21,746 research outputs found

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    Spiking neural network connectivity and its potential for temporal sensory processing and variable binding

    Get PDF
    Copyright © 2013 Wall and Glackin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsPeer reviewedFinal Published versio

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Resolving Two Tensions in 4E Cognition Using Wide Computationalism

    Get PDF
    Recently, some authors have begun to raise questions about the potential unity of 4E (enactive, embedded, embodied, extended) cognition as a distinct research programme within cognitive science. Two tensions, in particular, have been raised:(i) that the body-centric claims embodied cognition militate against the distributed tendencies of extended cognition and (ii) that the body/environment distinction emphasized by enactivism stands in tension with the world-spanning claims of extended cognition. The goal of this paper is to resolve tensions (i) and (ii). The proposal is that a form of ‘wide computationalism’can be used to reconcile the two tensions and, in so doing, articulate a common theoretical core for 4E cognition

    Against simplicity and cognitive individualism: Nathaniel T. Wilcox

    Get PDF
    Neuroeconomics illustrates our deepening descent into the details of individual cognition. This descent is guided by the implicit assumption that “individual human” is the important “agent” of neoclassical economics. I argue here that this assumption is neither obviously correct, nor of primary importance to human economies. In particular I suggest that the main genius of the human species lies with its ability to distribute cognition across individuals, and to incrementally accumulate physical and social cognitive artifacts that largely obviate the innate biological limitations of individuals. If this is largely why our economies grow, then we should be much more interested in distributed cognition in human groups, and correspondingly less interested in individual cognition. We should also be much more interested in the cultural accumulation of cognitive artefacts: computational devices and media, social structures and economic institutions

    Topological Schemas of Memory Spaces

    Full text link
    Hippocampal cognitive map---a neuronal representation of the spatial environment---is broadly discussed in the computational neuroscience literature for decades. More recent studies point out that hippocampus plays a major role in producing yet another cognitive framework that incorporates not only spatial, but also nonspatial memories---the memory space. However, unlike cognitive maps, memory spaces have been barely studied from a theoretical perspective. Here we propose an approach for modeling hippocampal memory spaces as an epiphenomenon of neuronal spiking activity. First, we suggest that the memory space may be viewed as a finite topological space---a hypothesis that allows treating both spatial and nonspatial aspects of hippocampal function on equal footing. We then model the topological properties of the memory space to demonstrate that this concept naturally incorporates the notion of a cognitive map. Lastly, we suggest a formal description of the memory consolidation process and point out a connection between the proposed model of the memory spaces to the so-called Morris' schemas, which emerge as the most compact representation of the memory structure.Comment: 24 pages, 8 Figures, 1 Suppl. Figur
    • 

    corecore