1,415 research outputs found

    The spatial-temporal patterns of Asian summer monsoon precipitation in response to Holocene insolation change: a model-data synthesis

    Get PDF
    Highlights: • Slice and transient simulations of Holocene climate change were performed. • Spatial–temporal patterns of Holocene Asian summer precipitation are investigated. • A tripole pattern of summer precipitation can be seen over monsoonal Asia. • Insolation change is a key factor for Holocene Asian summer monsoon change. • Internal feedbacks are important to Holocene Asian summer precipitation changes. Abstract: Paleoclimate proxy records of precipitation/effective moisture show spatial–temporal inhomogeneous over Asian monsoon and monsoon marginal regions during the Holocene. To investigate the spatial differences and diverging temporal evolution over monsoonal Asia and monsoon marginal regions, we conduct a series of numerical experiments with an atmosphere–ocean–sea ice coupled climate model, the Kiel Climate Model (KCM), for the period of Holocene from 9.5 ka BP to present (0 ka BP). The simulations include two time-slice equilibrium experiments for early Holocene (9.5 ka BP) and present-day (0 ka BP), respectively and one transient simulation (HT) using a scheme for model acceleration regarding to the Earth's orbitally driven insolation forcing for the whole period of Holocene (from 9.5 to 0 ka BP). The simulated summer precipitation in the equilibrium experiments shows a tripole pattern over monsoonal Asia as depicted by the first modes of empirical orthogonal function (EOF1) of H0K and H9K. The transient simulation HT exhibits a wave train pattern in the summer precipitation across the Asian monsoon region associated with a gradually decreased trend in the strength of Asian summer monsoon, as a result of the response of Asian summer monsoon system to the Holocene orbitally-forced insolation change. Both the synthesis of multi-proxy records and model experiments confirm the regional dissimilarity of the Holocene optimum precipitation/effective moisture over the East Asian summer monsoon region, monsoon marginal region, and the westerly-dominated areas, suggesting the complex response of the regional climate systems to Holocene insolation change in association with the internal feedbacks within climate system, such as the air-sea interactions associated with the El Nino/Southern Oscillation (ENSO) and shift of the Intertropical Convergence Zone (ITCZ) in the evolution of Asian summer monsoon during the Holocene

    Rapid retreat of the East Asian summer monsoon in the in the middle Holocene and a millennial weak monsoon interval at 9 ka in northern China

    Get PDF
    Knowledge of hydroclimatic dynamics in the East Asian monsoon region during the Holocene was hindered by few absolutely-dated and decadally-resolved proxy records in northern China. Here we present replicated carbonate δ18O records of six stalagmites with sub-decadal to multi-decadal resolutions from the Lianhua cave to reveal a detailed evolution of the East Asian Summer Monsoon (EASM) intensity in northern China since 11.5 thousand years before present (ka BP, before 1950 CE). Our composite record shows that solar forcing dominated hydroclimatic changes regionally, including an intensified monsoon at the Holocene Optimum from the termination of Younger Dryas to 6.5 ka BP, and a subsequent multi-millennial weakening monsoon, that agrees with cave records in central and southern China. However, the EASM has retreated southwards more rapidly than the Indian summer monsoon after ∼6.5 ka BP, resulting in aridity conditions occurring at 4.0 ka BP in northern China, which is almost 2000-year earlier than that in central and southern China. This north–south asynchroneity is likely related to the different regional responses among the coupling of the EASM, Indian summer monsoon, the solar forcing, and the differences in thermal forcing due to complex geographical configurations. In addition, a relative enrichment of 1‰ in 18O data of the Lianhua record from 9.5 to 8.1 ka BP shows that the Holocene Optimum was punctuated by a millennial-long weakening monsoon interval, which is not registered among previous cave records in central and southern China. The fresh water-induced cold climate conditions in the North Atlantic region could create stronger East Asian winter monsoon, and induce a weakened EASM and a southward shift of rain belt in northern China. Therefore, it shall not be surprised that there are strong heterogeneities among regional hydroclimatic conditions across monsoonal China, given the complex interplay between external and internal forcing mechanisms over the entire Holocene

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Geomorphological Evolution and Palaeoenvironmental Change in the Western Alashan Plateau, China

    Get PDF
    Although neotectonic activity is considered to be the main factor of theterrain evolution of the Qinghai Tibet Plateau and its surrounding high-altitude areas, further geomorphological analysis and literature analysis areneeded for the understanding of the geomorphic evolution and the Quaternary environment change of the western area of the Alxa Plateau nearthe northern Tibet Plateau. The purpose of this study is to investigate thedistribution of site-specific geomorphic units of the landforms developedin the vast topography of Ejina Basin (Western Alxa), in order to identifythe geostructural and climatic causes of the geomorphic landscape and itsimpact on the change of paleoenvironment. At present, the climate andhydrological conditions in Ejina are relatively monotonous and stable. Inaddition to tectonic dynamic factors, the most widely distributed landform in the basin is climate landform. There are both geomorphologicaland sedimentological anomalies of Aeolian landforms occurred in thewhole basin, indicating that the underlying surface effect (retention effect) of river (Ejina River) and its related uneven ground and weak winderosion (deflation) process in the nearby area may be the important factors controlling the formation of Ejina dunes, rather than the arid climate.It is believed that the extensive interaction between the aeolian and fluvialprocesses is the main mechanism of the regional geomorphic difference inEjina Basin. According to the comparability of regional geomorphologyand sedimentology, the period of the formation of relic geomorphologyin the edge of Ejina Basin can be reasonably attributed to the local glacialmaximum of the last glacial. The geomorphic transformation from quasiplain and desert valley to desert plain, the appearance of widely movingsand dunes and the presence of large ancient lake geomorphology allindicate that the drought index of Ejina Basin is increasing on the scaleof geomorphic formation. Paleogeomorphological and chronological evidences show that the climatic and hydrological conditions of the basin inthe last glacial period and the early Holocene are much better than thoseat present. For example, the average annual precipitation in the area before 39-23ka BP is between 60-350 mm (about 36 mm today), but thereare large waves in the Holocene. The coexistence of various climates andlandforms in Ejina Basin and the resulting geomorphic diversity shouldbe the composite result of various geomorphic processes and surface processes besides glaciation. The low aridity (relative humidity) in the EjinaRegion in the late Pleistocene may be the result of the enhancement of thewesterly rain belt and the weakening of the Asian Winter Monsoon in thearid region of Central Asia

    Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years

    Get PDF
    The upper Hanjiang River region is the recharge area of the middle route of South-to-North Water Transfer Project. The region is under construction of the Hanjiang-Weihe River Water Transfer Project in China. Monsoon precipitation variations in this region are critical to water resource and security of China. In this study, high-resolution monsoon precipitation variations were reconstructed in the upper Hanjiang River region over the past 6650 years from delta O-18 and delta C-13 records of four stalagmites in Xianglong cave. The long term increasing trend of stalagmite delta O-18 record since the middle Holocene is consistent with other speleothem records from monsoonal China. This trend follows the gradually decreasing Northern Hemisphere summer insolation, which indicates that solar insolation may control the orbital-scale East Asian summer monsoon (EASM) variations. Despite the declined EASM intensity since the middle Holocene, local precipitation may not have decreased remarkably, as revealed by the delta C-13 records. A series of centennial- to decadal-scale cyclicity was observed, with quasi-millennium-, quasi-century-, 57-, 36- and 22-year cycles by removing the long-term trend of stalagmite delta O-18 record. Increased monsoon precipitation during periods of 4390-3800 a BP, 3590-2960 a BP, 2050-1670 a BP and 1110-790 a BP had caused four super-floods in the upper reach of Hanjiang River. Dramatically dry climate existed in this region during the 5.0 ka and 2.8 ka events, coinciding with notable droughts in other regions of monsoonal China. Remarkably intensified and southward Westerly jet, together with weakened summer monsoon, may delay the onset of rainy seasons, resulting in synchronous decreasing of monsoon precipitation in China during the two events. During the 4.2 ka event and the Little Ice Age, the upper Hanjiang River region was wet, which was similar to the climate conditions in central and southern China, but was the opposite of drought observed in northern China. We propose that weakened summer monsoon and less strengthened or normal Westerly jet may cause rain belt stay longer in the southward region, which reduced rainfall in northern China but enhanced it in central and southern China. (C) 2017 Elsevier B.V. All rights reserved

    A major reorganization of Asian climate by the early Miocene

    Get PDF
    The global climate system experienced a series of drastic changes during the Cenozoic. In Asia, these include the climate transformation from a zonal pattern to a <i>monsoon-dominated pattern</i>, the disappearance of typical subtropical aridity, and the onset of <i>inland deserts</i>. Despite major advances in the last two decades in characterizing and understanding these climate phenomena, disagreements persist relative to the timing, behaviors and underlying causes. <br><br> This paper addresses these issues mainly based on two lines of evidence. First, we compiled newly collected data from geological indicators of the Cenozoic environment in China as paleoenvironmental maps of ten intervals. In confirming the earlier observation that a zonal climate pattern was transformed into a monsoonal one, the maps within the Miocene indicate that this change was achieved by the early Miocene, roughly consistent with the onset of loess deposition in China. Although a monsoon-like regime would have existed in the Eocene, it was restricted to tropical-subtropical regions. The latitudinal oscillations of the climate zones during the Paleogene are likely attributable to the imbalance in evolution of polar ice-sheets between the two hemispheres. <br><br> Secondly, we examine the relevant depositional and soil forming processes of the Miocene loess-soil sequences to determine the circulation characteristics with emphasis on the early Miocene. Continuous eolian deposition in the middle reaches of the Yellow River since the early Miocene firmly indicates the formation of inland deserts, which have been constantly maintained during the past 22 Ma. Grain-size gradients between loess sections indicate northerly dust-carrying winds from northern sources, a clear indication of an Asian winter monsoon system. Meanwhile, well-developed Luvisols show evidence that moisture from the oceans reached northern China. This evidence shows the coexistence of two kinds of circulations, one from the ocean carrying moisture and another from the inland deserts transporting dust. The formation of the early Miocene paleosols resulted from interactive soil forming and dust deposition processes in these two seasonally alternating monsoonal circulations. The much stronger development of the early Miocene soils compared to those in the Quaternary loess indicates that summer monsoons were either significantly stronger, more persistent through the year, or both. <br><br> These lines of evidence indicate a joint change in circulation and inland aridity by the early Miocene and suggest a dynamic linkage of them. Our recent sensitivity tests with a general circulation model, along with relevant geological data, suggest that the onset of these contrasting wet/dry responses, as well as the change from the "planetary" subtropical aridity pattern to the "inland" aridity pattern, resulted from the combined effects of Tibetan uplift and withdrawal of the Paratethys seaway in central Asia, as suggested by earlier experiments. The spreading of South China Sea also helped to enhance the south-north contrast of humidity. The Miocene loess record provides a vital insight that these tectonic factors had evolved by the early Miocene to a threshold sufficient to cause this major climate reorganization in Asia

    Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau

    Get PDF
    © 2016, Tada et al. Uplift of the Himalaya and Tibetan Plateau (HTP) and its linkage with the evolution of the Asian monsoon has been regarded as a typical example of a tectonic–climate linkage. Although this linkage remains unproven because of insufficient data, our understanding has greatly advanced in the past decade. It is thus timely to summarize our knowledge of the uplift history of the HTP, the results of relevant climate simulations, and spatiotemporal changes in the Indian and East Asian monsoons since the late Eocene. Three major pulses of the HTP uplift have become evident: (1) uplift of the southern and central Tibetan Plateau (TP) at ca. 40–35 Ma, (2) uplift of the northern TP at ca. 25–20 Ma, and (3) uplift of the northeastern to eastern TP at ca. 15–10 Ma. Modeling predictions suggest that (i) uplift of the southern and central TP should have intensified the Indian summer monsoon (ISM) and the Somali Jet at 40–35 Ma; (ii) uplift of the northern TP should have intensified the East Asian summer monsoon (EASM) and East Asian winter monsoon (EAWM), as well as the desertification of inland Asia at 25–20 Ma; and (iii) uplift of the northeastern and eastern TP should have further intensified the EASM and EAWM at 15–10 Ma. We tested these predictions by comparing them with paleoclimate data for the time intervals of interest. There are insufficient paleoclimate data to test whether the ISM and Somali Jet intensified with the uplift of the southern and central TP at 40–35 Ma, but it is possible that such uplift enhanced erosion and weathering that drew down atmospheric CO2 and resulted in global cooling. There is good evidence that the EASM and EAWM intensified, and desertification started in inland Asia at 25–20 Ma in association with the uplift of the northern TP. The impact of the uplift of the northeastern and eastern TP on the Asian monsoon at 15–10 Ma is difficult to evaluate because that interval was also a time of global cooling and Antarctic glaciation that might also have influenced the intensity of the Asian monsoon

    Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related?

    Get PDF
    Prevailing dogma asserts that the uplift of Tibet, the onset of the Asian monsoon system and high biodiversity in southern Asia are linked, and that all occurred after 23 million years ago in the Neogene. Here, spanning the last 60 million years of Earth history, the geological, climatological and palaeontological evidence for this linkage is reviewed. The principal conclusions are that: 1) A proto-Tibetan highland existed well before the Neogene and that an Andean type topography with surface elevations of at least 4.5 km existed at the start of the Eocene, before final closure of the Tethys Ocean that separated India from Eurasia. 2) The Himalaya were formed not at the start of the India-Eurasia collision, but after much of Tibet had achieved its present elevation. The Himalaya built against a pre-existing proto-Tibetan highland and only projected above the average height of the plateau after approximately 15 Ma. 3) Monsoon climates have existed across southern Asia for the whole of the Cenozoic, and probably for a lot longer, but that they were of the kind generated by seasonal migrations of the Inter-tropical Convergence Zone. 4) The projection of the High Himalaya above the Tibetan Plateau at about 15 Ma coincides with the development of the modern South Asia Monsoon. 5) The East Asia monsoon became established in its present form about the same time as a consequence of topographic changes in northern Tibet and elsewhere in Asia, the loss of moisture sources in the Asian interior and the development of a strong winter Siberian high as global temperatures declined. 6) New radiometric dates of palaeontological finds point to southern Asia's high biodiversity originating in the Paleogene, not the Neogene

    Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: effective moisture variability and atmospheric circulation changes

    Get PDF
    A sub-centennial-resolution record of lacustrine carbonate oxygen isotopes (δ<sup>18</sup>O<sub>C</sub>) from the closed-basin Lake Qinghai on the NE Tibetan Plateau shows pronounced variability over the past 1500 years. Changes in δ<sup>18</sup>O<sub>C</sub> in hydrologically closed lakes are often interpreted in terms of changing effective moisture. Under this interpretation our record would imply increasing effective moisture during the Little Ice Age (LIA) compared to the Medieval Warm Period (MWP). However, independent evidence from other archives strongly suggests the Asian summer monsoon was stronger during the MWP and weakened during the LIA. Controls other than effective moisture (the balance of water inputs over evaporative loss) must therefore have contributed to the δ<sup>18</sup>O<sub>C</sub> values. We propose the LIA signal in Lake Qinghai resulted from a reduction in evaporation caused by colder air temperatures, coupled with a decrease in oxygen isotope composition of input waters as a result of an increase in the relative importance of westerly-derived precipitation. Our results caution against simplistic interpretations of carbonate oxygen isotope records from hydrologically closed lakes and suggest all possible controlling factors must be taken into account in order to avoid misleading palaeoclimatic reconstructions
    corecore