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The most biologically-inspired artificial neurons are those of the
third generation, and are termed spiking neurons, as individual
pulses or spikes are the means by which stimuli are commu-
nicated. In essence, a spike is a short-term change in electrical
potential and is the basis of communication between biological
neurons. Unlike previous generations of artificial neurons, spik-
ing neurons operate in the temporal domain, and exploit time
as a resource in their computation. In 1952, Alan Lloyd Hodgkin
and Andrew Huxley produced the first model of a spiking neu-
ron; their model describes the complex electro-chemical process
that enables spikes to propagate through, and hence be com-
municated by, spiking neurons. Since this time, improvements
in experimental procedures in neurobiology, particularly with
in vivo experiments, have provided an increasingly more com-
plex understanding of biological neurons. For example, it is now
well-understood that the propagation of spikes between neurons
requires neurotransmitter, which is typically of limited supply.
When the supply is exhausted neurons become unresponsive. The
morphology of neurons, number of receptor sites, amongst many
other factors, means that neurons consume the supply of neu-
rotransmitter at different rates. This in turn produces variations
over time in the responsiveness of neurons, yielding various com-
putational capabilities. Such improvements in the understanding
of the biological neuron have culminated in a wide range of dif-
ferent neuron models, ranging from the computationally efficient
to the biologically realistic. These models enable the modeling of
neural circuits found in the brain.

In recent years, much of the focus in neuron modeling has
moved to the study of the connectivity of spiking neural net-
works. Spiking neural networks provide a vehicle to understand
from a computational perspective, aspects of the brain’s neural
circuitry. This understanding can then be used to tackle some
of the historically intractable issues with artificial neurons, such
as scalability and lack of variable binding. Current knowledge of
feed-forward, lateral, and recurrent connectivity of spiking neu-
rons, and the interplay between excitatory and inhibitory neurons
is beginning to shed light on these issues, by improved under-
standing of the temporal processing capabilities and synchronous
behavior of biological neurons. This research topic spans current
research on neuron models to spiking neural networks and their
application to interesting and current computational problems.
The research papers submitted to this topic can be categorized
into the following major areas of more efficient neuron model-
ing; lateral and recurrent spiking neural network connectivity;

exploitation of biological neural circuitry by means of spiking
neural networks; optimization of spiking neural networks; and
spiking neural networks for sensory processing.

Moujahid and d’Anjou (2012) stimulate the giant squid
axon with simulated spikes to develop some new insights into
the development of more relevant models of biological neu-
rons. They observed that temperature mediates the efficiency of
action potentials by reducing the overlap between sodium and
potassium currents in the ion exchange and subsequent energy
consumption. The original research article by Dockendorf and
Srinivasa (2013) falls into the area of lateral and recurrent spik-
ing neural network connectivity. It presents a recurrent spiking
model capable of learning episodes featuring missing and noisy
data. The presented topology provides a means of recalling previ-
ously encoded patterns where inhibition is of the high frequency
variety aiming to promote stability of the network. Kaplan et al.
(2013) also investigated the use of recurrent spiking connectiv-
ity in their work on motion-based prediction and the issue of
missing data. Here they address how anisotropic connectivity pat-
terns that consider the tuning properties of neurons efficiently
predict the trajectory of a disappearing moving stimulus. They
demonstrate and test this by simulating the network response in
a moving-dot blanking experiment.

Garrido et al. (2013) investigate how systematic modifications
of synaptic weights can exert close control over the timing of spike
transmissions. They demonstrate this using a network of leaky
integrate-and-fire spiking neurons to simulate cells of the cere-
bellar granular layer. Börgers and Walker (2013) investigate sim-
ulations of excitatory pyramidal cells and inhibitory interneurons
which interact and exhibit gamma rhythms in the hippocam-
pus and neocortex. They focus on how inhibitory interneurons
maintain synchrony using gap junctions. Similarly, Ponulak and
Hopfield (2013) also take inspiration from the neural structure
of the hippocampus to hypothesize about the problem of spa-
tial navigation. Their topology encodes the spatial environment
through an exploratory phase which utilizes “place” cells to reflect
all possible trajectory boundaries and environmental constraints.
Subsequently, a wave propagation process maps the trajectory
between the target or multiple targets and the current location by
altering the synaptic connectivity of the aforementioned “place”
cells in a single pass. A novel viewpoint of the state-of-the-art for
the exploitation of biological neural circuitry by means of spik-
ing neural networks is provided by Aimone and Weick (2013). In
their paper, a thorough and comprehensive review of modeling
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cortical damage due to stroke is provided. They argue that a the-
oretical understanding of the damaged cortical area post-disease
is vital while taking into account current thinking of models for
adult neurogenesis.

One of the issues with modeling large-scale spiking neural net-
works is the lack of tools to analyse such a large parameter space,
as Buice and Chow (2013) discuss in their hypothesis and theory
article. They propose a possible approach which combines mean
field theory with information about spiking correlations; thus
reducing the complexity to that of a more comprehensible rate-
like description. Demonstrations of spiking neural networks for
sensory processing include the work of Srinivasa and Jiang (2013).
Their research consists of the development of spiking neuron
models, initially assembled into an unstructured map topol-
ogy. The authors show how the combination of self-organized
and STDP-based continuous learning can provide the initial for-
mation and on-going maintenance of orientation and ocular
dominance maps of the kind commonly found in the visual
cortex.

It is clear that research on spiking neural networks has
expanded beyond computational models of individual neurons
and now encompasses large-scale networks which aim to model
the behavior of whole neural regions. This has resulted in a
diverse and exciting field of research with many perspectives and
a multitude of potential applications.
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