54,884 research outputs found

    Item Recommendation with Evolving User Preferences and Experience

    Full text link
    Current recommender systems exploit user and item similarities by collaborative filtering. Some advanced methods also consider the temporal evolution of item ratings as a global background process. However, all prior methods disregard the individual evolution of a user's experience level and how this is expressed in the user's writing in a review community. In this paper, we model the joint evolution of user experience, interest in specific item facets, writing style, and rating behavior. This way we can generate individual recommendations that take into account the user's maturity level (e.g., recommending art movies rather than blockbusters for a cinematography expert). As only item ratings and review texts are observables, we capture the user's experience and interests in a latent model learned from her reviews, vocabulary and writing style. We develop a generative HMM-LDA model to trace user evolution, where the Hidden Markov Model (HMM) traces her latent experience progressing over time -- with solely user reviews and ratings as observables over time. The facets of a user's interest are drawn from a Latent Dirichlet Allocation (LDA) model derived from her reviews, as a function of her (again latent) experience level. In experiments with five real-world datasets, we show that our model improves the rating prediction over state-of-the-art baselines, by a substantial margin. We also show, in a use-case study, that our model performs well in the assessment of user experience levels

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0

    Exploring Latent Semantic Factors to Find Useful Product Reviews

    Full text link
    Online reviews provided by consumers are a valuable asset for e-Commerce platforms, influencing potential consumers in making purchasing decisions. However, these reviews are of varying quality, with the useful ones buried deep within a heap of non-informative reviews. In this work, we attempt to automatically identify review quality in terms of its helpfulness to the end consumers. In contrast to previous works in this domain exploiting a variety of syntactic and community-level features, we delve deep into the semantics of reviews as to what makes them useful, providing interpretable explanation for the same. We identify a set of consistency and semantic factors, all from the text, ratings, and timestamps of user-generated reviews, making our approach generalizable across all communities and domains. We explore review semantics in terms of several latent factors like the expertise of its author, his judgment about the fine-grained facets of the underlying product, and his writing style. These are cast into a Hidden Markov Model -- Latent Dirichlet Allocation (HMM-LDA) based model to jointly infer: (i) reviewer expertise, (ii) item facets, and (iii) review helpfulness. Large-scale experiments on five real-world datasets from Amazon show significant improvement over state-of-the-art baselines in predicting and ranking useful reviews

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Probabilistic Graphical Models for Credibility Analysis in Evolving Online Communities

    Get PDF
    One of the major hurdles preventing the full exploitation of information from online communities is the widespread concern regarding the quality and credibility of user-contributed content. Prior works in this domain operate on a static snapshot of the community, making strong assumptions about the structure of the data (e.g., relational tables), or consider only shallow features for text classification. To address the above limitations, we propose probabilistic graphical models that can leverage the joint interplay between multiple factors in online communities --- like user interactions, community dynamics, and textual content --- to automatically assess the credibility of user-contributed online content, and the expertise of users and their evolution with user-interpretable explanation. To this end, we devise new models based on Conditional Random Fields for different settings like incorporating partial expert knowledge for semi-supervised learning, and handling discrete labels as well as numeric ratings for fine-grained analysis. This enables applications such as extracting reliable side-effects of drugs from user-contributed posts in healthforums, and identifying credible content in news communities. Online communities are dynamic, as users join and leave, adapt to evolving trends, and mature over time. To capture this dynamics, we propose generative models based on Hidden Markov Model, Latent Dirichlet Allocation, and Brownian Motion to trace the continuous evolution of user expertise and their language model over time. This allows us to identify expert users and credible content jointly over time, improving state-of-the-art recommender systems by explicitly considering the maturity of users. This also enables applications such as identifying helpful product reviews, and detecting fake and anomalous reviews with limited information.Comment: PhD thesis, Mar 201
    corecore