114 research outputs found

    Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Get PDF
    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives

    Wireless Mesh Networks for Infrastructure Deficient Areas

    Full text link
    International audienceProvision of internet access in infrastructure deficient areas is expected to bring profound economic and humanitarian benefit to developing countries. Notwithstanding, achieving this goal poses an economic and technical challenge. Due to technological and economical reasons cellular networks are regarded to be unable to deliver affordable distribution in the short term. Instead 802.11s wireless mesh networking standard is identified to be a more viable and affordable partial solution to deliver broadband internet in the periphery of developing countries. A general focus is the individual incentive to participate in a mesh network rather than reliance on organisational bodies. This paper designs an architecture and business model for a low cost, low range distribution of internet access. The technical architecture is evaluated using simulation and is found to be viable, but demands optimisation

    A topology control approach for utilizing multiple channels in multi-radio wireless mesh networks

    Get PDF
    We consider the channel assignment problem in a multi-radio wireless mesh network that involves assigning channels to radio interfaces for achieving efficient channel utilization. We present a graph-theoretic formulation of the channel assignment guided by a novel topology control perspective, and show that the resulting optimization problem is NP-complete. We also present an ILP formulation that is used for obtaining a lower bound for the optimum. We then develop a new greedy heuristic channel assignment algorithm (termed CLICA) for finding connected, low interference topologies by utilizing multiple channels. Our evaluations show that the proposed CLICA algorithm exhibits similar behavior and comparable performance relative to the optimum bound with respect to interference and capacity measures. Moreover, our extensive simulation studies show that it can provide a large reduction in interference even with a small number of radios per node, which in turn leads to significant gains in both link layer and multihop performance in 802.11-based multi-radio mesh networks

    Smart Gossip: Infusing Adaptivity into Gossiping Protocols for Sensor Networks

    Get PDF
    Probabilistic techniques have been used to address many challenges in sensor networks. However, little work exists on developing adaptive versions of probabilistic protocols. In this paper, we consider the class of probabilistic gossiping protocols that are useful for disseminating information. Information dissemination is often required in sensor networks for code updates, TAG-type queries, etc. We propose adaptive techniques that enable a gossip-based protocol to automatically and dynamically adapt itself to the network topology. Our techniques are capable of coping with wireless losses and unpredictable node failures that affect network connectivity over time. The adaptive techniques also allow the sensor network applications to specify a desired reliability for disseminating messages. Nodes automatically adapt their behavior to satisfy such requirements. The resulting protocol is completely decentralized. We present thorough experimental results to evaluate our ``Smart Gossip'' proposal, and demonstrate its benefits over existing gossip protocols
    corecore