutella with platform independent objects for cross-layer interactions. Figure
3.8 shows the resulting system architecture, with the cross-layer communication
between Gnutella and OLSR. We introduced two classes of cross-layer events:

1. Spread OI events, to which the routing agent subscribes, receiving notifications
from the Gnutella platform. These events are used to ask the OLSR agent
to advertise local peer credentials around, together with the next Hello or
Topology Control message, respectively if the node is a Multi Point Relay or
a leaf node (see OLSR RFC [CJ03] for details on the protocol).

2. Recv OI events, to which the local Gnutella peer subscribes, in order to receive
notifications from the underlying OLSR agent. These events are used to notify
the local peer about the credential advertisement of a remote peer, received
together with a routing control message.

This cross-layer framework, allowed us to re-design the peer discovery procedure
of Gnutella, making each peer periodically advertise its credentials, and reacting
to events like the reception of new (or the refresh of old) advertisements, and the
expiration of peers.

3.3. CROSS-LAYER GNUTELLA 47

 0

 10

 20

 30

 40

 50

 60

 70

 50 40 30 20 10

A
vg

 O
ve

rh
ea

d
(k

B
/s

)

Network Size

GNU
OLSR

XL-GNU

(a) Comparison of the average over-
head generated by Gnutella and the XL-
Gnutella under increasing network sizes.

 12

 11

 10

 9

UB

 7

 6

 5

LB

 3

 2

 1

 0 100 200 300 400 500

A
vg

 P
ee

r
D

eg
re

e

Time (s)

10 nodes
30 nodes
50 nodes

(b) Average XL-Gnutella peer degree un-
der increasing network sizes.

Figure 3.9: Analysis of the benefits of cross-layering on the overlay management, as
a function of the network size.

3.3.1 Peer discovery and link selection

By adopting the cross-layer framework, we replaced the peer discovery procedure of
Gnutella based on Pings flooding, with the management of cross-layer events. The
overall procedure became simpler and easier to control. On receiving cross-layer
events, peers fill up a local table of advertisement generated by foreign agents. This
advertisement table took the place of the Pong cache of the legacy implementation.
Moreover, as advertisements travel the network along with routing control packets,
we were able to get each time an accurate estimation of the physical distance (in
number of hops) of the peer originating the advertisement. This topological infor-
mation enriched the advertisement table, and allowed us to play a smarter overlay
formation protocol, introducing a link selection policy based on the physical distance
of discovered peers. In other words peers were able to prioritize the establishment
of closer connections over further ones, with the goal of building an overlay network
topologically closer to the physical network. Note that this deterministic selection
of overlay links is meaningful in ad hoc environments, where one could eventually
assume a small number of opportunistic (and hence heterogeneous) participants to
the Gnutella network. Additionally, the network participants get reshuffled by mo-
bility and by the arrival of new nodes. The same rational would not apply on the
Internet, where overlay formation with random walks has been proved more effective
than deterministic approaches [CCR04,CRB+03]. Apart from the new peer discov-
ery approach, we left unaltered the rest of the Gnutella protocol (i.e., connection
handshaking, link probing and queries), as well as the states identified by the peer
degree and the LB and UB bounds.

We modified our Gnutella peers to react on three kinds of situation, in corre-

48CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

spondence of the updating of the advertisement table, as shown in Algorithm 3. On
receiving an advertisement from a new peer, the agent always attempts a connection
request if it is in state connecting. If the current state is connected, the agent checks
the physical distance of the new peer. In case this is closer than any of the already
connected peers, the agent attempts a connection request to it. The same proce-
dure triggers in state full, but in this case the peer additionally drops the furthest
connection, once the new one becomes active. Similar steps are performed for an
advertisement refresh, because with nodes mobility, a peer can receive subsequent
advertisements from the same foreign agent at different distances. The third situa-
tion is the expiration of an advertisement due to consecutive miss of refreshes. This
event is detected internally by the advertisement table, which then directly notifies
the peer, causing a connection drop in case the Gnutella protocol didn’t detect it
using probe Pings.

The cross layer approach addresses the issues raised in Section 3.2.4, by elimi-
nating the need of bootstrap servers, reducing and stabilizing the overhead of the
protocol, and finally improving the connectivity and the quality of the generated
overlays. The next Section proves the validity of these claims, evaluating the cross-
layer version of Gnutella (XL-Gnutella) under scenarios similar to those used in
Section 3.2.3. XL-Gnutella uses the same settings reported in Table 3.1, replacing
discovery Pings with peer advertisement issued every 30 seconds.

3.3.2 Performance evaluation

In order to study the properties of XL-Gnutella and verify our statements, the
protocol was subjected to the same set of experiments reported in Section 3.2.3, and
compared with the legacy Gnutella running on OLSR. Additionally, we prepared
scenarios where the overlays underwent to bursts of increasing number of node churns
(i.e., node replacements), in order to study the reaction of the two maintenance
protocols. Additionally, we evaluated the path stretch produced by the overlays,
defined as the ratio of the end-to-end delay (measured in number of hops in the
physical network) along the path connecting two peers in the overlay, to that along
the direct unicast path in the physical network. The path stretch measures how
far (from a topological point of view) the overlay is from the physical network, and
characterizes the overhead induced by the former on the latter. By definition, the
direct unicast between two nodes in the physical network has a path stretch of unity.
The closer the path stretch of a P2P platform to unity, the better. We used this
metric to verify the effectiveness of our topology-aware link selection policy. During
this set of experiments we were also able to retrieve the overlay partitioning ratio,
defined as the fraction of unreachable peers pairs with respect to the total number
(considered without repetitions). Finally, we performed a simple study on the query
success rate to see the effects of cross layering on the information discovery capacity
of Gnutella overlays. In the following, we present the performance analysis of XL-
Gnutella, in each set of experiments. Unless specified, we used the same scenarios

3.3. CROSS-LAYER GNUTELLA 49

 0

 5

 10

 15

 20

 25

 30

fastslowstatic

A
vg

 O
ve

rh
ea

d
(k

B
/s

)

Mobility Pattern

GNU
OLSR

XL-GNU

(a) Comparison of the total overhead gen-
erated by Gnutella and XL-Gnutella un-
der increasing nodes mobility.

 12

 11

 10

 9

UB

 7

 6

 5

LB

 3

 2

 1

 0 100 200 300 400 500

A
vg

 P
ee

r
D

eg
re

e

Time (s)

static
slow
fast

(b) Average XL-Gnutella peer degree un-
der increasing nodes mobility.

Figure 3.10: Study of the benefits of cross-layering on Gnutella overlay management,
when mobility comes into play.

used for the evaluation of Gnutella.

Network size

The results obtained by stressing XL-Gnutella with networks of increasing size, sug-
gest that the cross-layer variant achieves better overlay connectivity at significantly
lower costs. As shown in Figure 3.9(a), the cost of spreading around peer credentials
with OLSR control messages, produces an average increase in size for OLSR mes-
sages, which translates to a 25% to 30% added overhead for the routing protocol.
However the P2P traffic clearly reduces when compared to the legacy Gnutella, in-
ducing nearly a 60% saving for XL-Gnutella, and hence a 40% global saving. Figure
3.9(b) shows the degree achieved by cross-layer peers, which stabilizes around 7 con-
nections on average (i.e., close to UB), and crosses the lower bound 40 seconds after
the beginning of the simulation, independently from the network size. The initial
oscillations, which let the average peer connectivity crossing the UB, are due to our
selection policy, which first opens the connection with newly discovered peers, and
then drops the most disadvantageous.

Nodes mobility

We identified nodes mobility as an important issue for Gnutella (see Section 3.2.3),
so we considered important to stress the cross-layer variant to the same mobility
scenarios: 40 nodes running on a 1600x700 squared meter area, at increasing speed
and with shortening pauses. Figure 3.10(a), shows that the overhead generated by
XL-Gnutella is unaffected by nodes mobility, and remains constant around 5 kB/s.

50CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

 0

 5

 10

 15

 20

 25

 30

 200 250 300 350 400 450 500 550 600

O
ve

rh
ea

d
(k

B
/s

)

Time (s)

<-- Partion -->

GNU
XL-GNU

(a) Comparison of the overhead generated
by Gnutella and XL-Gnutella across net-
work partitions.

 12

 11

 10

 9

UB

 7

 6

 5

LB

 3

 2

 1

 0 100 200 300 400 500 600

A
vg

 P
ee

r
D

eg
re

e

Time (s)

<-- Partition -->

GNU
XL-GNU

(b) Comparison of effects of network par-
titioning on the average Gnutella and XL-
Gnutella peer degree.

Figure 3.11: Cross-layering helps Gnutella overlay in dealing with network parti-
tions.

This is confirmed by the behavior of the average peer degree (see Figure 3.10(b)),
which falls down from 7 to 5-6 connections per peer as the mobility increases, but
remains in the [LB − UB] range. However, fast node mobility induces frenetic
oscillations of the average degree.

Network partitioning

By stressing XL-Gnutella with the network partitioning scenarios, we obtained again
interesting results. As show by Figure 3.11(b), also cross-layer peers loose connectiv-
ity when the network splits in two halves (see the sharp drop in the plot), but they
timely recover the original level when links are re-established at the network layer.
Additionally, this happens with no traffic bursts in correspondence of topological
reconfigurations, which is not the case for the legacy protocol (see Figure 3.11(a)).

Node churns

In this set of experiments, we stressed the protocols with bursts of node churns
scheduled in the middle of the simulation. We created scenarios where 40 peers
move around for 900 seconds in an area of 1600 by 700 square meters, using random
way-point in “slow” configuration. We let the overlays stabilize, scheduling at time
450 a node replacement every 2 seconds. A replacement is done by picking one node
n1 at random for shut down, and creating a new node n2 to take the place of n1.
We introduced 30%, 50% and 70% of node replacements, and studied the actual
overhead produced and the average peer degree in correspondence of the bursts.
For space reasons, we only report the results regarding the 70% burst. As shown
in Figure 3.12(a), the amount of traffic generated by XL-Gnutella (i.e., around 5

3.3. CROSS-LAYER GNUTELLA 51

 0

 5

 10

 15

 20

 25

 30

 350 400 450 500 550 600 650

O
ve

rh
ea

d
(k

B
/s

)

Time (s)

Burst limits -->

GNU
XL-GNU

(a) Comparison of the effects of a 70%
node churns burst on the overhead gener-
ated by Gnutella and XL-Gnutella.

 10

 9

UB

 7

 6

 5

LB

 3

 2

 1

 400 450 500 550 600 650 700

A
vg

 P
ee

r
D

eg
re

e

Time (s)

<-- Burst limits

GNU
XL-GNU

(b) Comparison of the effect of a
70% node churns burst on the average
Gnutella and XL-Gnutella peer degree.

Figure 3.12: Cross-layering improves tolerance to high rates of node churns in
Gnutella overlays.

Peer density Gnutella XL-Gnutella

20% 8.5% 0%
33.% 25% 0%
50% 29.4% 0%
100% 62% 0.1%

Table 3.2: Comparison of Gnutella and XL-Gnutella average overlay partitioning
rate under increasing peer densities.

kB/s) is almost unaffected by node replacements. In contrast, Gnutella registers a
drop in the amount of generated traffic from 15 kB/s down to 5 kB/s, afterward
stabilizing around 10 kB/s. This is due to a resulting partitioning of the overlays,
which lasts even after the end of the burst as many among the remaining nodes loose
the bootstrap servers. Figure 3.12(b) confirms this, as Gnutella registers during the
burst a drop from 3.5 down to 2 on the average peer degree, and never recovers the
original value, while cross-layer peers maintain the initial degree (oscillations during
the burst are again due to the link selection policy).

Path stretch and query success rate

In the last set of experiments, we wanted to prove the effectiveness of our topology-
aware link selection policy. To this end, we studied the path stretch generated by
XL-Gnutella and Gnutella overlays. In order to perform this analysis, we turned on
periodic query issues with TTL equal to 7, to get multi-hop overlay messages also for
XL-Gnutella. We prepared scenarios with 40 static nodes uniformly distributed on a
rectangular area, configuring an increasing percentage of them as peers (respectively

52CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100 5033 20

A
vg

 P
at

h
St

re
tc

h

Percentage of Peers in the Network

GNU
XL-GNU

(a) Comparison of the average path
stretch produced by Gnutella and XL-
Gnutella under increasing peer densities.

 20

 40

 60

 80

 100

 120

 100 5033 20

A
vg

 Q
ue

ry
 S

uc
ce

ss
 R

at
e

Percentage of Peers in the Network

GNU
XL-GNU

(b) Comparison of the average query suc-
cess rate produced by Gnutella and XL-
Gnutella under increasing peer densities.

Figure 3.13: Analysis of the path stretch and query success rate generated by
Gnutella and XL-Gnutella, as a function of increasing peer densities.

20%, 33%, 50% and 100%). Figure 3.13(a) shows the obtained average path stretch
with 95% confidence interval. Not only XL-Gnutella produces overlays significantly
closer to the underlying networks when compared to the legacy Gnutella (e.g., re-
spectively 1.35 against 2.1 with a 50% of peers), but the cross-layer protocol exhibits
a more stable behavior with smaller variances. Moreover, by looking at the average
overlay partitioning rates (see Table 3.2), it was important to notice that with a
one-to-one nodes/peers correspondence, 62% of Gnutella peers weren’t able to reach
each other in the overlay, compared with the 0.1% for XL-Gnutella on the same
density. Finally, the numbers shown for overlay partitioning were directly verifiable
in a simple experiment on the query success rate. We used the same simulation
scenarios as for the path stretch, but additionally distributed shared content on the
peers, before making them issue queries on it. This allowed peers to reply with hit
messages when reached by query constraints matching their local shared content.
We loaded a different file name on each peer, forcing it to issue one query for each
file shared by the other peers. The results are reported in Figure 3.13(b), where the
Gnutella query success rate clearly degrades accordingly to the overlay partitioning
rate: from nearly 95% with 20% peer density (and 8.5% of partitioning), down to
43% with 100% peer density (and 62% partitioning). In the same Figure, the 95%
confidence interval highlights once again the stability exhibited by XL-Gnutella in
satisfying queries on existing content.

3.4. RELATED WORK 53

3.4 Related work

In this Section we go through some related work in the area of P2P computing
and data sharing in mobile ad hoc networks. Among the many interesting works
in the area of large-scale P2P computing, we would like to mention [CRB+03],
which proposes to optimize an unstructured platform like Gnutella replacing flooding
techniques with random walks, and [YVGM04], which evaluates the performance
of GUESS, an iterative and non-forwarding technique to improve Gnutella data
discovery. Other works, such as Pastry [RD01a], introduce the concept of structured
overlay introducing constraints on the logical location of shared data (or indexes
built on top of it). However, all of these works focus on large-scale systems (i.e.,
thousands of peers), carrying on evaluations under typical Internet workloads and
connectivity characteristics.

In the area of mobile ad hoc networks, there have been recent proposals to tailor
file-sharing systems for better performance in small-size and mobile scenarios. In
[KLW03] the authors present ORION, a file-sharing platform where overlay links and
routes are maintained on-demand, with procedures similar to those used by AODV
to build and maintain routes at the physical layer. The work in [SGN03], proposes a
cross-layer interaction between the network layer and a file-sharing platform at the
middleware layer, to force a reactive routing protocol, such as AODV, to build and
maintain routes towards other peers and decrease the latency of data look-up. The
work in this Chapter spins off the ideas reported in [CGT04], where similar cross-
layer interactions are carried out through a vertical interface to define an efficient
ring overlay for subject-based routing in ad hoc networks. However, in this Chapter
we provide a detailed performance evaluation of an existing and largely used platform
like Gnutella, showing its limitations when used in ad hoc environments, and how
it could be optimized via cross layering to i) meet ad hoc usability constraints, but
at the same time ii) remain fully compatible to the legacy system.

3.5 Conclusions

In this Chapter we promote a cross-layer interaction between overlay peers and
routing agents at the network layer. This interaction allows the realization of an
efficient peer discovery procedure and link selection policy, determining a low-cost
construction of topology-aware overlay networks. We experimented this concept
proposing a cross-layer version of Gnutella (XL-Gnutella) as a viable alternative for
data sharing in mobile ad hoc environments. From the obtained results, we conclude
that XL-Gnutella nicely tolerates typical ad hoc dynamics, like nodes mobility, net-
work partitioning, and node replacements. In each of these conditions, our protocol
was able to maintain the required level of overlay connectivity, without generating
traffic bursts. Additionally, it presented lower bootstrap latencies and higher rates
of query successes, outperforming the legacy version of the protocol. In order to

54CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

feasibly realize the interaction between the P2P and the routing agents, we adopted
a full cross-layer protocol stack design, where a vertical interface extends the stan-
dard layers functionalities, enhancing the local cooperation between protocols. In
the future we would like to study similar optimizations for structured overlays, as
well as analyze the performance of lookup procedures under typical data distribution
models and more realistic mobility patterns.

3.5. CONCLUSIONS 55

Algorithm 2 Gnutella peer discovery and Pong caching.

AddPong(pongmsg) ⇒ add Pong to cache
PurgePongCache() ⇒ delete stale cache entries
. . .
HandlePing(pingmsg, connection)

if (pingmsg.isProbeP ing()) then
pong = newPongMsg(local credentials)
pong.ttl = 1
SendPong(connection, pong)

else if (pingmsg.isDiscoveryP ing()) then
PurgePongCache()
if (PongCache.size() ≥PT) then

pongs = PongCache.SelectPongs(PT)
for all pong in pongs do

pong.ttl = pingmsg.hops + 1
SendPong(connection, pong)

end for
else

if (PeerTable.state 6= FULL) then
pong = newPongMsg(local credentials)
pong.ttl = pingmsg.hops + 1
SendPong(connection, pong)

end if
if (pingmsg.ttl > 1) then

pingmsg.ttl −−
pingmsg.hops + +
for all c in PeerTable such that c 6= connection do

ForwardP ing(c, pingmsg)
end for

end if
end if

end if

. . .
HandlePong(pongmsg)

if (pongmsg.ttl + pongmsg.hops ≤ TTLMAX) then
AddPong(pongmsg)
if (pongmsg.ttl + pongmsg.hops > 1) then

connection = GetMsgOriginator(pongmsg.msgID)
ForwardPong(connection, pongmsg)

end if
end if

56CHAPTER 3. A CROSS-LAYER APPROACH FOR UNSTRUCTURED P2P COMPUTING

Algorithm 3 XL-Gnutella peer discovery and link selection.

AdvertiseLocalCredentials() ⇒ periodically generates SpreadOI events contain-
ing local credentials.
DropFurthestConnOnAccept(ConnHandle) ⇒ selects and drops the furthest
connection when ConnHandle becomes active.
UpdateAdvertisementTable(Advertisement) ⇒ updates the advertisement table
checking if it is a new advertisement or a refresh.
. . .
ReceiveRecvOIEvent(E)

peerAdv =
newPeerAdv(E.adv, E.credentials, E.phyDistance)
UpdateAdvertisementTable(peerAdv)
HandleAdvertisement(peerAdv)

. . .
HandleAdvertisement(PeerAdv)

if (PeerAdv.isNew()) ∨ (PeerAdv.isRefresh()) then
if (PeerTable.find(PeerAdv.getCredentials())) then

return
end if
if (PeerTable.state == CONNECTING) then

SendConnRequest(PeerAdv.getCredentials)
else

d1 = PeerAdv.getPhyDistance()
c = PeerTable.getFurthestConn()
d2 = c.getPhyDistance()
if (d1 < d2) then

cred = PeerAdv.getCredentials()
cHandle = SendConnRequest(cred)
if (PeerTable.state == FULL) then

DropFurthestConnOnAccept(cHandle)
end if

end if
end if

else if (PeerAdv.isExpired()) then
if (PeerTable.find(PeerAdv.getCredentials())) then

PeerTable.removeConn(PeerAdv.getCredentials())
end if

end if

Chapter 4

A Cross-Layer Approach for
Publish/Subscribe

Abstract

In the context of ubiquitous and pervasive computing, publish/subscribe
middleware is gaining momentum due to its loosely coupled communication
scheme. In this Chapter, we present Q a publish/subscribe service conceived
to operate over mobile ad hoc networks. With Q, the overlay network that
routes events from publishers to subscribers dynamically adapts to the chang-
ing topology by means of cross-layer interaction. Q also supports content-
based filtering of events through mobile code: subscribers can specify in de-
tail the notifications they wish to receive by defining proper filter classes, then
binary code of filters is exchanged during runtime by participating nodes.

4.1 Introduction and Background

Publish/subscribe middleware supports the construction of event-based systems,
whereby generators publish event notifications to the infrastructure, while consumers
subscribe to receive relevant notifications [CRW01]. The interaction model between
communicating partners is asynchronous by nature, and is therefore particularly at-
tractive in the context of highly dynamic systems such as mobile ad hoc networks
(MANETs). The simplest way to build such infrastructure is through a central-
ized server, in charge of collecting events and dispatching notifications to interested
parties. Clearly this solution, besides its limited scalability, is impractical within
MENETs, as these networks are intrinsically peer-to-peer. This suggests to dis-
tribute the notification service over the participants, enabling each entity to manage
subscriptions and forward events. Unfortunately, most distributed event notification
systems assume a fixed network infrastructure, and are not aware of the underlying

58 CHAPTER 4. A CROSS-LAYER APPROACH FOR PUBLISH/SUBSCRIBE

network topology, and hence are likely to cause unnecessary traffic when used in
MANET environments.

4.1.1 Related Work

Here we summarize some relevant proposals of publish/subscribe middleware for
MANETs (for the sake of brevity, we omit those systems that have not been specif-
ically designed for infrastructureless networks).

STEAM [MC02] is an event-based middleware service specifically designed for
mobile ad hoc networks. STEAM is based on the idea that communicating entities
are likely to interact once they are in close proximity. In other words, events are valid
within a certain geographical area surrounding the producer: this limits forwarding
of event messages producing positive effects on the usage of communication and
computation resources. The system supports three different ways of filtering events:
type filtering (on the base of the type, i.e. a name, of events), content filtering
(to specify the values of event fields), and proximity filtering (to specify the scope
within events are disseminated).

In [VIE03], the authors identify and address the design challenges encountered in
the implementation of a Java Message Service (JMS) solution for MANETs. To cope
with the lack of readily available routing protocols integrated into the network layer,
the system includes an application-level implementation of ODMRP [GPLC00] (a
multicast routing protocol for MANETs) as message transportation system.

In [PCM03], the authors propose a technique useful to rearrange efficiently the
routes traversed by events in response to changes in the topology of the network of
dispatchers. The reconfiguration algorithm assumes that subscriptions are forwarded
on an unrooted tree topology that connects all dispatchers.

EMMA [MMH04] is an adaptation of JMS for mobile ad hoc environments where
the delivery of messages is based on an epidemic routing protocol. A message that
has to be sent is replicated on each host in reach, then if a node that contains a
copy of the message, during its movement, gets in touch with other nodes, the
message spreads to these nodes as well. Proper mechanisms are used to avoid
message duplicates.

4.1.2 Contribution

This Chapter presents the design of Q1, an infrastructure for publish/subscribe
conceived to operate in MANET environments. Q is a type-based system: events
are instances of application-defined types, and both publishers and subscribers have
to specify the type of events they produce or are interested in.

We briefely recall some properties of type-based publish/subscribe [EG04]. First,
it preserves type safety and encapsulation through application-defined event types.

1Q is the title of a Luther Blisset’s novel. Q is also the name of one of the main characters, a
spy.

4.2. Q’S OVERLAY NETWORK 59

Second, it easily integrates with object-oriented languages where event types are
mapped to classes, and the hierarchical organization of event types is reflected by
the inheritance relationship among classes. Third, it does not preclude content-
based filtering of events: during subscription, besides specifying the type of events,
an application can narrow the set of events of interest by providing a filter, expressed
as a set of conditions that must be satisfied by event properties.

Additionally to these features, Q presents two other distinguishing characteris-
tics: reconfiguration through cross-layer interaction and content-based filtering by
means of mobile code.
Cross-layer interaction: As in classical protocol stack architectures, ad hoc network
activities can be organized in layers. In this model, each layer in the protocol stack
is designed and operated separately, with static interfaces independent from network
constraints and applications. However, there are some functions which cannot be
assigned to a single layer, but are part of an optimization strategy targeting the
whole stack. Cross-layering is an innovative form of protocols interaction, placed
beside strict-layer interactions, which makes these optimizations possible [CCMT05].
Picking just one example, the routing protocol plays an important role, as it collects
network topology information. Sharing topology data, potentially simplifies tasks
taking place at other layers (e.g overlay network), avoiding explicit communication
to collect it again.

Q interacts cross-layer with routing agents at the network layer, and uses topol-
ogy information to obtain a self-reconfiguarble overlay that increases communica-
tion’s efficiency: application-level routes connecting publishers to subscribers closely
reflect unicast routes at the network layer.

Content-based filtering through mobile code: Content-based filtering of events can
greatly reduce the amount of traffic generated by publish/subscribe systems. This
is particularly significant within a MANET scenario where network resources are
scarce. In Q, filters are instances of application-defined filter classes. Filter objects,
that are issued by event consumers during subscription, are moved towards the
publishers of relevant events to maximize the filtering effects. Since filter classes are
application-defined, it may happen that a node that receives a filter object is not in
possession of the corresponding class. Q is provided with mechanisms that support
code mobility, so that filter classes can be downloaded at runtime by participating
nodes when needed.

4.2 Q’s Overlay Network

Delivery of event notifications requires the cooperation of nodes located between
publishers and subscribers, that are involved in the forwarding activity. In the
following we will refer to “dispatcher” nodes as those actively involved in event
forwarding, while we will say that a node becomes a dispatcher to mean that it
starts forwarding event’s notifications. For the sake of semplicity, we assume that

60 CHAPTER 4. A CROSS-LAYER APPROACH FOR PUBLISH/SUBSCRIBE

all nodes that compose the network are able to participate in the event dispatching
activity (i.e. each node runs a Q’s instance).

4.2.1 Connecting publishers and subscribers

In a publish/subscribe system communication is anonymous, i.e. publishers and
subscribers have no knowledge of each other identity [EFGK03]. A publisher injects
an event into the system without specifying the recipients, then the dispatching ser-
vice is responsible of the delivery of such notification to all interested parties. In the
absence of a centralized entity, this poses the problem of establishing routes to for-
ward event notifications from publishers to subscribers. As highlighted in [CRW01],
there is the need of broadcasting some information because participants identity is
not known. The first solution consists in broadcasting event notifications, which is
clearly inefficient since notifications are potentially very frequent, and beside they
would be delivered to uninterested nodes. The second alternative broadcasts sub-
scriptions, while notifications get routed through shortest paths. The last alterna-
tive, adopted by Q, sees publisher nodes broadcasting event advertisements, and
interested nodes replying back with subscriptions. This message exchange sets up
the routes that will support event notifications.

In Q, because of the dynamic nature of MANETs, advertisements must be pe-
riodically retransmitted, with period Tp, in order to tolerate the loss of messages.
Each advertisement contains the publisher’s identity (i.e. its IP address and port
number) and the type of the events it generates. Upon receiving an advertisement, a
node stores in a local table entry i) the type of the event, ii) the ID of the publisher,
iii) the ID of the direct (one hop) neighbor from which the advertise message was
received. Afterwards, it re-transmits the message to its neighbors. The first two
fields are used to keep track of active publishers in the network and the type of
produced events, while he third is used to route subscriptions of interested nodes
back to the publishers. Entries are discarded after a time equal to 2Tp.

If subscriber S is interested in the events generated by publisher P, a chain of
dispatchers must be established to forward events from P to S. The chain is initiated
by S, which uses a subscribe message to register as an event consumer with the
neighbor N, from which it received P’s advertisement. Afterwards, N registers as an
event consumer with the direct neighbor from which it received the advertisement
and so on until a path is built from S to P.

As there could be many subscribers interested in the events advertised by P,
the system tries to aggregate dispatcher chains whenever possible: a node already
acting as a dispatcher for an event type E, does not furtherly forward subscriptions
for E. In the scenario shown in Fig. 4.1, the system needs to activate some nodes as
dispatchers in order to forward events from P to the three subscribers. In particular,
nodes N1 and N3 are activated to forward events from P to S1. S3 directly receives
events from P, while N2 and S3 forward events towards S2 (i.e. S3, besides acting
as a sink for events, also operates as a dispatcher).

4.2. Q’S OVERLAY NETWORK 61

P

S1

S2
S3

N1

N2

N3

Physical network

Subscription

Figure 4.1: Network with three subscribers (S1, S2, and S3) and one publisher
(P). Arrows show the direction of subscriptions (events flow in the opposite way).
One-hop communication links are also shown.

4.2.2 Reconfiguration

As nodes mobility induces topological reconfigurations of the phisical network, Q has
to reconfigure the overlay to contain the cost of event dispatching. This is done by
means of PING messages, which are periodically generated by each publisher, with
period Tping, towards its subscribers. PING messages are forwarded the same way of
regular events, but at each hop the dispatcher appends its identifier before sending
it to its consumers. This approach makes each dispatcher aware about its level in
the forwarding chain (i.e., the publisher is a level 0 dispatcher, which communicates
with level 1 dispatchers, and so on).Also, each node becomes aware of the current
path from the publisher to itself. This information, together with the content of the
routing table, is used to understand if the chain of dispatchers has to be reconfigured
or not, as explained in the following.

Cross-layer Interaction

The current implementation of Q is on top of the Dynamic Source Routing (DSR) [JM96]
protocol, as it is source-based. This means that the routing table of each node con-
tains the list of nodes that messages have to traverse to reach a given destination.

On receiving the PING message, each node analyzes the list of upstream dis-
patchers and, for each node in the list, i) calculates the distance at the application
level, i.e. the number of intermediate dispatchers, between itself and that node; ii)
retrieves from the routing table the distance between itself and that node in terms
of physical hops. Then, the node evaluates if a solution better than the current one
exists. In that case it performs a partial reconfiguration of the network by unsub-
scribing from its current upper-level dispatcher and subscribing with another node
in the list. In the following we give an intuitive description of the algorithm used to
reconfigure the dispatcher chain by means of some examples.

Let us consider the network in Fig. 4.2(a): when S2 receives the PING message
generated by P, it sees that D1 is one hop far away at the network level and three

62 CHAPTER 4. A CROSS-LAYER APPROACH FOR PUBLISH/SUBSCRIBE

P

D1

D2

D3

D4

S1

S2

N1

(a)

N2

P

N1
D3

D2

D1

S1

(b)

D1

D3

S

D2

P

Overlay network

Physical network

(c)

Figure 4.2: Examples of reconfiguration. a) S1 unsubscribes from D3 and becomes
a direct consumer of P, while S2 unsubscribes from D4 and becomes a consumer of
D1; b) to improve the topology of the overlay network, S1 unsubscribes from D3 and
becomes a consumer of N1, which is activated as dispatcher; c) D3, a dispatcher,
starts a reconfiguration process by unsubscribing from D2 and subscribing to D1.

hops far away at the level of the overlay network. Therefore, S2 decides to unsub-
scribe from D4 and connects to D1. The same way, S1 discovers that the producer
of the events is a direct neighbor. Then, S1 unsubscribes from D3 and becomes a
direct consumer of P. Since D4, D3, and D2 are no longer used to route events, they
stop serving as dispatchers for that type of events.

The same technique can be applied also when an upstream dispatcher is not
directly connected, at the network level, to the subscriber that performs the recon-
figuration. In this case, the entry in the routing table indicates how many hops are
needed to reach that node and which other nodes are involved. For example, as
shown in Fig. 4.2(b), S1 can understand that D1 is two hops far away, and that the
distance at the application-level is three hops. Therefore, S1 can improve the topol-
ogy of the overlay network by unsubscribing from D3, and subscribing to N1, which
in turn must subscribe to D1. This operation is achieved through a special message
(Subscribe&Forward, SF) which is sent by S1 to N1. The SF message contains the
list of all nodes on the route between S and P that must be activated as dispatchers.

As intermediate dispatchers are as a matter of fact “indirect” subscribers, they
run the same reconfiguration procedures. For example, as shown in Fig. 4.2(c), on
receiving the PING, D3 decides to unsubscribe from D2 and attach to D1, a direct
neighbor.

4.3. CONTENT-BASED FILTERING THROUGH MOBILE CODE 63

D1

N3

D2D1

N3

D2

Before After

Figure 4.3: Communication between D1 and D2 becomes multi-hop: N3 acts as a
router. The overlay network is reconfigured by D2 that unsubscribes from D1 and
send a SF message to N3, which becomes a dispatcher.

Communication to a Dispatcher Becomes Multi-Hop

It may happen that two nodes that are adjacent in the overlay network become
able to communicate with each other only through the intervention of another node
acting as router. For example, as shown in Figure 4.3, dispatchers D1 and D2,
that are adjacent in the overlay network, are able to communicate only thanks to
node N3. Let us suppose that PING messages flow from D1 to D2: when the latter
receives the PING, it becomes aware that D1, its upstream dispatcher, is reachable
by means of node N3, which is not active as a dispatcher. Then D2 sends a SF
message to N3. N3 becomes an active dispatcher and subscribes with D1. At the
same time D2 unsubscribes from D1.

With this strategy, all nodes that route events at the network layer become
dispatchers for that type of events (basically, they become routers for that type of
events also at the application level). This facilitates the reuse of forwarding chains,
as that nodes become possible attach points for other branches.

4.2.3 Node Exit and Failure

Because of the error-prone nature of MANETs, the system must be able to tolerate
not only the voluntary exit of a node from the overlay network, but also involuntary
disconnections. Voluntary exit of publishers and subscribers is supported by two
explicit messages, stop publishing and unsubscribe respectively. Involuntary discon-
nections are detected by means of PING messages. If a node in a dispatching chain
dies, downstream dispatchers and subscribers will no longer receive PING messages,
while the upstream dispatcher will not be able to communicate with it. The system
reacts this way: i) downstream dispatchers self-terminate, ii) the upstream dis-
patcher removes the dead node from the forwarding list and iii) subscribers start a
new subscription procedure (this will eventually lead to the creation of new chains).

4.3 Content-Based Filtering through Mobile Code

A prototype of Q has been implemented for the Java 2 SE platform. Besides the
mechanisms used to build and maintain the overlay network, the prototype allows

64 CHAPTER 4. A CROSS-LAYER APPROACH FOR PUBLISH/SUBSCRIBE

for content-based filtering of events: each subscriber can specify a content filter
expressed as a set of conditions on the fields of the type of the event. All events that
do not satisfy the conditions specified in the subscription pattern are not delivered
to the subscriber.

In many content-based publish/subscribe systems, conditions are expressed by
means of specific languages. As pointed out in [EG01], this approach has some
drawbacks: the language used to express subscriptions is different from the one
used to program the application and syntax errors violating the grammar of the
subscription language are detected only at runtime, when conditions are parsed.

With Q, filters are expressed by means of the Java language. More in detail, the
programmer can define a new application-specific filter as a class provided with the
method boolean matches(EventType e) that returns true when the event e must be
delivered to the subscriber, false if e has to be discarded. The body of the matches()
method can make use of all public fields and methods of the event object passed as
argument.

For example, if a subscriber is interested in receiving events related to the tem-
perature (instances of the TemperatureEvent class), but only if the value is greater
than a given threshold, the TemperatureFilter class could have the following struc-
ture (Filter is the base class of all filters):

public class TemperatureFilter extends Filter {

private int temp;

public TemperatureFilter(int t) { temp = t; }

public boolean matches(EventType e) {

if (!(e instanceof TemperatureEvent)) return false;

TemperatureEvent tev = (TemperatureEvent)e;

if (tev.temp > temp) return true;

else return false;

}

}

Then, to receive temperature related events when the value is greater than 30
degrees, the subscription operation can be performed as follows:

TemperatureFilter tf = new TemperatureFilter(30);

subscribe(tf, ...);

4.3.1 Composition of Filters

In many situations, there is no need to build application-specific filters from scratch.
More easily, they can be derived from the composition of elementary filters (for
example from a library). Q supports the composition of filters by means of specific
classes. For example, the AggregateOrFilter class allows the programmer to define
a new filter as the OR function of an arbitrary number of elementary filters f1, f2,

4.3. CONTENT-BASED FILTERING THROUGH MOBILE CODE 65

..., fn. In other words, the matches() method of the AggregateOrFilter class returns
true if at least one of the filters f1, f2, ..., fn returns true, otherwise it returns false.
The skeleton of the AggregateOrFilter class can be defined as follows:

public class AggregateOrFilter extends Filter {

private ArrayList filterList;

public AggregateOrFilter() { filterList = new ArrayList(); }

public boolean matches(EventType e) {

for (int i=0; i<filterList.size(); i++)

if (((Filter)filterList.get(i)).matches(e)) return true;

return false;

}

public boolean addFilter(Filter instance){

return filterList.add(instance);

}

}

The addFilter() method is used to add elementary filters. Note that the Aggre-
gateOrFilter class extends Filter, which means that instances of AggregateOrFilter
can be used in turn as elementaryfilters.

4.3.2 Mobility of Filters

In a distributed implementation of the event notification service, filters can be used
to selectively propagate notifications only through those links that are part of a
delivery path from publishers to interested subscribers. To ensure maximum traffic
reduction, filtering must be performed as close as possible to publishers, so that
event notifications that do not match the subscription of any client can be blocked
immediately.

Q pushes filter objects as close as possible to publishers. For example, let us
suppose that a subscriber S is interested in receiving events of type K that match
a filter f. Let us also suppose that publisher P produces events of type K and that
communication between P and S is guaranteed by a third node, say D. When S starts
the subscription process, it subscribes as a direct consumer of D, and the filter object
f is transferred from S to D. In turn, D subscribes itself as a direct consumer of P
and sends to P a copy of the filter object f. From now on, all events produced by P
that match the filter f are forwarded to D, which in turn forwards them to S. Events
that do not match filter f are dropped by P itself, without generating unnecessary
traffic.

Things get slightly more complex if a dispatcher serves multiple subscribers. A
dispatcher D that manages subscribers S1, S2, .., Sn, that are interested in events of
type K matched by f1, f2, ..., fn respectively, must receive all the event notifications
that match at least one of the filters of its subscribers. This is done by creating
a filter that is the composition (OR) of the filters f1, f2, ..., fn. Then D forwards

66 CHAPTER 4. A CROSS-LAYER APPROACH FOR PUBLISH/SUBSCRIBE

S1 S2

D1

D2

subscribe(K, f2)subscribe(K, f1)

subscribe(K, OR(f1, f2))
subscribe(K, f3)

P
subscribe(K, OR(OR(f1, f2), f3))

S3

Figure 4.4: Propagation and composition of filters.

the event notifications it receives only to the relevant nodes. An example is shown
in Fig. 4.4: D2 propagates a filter that is equal to the OR of f1 and f2, while D1
propagates a filter that matches the interests of D2 and S3.

Since new filter classes can be defined by programmers, when a node receives a
filter object f, instance of class F, it may happen that the definition of class F is not
available in the local context. Q supports the transfer of class definitions from the
node that issues the subscription to the node that receives the subscription, where
definitions are cached.

4.4 Simulation

The functionalities of the event-notification infrastructure previously described have
been validated by implementing the system within the Qualnet [Net03] simulator.
Communication between members of the overlay network is based on UDP data-
grams. Through simulation we also explored the behavior of the system when vary-
ing the following architectural choices:

Event broadcast: Each time a dispatcher D has to deliver the same event
message to n consumers it has to retransmit the same data n times. An alternative
solution: D inserts in the payload of the message the list of consumer addresses, then
sends the message only once to the broadcast address, reaching all nodes within its
radio range. Every node that receives the message checks if its own address is in
the list or not, and decides if the message has to be processed or discarded.

Passive ack for events: If a dispatcher D1 sends an event message to another
dispatcher, D2, the latter has to reply with an ack to confirm that the message has
been correctly received. Passive acknowledgement can be an alternative solution:
if em D2 is not the last dispatcher in the path, it has to retransmit the message
to its downstream dispatchers; therefore D1, by listening to messages transmitted
by D2, can understand that an event message has been correctly received by D2 if
retransmitted.

4.4. SIMULATION 67

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 2 4 6 8 10 12 14 16 18 20

D
el

iv
er

y
ra

tio

Publishing rate

Ideal
EB=enabled PA=disabled
EB=enabled PA=enabled

EB=disabled PA=disabled
EB=disabled PA=enabled

Figure 4.5: Delivery ratio of event notifications with 1 publisher and 1 subscriber

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14 16 18 20

P
ac

ke
t p

er
 n

ot
ifi

ca
tio

n

Publishing rate

EB=enabled PA=disabled
EB=enabled PA=enabled

EB=disabled PA=disabled
EB=disabled PA=enabled

Figure 4.6: Packets per notification with 1 publisher and 1 subscriber

Simulations have been carried out according to a scenario where 50 nodes,
equipped with 802.11 radio interfaces (2Mbit per sec.), move in a 1000mX1000m
area. The model for mobility is random waypoint with pause time equal to 30s and
max speed equal to 10m/s. Size of event notifications is 512Bytes. The capability
of filtering events on the base of their content is not considered. The performance
indexes are the ratio of successfully delivered notifications and the number of packets
generated per delivered notification (the latter provides a measure of the overhead
of the protocol). Both indexes are evaluated as functions of the rate of published
events.

Figures 4.5 and 4.6 show the performance of the system with one publisher and
one subscriber, while Figures 4.7 and 4.8 are related to a scenario with one pub-
lisher and five subscribers. The four curves correspond to the alternative solutions
mentioned above: the labels indicate if events are sent as broadcast (EB) or not,
and if passive acknowledgement (PA) is enabled or not.

In the considered scenarios, the solution that provides the best performance
is the one that adopts both event broadcast and passive acknowledgement. This
is more evident in the scenario with five subscribers especially at high publishing

68 CHAPTER 4. A CROSS-LAYER APPROACH FOR PUBLISH/SUBSCRIBE

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2 4 6 8 10 12 14 16 18 20

Ideal
EB=enabled PA=disabled
EB=enabled PA=enabled

EB=disabled PA=disabled
EB=disabled PA=enabled

Figure 4.7: Delivery ratio of event notifications with 1 publisher and 5 subscribers

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 2 4 6 8 10 12 14 16 18 20

P
ac

ke
ts

 p
er

 n
ot

ifi
ca

tio
n

Publishing rate

EB=enabled PA=disabled
EB=enabled PA=enabled

EB=disabled PA=disabled
EB=disabled PA=enabled

Figure 4.8: Packets per notification with 1 publisher and 5 subscribers

rates, i.e. when the network starts being congested. In particular, when events are
sent as broadcast the number of packets per delivered notification is greatly reduced.
Instead, the effects of the passive acknowledgement technique, even if positive, are
less evident. Probably this is due to the fact that, in the considered scenarios,
dispatching chains are rarely longer than 2-3 hops (the radio range is approximately
300m).

4.5 Conclusion

Publish/subscribe middleware is particularly attractive in the mobile computing
domain, as it provides a loosely coupled communication scheme. This is particu-
larly useful with mobile ad hoc networks where the quality of communication and
connectivity change dramatically in a short time scale.

In this Chapter we presented Q, an infrastructure for publish/subscribe that has
been specifically designed for mobile ad hoc environments. In Q, the overlay net-
work used to route event notifications dynamically adapts to the changing topology
by means of information extracted from the routing layer. Currently, Q relies on

4.5. CONCLUSION 69

the abstract representation of the network provided by a reactive and source-based
protocol. However, we believe that with few changes it could operate also on top of
a proactive routing protocol, which could provide a richer view of the network since
it does not limits its knowledge to used routes.

The primary goal of the simulative study that we presented was to demonstrate
the feasibility of an event notification service based on a cross-layer approach. How-
ever, the results obtained also give insightful suggestions about the efficiency of
different implementation techniques, and quantify the benefits achievable through
event broadcasting and passive acknowledgement.

Besides its reconfiguration capabilities, Q also supports content-based filtering of
events. To support seamless integration of filtering with object-oriented languages,
in Q filters are instances of application-specific classes. At runtime, filter objects
and code are exchanged by participating nodes, maximizing the benefits of filtering
and the flexibility of the system.

Future work will concern the evaluation of the performance of Q in comparison
with other publish/subscribe systems.

70 CHAPTER 4. A CROSS-LAYER APPROACH FOR PUBLISH/SUBSCRIBE

Chapter 5

Structured P2P Computing

Abstract

This Chapter deals with structured P2P computing and its usage in mobile
ad hoc environments. The structured paradigm provides an effective frame-
work to realize decentralized and scalable applications, where availability and
performance are a key constraints. Platforms like Pastry, Chord, CAN etc.,
have been designed to support a large set of users with bounded overheads and
latencies, providing a fairly balanced workload distribution, and guaranteeing
the retrieval of existing data. The Chapter initially reports the results of a
performance evaluation of Pastry in MANET settings. This study highlights
that structured overlay algorithms exhibit low tolerance to dynamics such as
nodes mobility, or topology reconfiguration, and suggests a re-design strategy
structured overlay management that is based on cross-layering and aims at
delivering good performances in emerging mobile computing scenarios.

5.1 Introduction

To complete our perspective on P2P computing in MANET environments, this
Chapter focuses the attention on structured P2P computing. In particular we ana-
lyze the performance of a platform called Pastry [RD01a]. Pastry offers a key-based
message routing interface, establishing a ring overlay network among the partici-
pating peers. The term key-based, refers to the ability of routing data items (or
messages) in a distributed virtual space using data subjects (e.g., filenames, object
identifiers, group identifiers etc.). Using this technique, application programmers
can rely on a simple abstraction to set up distributed shared spaces, provided that
application components responsible to produce and consume data, agree on an set
of rules that associate subjects (or the keys) to data items in a unique way. Interest-
ing services and applications [FRE] have been built over Pastry, showing that this
interface is general enough to build different and more complex abstractions, and
therefore demonstrates potential to be exploited also in MANET environments.

72 CHAPTER 5. STRUCTURED P2P COMPUTING

Platforms like Pastry provide a way to organize resilient and fully decentralized
systems, where the workload is fairly distributed over the set of participants. These
are fundamental characteristics also in ad hoc contexts. Resiliency is mainly needed
because of nodes mobility and topology reconfigurations, as well as the fact that
users may turn services (and devices) on and off at their pleasure. Fair workload
sharing would be desirable to avoid central points of failure, and situations with
congested nodes. Moreover, the message routing properties of this paradigm guar-
antees upper bounds on the latencies, and on the number of messages generated
to lookup data items. However, Pastry has been designed to support data sharing
on Internet scenarios, therefore assuming large number of users, and resources typ-
ical of a network with infrastructure. Key-based routing is efficient as each node
builds knowledge about a significant portion of the rest of the overlay network, and
maintains it coherent with changes. Unfortunately, as shown in Section 5.3.4, the
procedures and protocols that guarantee this behavior are expensive in terms of
network resources, and even if MANET won’t present Internet-scale scenarios, a
straightforward implementation of Pastry would have to cope with situations like
highly variable network topologies, high rates of node churning and network parti-
tioning.

This chapter, after giving background information on key-based message routing
(Section 5.2), reports the results of a performance evaluation of Pastry in MANET
environments (Section 5.3.4), and concludes by giving guidelines (Section 5.4) about
the design of a platform for efficient key-based massage routing for MANETs, which
exploits the cross-layer architecture presented in Chapter 2.

5.2 Background on key-based message routing

In recent years, structured P2P overlay networks have gained popularity as they
proved to be good candidates for building resilient, and large-scale systems for
distributed computing. Several existing platforms, like CAN [RFH+01], Chord
[SMLN+03], Pastry [RD01a], and Tapestry [ZKJ01], just to mention some, have
been implemented to provide structured overlay networking. The main idea is to
build the overlay with a certain structure, which means that links between peers are
set up following specific criteria, instead of using random policies like in the case
of Gnutella [KM02]. This approach allows peers to locate objects by exchanging a
number of messages that scales logarithmically with size of the overlay (i.e., O(logN)
messages where N is the number of participants). Structured overlays can be used
to construct services such as distributed hash tables (DHT), scalable group multi-
cast/anycast (CAST), and decentralized object location (DOLR). In turn, all these
services promise to support novel classes of highly scalable, resilient, distributed
applications, including cooperative archival storage, or cooperative content distri-
bution and messaging.

As analyzed in [DZD+03], all the aforementioned platforms offer a common de-

5.3. A CASE-STUDY: EVALUATION OF PASTRY 73

nominator of services based on the concept of key-based message routing (KBR). In
other words, given a message M to be routed across the overlay, the final destina-
tion, as well as the intermediate peers visited by the message, are chosen accordingly
to a key K associated to M , instead of using network information such as the IP
address of a final recipient. The association between K and M is done by the
peer that creates the message. There are other application-visible concepts common
to all structured overlay protocols. Generally, a node represents an instance of a
participant in the overlay, and it is identified through a unique logical address cho-
sen uniformly at random from a large space. Application-specific objects are also
assigned unique identifiers, called keys, selected from the same space. Tapestry, Pas-
try, and Chord, use a circular identifier space of n-bit integers modulo 2n (n = 160
for Chord and Tapestry, and n = 128 for Pastry), while CAN uses a d-dimensional
Cartesian identifier space, with 128-bit identifiers that specify points in the space.
Each key is dynamically mapped by the overlay to a unique live node, called the
key’s root, following a principle of proximity in the logical space. To deliver mes-
sages efficiently to the root, each node maintains a routing table consisting of the
logical identifiers and IP addresses of some other nodes, which have been selected
to establish links in the overlay. Messages are forwarded across these links to nodes
whose logical identifiers are progressively closer to the message’s key. Each system
defines its policy for mapping keys to nodes. In Chord, keys are mapped to the live
node with the closest identifier clockwise from the key. In Pastry, keys are mapped
to the live node with the closest identifier (i.e., either clockwise or counterclock-
wise). Tapestry maps a key to the live node whose id has the longest prefix match,
where the node with the next higher id value is chosen for each digit that cannot
be matched exactly. CAN follows a different approach, where neighboring nodes in
the logical space agree on a partitioning of the space surrounding their ids, and keys
are mapped to the node responsible for the sub-space containing the key.

In the following Section, we report details about Pastry’s algorithms and data
structures, and then we analyze the results of an evaluation of the platform in
MANET settings.

5.3 A case-study: evaluation of Pastry

The overlay network defined by Pastry [RD01a] implements a large circular space
of 2128 − 1 logical identifiers, and therefore is also called a ring overlay. Each Pastry
peer chooses a 128-bit identifier (nodeId), which represents a logical position in the
ring. The nodeId is randomly assigned at join time, usually by hashing a physical
identifier. The hashing process uniformly distributes inputs in the circular space,
minimizing the chances of mapping two different inputs on the same nodeId, and
scattering nodes with closer nodeIds far apart in the ring.

74 CHAPTER 5. STRUCTURED P2P COMPUTING

5.3.1 Key-based message routing

The fundamental service offered by Pastry allows peers to exchange messages by
keys. The idea is to associate a logical key to an application layer message, and
route it hop by hop in the ring, until it lands on the peer with the closest nodeId to
the message’s key. This final peer represents the root for the message, and is therefore
responsible to process the enclosed content at the application layer. The rules that
associate keys to messages and keys usually apply the same hashing process used for
mapping nodes to logical addresses, guaranteeing equivalent distribution properties.
To give an example, consider a file sharing application where each file is represented
by its name. A typical interaction with Pastry would be to create two types of
messages, one to advertise in the ring the sharing of a file associated to a given
name, and another to lookup the node (or the nodes) sharing a file with a given
name. In this scenario advertise and lookup messages get routed through the same
logical identifiers, and the corresponding root peers associate them at application
layer.

The key-based routing (KBR) policy used by Pastry is based on a numerical
proximity metric between message keys and nodeIds. From an algorithmic stand-
point, consider logical identifiers to be represented as a sequence of digits with base
2b, where the parameter b is defined a priori. At each step of a message routing
procedure, a Pastry peer P forwards the message with key K to a peer Q whose
nodeId shares with K a prefix that is at least one digit (or b bits) longer than the
prefix shared with P. If no such node is known, P tries to forward the message to a
peer L that has the same common prefix with K, but is numerically closer to K with
respect to P (this can be easily identified by looking at the digit after the common
prefix). With this process, the expected maximum number of hops in the overlay
between source and destination is equal to log2b N in an overlay of N peers.

5.3.2 State representation

To support the above message routing procedure, each peer maintains information
about foreign portions of ring overlay, using the following data structures:

Routing table. This structure is organized into log2b N rows with 2b − 1 entries
each (one for each possible digit). Each entry at row n of the routing table
refers to a peer whose nodeId shares with the local nodeId the first n digits,
but whose n+1th digit differs. If there are no nodeIds with this characteristic,
the entry is left empty. In practice, a destination node is chosen, between those
known by the local node, based on the proximity of its logical identifier to the
value of the key. This choice provides good locality properties, but only in the
logical space. In fact nodes that are logical neighbors, have a high probability
to be physically distant in the underlying network. In addition, the choice of
the parameter b determines a trade-off between the size of this data structure
and the maximum number of hops in key-based routing procedures, that is

5.3. A CASE-STUDY: EVALUATION OF PASTRY 75

expected to be in the order of log2b N , as confirmed by simulations results
[RD01a].

Neighborhood set. This structure represents the set of peers that are physically
close to the local peer. The neighborhood set is not normally used in rout-
ing messages, but could be useful for maintaining physical locality properties
among peers.

Leaf set. This structure represents the set of peers with the closest logical identi-
fiers. The leaf set is centered on the local peer P, with half of the identifiers
larger than P, and the other half smaller than P. The leaf set represents the
“perfect” knowledge that each peer has of its logical contour.

In routing a given message, the peer first checks if the related key falls within the
range of nodeIds covered by its leaf set. If so, the message is directly forwarded to
the destination peer, namely the leaf set entry whose nodeId is logically closest to
the message key. If the key is not covered by the leaf set, then the routing table is
used, and the message is forwarded to a peer that shares a common prefix at least
one digit longer than the local nodeId. Sometimes, it is possible that the appro-
priate entry in the routing table is empty, or that the associated peer is currently
disconnected from the network, but the overlay is still not updated; in this case the
message is forwarded to a peer (if any exists) that shares the same prefix as the
local node, but is numerically closer to the key. In general, each entry maintains a
correspondence between a logical identifiers and the corresponding network creden-
tials (IP address and port number), to allow the establishment of direct connections
driven by application needs.

5.3.3 State management

The main procedures used by Pastry to manage the ring overlay (i.e., the above data
structures), consists of join and leave operations. First of all, when a new node, say
X, decides to join the overlay, it needs to initialize internal data structures, and
inform other nodes of its presence. The assumption is that the new node knows at
least one of its physical neighbors, say A, which already takes part to the overlay. In
Internet settings, the “bootstrap” peer is typically obtained through outside channels
(e.g., the user, or the network administrator). Node X then requests A to route a
special join message with the key equal to X. As usual, Pastry routes the join message
to a root peer Z whose id is the closest to X, passing through some intermediate
nodes. In response to the join request, peers A, Z, and all the intermediate peers,
send part of their internal structures to X. At this point, X processes the received
information, and initializes its own structures using the following rules:

• The neighborhood set is initialized with the contents of that of node A, since
it is a physical neighbor of X.

76 CHAPTER 5. STRUCTURED P2P COMPUTING

• The leaf set is initialized with that of node Z, which has the closest existing
nodeId to X.

• The ith row of the routing table is initialized with the corresponding row of
the routing table of the ith intermediate peer (Bi), encountered in the logical
path from A to Z (as it shares a prefix of length i with X).

At the end, X informs A, Z, the intermediate peers, and all the peers listed in the
resulting tables about its arrival, transmitting a copy of its resulting state. This
gives a chance to the rest of the peers to update their tables as well.

An important feature of Pastry is that it manages also peer departures. Pastry
assumes that peers may fail or depart without warning the rest of the community.
In particular, a peer is considered failed when its logical neighbors can no longer
communicate with it. To this aim, nodes in the leaf set are periodically probed with
ping messages. Leaf entries that do not reply to a series of probe pings are considered
failed, and get replaced by new entries in the leaf set. A similar probing mechanism
is used to maintain a consistent neighbor set. Instead, a peer discovers failed entries
in the routing table, only when it attempts to forward it an application message.
This event does not normally delay message routing, as another destination peer
could be selected. In any case, to replace the failed entry the peer gathers a suitable
nodeId by asking the peers in the same row of the routing table. If none of them
has a pointer to a live peer with the appropriate prefix, the process is repeated with
the next row in the routing table.

The maintenance procedures explained above, highlight the complexity of the
algorithms associated to ring management in a structured overlay network. While
this complexity is acceptable in Internet scenarios, its feasibility should be validated
in a MANET’s context, to understand and characterize its behavior in wireless
multi-hop scenarios, with device mobility.

5.3.4 Performance evaluation

To better understand the capacity and limitations of Pastry in mobile ad hoc envi-
ronments, we implemented the protocol inside the framework described in Chapter
2, using the Network Simulator 2 [NS2] (version 2.27), and performing a set of sim-
ulations to put Pastry through typical Wi-Fi based ad hoc conditions. At first, we
wanted to study the protocol behavior in static scenarios, but with an increasing
number of nodes and peers in the network. To this end, we disposed at random an
increasing number of wireless nodes in a grid fashion over the simulation area. The
size of the simulation area varied along with the network size, in order to keep con-
stant network densities. Additionally, we introduced different peer densities: either
only 50% of of the wireless hosts were also Pastry peers, while the rest simply per-
formed networking activity, or the totality of the wireless devices were also Pastry
peers (i.e., 100% density). In a second set of experiments, we fixed the network size

5.3. A CASE-STUDY: EVALUATION OF PASTRY 77

to 30 nodes, and created some scenarios with Random Waypoint mobility [Bet02].
In particular, we varied the speed and pause parameters used by the Random Way-
point algorithm, creating a slow mobility scenario, where nodes move at most at
5m/s, and a fast mobility scenario where the maximum speed is 15m/s.

Using the aforementioned parameters, we evaluated Pastry considering the fol-
lowing metrics:

• the capacity of building the ring overlay, verified as the average number of
entries in Pastry KBR tables, which should be at least the logarithm of the
overlay size, if the tables are built correctly [RD01a];

• the average number of hops travelled by each message routed by key in the
overlay, to reach its root peer; again this number should be at most the loga-
rithm of the overlay size;

• the rate of unsuccessful key-based message routing tentatives, defined as the
fraction of the failed tentatives over the total.

For the last two metrics we engineered a simple data distribution model, in which
each Pastry peer was configured to be root for only one key. In this scenario, we
programmed each peer to execute a route tentative toward each key K, considering
it successful if it eventually lands at the corresponding root peer. The results have
been obtained by averaging 10 independent simulation runs of 900 seconds, and are
shown in Figure 5.1.

Figure 5.1(a) shows the average number of KBR table entries that Pastry peers
registered in static scenarios with increasing network size. The plot demonstrates
the validity of the protocol implementation, as peers were able to populate KBR
tables above the lower bound (i.e., the logarithm of the overlay size), and build
a consistent state of the ring overlay. This is confirmed by the graph reported in
Figure 5.1(c), where it is clearly visible that each successful KBR tentative employed
(less than) a logarithmic number hops in the overlay. However, increasing network
sizes do have a negative impact on the success rate of KBR tentatives, as show in
Figure 5.1(e). In fact, the rate of failed KBR tentatives quickly grows with the
network size, apparently following a polynomial pattern. This was mainly due to
an increased network congestion, which negatively influenced packet loss during the
simulations.

The result associated to the experiments with mobility, reported a less promising
picture of the usability of Pastry in MANET environments. Figure 5.1(b) clearly
shows that as nodes start to move around, the protocol looses the ability to set up
the ring overlay, as the average number of entries in the peers tables are less than
expected for an overlay of 30 peers (i.e., around 2.5 which is log22 30). This causes
a severe ring partitioning, where peers are not able to set up and maintain a unique
ring, but only form little rings composed by at most two or three peers. Figures
5.1(d) and 5.1(f) confirm this thesis, showing an average number of hops that falls

78 CHAPTER 5. STRUCTURED P2P COMPUTING

 1

 2

 3

 4

 5

 6

 7

 50 40 30 20 10

A
vg

 N
um

be
r

of
 K

B
R

 T
ab

le
 E

nt
ri

es

Network Size

density 100%
density 50%
lower bound

(a) Average number of Route Table en-
tries with increasing network sizes.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

HighLowStatic

A
vg

 N
um

be
r

of
 K

B
R

 T
ab

le
 E

nt
ri

es

Mobility Pattern

density 100%
density 50%
lower bound

(b) Average number of Route Table en-
tries with increasing mobility.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 40 30 20 10

A
vg

 N
um

be
r

of
 K

B
R

 H
op

s

Network Size

density 100%
density 50%
upper bound

(c) Average number of KBR hops with
increasing network sizes.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

MobilityLowStatic

A
vg

 N
um

be
r

of
 K

B
R

 H
op

s

Mobility Pattern

density 100%
density 50%
upper bound

(d) Average number of KBR hops with
increasing mobility.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 50 40 30 20 10

%
 o

f
Fa

ile
d

K
B

R
 T

en
ta

tiv
es

Network Size

density 100%
density 50%

(e) Percentage of failed KBR tentatives
with increasing network sizes.

 0

 20

 40

 60

 80

 100

HighLowStatic

%
 o

f
Fa

ile
d

K
B

R
 T

en
ta

tiv
es

Mobility Pattern

density 100%
density 50%

acceptability (20%)

(f) Percentage of failed KBR tentatives
with increasing mobility.

Figure 5.1: Evaluation of Pastry in MANET environments.

5.4. CROSS-LAYERING AND KEY-BASED MESSAGE ROUTING 79

down to 1.5 as mobility comes into play, as well as a significant increase of failed
KBR tentatives.

As applications based on structured platforms focus on availability, KBR tenta-
tives should maintain very low failure rates, as pointed out in [RD01a], where the
acceptability threshold is set around 5% of failed KBR tentatives. Even considering
a higher acceptability threshold (e.g., around 20%), the result just discussed do not
highlight good properties for Pastry algorithms in mobile ad hoc scenarios. There-
fore, in the following Section we give suggestions on how a similar service could
be re-engineered using cross-layer interactions with layer-3 protocols, in order to
simplify overlay construction as well as KBR procedures.

5.4 Cross-layering and key-based message routing

The simulative evaluation of a Pastry in MANET environments provides us with use-
ful insights on how to improve the performance of structured platforms in presence
of MANET dynamics. Pastry implements a basic service that routes application
layer messages across the links established by peers to cover a distributed ring of
logical identifiers. On top of Pastry overlays, it is easy to set up and deploy key-
based distributed applications, which follow a P2P model of computation, however,
the efficiency and the usability of such applications strongly depends on the capacity
of building consistent ring overlays. As shown during the simulations, this is not the
case in presence of device mobility, even when the size of the network (and therefore
of the overlay) are several orders of magnitude smaller than the targets of Pastry.
As mobility comes into play, peers are not anymore able to consistently fill up their
routing tables, causing severe overlay partitioning and consequent high failure rates
during lookup procedures, quickly degrading the service performance and usability.

In this Section, we briefly discuss the challenges behind an efficient implemen-
tation of KBR abstractions in mobile ad hoc networks. Details are provided using
Pastry as a reference case study, but similar concepts can be applied to other KBR
platforms.

The logarithmic costs guaranteed by KBR message delivery, are strongly associ-
ated to the correctness of the structures used to route application packets through
the overlay [RD01a]. These structures are independently maintained in a distributed
and autonomous fashion, and represent the knowledge that each peer has about the
rest of the overlay. Typically, Internet nodes have little knowledge about the net-
work: apart from routers, which do not participate to overlay rings, normal nodes
only know their subnet gateway to make the first hop of locally generated packets.
This implies that in order to take part to a ring overlay, peers have to play discovery
and maintenance protocols, which fills out routing structures and adapts them to
the network dynamics. In [RD01a] the authors performed a cost analysis for a Pas-
try overlay of 5000 peers, where a 10% failure rate affects randomly selected nodes
over a long period of time. As a result, each node made an average of 57 remote

80 CHAPTER 5. STRUCTURED P2P COMPUTING

procedure calls just to repair the tables.

Ad hoc environments will put ring overlays through tougher conditions across
short time intervals. For example, nodes mobility or users turning devices on and
off, will cause peers to be intermittent, and entire rings to frequently split and
rejoin. Even if ad hoc networks are smaller than thousand of nodes, their dynamics
could easily degrade the performances of KBR platforms, as highlighted in Section
5.3.4. To overcome this limitation, the idea is to exploit the knowledge about the
network topology coming from network layers. Although ad hoc nodes have resource
limitations respect to their Internet counterparts, they have significant advantages
from a routing standpoint, as they actively participate to routing protocols. If
such a knowledge is made available in the stack, for example through the cross-
layer architecture described in Chapter 2, then other protocols could benefit from it
and optimize their functioning. In the case of Pastry, accessing the routing tables
through the XL-Interface translates to having local references on the nodes forming
the network, which are a superset of the reachable peers. This suggests a way to save
most of the communication associated to peer discovery and table maintenance. In
the following, we show how a Pastry system can benefit from cross-layer interactions
with a link-state routing protocol such as OLSR [CJ03] at the network layer.

Discovering overlay peers in the physical network

Link-state protocols continuously update the network topology representation, usu-
ally by flooding neighbor set information across the network. The XL-Interface
makes this representation available to other protocols in the local stack. In this
framework, a Pastry peer willing to join an existing ring R, would need to under-
stand which nodes, among those visible through the XL-Interface, are currently part
of R. This can be done similarly to what described in Chapter 3, by spreading ser-
vice information together with link-state updates. The signaling between Pastry and
routing processes can be done using cross-layer events for spreading and receiving
optional information.

State management and message routing

By introducing a cross-layer interaction with the network layer, a Pastry peer P
sees at each time the subset of the ring R that is visible in the routing tables.
The logical addresses of these peers could be easily made available through optional
information spread along with routing control messages. The neighborhood set
M could be constituted by those peers that are close to P , according to a given
proximity metric, as for example the physical distance between the peers. Similar
considerations apply for the leaf set and the routing table. In short, the three
structures could be merged in a single table T that lists all the peers made visible
through cross layering, relaxing the entire overlay concept. Following this approach,
key-based routing can be performed without applying prefix-based procedures. In

5.5. CONCLUSIONS 81

fact, if P has to route a message with key k, it could directly select the destination
peer with the closest logic address to k, and directly forward the message to it with
a single unicast.

This strategy has of course advantages and disadvantages. On one hand, it
frees P2P agents from the overhead of managing and maintaining overlays. In fact,
by exchanging advertisements along with routing control packets, peers have the
possibility to discover the available P2P community in parallel with the discovery
of the network topology. On the other hand, proactive protocols like OLSR do not
guarantee a perfect and immediate view of the physical network. A certain latency
has to be considered in order to allow a deep propagation of topology changes.
This “hazy” view of the physical network, and therefore of the ring participants,
has negative effects on the availability requirements of the structured paradigm. In
fact, in scenarios with significant mobility or churn rates, nodes would probably
have fairly different views of the network topology, with negative impacts on the
convergence of key-based message routing. For example, far apart peers would
temporarily identify different roots for a given key, causing messages addressed to
the same key, to land on different nodes. A solution to this problem could be to
associate temporal information to application messages. For example, a peer D
currently selected as root destination for a message m, could cache it long enough
to allow a newly entered peer to join the ring, and receive cached messages. In this
case, a new peer N would receives m from D’s cache if its logical address is closer
to message key.

Finally, inferring ring tables from network routing tables brings significant advan-
tages also in case of network (and therefore ring) partitioning and merging. Current
implementations of Pastry [FRE] do not tolerate situations in which a ring gets par-
titioned for a significant amount of time, as well as situations in which two separate
rings supporting the same application should merge in a single structure, because
the underlying network provide connectivity. In contrast, the usage of the cross-
layer approach delivers full tolerance to those situations, which could easily happen
in MANET scenarios.

The basic of the above concepts has been implemented in Crossroad [CDT06], a
structured platform targeted at mobile ad hoc environments. This platform exports
a Pastry-like semantic, routing keys to the live node with the closest identifier in
the ring. Crossroad exploits a cross-layer interaction with an OLSR routing agent
at the network layer, which enables fast and inexpensive peer discovery, as well as
the avoidance of prefix-based message routing, delivering application messages in a
single unicast to their roots.

5.5 Conclusions

In this Chapter, we dealt with the problem of providing efficient structured P2P
computing in mobile ad hoc networks. After an initial case-study evaluation of

82 CHAPTER 5. STRUCTURED P2P COMPUTING

Pastry in scenarios with device mobility and a simple data distribution model, we
identified peer discovery and overlay maintenance as key issues for a correct and
smooth functioning of platforms adhering to this paradigm.

The solution to these problems comes again in the form of cross-layering. The
usage of the XL-Interface allows information sharing and event handling among
local protocol agents. In this framework, the topological information collected by
a proactive link-state routing protocol, augmented with information related to the
ring overlay, reduces the costs associated with overlay structure management, and
potentially simplifies key-based message routing.

The proposed solution, while customized to Pastry, is applicable to other struc-
tured platforms, and is part of our efforts in providing a global optimization of ad
hoc networks functioning.

In the next chapter, we deal with coordination models and tuple spaces, showing
how they could be implemented on top of key-based message routing platforms,
in order to merge the rich content-based API of coordination languages, with the
efficiency of structured platforms.

Chapter 6

Laying Tuple Spaces over
Structured P2P Platforms

Abstract

Lime (Linda in a Mobile Environment) is a middleware platform for mo-
bile computing, based on coordination abstractions inspired by those used
in Linda. This platform supports the development of distributed and peer-
to-peer applications for mobile environments, providing the abstraction of
transiently shared tuple spaces. While Lime exhibits maturity in the set of
exported primitives and coordination algorithms, it relies on a basic imple-
mentation of messaging between peers, which is built on top of multicast
sockets, and does not guarantee scalability. This Chapter proposes a redesign
of Lime communication concerns, based on the key-based message routing
service provided by recent platforms for structured P2P computing. The new
strategy implements the semantic defined for Lime’s primitives, and makes it
usable and efficient in both MANET and Internet-scale scenarios.

6.1 Introduction

Mobile and distributed computing is emerging as a disruptive new trend that chal-
lenges fundamental assumptions on networking and software engineering practices.
An increasing number of real scenarios foster the realization of applications that ex-
ploit and support device mobility, energized by advances in wireless communication,
device miniaturization, and new software design techniques.

Coordination is a computing style that emphasizes a high degree of decoupling
among application components, along with a clean computational model and an ab-
stract approach to communication. This form of computing was initially proposed
with Linda [Gel85], and bases on the concept of information sharing through a
globally accessible, persistent, and content-addressable data structure, implemented

84 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

as a tuple space. Software agents interacts among them using a simple interface
that allows for insertion, removal and duplication of tuples from the space. This
persistent data structure, usually implemented in a centralized way [TSp][Jav], pro-
vides temporal and spatial decoupling. Temporal decoupling is achieved because the
interacting parties should not be necessarily present at same time when commu-
nication takes place, while spatial decoupling is achieved by eliminating the need
of knowing each other’s identities during agent communication. These features are
clearly appealing in the context of mobile computing, specially in the extreme form
of MANETs. However, when shifting to mobile contexts, the assumption of having
a reliable connection to a persistent data structure is a strong limitation. Moreover,
in the case of mobile ad hoc networks, the global tuple space could not be centralized
on a single unit. Therefore, the transition to mobility requires the engineering of
data distribution schemes that accommodate device mobility and disconnection.

Lime (Linda In a Mobile Environment) [PMR99][MPR01][LIM] is an interesting
response to the challenge of providing a coordination middleware in mobile settings.
This platform offers a peer-to-peer computational model, where each peer owns
a private and local tuple space. When a wired or wireless link support physical
connectivity between two peers, they can share the tuples contained in the local
spaces, as they were part of a single federated space. In this way, the set of available
tuples in a group of peers changes over time, influenced by mobility and connectivity:
when hosts come in communication range the set of shared tuples expands, and when
they move apart it contracts. Tuple space sharing is done in a transparent way from
the application standpoint. Lime applications access the tuples using a Linda-like
set of operations, enlarged with constructs that facilitate the reaction to changes in
the federated space content.

The current Lime implementation [LIM] realizes tuple space federation by play-
ing coordination protocols on top of both TCP and UDP data transfer. In particular,
group messaging is done using UDP datagrams and IP multicasting. A message not
addressed to a specific peer is sent in multicast, and received by the entire Lime
community. Although this solution might be appropriate for small demonstrative
test-beds and did prove the semantic validity of Lime coordination protocols, it is
not usable with current ad hoc routing protocols implementations. Moreover, this
approach does not scale to large peer communities in networks with infrastructure
(i.e., the Internet). For this reason, after a recent re-engineering effort [VIC], Lime
splits coordination and communication in two separate layers, and get open to new
networking approaches and different forms of group communication.

This work proposes a realization of Lime messaging through key-based message
routing. In particular, we show how the federation process can be implemented by
having Lime peers participating to a ring overlay. The key idea consists in having
each peer indexing the content of the local tuple space, and further distributing the
index on the ring overlay. This approach builds a distributed knowledge of the fed-
erated space that narrows down the scope of Lime group communications, targeting
only those peers whose context is affected by the group message. In addition to

6.2. TUPLE SPACE PROGRAMMING 85

that, we show how the distribution could be programmed in a transparent way from
application developers, providing rule templates based on the type of tuples used by
the application.

The rest of this Chapter is organized as follows. Section 6.2 provides an in-
troduction to Lime and tuple space programming. Section 6.3 describes the main
contribution of this work, showing the main algorithms and data structures used
to port Lime over KBR platforms. Finally Section 6.4 concludes the work and
highlights future directions.

6.2 Tuple Space programming

The Lime model defines a coordination layer that can be exploited successfully for
designing mobile applications. The design criteria underlying Lime springs from the
fact that designing mobile applications is primarily a coordination problem [RMP00],
and that a fundamental issue to be tackled is the provision of good abstractions
for dealing with, and exploiting, a dynamically changing context. To achieve its
goal, Lime borrows and adapts the communication model of Linda [Gel85]. After
presenting basic concepts about Linda tuple spaces, the remainder of this Section
discusses their re-adaptation inside the Lime middleware.

6.2.1 Linda

In Linda, processes communicate through a shared tuple space that acts as a repos-
itory of elementary data structures called tuples. A tuple space is a multi-set of
tuples that can be accessed concurrently by several processes. Each tuple is a se-
quence of typed fields, such as <’foo’, 9, 27.5>, and contains the information
being communicated.

Tuples are added to a tuple space by performing an out(t) operation, and can be
removed by executing in(p). Tuples are anonymous, thus their selection takes place
through pattern matching on the content. The argument p is often called a template
or pattern, and its fields contain either actuals or formals. Actuals are values; the
fields of the previous tuple are all actuals, while the last two fields of <’foo’,

?integer, ?float> are formals. Formals act like “wild cards”, and are matched
against actuals when selecting a tuple from the space. For instance, the template
above matches the tuple defined earlier. If multiple tuples match a template, the
one returned by is selected nondeterministically. Tuples can also be read from the
tuple space using the non-destructive rd(p) operation. Both in(p) and rd(p) are
blocking, i.e., if no matching tuple is available the calling process is suspended until
a matching tuple is added to the space. A typical extension to this synchronous
model is the provision of a pair of asynchronous primitives inp() and rdp(), called
probes, that allow non-blocking access to the tuple space. Moreover, some variants
of Linda (e.g., [Row98]) provide also bulk operations, which can be used to retrieve

86 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

all matching tuples in one step. Lime provides a similar functionality through the
ing() and rdg(p) operations, whose execution is asynchronous like in the case of
probes.

6.2.2 Overview of Lime

Linda characteristics resonate with the mobile setting. In particular, communication
in Linda is decoupled in time and space, i.e., senders and receivers do not need to be
available at the same time, and mutual knowledge of their identity or location is not
necessary for data exchange. This form of decoupling is of paramount importance in
a mobile environment, where the parties involved in communication change dynam-
ically due to their migration or connectivity patterns. Moreover, the notion of tuple
space provides a straightforward and intuitive abstraction for representing the com-
putational context perceived by the communicating processes. On the other hand,
decoupling is achieved thanks to the properties of the Linda tuple space, namely
its global accessibility to all the processes, and its persistence properties that are
clearly hard if not impossible to maintain in a mobile environment.

Transparent context maintenance

In Linda, the data accessible through the tuple space represents the data context
available during process interaction. In the model underlying Lime, the shift from
a fixed context to a dynamically changing one is accomplished by breaking up the
Linda tuple space into many tuple spaces, each permanently associated to a mo-
bile unit, and by introducing connectivity-based rules for transient sharing of these
individual tuple spaces.

Each peer’s tuple space is referred to as the interface tuple space (ITS), as it
provides the only access to the data context for that peer. Each ITS contains
the locally shared tuples, and access to this data structure uses standard Linda
operations, whose semantics remain basically unaffected. These tuples represent
the only context accessible to a peer when it is alone.

When multiple peers are able to communicate, either directly or transitively, they
form a Lime group. Conceptually, the contents of the ITSs of all group members
are merged, or transiently shared, to form a single, large context which is accessed
by each peer through its own ITS. The sharing itself is transparent from the peer’s
standpoint, however as the members of the group change, the content of the tuple
space each peer perceives through operations on the ITS changes as well. When a
new peer enters an existing group, its local data context is merged with the group
context using an engagement procedure. When a peer leaves the group, the opposite
process takes place with a disengagement procedure.

In Lime, peers may have multiple ITSs distinguished by a name since this is
recognized as a useful abstraction to separate related application data. The sharing
rule in the case of multiple tuple spaces relies on tuple space names: only identically-

6.2. TUPLE SPACE PROGRAMMING 87

named tuple spaces are transiently shared among the members of a group. Thus,
for instance, when a peer a owning a single tuple space named X joins a group
constituted by a peer b that owns two tuple spaces named X and Y , X only becomes
shared between the two peers. Tuple space Y remains accessible only to b, and
potentially to other peers owning Y that may join the group later on.

Transient sharing of the ITS constitutes a very powerful abstraction, as it pro-
vides a peer with the illusion of a local tuple space that contains all the tuples coming
from all the units belonging to the group, without any need to know the members
explicitly (i.e., spatial decoupling). The notion of transiently shared tuple space
is a natural adaptation of the Linda tuple space to a mobile environment. When
physical mobility is involved, and especially in the radical setting defined by mobile
ad hoc networking, there is no stable place to store a persistent tuple space. Con-
nections among machines come and go, and the tuple space must be partitioned in
some way. Lime enforces an a priori partitioning of the tuple space in subspaces that
get transiently shared according to precise rules, providing a tuple space abstraction
that depends on connectivity (i.e., existence of a functioning communication link).

Adding location context to tuple space primitives

Thus far, Lime appears to foster a style of coordination that reduces the details of
distribution and mobility to content changes in what is perceived as a local tuple
space. This view is very powerful, and has the potential for greatly simplifying
application design in many scenarios, relieving the designer from the chore of main-
taining a consistent view of the context as the system changes configuration. On
the other hand, this view may hide too much in domains where the designer needs
more fine-grained control over the “slice” (or portion) of the context that needs to
be accessed. Also, performance and efficiency considerations may come into play, as
in the case where application information would enable access aimed at the specific
local tuple space, thus avoiding the greater overhead of a query spanning the whole
federated tuple space. Lime extends Linda operations to provide fine-grained control
over the context perceived by the mobile unit introducing tuple location parameters.
This approach gives a way to operate on user-defined projections of the global tuple
space. To this aim, all tuples are implicitly augmented with two fields, representing
the tuple’s current and destination location. The current location identifies the sin-
gle peer where the tuple is currently placed, and the destination location indicates
the peer with whom the tuple should eventually reside.

The out[L] operation extends out with a location parameter representing the
identifier of the host responsible for holding the tuple. The semantics of out[L](t)
involve two steps. The first step is equivalent to a conventional out, the tuple t is
inserted in the ITS of the host calling the operation, say O. At this point the tuple
t has a current location O, and a destination location L. If L is currently connected,
the tuple t is moved to the destination location in the same atomic step. On the
other hand, if L is currently disconnected the tuple remains at the current location

88 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

Current location Destination location Defined projection

unspecified unspecified Entire federated tuple space
unspecified L All existing tuples destined to L

O unspecified Tuples in O tuple space
O L Tuples currently in P but destined to L

Table 6.1: Accessing different portions of the federated tuple space by using location
parameters. In the table, O and L are host identifiers.

O. This “misplaced” tuple, if not withdrawn, will remain misplaced unless L becomes
connected. In the latter case, the tuple will migrate to the tuple space associated
with L as part of the engagement. By using out[L], the caller can specify that the
tuple is supposed to be placed within the ITS on L. This extends the default policy
of keeping the tuple in the caller’s context, enabling more elaborate schemes for
transient communication.

Variants of the in and rd operations that allow location parameters are allowed
as well. These operations, of the form in[O,L](p) and rd[O,L](p), enable the
programmer to refer to a projection of the current context defined by the value of
the location parameters, as illustrated in Table 6.1. The current location parameter
enables the restriction of scope from the entire federated tuple space (no value
specified) to the tuple space associated to a given host (i.e., a slice of the global
space). The destination location is used to identify misplaced tuples.

Reactive programming

In real scenarios, the set of available data and hosts could change rapidly according
to mobility patterns. Reacting to changes constitutes a significant fraction of an
application’s activities. At first glance, the Linda model would seem sufficient to
provide some degree of reactivity by representing relevant events as tuples, and by
using the in() operation to execute the corresponding reaction as soon as the event
tuple appears in the space. Nevertheless, in practice this solution has a number
of drawbacks. For instance, programming becomes cumbersome, since the burden
of implementing a reactive behavior is placed on the programmer rather than the
system. Moreover, enabling an asynchronous reaction would require the execution
of in() in a separate thread of control, with consequences on the overall system’s
performance. Therefore, Lime further extends Linda with reactions[MR98]. A reac-
tion R(S,p) is defined by a code fragment S that specifies the actions to be executed
when a tuple matching the pattern p is found in the tuple space. Informally, a re-
action can fire if a tuple matching the pattern exists in the tuple space. After every
regular tuple space operation, a reaction is selected non-deterministically and, if it
is enabled, the statements in S are executed in a single, atomic step. This selection
and execution continues until no reactions are enabled, at which point normal pro-
cessing resumes. Blocking operations are not allowed in S, as they may prevent it

6.2. TUPLE SPACE PROGRAMMING 89

from terminating.

Lime reactions can be explicitly registered and unregistered on a tuple space, and
hence do not necessarily exist throughout the system’s lifetime. Moreover, a notion
of mode is provided to control the extent to which a reaction is allowed to execute.
A reaction registered with mode ONCE is allowed to fire only one time, i.e., after
its execution it becomes automatically unregistered, and hence removed from the
system. Instead, a reaction registered with mode ONCEPERTUPLE is allowed to
fire an arbitrary number of times, but never twice for the same tuple. Finally, reac-
tions can be annotated with location parameters, with the same meaning discussed
earlier for in and rd. Hence, the full form of a Lime reaction is R[O,L](s,p,m),
where m is the mode.

Reactions provide the programmer with very powerful constructs. They enable
the specification of the appropriate actions that need to take place in response to a
state change, and allow their execution in a single atomic step. In particular, it is
worth noting how this model is much more powerful than many event-based ones
[RW97], including those exploited by tuple space middleware such as TSpaces [TSp]
and JavaSpaces [Jav], that are typically stateless and provide no guarantee about
the atomicity of event reactions.

However, this expressive power comes at a price. In particular, when multiple
hosts are present, the content of the federated tuple space depends on the content of
the tuple spaces belonging to physically distributed, remote peers. Thus, maintain-
ing the requirements of atomicity and serialization imposed by reactive statements
requires a distributed transaction encompassing several hosts for every tuple space
operation on any ITS – very often, an impractical solution. For specific applications
and scenarios, e.g., those involving a very limited number of nodes, these kind of
reactions, referred to as strong reactions, would still be reasonable and therefore
they remain part of the model. For practical performance reasons, however, Lime
currently limits the use of strong reactions by restricting the current location field
to be a host, and by enabling a reaction to fire only when the matching tuple ap-
pears on the same host. This constraint effectively forces the detection of a tuple
matching p, and the corresponding execution of the code fragment S, to take place
(atomically) on a single host, and hence does not require a distributed transaction.

To strike a compromise between the expressive power of reactions and the prac-
tical implementation concerns, Lime introduces a new reactive construct that allows
some form of reactivity spanning the whole federated tuple space, but with weaker
semantics. The processing of a weak reaction proceeds as in the case of a strong
reaction, but detection and execution do not happen atomically: instead, execution
is guaranteed to take place only eventually, after a matching tuple is detected. The
execution of S takes place on the host where the reaction was registered.

90 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

Figure 6.1: Lime architectural overview.

Separating coordination and communication concerns

The transparency of the process of federating several slices in a global tuple space, as
well as the semantical guarantees that Lime primitives offer to application program-
mers, are important features to the adoption and deployment of this middleware.
However, in the current Lime implementation [LIM] these features are supported by
coordination protocols that make use of TCP sockets for unicast communication,
and IP multicasting for group communication. The existing implementation proves
the correctness of the coordination policies, but does not provide scalability with
large peer groups. In fact, a basic and “coarse-grained” multicasting approach where
group messages are sent to all members even if only a small subset of them could
benefit from receiving the information, does not scale with peer groups of medium-
large sizes. Moreover, current implementations of MANET routing protocols do
not support IP multicasting, with direct impacts on the usability of Lime in mobile
ad hoc settings. For these reasons, new forms of group communication should be
investigated to promote the adoption of Lime.

In the context of project VICom [VIC], Lime has been re-engineered to decou-
ple communication from coordination. As shown in Figure 6.1, the platform now
exports a communication interface called Communication Adapter, which separates
the coordination protocols from the used message transport technology. This al-
lows to cleanly port coordination on top of different message passing approaches,
from publish/subscribe techniques, to structured or unstructured overlay network-
ing, by simply implementing a new Communication Adapter module. The choice of
the transport technology to be used by the system, is then left to the application
programmer depending on the target environment, or the application constraints.

6.3. MERGING TUPLE SPACES AND KEY-BASED ROUTING 91

6.3 Merging tuple spaces and key-based routing

The contribution of this work consists in providing a scalable support for distributed
tuple spaces, based on key-based message routing (KBR). Although the work is
presented in the context of Lime, showing the handling of both classical tuple space
primitives and reactive extensions, it could be applied to other existing tuple space
oriented systems.

The general scenario is an arbitrarily large Lime group, where each peer owns a
local tuple space. The problem is how to federate the content of local tuple spaces
in a global, but distributed view, where peers can all operate in a transparent and
scalable fashion. The basic idea is for each peer to index the local space, and then
distribute the index over the community using a KBR platform. In this way the
system avoids tuples replication, establishing a structured and distributed knowledge
of the federated space. This knowledge is then used to narrow down the scope
of search primitives, so that the system makes a conservative use of networking
resources, and therefore scales up to large peer communities.

An important characteristic of this approach, is that it merges the good features
of content-based and key-based platforms. On one hand, content-based platforms help
programmers to create distributed applications, which exploit a rich and expressive
set of primitives. This includes the ability to query the system with predicates and
patterns, giving flexibility to end-user application. However, this flexibility usually
comes at the cost of having no clear guidelines on how to efficiently structure the
distributed application, and perform queries in a scalable manner. On the other
hand, key-based platforms have been proved to be scalable, being able to route
application messages among thousands of peers with bounded costs. However, they
impose constraints on data placement, and greatly reduce the flexibility of searches,
which could only be performed using keys.

As shown in Figure 6.2 We exploit key-based message routing by means of the
CommonAPI proposed in [DZD+03]. This choice enables an evaluation of the result-
ing system on top of different platforms, possibly operating in different networking
environments. Hereafter, we briefly go through the main CommonAPI objects and
functions, pointing the reader to the original paper for a complete discussion.

In CommonAPI’s jargon, a Message is the plain array of bytes produced and
consumed by the application layer. Application layer messages are assigned a Key, a
valid a logical identifier that will drive their routing toward a destination. Peers are
represented by NodeHandle objects, which are structures containing both a logical
identifier and the network information (e.g., IP address and port) of the hosting
machine. The function route(Key K, Message M, NodeHandle N) is called by the
application to initiate the routing of M toward K. Alternatively, the application
can indicate the destination peer N, causing the platform to directly deliver M
to N. When the message lands on a destination peer N, the platform notifies the
application layer by calling the function deliver(Key K, Message M). At this stage
the application running on N becomes responsible for handling the message. Finally,

92 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

Figure 6.2: Architectural overview of Lime over CommonAPI compliant KBR plat-
forms.

a typical CommonAPI platform provides a strong hash function H() that transforms
raw byte material into a valid logical identifier. This function is usually called by
applications to build keys used for message routing.

6.3.1 A case study with Lime

Given an arbitrarily large community {p1, . . . , pn} of peers, each equipped with a
local tuple space TSi, the goal is to federate them into a global space virtually
seen as the union FTS =

⋃n

i=1
TSi. The result of such a process would allow to

extend the scope of tuple space primitives beyond local domains (i.e., the local tuple
spaces), and eventually satisfy them with data located on remote peers. The issue
clearly consists in guaranteeing system scalability when the federated community is
large, and scattered across the network. In the following discussion we will refer to
the tuple space TSA as the slice or the projection of FTS related to peer A.

Due to the large nature of the peer community and the networking constraints
of mobile ad hoc networks, the execution of a tuple space primitive on FTS, should
only involve a small subset of peers. Just to give an example, suppose peer A
executes a rdp(). At first, the system will try to satisfy the call with the content on
A’s slice, but if this initial attempt doesn’t succeed, the system should try to satisfy
the read probe with the content on the rest of FTS, before returning a null tuple.
To this end, A has to distribute the operation request in the community, to give
other peers a chance to look up their slices and eventually return a tuple copy back
to A. At this stage A needs a way to figure out where to send the operation request,
which means to identify the subset of peers that have good chances of satisfying the

6.3. MERGING TUPLE SPACES AND KEY-BASED ROUTING 93

(a) Peer A outs tuple ta. (b) Peer C outs tuple tc.

Figure 6.3: Two examples of index updates when peers out tuples in their local
tuple space. Upon receiving UPDATE messages, peers are able to store information
about remote slices. Peers route UPDATE messages towards the keys obtained from
the new tuples.

read probe. The main idea behind our approach, is to exploit the capabilities of
ring overlays to build a distributed knowledge of FTS content, such that it can be
efficiently used to select the slices which could satisfy query primitives.

The approach is twofold. Each peer is responsible for indexing the content of its
slice, classifying tuples according to their types structure (or format), defined as the
sequence of field types. For example, tuples <’water’, 15.5> and <’air’, 23.6>

have the same format <String, Float>, but they are different from tuple <’fire’,
200.9, 5>, which is <String, Float, Integer>, or from <0.0, ’ice’> that is
<Float, String>. As a peer adds tuples to the local slice, it classifies them sum-
marizing the locally available formats, along with the corresponding number of tu-
ples for each format. At the same time, the peer has to distribute the classification
outcome, in order to let it available during lookups to the rest of the community.
The idea is to provide rules for building keys out of tuples and patterns, so that if
a pattern p matches a tuple t, they map to the same set of keys. A KBR platform
would then ensure that if peers distribute classification entries using keys calculated
from the tuples, and route lookup requests using keys obtained from matching pat-
terns, these will land on the same peers in the overlay. This process makes possible
to retrieve information about those peers that can potentially satisfy a given query.
In the following sections, let us assume to have rules that coherently build a set
of keys out tuples and patterns, postponing a detailed discussion on this topic to
Section 6.3.1.

Writing out tuples

As already mentioned, each peer classifies the local slice and, at the same time,
distributes the outcome on the ring overlay. It does that in an incremental fashion, as

94 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

(a) Peer B routes chooses a lookup key,
and routes a single LOOKUP message to-
wards it. X2 replies with the list of
peers that updated matching entries in its
RemoteTupleIndex.

(b) Peers B and A perform Lime messag-
ing to carry out the remote operation, and
in case of a rdp(), B eventually gets back
a result.

Figure 6.4: Peers look up remote indexes before sending instructions for remotely
executing a primitive. This approach narrows down the set of peers where the
primitive might be executed with success.

local agents perform out() operations. Basically, the classification is maintained in
a LocalTupleIndex, and gets updated whenever a new tuple t is written. After the
update, the peer takes the modified entries, packs them inside an UPDATE message
along with its NodeHandle, and routes the message using all the keys k1, . . . , kn

obtained from t. Figures 6.3(a) and 6.3(b) illustrate two examples of this process,
showing how peers receiving an UPDATE message collect remote classification entries
in a RemoteTupleIndex.

Handling Non-blocking Primitives

The remote execution of non-blocking probes, namely rdp() and inp(), is carried
out in two steps. In the first phase (see Figure 6.4(a)), the calling peer retrieves a list
of remote slices that can potentially satisfy the probe pattern tp. To this end it (1)
packs a LOOKUP message containing tp and its NodeHandle, and routes it only once
choosing at random one of the keys obtained from tp. The receiving peer looks up
the RemoteTupleIndex with the distribution key and the pattern tp, and eventually
sends back (2) a LOOKUP REPLY message containing a list of potential slices. In the
second phase (see Figure 6.4(b)), the calling peer B selects a subset of the slices
from the list to remotely execute the operation. Finally, for each selected slice, peer
B initiates a Lime protocol according to the primitive.

A similar discussion applies for bulk primitives rdg() and ing(). The lookup
phase is performed as above, with the only difference that the querying peer considers
the whole list of slices returned from the lookup phase, in order to retrieve all the

6.3. MERGING TUPLE SPACES AND KEY-BASED ROUTING 95

(a) Peer C routes a SUBSCRIBE message
that lands on a set of peers. Those peers
will work as dispatchers for events of in-
terest for the reaction template.

(b) As peer X2 routes update messages
(1), dispatcher peers (2) have a chance to
match tuple formats with reaction tem-
plates, and eventually notify (3) C with a
NOTIFY message.

Figure 6.5: Peers use the KBR platform to set up a subscription scheme for reactions
and blocking primitives. Reaction descriptors are routed in the logical space using
keys obtained from templates.

tuples matching a given pattern. The maximum execution time for remote bulk
primitives is controlled by the querying peer, which waits up to a certain timeout
for tuples coming back from each slice.

Handling Blocking Primitives and Weak Reactions

Lime coordination protocols handle blocking primitives and distributed weak reac-
tions in a uniform way. In particular, rd() and in() operations are implemented
and executed as system-defined weak reactions, simplifying their handling inside the
distribution scheme.

In principle, a weak reaction from a peer C is handled by subscribing to the
distributed community, a certain interest of C in the state of the federated tuple
space. The interest of C is described by a reaction template, which specifies the
format of tuples that should trigger the installation and firing of the reaction code.
The community is in charge for maintaining the subscription, as well as for notifying
the origin peer C about the presence of matching tuples in certain slices of FTS.
Once again, the KBR distribution scheme has the role to find out those slices of
FTS where there are tuples that might satisfy the reaction.

To this end, each peer is equipped with a LocalSubscriptionTable that stores
information about the locally originated reactions, as well as a RemoteSubscriptionTable
that maintains information about remote subscriptions. The local table primarily
keeps track of where (i.e., on which slices) reactions have been installed since their
creation, so that when the peer needs to cancel them has a way to address a proper

96 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

message only to the interested slices. The remote table has instead a dispatching
purpose. When a remote slice S sends an UPDATE message declaring tuples formats
that potentially match the reaction template, the peer notifies the subscriber, and at
the same time stores S in a dispatched list, to prevent possible duplicate notifications.
Just to give an example, consider peer C executing a blocking rd(), as illustrated
in Figure 6.3.1. Peer C (see Figure 6.5(a)) packs a SUBSCRIBE message containing
the reaction template and identifier, obtains the distribution keys from the reaction
template as usual, and routes the message in the community. Those peers receiving
the subscription, store it in their RemoteSubscriptionTable according to the key,
and begin their dispatching role. When another peer (see X2 in Figure 6.5(b)) outs
a tuple matching the reaction template, the update message will be routed with a
similar set of distribution keys, giving the receivers a chance to match the formats,
and eventually notify C. To this end they pack a NOTIFY message with the reaction
identifier and a handle to the remote slice X2, sending it directly to C. At this stage,
C can start the Lime coordination protocol to install the reaction on the notified
slices.

Dealing with System Dynamics

Due to the size of the target scenario, the system has to cope with community
dynamics. Changes on the slices content, as well as changes in the current set of
slices due to peer churns, must reflect on the distributed indexes, in order to properly
route tuple space primitives and reactions. Each peer has to cope with two kind
of indexes. Local indexes (i.e., LocalTupleIndex and LocalSubcriptionIndex)
maintain information about the content shared by the peer, as well as its interests on
the status of the distributed tuple space. Remote indexes (i.e., RemoteTupleIndex
and RemoteSubcriptionIndex) are the result of the distribution of local indexes
owned by remote peers, and are used to find out where tuple space primitives and
reactions should be projected.

Local indexes are incrementally built and maintained by the peer when tuples
(or reactions) get added, or removed from the local slice. Changes on the local
indexes can be updated following two strategies:

• an eager strategy causes the immediate generation of an update message for
each index change;

• a lazy strategy buffers index changes, and updates them in bunches when they
reach a predefined number (i.e., lazysize), or at periodical time intervals (i.e.,
lazytime).

Lazy strategies are more respectful in terms network resource consumption, but also
result in a less reactive system, depending on how the size and time parameters get
dimensioned.

Remote indexes receive entries from update messages and organize them in lists
in correspondence of the distribution key. They represent a portion of the federated

6.3. MERGING TUPLE SPACES AND KEY-BASED ROUTING 97

tuple space knowledge, and therefore should reflect changes on the set of available
slices. Once again, their maintenance could be done following two strategies:

• a lazy strategy associates freshness’ timestamps to remote index entries, and
considers them stale and ready to be deleted after fixed time intervals. This
strategy of course requires a periodical redistribution of local indexes in order
to ensure the freshness of remote entries;

• an eager strategy delegates to remote peers the responsibility for maintaining
remote entries, and make use of replication techniques as shown in Figure 6.3.1.
Each peer knows which key it is root for, and periodically pushes REPLICA

messages (see Figure 6.6(a)) on its logical neighbors, in order to replicate the
associated lists of remote entries. Replicas are assigned a freshness timestamp
to bound their lifetime. While the peer replicates those keys for which it
is root, it also checks for stale replicas, and eventually deletes them. This
strategy guarantees the persistence of remote entries in the system when the
root peer leaves (see Figure 6.6(b)).

The eager strategy has advantages in terms of network resources consumption. In
fact, as each peer is aware about its neighbors in the logical space, it can directly
unicast remote entries. On the other hand, the lazy strategy requires key-based
routing for the redistributing local indexes, and therefore potentially generates a
logarithmic amount of messages for each list of remote entries.

Engagement and Disengagement — migration of tuples

Lime enriches tuples with a location context, and extends Linda primitives with
variants that use a location specifiers. In particular, applications can out() tuples
specifying a destination slice, with the result of having the tuple migrating to a
remote tuple space. In the same way, an application can in() or rd() tuples from a
specified slice. For this reason, each tuple has a current and a destination location,
used to specify in which slice the tuple is currently located, and in which slice it
should be located. When these two location specifiers are different, then the tuple
is said to be misplaced. This happens for example when a peer outs a tuple on a
remote slice S that is not present in the system. The idea with Lime is to have
misplaced tuples waiting for their destination slice to appear in the system, and
then spontaneously migrate during an engagement procedure.

The solution to this problem consists in a coordination scheme similar to what
proposed for reactions and blocking primitives. The creation of misplaced tuples
designated to S, causes the subscription to an event that signals the join of S in the
system. For this purpose the key related to this subscription could be for example
the identifier of the destination slice itself.

98 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

(a) Peer X periodically sends a REPLICA

message to its neighbors, for each key
rooted at X .

(b) When X quits the ring, neighbors X ′

and X ′′ take over for the entries related to
k1 and k2, previously under the responsi-
bility of X .

Figure 6.6: Peers periodically replicate on logical neighbors those entries of their
remote indexes associated to keys for which they are root. This approach enhances
remote lookup resiliency upon peer departure.

Rules for Building Keys

By default, the system associates at most n update keys to each tuple, using the
strong hash function H() provided by the KBR platform. Considering tuples as
sequences of (type, value) fields, the first key takes into account the whole tuple
structure. The remaining keys are obtained by considering only the first n− 1 fields
of tuple. Specifically, each of them is the result of hashing the concatenation of the
type specifier, with the position within the tuple. These additional keys index the
tuple in correspondence of its field types, and help the system in better distributing
remote index entries and lookup workloads in the ring overlay. So given a tuple
with m fields t =< (t1, v1), (t2, v2), . . . , (tm, vm) >, k1 is obtained by hashing the
type specifiers’ concatenation (t1 • t2 • . . . • tm), while ki = H(ti−1 • (i − 1)) when
i = 2 . . .MAX(n, m). Patterns are special tuples made up of actuals and formals,
so lookup keys are built exactly in the same way. However, the system considers
only one default key during lookup phases, as the list of slices associated to each of
them in the distributed index is equivalent.

Additionally to system defined rules, the application programmer has the possi-
bility to specify customized rules for building update and lookup keys. The idea is
that the programmer is aware about both the tuple formats and the kind of queries
the application will use and do at runtime. Hence, for each tuple format, it can
specify one or more index fields, which the system will use to build keys out of

6.4. DISCUSSION AND RELATED WORKS 99

actual values. During update phases, peers will distribute remote entries in corre-
spondence of value-based keys, and when templates show actuals at index positions,
lookup phases exploit the same approach to obtain more focused search results.

Just to provide an example, consider a music sharing application where files are
stored together with song, band album names, information on the encoding format,
file size in KBytes, and a pointer to binary image. In this example, the programmer
could structure tuples using a format like <String, String, String, String,

Integer, Binary>, to organize the song database on each peer. Moreover, it could
specify the first three fields as index positions, as meaningful queries will probably be
done on songs, albums, or band names. In this way, by performing an out(<’Talk’,

’Coldplay’, ’X and Y’, ’mp3’, 1467, talk coldplay xandy.mp3>), the system
indexes the tuple also with:

k′ = H(Talk • String • String • String • Integer • Binary)

k′′ = H(String • Coldplay • String • String • Integer • Binary)

k′′′ = H(String • String • XandY • String • Integer • Binary)

It is worth to note that the whole tuple format is still used along with field
values. This is to prevent the generation of identical keys with tuples that have a
different format, but an equal value on index fields with the same position.

6.4 Discussion and Related Works

In this Chapter we presented a combined approach to p2p data sharing in mobile
and ad hoc environments, based on an integration of tuple space coordination and
key-based message routing. Although Lime has been essentially proposed as a mid-
dleware for mobile computing, the presented architecture should enable its usage
also in large-scale, infrastructure-based environments.

To the best of out knowledge, there is a single proposal, called Comet, which
has been designed with similar concepts. Comet [LP05] is a content-based coordi-
nation space architecture for wide-area P2P environments, which separates coordi-
nation and communication concerns in two separate layers. The coordination layer
implements Linda-like associative primitives, and supports a shared-space coordi-
nation model. The communication layer, realized on top of structured data sharing
platforms, provides content-based messaging, and is able to manage system hetero-
geneity and dynamism. The current implementation prototype of Comet is in the
framework of the JXTA [JXT] project, and uses Chord [SMLN+03] as for key-based
message routing. This system maps tuples on the KBR space using the Hilbert
Space-Filling Curve (HSFC), choosing keys from content and tuple descriptors. The
system makes no use of indexes, but directly migrates tuples on remote peers when
they are added to the space. The authors provide very few details on the actual
usage of HSFC to map tuples to points or segments of the node index space, but the

100 CHAPTER 6. LAYING TUPLE SPACES OVER STRUCTURED P2P PLATFORMS

idea behind is to exploit the clustering properties of these class of recursive fractals.
The system is described as able to handle queries with incomplete tuple structure
information. However, given an incomplete query that maps to a large region of the
distributed space, it is not clear how the query propagates to all the nodes in the
region (which could be a relatively large set) in an efficient way. Another significant
difference is that they encode tuples as XML documents, which provide a minor
degree of expressiveness respect to the JAVA classes used by Lime. Finally, while
Lime provides primitives for reactive programming, Comet has no mechanisms to
help application programmers to react to context changes.

In the future we intend to carry on evaluations of a preliminary prototype of
Lime over key-based routing, on Internet-scale test-beds using Planet Lab [PLA].

Chapter 7

Conclusions

7.1 Concluding remarks

Mobile ad hoc networking represents a potential new frontier for wireless communi-
cations. Its flexible and infrastructure-less nature, as well as its self-configuration,
and self-administration capabilities, make it a prime candidate for becoming the
stalwart technology for the future information society. In the past few years, sig-
nificant research efforts have been spent on networking, as well as on performance
enhancements of transport protocols, which also led to the creation of real test-beds
for on-the-field protocols’ evaluation [APE] [MOB]. However, one important factor
for a future deployment of this emerging technology and the creation of potential
business opportunities around it, is the provision of suitable middleware platforms
to facilitate the design and integration of new services, and foster the development
of distributed and mobile applications.

Early proposals of middleware for mobile ad hoc networks focused their attention
on information sharing by means of asynchronous communications. Lime [MPR01],
as detailed in Chapter 6, makes use of tuple space programming abstractions, while
XMIDDLE [ZCME02] realizes data sharing by means of XML documents and oper-
ations to support off-line data manipulation. In both cases, the emphasis is on the
set of primitives and algorithms to support coordination between interacting par-
ties, assuming a sharp separation with the underlying transport and communication
protocols. Instead, this thesis has focused on the communication and networking
strategies used to support various data sharing paradigms, with the goal of comple-
menting current proposals with instruments to achieve efficiency and performance.

The investigation began by looking at the problem of building overlays, intended
as the communication backbones on top of which information sharing paradigms de-
liver services in a P2P fashion. A first evaluation of current platforms for structured
and unstructured P2P computing, highlighted that overlay management algorithms
designed to operate in Internet settings do not tolerate MANET dynamics such as
frequent topological reconfigurations, or heavy rates of nodes’ churning, and might

102 CHAPTER 7. CONCLUSIONS

generate excessive network overheads with negative impacts to the network capa-
bilities. Therefore, we argued that performance and efficiency could be achieved
by having overlay management tasks cooperating with agents at the network layer.
Much of the work associated to overlay management consists on peer discovery,
link establishment and maintenance. While on the Internet this is done indepen-
dently from layer-3 activity, as peers are end-user machines and have little or no
knowledge about the topology, in MANET settings each node has to cooperatively
participate to routing and forwarding, locally collecting topology information that
could be exploited by overlays. Moreover, discovering peers means to find out paths
toward nodes that are running the P2P service of interest and, in realistic settings,
this can’t be done more efficiently than the underlying routing protocol. Under
this point of view, the discovery procedures used at the network layer represent the
“upper bound” in terms of performance, for those used at the application layer by
overlays. These considerations, led us to consider cross-layering as a viable technique
to achieve efficiency and performance.

The work presented in this thesis, is based on a cross-layer architecture that
allows interactions between protocols and agents at different (and not adjacent)
layers of the stack architecture. The cross-layer architecture is not only a building
block for the proposed overlay management techniques, but enables optimizations
at different layers of the protocol stack, as shown by the TCP case study in Chap-
ter 2. The distinctive feature stands in the innovative approach of extending the
interaction among protocols beyond standard layers’ interfaces. Cross-layering can
be considered as an alternative way of designing networking software, required by
a different networking paradigm such as MANETs. If we compare our cross-layer
approach to existing proposals, we conclude that while the latter are isolated solu-
tions that break a clean protocol stack design, the former introduces a “channel”
to standardize interactions, maintaining flexibility and modularity. Furthermore,
the cross-layer interface identifies the system’s component where to introduce se-
mantic controls on protocol interactions, with the final goal of avoiding interfering
optimizations [KK05].

The first application of cross-layering addresses unstructured overlays. We pro-
posed a cross-layer version of Gnutella (XL-Gnutella) as an alternative way to orga-
nize unstructured data sharing in mobile ad hoc environments. From the obtained
results, we conclude that XL-Gnutella nicely tolerates typical ad hoc dynamics,
like nodes mobility, network partitioning, and node replacements. In each of these
conditions, our protocol was able to maintain the required level of overlay connec-
tivity, without generating traffic bursts. The new proposal presented low bootstrap
latencies and high rates of query success, outperforming the legacy version of the
protocol, but maintaining compatibility with it.

Another study considered cross-layering in the context of publish/subscribe mid-
dleware, as this paradigm is particularly attractive in the mobile computing domain,
as it provides a loosely coupled communication scheme. We presented Q, an infras-
tructure for publish/subscribe that has been specifically designed for mobile ad hoc

7.2. FUTURE DIRECTIONS 103

environments. In Q, the overlay network used to route event notifications dynami-
cally adapts to the changing topology by means of information extracted from the
routing layer. Currently, Q relies on the abstract representation of the network pro-
vided by a reactive and source-based routing protocol. However, we believe that it
could be easily integrated also on top of a proactive routing protocol. The simu-
lative study demonstrated the feasibility of an event notification service based on
a cross-layer approach, where the event dispatching trees reconfigure based on the
network topology status.

To complete our perspective on P2P computing in MANETs, we also coped with
structured P2P computing and coordination models. An initial case-study evalua-
tion of Pastry, identified severe performance limitations of this platform in MANET
environments, and led us to consider the same cross-layer optimization used for
unstructured and publish/subscribe platforms. In the structured case, the devised
approach is not to build and manage an overlay at all. Through a cross-layer inter-
action with a link-state based routing protocol, peers are able to discover themselves
and collect a “view” of the overall ring. The result is that at each key-based message
routing procedure, the peer with the closest logical identifier to the message key is
elected as root, and the communication reduces to a single unicast stream to the
destination. Although this approach delivers good performance, it is hard to engi-
neer its integration with existing platforms, such as Pastry, and therefore produce a
system that is able to provide continuous service supply in mixed (i.e., Internet plus
ad hoc) settings. However, the approach has proved effective to realize an integra-
tion architecture between Lime, a tuple space oriented middleware, and platforms
for structured computing. The goal of this work was to provide a functional mid-
dleware with an expressive, flexible, and content-based API towards the application
programmers, and a scalable communication layer in both large-scale and MANET
environments. The proposed architecture shows that structured platforms deliver
efficient communication at the expense of flexibility, shifting much of the distributed
programming efforts (i.e., organization of distributed indexes, handling of failures
and replicas etc.) to application developers.

7.2 Future directions

In a future work, we intend to further refine and evaluate unstructured P2P comput-
ing. In particular, we intend to provide a cross-layer overlay formation protocol that
builds a middleware communication backbone able to support content-based queries
and reactive programming by means of events. Our intention is to carry on refine-
ments in mixed environments (i.e., wireless infrastructure and ad hoc networking),
which best match current industrial trends such as mesh networking [BCG05].

Another possible development of the work presented in this thesis, is in the
area of wireless content distribution networks. While the presented algorithms for
structured and unstructured computing support data discovery in wireless ad hoc

104 CHAPTER 7. CONCLUSIONS

environments, effective solutions should be devised to carry on distributed P2P data
delivery, especially when data is of significant sizes (e.g., music or video files). In
this area, we intend to explore the capacity and the limitation of platforms like
BitTorrent [BIT].

Bibliography

[ABKM01] D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris. The Case
for Resilient Overlay Networks. In Proceeding of the 8th Annual Work-
shop on Hot Topics in Operating Systems (HotOS-VIII), May 2001.

[APE] APE Testbed. http://apetesbed.sourceforge.net.

[AVT05] Marco Avvenuti, Alessio Vecchio, and Giovanni Turi. A cross-layer ap-
proach for publish/subscribe in mobile ad-hoc networks. In Proceedings
of the 2nd International Workshop on Mobility Aware Technologies and
Applications (MATA’05), Lecture Notes in Computer Science. Springer,
November 2005.

[BCG05] R. Bruno, M. Conti, and E. Gregori. Mesh Networks: Commodity
Multi-hop Ad hoc Networks. IEEE Communication Magazine, pages
123–131, 2005.

[BCM05] P. Bellavista, A. Corradi, and E. Magistretti. Lightweight Replication
Middleware for Data and Service Components in Dense MANETs. In
Procceedings of the 6th IEEE Symposium on a World of Wireless Mobile
and Multimedia Networks (WoWMoM 2005), June 2005.

[Bet02] C. Bettstetter. On the minimum node degree and connectivity of a
wireless multihop network. In Proc. of the 3rd ACM international sym-
posium on Mobile ad hoc networking and computing (MOBIHOC 2002),
pages 80–91. ACM Press, 2002.

[BIT] The Official BitTorrent Site. http://www.bittorrent.com.

[CCL03] I. Chlamtac, M. Conti, and J. J.-N. Liu. Mobile ad hoc networking: im-
peratives and challenges. Ad Hoc Networks Journal, 1(1):13–64, 2003.

[CCMT05] M. Conti, J. Crowcroft, G. Maselli, and G. Turi. A Modular Cross-
Layer Architecture for Ad Hoc Networks. In Jie Wu, editor, Handbook
on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless,
and Peer-to-Peer Networks. CRC Press, New York, 2005.

106 CHAPTER 7. BIBLIOGRAPHY

[CCR03] M. Castro, M. Costa, and A. Rowstron. Should we build Gnutella on a
structured overlay? In In Proceedings of HotNets-II, November 2003.

[CCR04] M. Castro, M. Costa, and A. Rowstron. Peer-to-peer overlays: struc-
tured, unstructured, or both? Technical report, 2004. Microsoft Re-
search, Cambridge, Technical Report MSR-TR-2004-73.

[CDT06] M. Conti, F. Delmastro, and G. Turi. Peer-to-Peer Computing in Mo-
bile Ad hoc Networks. In Paolo Bellavista and Antonio Corradi, editors,
Mobile Middleware. CRC Press, 2006. To appear.

[CGM05] M. Conti, E. Gregori, and G. Maselli. Improving the performabil-
ity of data transfer in mobile ad hoc networks. In Proceedings of
the 2nd IEEE Conference on Sensor and Ad Hoc Communications
(SECON’05), Santa Clara, Ca, USA, September 2005.

[CGT04] M. Conti, E. Gregori, and G. Turi. Towards scalable P2P comput-
ing for mobile ad hoc networks. In Proceeding of IEEE PerCom 2004
Workshops, pages 109–113, Orlando, FL, USA, 2004.

[CGT05] M. Conti, E. Gregori, and G. Turi. A Cross Layer Optimization of
Gnutella for Mobile Ad hoc Networks. In Proceedings of the 6th ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), Urbana-Champaign, IL, USA, May 2005.

[Chi04] M. Chiang. To Layer or not to Layer: Balancing Transport and Phys-
ical Layers in Wireless Multihop Networks. In Proceedings of IEEE
INFOCOM’04, Hong Kong, China, March 2004.

[CJ03] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol
(OLSR). RFC 3626, October 2003.

[CL99] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In In
Proceedings of OSDI 1999, 1999.

[CMC99] M. S. Corson, J. P. Macker, and G. H. Cirincione. Internet-based Mobile
Ad Hoc Networking. IEEE Internet Computing, 3(4):63–70, July 1999.

[CMT06] M. Conti, G. Maselli, and G. Turi. A flexible cross-layer interface for ad-
hoc networks: architectural design and implementation issues. Ad hoc
& Sensor Wireless Networks, An International Journal, (to appear),
2006.

[CMTG04] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross Layering in Mo-
bile Ad Hoc Network Design. IEEE Computer, 37(2):48–51, February
2004.

7.2. BIBLIOGRAPHY 107

[CRB+03] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and
Scott Shenker. Making Gnutella-like P2P Systems Scalable. In In
Proceedings of ACM SIGCOMM 2003, August 2003.

[CRW01] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evalua-
tion of a Wide-Area Event Notification Service. ACM Transactions on
Computer Systems, 19(3):332–383, August 2001.

[CSN02] K. Chen, S. H. Shah, and K. Nahrstedt. Cross-Layer Design for Data
Accessibility in Mobile Ad Hoc Networks. Wireless Personal Commu-
nications, 21(1):49–76, 2002.

[CSWH01] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed
anonymous information storage and retrieval system. Number 2009 in
Lecture Notes in Computer Science. Springer, 2001.

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards
a Common API for Structured Peer-to-Peer Overlays. In Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
Berkley, CA, USA, Feb 2003.

[EFGK03] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing
Surveys, 35(2):114–131, 2003.

[EG01] Patrick Eugster and Rachid Guerraoui. Content-Based Pub-
lish/Subscribe with Structural Reflection. In Proceedings of the
6th Usenix Conference on Object-Oriented Technologies and Systems
(COOTS’01). The Usenix Association, 2001.

[EG04] Patrick Eugster and Rachid Guerraoui. Distributed Programming with
Typed Events. IEEE Software, 21(2):56–64, March 2004.

[FI03] I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence
of Peer-to-Peer and Grid Computing. In In Proceedings of IPTPS’03,
February 2003.

[FRE] Freepastry. FreePastry web site: http://freepastry.rice.edu.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Computing
Surveys, 1(7):80–112, January 1985.

[GPLC00] M. Gerla, G. Pei, S. Lee, and C. Chiang. On-demand multicast rout-
ing protocol (ODMRP) for ad hoc networks. 2000. Internet draft,
http://www.ietf.org/proceedings/00jul/ID/manet-odmrp-02.txt, Work
in progress.

108 CHAPTER 7. BIBLIOGRAPHY

[HGM01] Y. Huang and H. Garcia-Molina. Publish/Subscribe in a mobile en-
viroment. In Proceedings of the 2nd ACM International Workshop on
Data Endineering for Wireless and Mobile Access (MobiDE’01), pages
27–34, May 2001.

[Jav] JavaSpaces. The SUN Microsystems JavaSpaces Specification web page.
http://www.sun.com/jini/specs/js-spec.html.

[JM96] David B. Johnson and David A. Maltz. Dynamic source routing in ad
hoc wireless networks. Mobile Computing, pages 153–181, 1996.

[JXT] Project JXTA. http://www.jxta.org.

[Kaw04] V. Kawadia. Protocols and Architecture for Wireless Ad Hoc Networks.
Ph.D. dissertation, University of Illinois at Urbana-Champaign, sep
2004.

[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent storage. In In
Proceedings of ACM ASPLOS 2000. ACM Press, November 2000.

[KK05] V. Kawadia and P. R. Kumar. A Cautionary Perspective on Cross
Layer Design. IEEE Wireless Communications, February 2005.

[KKT04] U. C. Kozat, I. Koutsopoulus, and L. Tassiulas. A Framework for Cross-
layer Design of Energy-efficient Communication with QoS Provisioning
in Multi-hop Wireless Netwroks. In Proceedings of IEEE INFOCOM’04,
Hong Kong, China, March 2004.

[KLW03] A. Klemm, C. Lindemann, and O. P. Waldhorst. A Special-Purpose
Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks. Work-
shop on Mobile Ad Hoc Networking and Computing, in conjunction
with WiOpt’03, 2003.

[KM02] T. Klinberg and R. Manfredi. Gnutella Protocol Specification v0.6.
http://rfc-gnutella.sourceforge.net/

src/rfc-0 6-draft.html, June 2002.

[KP02] R. Koodli and C. E. Perkins. Service Discovery in On-Demand Ad Hoc
Networks. Internet Draft, October 2002.

[LIM] The Lime Project Website. http://lime.sourceforge.net.

[LP05] Z. Li and M. Parashar. Comet: A Scalable Coordination Space for
Decentralized Distributed Environments. In Proceedings of HOT-P2P
2005, CA, USA, May 2005.

7.2. BIBLIOGRAPHY 109

[LRW03] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the kazaa
network. In In Proceedings of Third IEEE Workshop on Internet Ap-
plications (WIAPP’03), June 2003.

[LSS05] Q. Li, N. B. Shroff, and R. Srikant. Asymptotically Optimal Power-
Aware Routing for Multihop Wireless Networks with Renewable Energy
Sources. In Proceedings of IEEE INFOCOM’05, Miami, USA, March
2005.

[Ltd01] Sherman Networks Ltd. KaZaa Media Desktop.
http://www.kazaa.com, 2001.

[LXG03] H. Lim, K. Xu, and M. Gerla. TCP Performance over multipath routing
in mobile ad hoc networks. In Proceedings of the IEEE International
Conference on Communications (ICC), pages 1064–1068, May 2003.

[MC02] René Meier and Vinny Cahill. STEAM: Event-Based Middleware for
Wireless Ad Hoc Network. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCSW’02), pages
639–644, Washington, DC, USA, 2002. IEEE Computer Society.

[MCE02] C. Mascolo, L. Capra, and W. Emmerich. Middleware for Mobile Com-
puting (A Survey). In E. Gregori, G. Anastasi, and S. Basagni, editors,
Neworking 2002 Tutorial Papers, LNCS 2497, pages 20–58. Springer,
2002.

[MMH04] Mirco Musolesi, Cecilia Mascolo, and Stephen Hailes. Adapting asyn-
chronous messaging middleware to ad hoc networking. In Proceedings of
the 2nd workshop on Middleware for pervasive and ad-hoc computing,
pages 121–126, New York, NY, USA, 2004. ACM Press.

[MOB] Project MobileMAN. http://cnd.iit.cnr.it/mobileMAN.

[MPH02] T. Moreton, I. Pratt, and T. Harris. Storage, Mutability and Naming
in Pasta. In In Proceedings of the International Workshop on P2P
Computing at Networking 2002, May 2002.

[MPR01] A.L. Murphy, G.P. Picco, and G.-C. Roman. LIME: a Middleware for
Physical and Logical Mobility. In Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS’01), pages 524–
533, May 2001.

[MR98] P.J. McCann and G.-C. Roman. Compositional Programming Abstrac-
tions for Mobile Computing. IEEE Transaction on Software Engineer-
ing, 2(24):97–100, 1998.

110 CHAPTER 7. BIBLIOGRAPHY

[MSN84] D. Michael, A. Schroeder, and R. Needham. Experience with grapevine:
The growth of a distributed system. ACM Transactions on Computer
Systems, 2(1):3–23, February 1984.

[NAP] Napster. napster media sharing system. http://www.napster.com/.

[Net03] Scalable Networks. The QualNet Simulator, 2003.
http://www.scalable-networks.com.

[NRL] PROTEAN Research Group. http://cs.itd.nrl.navy.mil/5522/.

[NS2] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[PBRD03] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. IETF RFC-3561, July 2003.

[PC02] Ian Pratt and Jon Crowcroft. Peer-to-Peer systems: Architectures and
Performance. Networking 2002 Tutorial Session, May 2002.

[PCM03] Gian Pietro Picco, Gianpaolo Cugola, and Amy L. Murphy. Efficient
Content-Based Event Dispatching in the Presence of Topological Re-
configuration. In Proceedings of the 23rd International Conference on
Distributed Computing Systems (ICDCS’03), Washington, DC, USA,
2003. IEEE Computer Society.

[PLA] PLANETLAB: An open platform for developing, deploying, and ac-
cessing planetary-scale services. http://www.planet-lab.org/.

[PMR99] G.P. Picco, A.L. Murphy, and G.-C. Roman. LIME: Linda Meets Mo-
bility. In Proceedings of the 21st International Conference on Software
Engineering, pages 368–377, May 1999.

[RD01a] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Ob-
ject Location, and Routing for Large-Scale Peer-to-Peer Systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pages 329–350, 2001.

[RD01b] A. Rowstron and P. Druschel. Storage management and caching in
PAST, a large-scale, persistent P2P storage utility. In In Symposium
on Operating Systems Principles, pages 188–201, 2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of ACM SIG-
COMM’01, pages 149–160, San Diego, CA, USA, 2001.

7.2. BIBLIOGRAPHY 111

[RMP00] G.-C. Roman, A.L. Murphy, and G.P. Picco. Coordination and Mo-
bility. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf,
editors, Coordination of Internet Agents: Models, Technologies, and
Applications, pages 254–273. Springer, 2000.

[Row98] A. Rowstron. WCL: A coordination language for geographically dis-
tributed agents. World Wide Web Journal, 3(1):167–179, 1998.

[RW97] D.S. Rosenblum and A.L. Wolf. A Design Framework for Internet-Scale
Event Observation and Notification. In Proc. of the 6th European Soft-
ware Engineering Conference (ESEC/FSE97), number 1301 in Lecture
Notes in Computer Science, Zurich (Switzerland), 1997. Springer.

[SET] Seti@Home Project. http://setiathome.ssl.berkeley.edu/.

[SGF02] R. Schollmeier, I. Gruber, and M. Finkenzeller. Routing in Mobile
Ad Hoc and Peer-to-Peer Networks. A Comparison. In Proceedings of
Networking 2002 Workshops, Pisa, Italy, May 2002.

[SGN03] R. Schollmeier, I. Gruber, and F. Niethammer. Protocol for Peer-to-
Peer Networking in Mobile Environments. In Proceedings of 12th IEEE
International Conference on Computer Communications and Networks
(ICCCN’03), Dallas, Texas, USA, October 2003.

[SMLN+03] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. IEEE Transactions on Net-
working, 11, 2003.

[SYZ+05] E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod. Cross-layer
Design of Ad Hoc Networks for Real-Time Video Streaming. IEEE
Wireless Communications, August 2005.

[TSp] TSpaces. The IBM TSpaces Web Page.
http://www.almaden.ibm.com/cs/TSpaces.

[VIC] VICom: Virtual Immersive Communication. http://www.vicom-
project.it.

[VIE03] Einar Vollset, David B. Ingham, and Paul D. Ezhilchelvan. JMS on
Mobile Ad Hoc Networks. In IFIP-TC6 8th International Conference
on Personal Wireless Communications (PWC 2003), volume 2775 of
Lecture Notes in Computer Science, pages 40–52. Springer, September
2003.

112 CHAPTER 7. BIBLIOGRAPHY

[YLA02] W. H. Yuen, H. Lee, and T. D. Andersen. A Simple and Effective Cross
Layer Networking System for Mobile Ad Hoc Networks. In Proceedings
of IEEE PIMRC 2002, Lisbon, Portugal, September 2002.

[YVGM04] B. Yang, P. Vinograd, and H. Garcia-Molina. Evaluating GUESS and
Non-Forwarding Peer-to-Peer Search. In Proc. of 24th International
Conference on Distributed Computing Systems (ICDCS’04), pages 209–
218, March 2004.

[ZCME02] S. Zachariadis, L. Capra, C. Mascolo, and W. Emmerich. XMIDDLE:
Information Sharing Middleware for a Mobile Environment. In ACM
Press, editor, Proc. of the 24th International Conference of Software
Engineering (ICSE 2002), Demo Session, LNCS 2497, page 712, Or-
lando, Florida, 2002.

[ZKJ01] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Technical report,
2001. Tech. Rep. UCB/CSD-01-1141, Computer Science Division, U.
C. Berkeley.

[ZPS00] Y. Zhang, V. Paxson, and S. Shenker. The stationarity of internet path
properties: Routing, loss, and throughput. ACIRI Technical Report,
2000.

