921 research outputs found

    Recent Progress in Optical Sensors for Biomedical Diagnostics

    Get PDF
    In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Nanomaterials for Healthcare Biosensing Applications

    Get PDF
    In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing

    Energy, Laplacian energy of double graphs and new families of equienergetic graphs

    Full text link
    For a graph GG with vertex set V(G)={v1,v2,⋯ ,vn}V(G)=\{v_1, v_2, \cdots, v_n\}, the extended double cover G∗G^* is a bipartite graph with bipartition (X, Y), X={x1,x2,⋯ ,xn}X=\{x_1, x_2, \cdots, x_n\} and Y={y1,y2,⋯ ,yn}Y=\{y_1, y_2, \cdots, y_n\}, where two vertices xix_i and yjy_j are adjacent if and only if i=ji=j or viv_i adjacent to vjv_j in GG. The double graph D[G]D[G] of GG is a graph obtained by taking two copies of GG and joining each vertex in one copy with the neighbours of corresponding vertex in another copy. In this paper we study energy and Laplacian energy of the graphs G∗G^* and D[G]D[G], LL-spectra of Gk∗G^{k*} the kk-th iterated extended double cover of GG. We obtain a formula for the number of spanning trees of G∗G^*. We also obtain some new families of equienergetic and LL-equienergetic graphs.Comment: 23 pages, 1 figur
    • …
    corecore