1	The spatial-temporal patterns of Asian summer monsoon precipitation in response to Holocene
2	insolation change: a model-data synthesis
3	
4	Liya Jin ^{a, b, *} , Birgit Schneider ^b , Wonsun Park ^c , Mojib Latif ^c , Vyacheslav Khon ^b , Xiaojian Zhang ^a
5	
6	^a Key Laboratory of Western China's Environmental System, Research School of Arid Environment and Climate Change,
7	Lanzhou University, Lanzhou 730000, China
8	^b Institute of Geosciences, University of Kiel, Ludewig-Meyn-Str. 10, 24013 Kiel, Germany
9	^c Helmholtz Zentrum für Ozeanforschung Kiel (GEOMAR), Duesternbrooker Weg 20, 24105 Kiel, Germany
10	
11	* Corresponding author. Tel.: +86 136 5945 5889; fax: +86 86 931 8912330
12	E-mail address: jinly@lzu.edu.cn (L. Jin)
13	
14	
15	To be submitted to
16	Quaternary Science Reviews
17	
18	October 2013, revised manuscript
19	
20	
21	
22	
23	
24	
	1

Abstract

26	Paleoclimate proxy records of precipitation/effective moisture show spatial-temporal
27	inhomogeneous over Asian monsoon and monsoon marginal regions during the Holocene. To investigate
28	the spatial differences and diverging temporal evolution over monsoonal Asia and monsoon marginal
29	regions, we conduct a series of numerical experiments with an atmosphere-ocean-sea ice coupled
30	climate model, the Kiel Climate Model (KCM), for the period of Holocene from 9.5 ka BP to present (0
31	ka BP). The simulations include two time-slice equilibrium experiments for early Holocene (9.5 ka BP)
32	and present-day (0 ka BP), respectively and one transient simulation (HT) using a scheme for model
33	acceleration regarding to the Earth's orbitally driven insolation forcing for the whole period of Holocene
34	(from 9.5 to 0 ka BP). The simulated summer precipitation in the equilibrium experiments shows a
35	tripole pattern over monsoonal Asia as depicted by the first modes of empirical orthogonal function
36	(EOF1) of H0K and H9K. The transient simulation HT exhibits a wave train pattern in the summer
37	precipitation across the Asian monsoon region associated with a gradually decreased trend in the
38	strength of Asian summer monsoon, as a result of the response of Asian summer monsoon system to the
39	Holocene orbitally-forced insolation change. Both the synthesis of multi-proxy records and model
40	experiments confirm the regional dissimilarity of the Holocene optimum precipitation/effective moisture
41	over the East Asian summer monsoon region, monsoon marginal region, and the westerly-dominated
42	areas, suggesting the complex response of the regional climate systems to Holocene insolation change in
43	association with the internal feedbacks within climate system, such as the air-sea interactions associated
44	with the El Nino/Southern Oscillation (ENSO) and shift of the Intertropical Convergence Zone (ITCZ)
45	in the evolution of Asian summer monsoon during the Holocene.
46	Keywords: Holocene; Asian summer monsoon; coupled climate model; orbital forcing

1. Introduction

48	Monsoon is a large-scale phenomenon of the seasonal cycle in various regions around the world
49	and the associated precipitation changes are stronger in summer, i.e. June-July-August (JJA) over the
50	Northern Hemisphere and December-January-February (DJF) over the Southern Hemisphere. Monsoon
51	is also part of the global energetics and participates in the redistribution of heat and water across the two
52	hemispheres as well as between land and ocean. Paleoclimate records and climate model simulations
53	suggest that orbitally forced change in insolation was a major factor causing longer-term climate
54	variations in the Holocene (e.g., Mitchell et al., 1988; Hewitt and Mitchell, 1998; Fleitmann et al., 2003,
55	2007; Mayewski et al., 2004; Gupta et al., 2005). Previous climate simulations (Weber et al., 2004) and
56	proxy records (Staubwasser et al., 2003; Higginson and Altabet, 2004; Gupta et al., 2005; Selvaraj et al.,
57	2007) have also shown that small (<1%) decadal to centennial scale solar irradiance can bring
58	pronounced changes in the tropical monsoon during the Holocene. Accordingly, regional monsoon
59	systems have undergone significant changes during the Holocene, and a common forcing mechanism
60	(the Earth's orbital precession cycle) has been proposed to underlie low latitude climate dynamics acting
61	synchronously on the different monsoon sub-systems (Beaufort et al., 2010). The Indian summer
62	monsoon (ISM) and East Asian summer monsoon (EASM) are two sectors of the Asian summer
63	monsoon systems, which are thought to be different from each other and also interactive with each other
64	(Dao and Chen, 1957; Yeh et al., 1958). The East Asian summer monsoon climate during the Holocene
65	associated with the summer precipitation in the monsoon influenced regions has been extensively
66	studied in recent few decades with multiple climate models (e.g. Paleoclimate Modelling
67	Intercomparison Project (PMIP) Mid-Holocene Climate Simulation, http://pmip.lsce.ipsl.fr/; Jiang et al.,
68	2013) and various proxy records from cave deposits (speleothems), lake sediments (pollen, carbon
69	isotopes of organic matter, total organic matter, stable isotopes of carbonates), peats (carbon isotopes of
70	organic matter) and loess-paleosol sequences (grain size, magnetic susceptibility). Emerging empirical

71	evidences suggest a decreasing trend of East Asian summer monsoon strength from the early Holocene
72	(with the maximum monsoon intensity) to present day following the Northern summer insolation trend
73	(Kutzbach, 1981; Ruddiman, 2008). However, dissimilarities have also been identified in the
74	spatiotemporal patterns of the Asian summer monsoon during the Holocene. For example, a
75	time-transgressive (asynchronous) Holocene climatic optimum was suggested that the Holocene East
76	Asian summer monsoon precipitation (or effective moisture) reached the maximum at different periods
77	in different regions of China with the trend of frontal migration paralleling the trend of Northern
78	summer insolation across the monsoon region in a number of researches (An et al., 2000; He et al., 2004;
79	Wang et al., 2010). A recent study by Jiang et al. (2012) suggested asynchronous termination of the
80	Holocene climatic optimum in the Asian monsoon territory based on stalagmite-inferred precipitation in
81	southwestern China. An anti-phase relationship is found in a few studies between the oxygen isotope
82	records from stalagmites in caves in southern China and from loess/paleosol magnetic properties, the
83	former indicating gradual monsoon weakening for the last 9 ka, while the latter indicating variable East
84	Asian monsoon intensity through the entire Holocene (Hong et al., 2005; Dykoski et al., 2005; Maher
85	and Hu, 2006; Maher, 2008). Multiple geochemical proxies (e.g. Organic carbon concentration (wt%),
86	Organic carbon burial flux and C/N ratio) from the western Arabian Sea for the ISM strength, however,
87	do not exhibit an inverse relationship with the EASM records, suggesting both the ISM and EASM
88	varied in unison under common forcing factors on sub-Milankovitch timescales (Tiwari et al., 2005, and
89	references therein). Tiwari et al. (2010) argued that during the Holocene, the ISM did not follow
90	insolation, implying that there were more than one controlling factors than insolation (which declined
91	monotonically) responsible for the monsoon strength and that other internal feedback process might be
92	equally important. Recent work by Shi et al. (2012) suggested strong anti-phasing response of northern
93	and southern East Asian summer precipitation to seasonal variability of the El Niño-Southern

94 Oscillation (ENSO) activity in a period of 20 ka in a long-term transient simulation.

The apparent inconsistences imply that the evolution history of Asian summer monsoon during the 95 Holocene evidenced from paleoclimatic proxy records and confirmed with model simulations still have 96 many controversies and uncertainties. The mechanisms that drive Asian summer monsoon at 97 millennial-to centennial or longer time scales are still not fully understood. Therefore, more well-dated 98 proxy records and climate modeling experiments as well as their comparison and further analyses are 99 required for understanding the mechanisms behind the climate evolution of the Holocene. In this study, 100 by using a coupled atmosphere-ocean-sea ice general circulation model (AOGCM), we performed a 101 series of simulations of Holocene climate changes with varied orbital parameters, to investigate the 102 mechanisms of Asian summer monsoon evolution and possible causes of asynchronous trends as some 103 paleoclimate proxy data indicated in the two Asian sub-monsoon systems (i.e. the ISM and EASM). The 104 outline of the paper is as follows. Section 2 briefly describes the climate model used in this study and 105 the experimental setup. Section 3 displays the model results with a focus on the spatiotemporal patterns 106 of summer precipitation in monsoonal and non-monsoon regions during the Holocene. Section 4 gives a 107 comparison of simulated summer precipitation in sub-regions of China with multi-paleoclimate proxy 108 records. A discussion is presented in Section 5 followed by the summary and concluding remarks in the 109 110 final Section 6.

111 **2. Methods**

112 *2.1. Model description*

113 The coupled climate simulations discussed in this paper are performed with the Kiel Climate Model 114 (KCM; Park et al., 2009), a non-flux-corrected coupled general circulation model, which consists of the 115 atmospheric general circulation model ECHAM5 (Roeckner et al., 2003) and the Nucleus for European 116 Modeling of the Ocean (NEMO) (Madec, 2008) ocean-sea ice general circulation model, with the

OASIS3 coupler (Valcke, 2006). The atmospheric resolution is T31 (3.75×3.75) horizontally with 19 117 vertical levels. The ocean horizontal resolution is on average 1.3 °based on a 2 °Mercator mesh, with 118 enhanced meridional resolution of 0.5 ° in the equatorial region. The present-day climate simulated by 119 KCM has been validated against the observation (Park et al., 2009) and used for the internal climate 120 variability studies (Park and Latif, 2008, 2010) and externally forced variability (Latif et al., 2009). 121 Schneider et al. (2010) showed the Holocene trends of the temperature simulated in a series of time-slice 122 experiments with the KCM and provided in-depth analysis to explain the trends of the different proxy 123 data in the Holocene. Khon et al. (2010) further presented the responses of the hydrological cycles 124 simulated in the KCM. A detailed description of the KCM is given by Park et al. (2009) with further 125 information of the performance of the model. 126

127 *2.2. Experiment setup*

First, we ran equilibrium simulations for two time slices using the KCM: the early Holocene (9.5ka BP, H9K) and the pre-Industrial (0 ka BP, H0K). The H9K and H0K experiments were both initialized with Levitus climatology data (Levitus, 1982) and were integrated 1000 years under the orbital configurations for the 9.5 ka BP and 0 ka BP, respectively. Greenhouse gas (GHG, i.e. the atmospheric concentrations of CO_2 , CH_4 and N_2O) concentrations are held constant with pre-industrial levels. We analyze the last 500 years of the integrations after skipping initial 500 years to exclude model drifts.

Secondly, we performed a transient simulation (HT) for the period from the early Holocene (9.5 ka BP) to present day (0 ka BP). The transient simulation HT was started from the last year of the 1000-year equilibrium time-slice experiment H9K and is integrated under the orbital forcing for 1000 years after spin-up, thus the transient response of climate system during the Holocene (9.5 ka BP to 0 ka BP) is achieved. The Earth's orbital parameters (eccentricity, obliquity and precession; Berger and Loutre, 1991) are varied from 9.5 ka BP to 0 ka BP with a 10-times acceleration scheme (Lorenz and Lohmann, 2004) in the HT simulation to save calculation resources. Since the variations in orbital parameters for the period of Holocene are very slow, the orbital accelerating effect for a factor of 10 can be neglected when considering the interannual-timescale changes of atmospheric and oceanic systems, such as the seasonal variability of paleo-ENSO in the model. GHGs were kept as constant as in the two time-slice simulations mentioned above and over the entire period of the transient Holocene simulation (from 9.5 to 0 ka BP). The three experiment setup is summarized in the Table 1.

Fig. 1 shows a comparison of model output from KCM simulation with observations of annual mean 146 precipitation and surface temperature for 1901-1930 from the Climate Research Unit TS 2.1 climate 147 dataset (Mitchell and Jones, 2005). The data quality of the observation during the periods can be 148 questioned due to lack of the sampling, but the mean state at this period can be closer to the 149 pre-industrial period that is simulated with the model. The spatial distribution and absolute values of 150 simulated annual mean precipitation (Fig. 1c) and surface temperature (Fig. 1d) represent well the 151 general features of the observations (Fig. 1a, b), in particular over the Indian and east Asian sectors. The 152 same holds true for seasonal patterns (Figs. S1, S2, S3, S4). 153

It is to note here that the transient Holocene simulation (HT) by KCM has also made a comparison with 10 other climate modeling experiments in the Integrated Analysis of Interglacial Climate Dynamics Program (INTERDYNAMIK, http://www.geo.uni-bremen.de/Interdynamik/). The simulated trends of last 6 ka for global zonal-mean JJA precipitation and surface air temperature by KCM are in generally agreement with other models (Fig. S5), suggesting a reliable performance of KCM for the Holocene climate simulation.

160 *2.3. EOF analysis*

161 To investigate the spatial and temporal variations of Asian summer monsoon during the Holocene, the 162 empirical orthogonal function (EOF) analysis (Björnsson and Venegas, 1997) was used in this study.

163	The EOF analysis is a novel statistical technique that simplifies an original spatial-temporal data set by
164	transforming it into spatial patterns of variability and temporal projections of the patterns. The spatial
165	patterns are the EOFs as basic functions in terms of variance. The associated temporal projections are
166	the principal components (PCs) and are the temporal coefficients of the EOF patterns. Individual EOFs
167	can sometimes have physical interpretation assigned to them. If there are geophysical data maps that are
168	time series with any $m \times n$ matrix, Z, square or rectangular, there exist uniquely two orthogonal matrices,
169	X and Y and diagonal matrix L such that,
170	$Z = X \times L \times Y^{\mathrm{T}} \tag{1}$
171	where Y^{T} is the transpose of a matrix Y. The columns of X called the EOFs of Z, and the corresponding
172	diagonal elements of L are called the eigenvalues. Each row of Y serves as a series of time coefficients
173	associated with each EOF, i.e. PC. The map associated with an EOF represents a pattern that is
174	statistically independent and spatially orthogonal to the others. The eigenvalues indicates the amount of
175	variance accounted for by the patterns.
176	In this study, Asian summer precipitation from the experiments H0K, H9K and HT by KCM, as a
177	data set, respectively, constitutes a matrix Z , and is then performed with EOF analysis.
178	3. Model results
179	3.1. Surface temperature
180	Orbitally-induced changes in the seasonal distribution of insolation during the Holocene (Fig. 2) are
181	clearly reflected by changes in surface temperature between simulations of H0K and H9K (Fig. 3). The
182	zonally averaged northern Hemisphere insolation at 0 ka BP is over 30 W/m^2 lower than that at 9.5 ka
183	BP in the middle and high latitudes during boreal summer (June) (Fig. 2). In response to the seasonal
184	insolation changes, the simulated summer (June-July-August, JJA) surface temperatures in H0K shows a
185	general cooling trend across most of the Eurasian continent relative to H9K, and extend to the

northeastern EASM area (northeastern China, Korea and Japan) with maximum cooling, in excess of 2° 186 C (Fig. 3). The cooling in HOK compared to H9K is simulated north of 20 N that extends from the 187 Sahara in the northern Africa to 65 °N central Russia (Fig. 3). Surface temperatures over the ISM area 188 (including India, southern and southwestern China), however, are warmer in H0K than H9K (Fig. 3). 189 This warming trend over the ISM and southern EASM areas from 9.5 ka BP to 0 ka BP does not follow 190 the summer (June) insolation evolution, which is gradually decreased during the Holocene (Fig. 2). The 191 warming trend in summer surface temperature over the ISM and southern EASM regions, where is in 192 contrast to the cooling trend over the middle and northern EASM regions, could be attributed to local 193 194 effects related to a gradually decreasing summer monsoon cloud cover towards present day since early Holocene (Li and Morrill, 2010). Although a gradually decreasing summer insolation (Fig. 2) since the 195 early Holocene tends to reduce the JJA surface temperature over the ISM and southern EASM regions, 196 the decreasing cloud cover related to a weakening of the summer monsoon tends to increase the surface 197 temperature over the ISM and southern EASM regions, which result in an asynchronous trends (from 198 9.5 ka BP to 0 ka BP) of surface temperatures during the Holocene in the ISM and EASM regions (Fig. 199 3). 200

201 *3.2. Asian summer monsoon and associated precipitation*

3.2.1. Summer monsoon intensity by index

Two Asian summer monsoon indexes (for the ISM and EASM regions, respectively) are calculated to indicate the strength and variability of the Asian summer monsoon. The Indian summer monsoon index (*ISMI*) used here is adapted from Goswami et al. (1999) as the difference of JJA meridional wind anomalies at 850 hPa and 200 hPa averaged over the ISM region, expressed as:

207 $ISMI = V_{850}^* - V_{200}^*$ (2)

208 , where V_{850}^* and V_{200}^* are boreal summer (JJA) meridional wind anomalies at 850 hPa and 200 hPa

209	respectively, averaged over the ISM region (70 °-110 °E, 10 °-30 °N).
210	The EASMI used here was defined as shear vorticity by Wang et al. (2008),
211	$EASMI = U_{850} (110 ^{\circ}\text{-}140 ^{\circ}\text{E}, 22.5 ^{\circ}\text{-}32.5 ^{\circ}\text{N}) - U_{850} (90 ^{\circ}\text{-}130 ^{\circ}\text{E}, 5 ^{\circ}\text{-}15 ^{\circ}\text{N}) $ (3)
212	, where U_{850} is boreal summer (JJA) horizontal wind speed at 850 hPa.
213	Both the ISMI and EASMI have been used extensively to indicate the intensity and variability of the
214	Asian summer monsoon in modern climate change studies (e.g. Goswami et al., 1999, Wang et al.,
215	2008). The Indian summer monsoon index, ISMI, in Eq. (2), proposed by Goswami et al. (1999) is based
216	on the same dynamical premise as Webster and Yang Index (1992) that the monsoon flow is a first
217	baroclinic response to the diabatic heating over southern Asia but with a better representation of the
218	convective heating associated with the Indian summer monsoon precipitation. In addition, the ISMI in
219	Eq. (2) is also a good measure of the strength of the monsoon Hadley circulation (Goswami et al., 1999).
220	The All-India (India taken as one unit) monsoon rainfall has been used as a proxy data for Indian
221	monsoon (Shukla and Paolino, 1983; Parthasarathy et al., 1994), but the ISMI represents much
222	characteristics of the monsoon system (i.e., wind and rainfall) (Goswami et al., 1999). For the EASMI,
223	Wang et al. (2008) once made a synthetic analysis on 25 existing EASM indices, and recommended a
224	simple index of EASM intensity as shown in Eq. (3), which is nearly identical to a unified measure for
225	the intensity of EASM, and has unique advantages over all the existing indices.
226	Fig. 4 depicts time series of the ISMI and EASMI derived from the transient Holocene simulation,
227	HT. As can be seen in Fig.4, the ISMI indicates a generally declined trend of the Indian summer
228	monsoon during the entire period of the Holocene (from 9.5 ka BP to 0 ka BP) (Fig. 4, black line), while
229	the EASMI shows large oscillations of multi-centennial variability during mid-Holocene (roughly
230	between 7 ka BP to 4.5 ka BP) (Fig. 4, red line), reflecting significant regional differences of the ISM
231	and EASM, despite a similar overall decreased trend over the last 9.5 ka.

To further check the different regional evolution of Asian summer monsoon during the Holocene, we used an empirical orthogonal function (EOF) analysis (Björnsson and Venegas, 1997) on JJA precipitation in the following section.

3.2.2. Asian summer precipitation

EOF analysis is applied to summer (JJA) precipitation simulated in the experiments H0K, H9K and HT to provide the spatial structures and their time evolution. EOF modes from the time slice experiments with fixed orbital parameters (i.e. H0K and H9K) represent the internal variability of the precipitation that can be related to the monsoon system, while those from the transient simulations may provide the forced and internal variability as HT is forced by the varying orbital parameters.

The first EOF (EOF1) (Fig. 5a) derived from H9K JJA precipitation, which accounts for 18.77% of 241 the total variance, depicts a tri-pole pattern with two significantly positive rainfall anomalies over the 242 Indian subcontinent and the eastern EASM area including eastern China, Korea, most part of Japan and 243the adjacent marginal seas, respectively, and one negative rainfall anomalies in a broad corridor 244 extending from Indochina Peninsula, crossing South China Sea and stretching to western North Pacific. 245 The area with negative rainfall anomalies over western North Pacific was just described as the third 246 sector of Asian-Pacific monsoon systems in modern climate (Wang and Lin, 2002). The associated time 247 series of EOF1 (PC1) (Fig. 5b) shows a regular annual cycle. The EOF1 derived from H0K JJA 248 precipitation (Fig. 5c) shows a quite similar spatial pattern with that derived from H9K (Fig. 5a), except 249 that the explained variance of H0K JJA precipitation is slightly greater with 20.32% than that of 18.77% 250 251 of H9K. The EOF1 derived from H9K and H0K JJA precipitation can be efficiently separated in the transient simulation, HT, as the second EOF mode (EOF2) (Fig. 5e) derived from HT JJA precipitation. 252 Combining the patterns of EOF1 of H0K and H9K with their respective time series PC1 (Fig. 5b, d) and 253 the pattern of EOF2 of HT with its time series PC2 (Fig. 5f), we see a distinct summer precipitation 254

variation that could be attributed to the internal feedback processes within coupled monsoon systems
 over the ISM and EASM regions.

We next describe the forced mode obtained as the EOF1 derived from HT JJA precipitation, which 257 accounts for 20.20% of the total variance. The EOF1 of HT JJA precipitation (Fig. 6a) shows a wave 258 train pattern with significant negative rainfall anomalies extending from Peninsular India, crossing 259 northern India along the foot of the Himalayas and stretching to northern China and southern Mongolia. 260 The positive rainfall anomalies extending from the middle reaches of the Yangtze River Valley 261 (100 °-122 °E, 28 °-35 °N) to Korea, Japan and adjacent marginal seas can also be observed in the EOF1 262 (Fig. 6a). Then, by combining the spatial pattern (EOF1) with associated time series (PC1) (Fig. 6b) of 263 HT JJA precipitation, the spatial-temporal structure of the Asian summer monsoon precipitation can be 264 described as follows. During the early to middle Holocene (from 9.5 to roughly 5.5-4.5 ka BP), a 265 relatively high precipitation amount could be expected over the ISM influenced area (Indian 266 sub-continent, northern India, Himalayas, southwestern China, northern China and southern Mongolia); 267 while the precipitation over the eastern EASM influenced areas (Region D in China and Korea and 268 Japan) is of the opposite phase. During the late Holocene (roughly from 5.5-4.5 ka BP to present), an 269 inverse phase of precipitation amount could be expected over the above mentioned regions. The wave 270 train pattern in EOF1 derived from HT JJA precipitation is on the millennial to centennial time scales, 271 which is quite similar to a summer rainfall pattern in the semiarid region of northern China at the 272 interannual and multidecadal time scales where teleconnection to the ENSO on summer rainfall in 273 northern China through the Indian summer monsoon is suggested (Feng and Hu, 2004). 274

275

4. Comparison with paleoclimate proxy records

A great number of researches have been carried out on the history of Holocene climate changes over China from various proxy records including pollen and diatom assemblages, sediment lithology,

lake levels, and geochemistry data in the past few years. The spatiotemporal changes of Holocene 278 monsoon climate in China, especially the Holocene optimum in the monsoon region of China, have 279 drawn much attentions to paleoclimatologists as it was not only an important recent climatic episode, it 280might as well be served as an important analog for future climatic change in a global warming 281 background in the vast region. In this study, multi-proxy data, such as lake-level records, lacustrine and 282 swamp deposits, fossil pollen sequences, peat bogs, speleothem cores and the magnetic susceptibility of 283 loess-paleosol squences, were compiled for a measure or estimate of summer precipitation/effective 284 moisture, or summer monsoon intensity during the Holocene in the regions where proxy record samples 285 were collected. We concentrate on the period of Holocene optimum evaluated from model experiments 286 and from proxy records. In order to show regional differences of changes in the simulated summer 287 precipitation during the last 9.5 ka, we divide China into eight sub-regions (A-H) after An et al. (2000), 288 based on physiography and model horizontal resolution used in this study (Fig. 7; Table 2). Table 2 lists 289 the sites of proxy records in different regions with numbers 1-94. The sub-regions A, B, C, D, E, F, G 290 and H in Table 2 match those in Fig. 7. 291

Region A is located in northwestern China, a vast area with extensively spreading of sandy deserts (e.g. Taklamakan Desert), where the climate is dominantly influenced by westerly winds. Region B is located at a transitional area that is both influenced by the westerly winds and monsoon front. In Region C (northeastern China), proxy data are from only few sites of lakes and swamps, peats, and pollen sequences (Table 2). Regions D (northern east-central China), E (southern east-central China), F (southeastern China), G (southwestern China), and H (southern Tibetan Plateau) are typical Asian summer monsoon influenced areas.

For Regions A, B, C, the entire desert belt in northern and northwestern China generally
 experienced a relatively wetter period from 8 to 4 ka BP (Yang et al., 2011) as evident from the synthesis

301	of multi-paleoenvironmental records of geomorphologic, lacustrine, pedologic, geochemical, and faunal
302	and floral fossil from China's Taklamakan (within Region A in Fig. 7), Badain Jaran Desert (within
303	Region A in Fig. 7) and Hunshandake Sandy Lands (within Region B in Fig. 7). This is also generally
304	consistent with the pollen and lake-level derived effective moisture records in western Inner Mongolia
305	and Xinjiang (sites in Region A + some in Region B) supporting a relatively wetter period during 8.5-5.5
306	ka BP (Zhao et al., 2009a). A synthesis curve based mostly on pollen records across the monsoon margin
307	region (the transitional zone between the East Asian summer monsoon and the westerly dominated
308	region, covering most of proxy-record sites in region B, Fig. 7) shows the maximum moisture occurred
309	during the middle Holocene (8-4 ka BP) (Zhao and Yu, 2012). In the summer monsoon influenced
310	regions of China (Regions D, E, F, G, H and some areas in Regions C and A in Fig. 7), several
311	synthesized analyses on the effective moisture index based on multi-proxy records for the Holocene
312	yielded a generally consistent timing of the Holocene optimum during the period of 9.5-6 ka BP (e.g.
313	Herzschuh, 2006; Zhao et al., 2009; Wang et al., 2010; Zhang et al., 2011).
314	Generally speaking, the period of the Holocene optimum was about during the early to middle
315	Holocene (9-6 ka BP), based on the syntheses of multi-proxy data in the Asian summer monsoon region
316	(Regions D, E, F, G, H + parts in Regions A, C) (Zhao et al., 2009a; Zhang et al., 2011); whereas in the
317	westerly-dominated regions including the desert areas and monsoon marginal zone in northern China
318	(Regions A, B, C), the timing of the Holocene optimum was about from 8 to 4 ka BP (Yang et al., 2011;
319	Zhao et al., 2009b). The synthesis of vegetation indices for the monsoon margin region (as shown in Fig.
320	1 in work of Zhao and Yu, 2012, corresponding to region B in this study) as a whole shows that the
321	maximum moisture occurred during the middle Holocene (8-4 ka BP) and the driest conditions during
322	the late Holocene (4-0 ka BP) (Zhao and Yu, 2012), coinciding with the simulated summer precipitation
323	(July, August) for region B (Fig. 8).

324	The described coupled AOGCM transient experiment (HT) reveals temporal response of summer
325	precipitation to orbitally induced insolation forcing over the last 9.5 ka. The tripole spatial pattern of
326	summer (JJA) precipitation seen in the first EOF mode (EOF1) of the HT experiment (Fig. 6) indicates
327	regional difference within Asian monsoon regions. Time series of anomalies of boreal summer
328	precipitation evaluated using model grid points that correspond as closely as possible to eight regions
329	are compared with the syntheses of multi-proxy data given in Fig. 8. As can be seen from Fig. 8, the
330	simulated maximum summer precipitation (positive anomalies) are similar in Regions A and B, occurred
331	about 9-4.5 ka BP (July, A, B), 9-4.5ka BP (August, A) and 8.5-6 ka BP (August, B) respectively, while
332	in Region C, the simulated maximum precipitation were about 7-3 ka BP (July, C) and 9.5-4.5 ka BP
333	(August, C), respectively. The simulated maximum summer precipitation in Regions A, B, C is in
334	generally consistent (or overlapped) to the timing of the Holocene optimum from proxy-based moisture
335	index (Zhao et al., 2009a; Yang et al., 2011) (Fig. 8). But it is noticed that in Regions A and B, the
336	multi-proxy records showed a relatively drying period during 9.5-8.5 ka BP (Zhao et al., 2009a; Yang et
337	al., 2011), while the simulated summer (July, August) precipitation over the regions is about positive
338	normalies (Fig. 8). This may be due to the fact that in the mid-latitude westerly-dominant areas, like the
339	arid central Asia (Chen et al., 2008) and the northwestern China (Region A), the dry conditions in the
340	early Holocene seem to result mostly from changes in winter rather than summer climate (Jin et al.,
341	2012). The simulated maximum summer (July, August) precipitation in the monsoon regions (Regions E,
342	F, G) (Fig. 9) experienced a roughly synchronous period of rich rainfall (positive anomalies) at 9-5.5 ka
343	BP, which can be comparable to the moisture index induced Holocene optimum period based on the
344	syntheses of multi-proxy data for the period of Holocene (Zhao et al., 2009b; Zhang et al., 2011).
345	It is worthy to note that in Region H (southern Tibetan Plateau), a wetter period during 9.5 to 5.5 ka
346	BP (with positive anomalies) was similar to that in regions E, F and G, but in the late half of the

347	Holocene (i.e. from 5.5 ka BP to present), the rapidly decreased trend of summer precipitation is quite
348	different from that in Regions E, F and G (Fig. 9). This might be due to the result of Region G is much
349	more influenced by the ISM than by EASM (compare with the ISMI in Fig. 4). Also in Region D
350	(northern east-central China), we noticed an obvious reverse phase trend of summer (July, August)
351	precipitation during 9.5 ka-5.5 ka BP, as compared with that in region E (southern east-central China)
352	(Fig. 9). The distinct temporal patterns of the simulated summer precipitation during the last 9.5 ka
353	between Region D (within the northern EASM region) and Region E (within the southern EASM region)
354	is similar to a reverse phase relation between northern (105 °-150 °E, 30 °-45 °N) and southern
355	(105 °-150 °E, 15 °-30 °N) East Asian summer monsoon precipitation found from the outputs of an orbital
356	forcing-driven 284 ka long-term transient simulation (Shi et al., 2012).

5. Discussion 357

5.1. The role of orbital forcing 358

It has been widely accepted that the Earth's orbital forcing induced insolation changes play a central 359 role in the global scale climate changes in the last 11.5 cal ka (Mayewski et al., 2004). This insolation 360 driving mechanism on Holocene climate change is supported by climate modeling experiments of global 361 monsoon variations (e.g. Kutzbach et al., 1982; Liu et al., 2004; Bosmans et al., 2012). These modeling 362 experiments of monsoonal response to Holocene orbital forcing are mostly time-slice experiments for 9 363 ka BP (e.g. Kutzbach et al., 1982) or 6 ka BP (e.g. Joussaume et al. 1999) with the orbital parameters 364 assigned to constant values at corresponding time (i.e. 9ka BP or 6 ka BP). In the present study, the 365 orbital parameters are set varying along with time (from 9.5 ka BP to 0 ka BP) in the transient 366 experiment HT, making it to allow for checking the entire Holocene course of the variations of the 367 spatial patterns of summer precipitation. 368

369 The inhomogeneous distribution of summer precipitation in the Asian monsoon region in EOF 1 of 370 HT (Fig. 6a) implies the different response of the individual sub-regions of the Asian summer monsoon domain (i.e. the ISM and EASM) to the Holocene insolation change. The ISM is primarily characterized 371 by meridional thermal contrast and pressure gradient between northern Asian continent and southern 372 Indian Ocean, while the EASM is controlled by the zonal land-ocean thermal contrast and pressure 373 gradient between the Asian continent and the western Pacific. Consequently, the Holocene insolation 374 change has a different effect on the two sub-systems of ISM and EASM, as suggested by Dallmeyer et al. 375 (2013) that the different response of the Indian and East Asian monsoon systems to the Holocene 376 insolation forcing is due to their dynamical change in the different seasons. 377

The stronger boreal summer insolation during the early to middle Holocene compared to 378 present-day is believed to have strengthened monsoon activity and accentuated the northerly bias of the 379 Intertropical Convergence Zone (ITCZ) (e.g., Kutzbach, 1981; Koutavas et al., 2006). Accordingly, sites 380 affected by the monsoons typically reflect positive precipitation anomalies during the early to middle 381 Holocene, as evidenced by multi-proxy records in the Asian summer monsoon regions and simulated in 382 the HT experiment (Figs. 8, 9). Previous researches have shown that tropical Pacific SST changes may 383 have great influences on the East Asian monsoon system within ENSO cycles (e.g. Wang et al., 2000, 384 2003; Lau and Nath, 2006). Thus, a strong relationship was suggested to operate between the ITCZ 385 position, tropical Pacific SSTs, and ENSO throughout the Holocene (e.g. Koutavas et al., 2006). To 386 examine whether a tele-connection between Asian summer monsoon and Pacific existed or not during 387 the Holocene, the correlation coefficient is calculated between PC1 of HT JJA precipitation 388 (representing the Asian summer monsoon intensity) and ENSO index (representing ENSO variability) 389 (Fig. 10). The ENSO index here is based on the Niño 3.4 SST from the 9.5 ka transient simulation (HT). 390 It shows that the simulated ENSO variability (Fig. 10, red line) is quite well consistent with the 391 392 Holocene ENSO frequency (Fig. 10, black line) inferred from Laguna Pallcacocha sediment color

393	changes (Moy et al., 2002), with a relatively weak ENSO variability during the early Holocene (about
394	9-7 ka BP) and an increased variability during late Holocene (2.5-1.0 ka BP) (Fig. 10), which is also
395	inferred from previous modeling experiment (Liu et al., 2000). The PC1 of HT JJA precipitation shows a
396	stepwise increased trend during 9.5 ka BP to 0 ka BP with relative large centuary-scale variations during
397	2.5-1 ka BP (which is similar to that in ENSO variability) corresponding to gradually weakened summer
398	monsoon precipitation as can be compared with the Holocene evolution of two sub-Asian summer
399	monsoon systems (Fig. 4). The high correlation ($R = 0.74$) (Fig. 10) between the PC1 of the Asian
400	summer precipitation and ENSO index during the last 9.5 ka suggests an important ENSO modulation in
401	the millennial-centennial time-scales of orbital forcing, similar as the ENSO influence on interannual
402	change in the East Asian summer precipitation (Wang et al., 2000) and in the precession scale East Asian
403	summer monsoon variability from a long-term (284 ka) transient simulation using the fully-coupled fast
404	ocean-atmosphere model (FOAM) (Shi et al., 2012).

The ITCZ is usually located over the warmest surface in association with high cloudiness, frequent 405 thunderstorms and heavy rainfall. The position of the ITCZ can be represented by the variations of 406 zonally averaged mean JJA outgoing longwave radiation (OLR) between 105 °-150 °E. As is seen from 407 Fig. 11, the gradually increased OLR (negative values mean upward radiation) along 20 N indicates a 408 mean southward shift in the position of the ITCZ in the last 9.5 ka, which can be well compared with the 409 runoff variability in the Ti record of the Cariaco Basin, a proxy indicator for the Pacific ITCZ in the 410 Holocene (Haug et al., 2001). The general southward shift of the ITCZ over the course of the Holocene 411 (Fig. 11) is accompanied by gradually weakened Asian summer monsoon (Fig. 4) and associated 412 summer precipitation variations in monsoon regions (Figs. 8, 9). Since around 5 ka BP, there seemed to 413 be a phase transition of the summer (July, August) precipitation anomalies from positive sign to negative 414 415 in Regions E, F, G, H (Fig. 9), implying an increased coupling interaction between the enhanced ENSO

variability (Fig. 10, red line) and southward ITCZ (Fig. 11, black line) with the smooth insolation
forcing in the late Holocene (Fig. 2). The temporal trends in the Asian summer precipitation, ENSO
variability, and the shifting ITCZ suggest that the potential of orbital forcing induced insolation to affect
the Asian summer monsoon precipitation acts through its influence on the large annual cycle of SST,
convection and cloud cover in the eastern tropical Pacific.

421 5.2. Holocene optimum in monsoonal Asia and marginal monsoon regions

As shown in Figs. 8, 9, the timing of Holocene optimum of summer precipitation appears to vary in 422 different regions from various proxy records and model results. Most sites in the monsoon regions (E, F, 423 G, H) show approximately consistent variations of peak summer precipitation or effective moisture at 424 9-6 ka BP (Fig. 9), suggesting that the Holocene optimum, defined by peak summer monsoon 425 precipitation/effective moisture (An et al., 2000), occurred broadly synchronous and that the 426 previously-proposed time-transgressive Holocene climate across China (e.g., An et al., 2000) is not 427 supported by current study. The general comparability of Asian summer monsoon (Fig. 4) with the 428 northern hemisphere summer insolation curve (Fig. 2) during the last 9.5 ka indicates that the orbitally 429 induced insolation was a major controller on the variability of Asian summer monsoon during the 430 Holocene, in spite of the fact that various climatic feedbacks within Asian summer monsoon system is of 431 great importance, such as the effect of oceanic feedback (e.g. Liu et al., 2004). However, the appearance 432 of the distinct spatial-temporal patterns in the simulated summer precipitation (Fig. 6a, Fig. 9) in the 433 ISM area (Indian sub-continent, southwestern, southern China) (Regions F, G, H in Fig. 7) and northern 434 east-central China (Region D in Fig. 7) reveals the complexity of the response of the Asian summer 435 monsoon system to the Holocene insolation change. The simulated summer precipitation in the southern 436 Tibetan Plateau (Region H), where is mainly influenced by the ISM, shows a rapidly decreased trend (a 437 438 transition of precipitation from positive to negative) after about 5 ka BP (Fig. 9) that largely different

from that in EASM influenced areas (Regions D, E). This further confirms that the variability of the
ISM and EASM systems may not be synchronous due to different mechanism between the two monsoon
domains.

442	The climate of Regions A, B, C (Fig. 7) is influenced by large-scale climate forcing, including the
443	Asian monsoon (Indian monsoon, the East Asian monsoon) and the prevailing mid-latitude westerly
444	winds (Chen et al., 2008). The timing of Holocene summer precipitation/moisture maximum during 8.5
445	to 4-5.5 ka BP evidenced by multi-proxy records (Yang and Scuderi, 2010; Yang et al., 2011) in most
446	sites in Regions A and parts in B (including Xinjiang, the northwestern Loess Plateau, and western Inner
447	Mongolia), where the westerly winds dominates, is to some extent later than that during 9-6 ka BP in the
448	monsoon region (E, F, G, H) (Fig. 9), reflecting the difference in the response of regional climate to
449	Holocene insolation change. The relatively dry period during 9.5-8.5 ka BP in most sites in Regions A
450	and parts in B and further to the west in arid central Asia (Chen et al., 2008) is closely related to a
451	reduction in moisture advection brought both by the weakening of mid-latitude westerly winds and
452	decreased upstream evaporation, which is resulted from a reduced meridional temperature gradient
453	forced by latitudinal differences in orbital forcing in the early Holocene compared to present day (Jin et
454	al., 2012). In the Asian summer monsoon marginal region (corresponding to most sites in Region B), the
455	simulated positive (negative) anomalies in summer precipitation during 9.5 to 5-6 ka BP (during 4.5-0
456	ka BP in July and 6-0 ka BP in August) (Fig. 8) are in general agreement with the synthesized vegetation
457	indices of Maximum moisture (during 8-4 ka BP) and gradually drying conditions afterwards (Zhao and
458	Yu, 2012), likely to reflect the northward extension of the Asian summer monsoon during the early- to
459	middle Holocene and the retreat during the late Holocene in response to the insolation change during
460	these periods.

5.3. Air-sea interactions

462	As discussed above, the spatial-temporal patterns in the Asian summer monsoon precipitation
463	inconsistently responded to the Holocene insolation change. Here, we analyze the circulation pattern
464	using HT experiment result to explain the different evolutions of the ISM and EASM and regional
465	differences in the East Asian region. Fig. 12 shows the spatial pattern of composite differences of 850
466	hPa wind vectors and sea level pressure (SLP) over northern and tropical Pacific and adjacent continents
467	between low- and high- DJF Niño SST extremes (ENSO events), where the low (high) SST extremes are
468	corresponded to the low (high) frequency of ENSO events at early (late) Holocene (corresponding to 9-8
469	ka BP (2.5-1.5 ka BP) (Fig. 10). A high pressure center is over northwestern Pacific with an enhanced
470	anticyclone activity, which delivers large water vapor from northwestern Pacific toward the northern
471	China and southern Mongolia (Fig. 12), which is favorable for the development of East Asian summer
472	monsoon and associated rainfall over there (Fig. 6a; some areas in Regions B, C in Fig. 7). Similar
473	northward lower level winds (from ocean to land) can be seen over the sub-Indian continent and
474	southeastern Asia (corresponding to Regions E, F, G, H), bringing large water vapor to the regions and
475	hence plentiful rainfall (Fig. 6a).

The pronounced changes in the SLP over the northwestern Pacific (Fig. 12) are closely related to 476 the SST changes over northwestern Pacific (Fig. 13). The negative SST anomalies (cooling) over the 477 northwestern Pacific, lasting out from preceding winter (Fig. 13a) to the present summer (Fig. 13c) 478 through the springtime (Fig. 13b), tends to induce an anomalous high pressure over the northwestern 479 Pacific (Fig. 12), which in turn with an enhanced anticyclone strengthens southeasterly wind over East 480 Asia and favors the development of East Asian summer monsoon as discussed above (Fig. 12). And then 481 the displacement of the east-west oriented precipitation belt following the ITCZ north- and southward 482 movement (Fig. 11) could be resulted from changes in the regional circulation due to the change in 483 sea-land temperature difference (Figs. 12, 13). 484

6. Conclusions

A series of numerical experiments, including the Holocene transient simulation (HT) by using a 486 method for model acceleration regarding to the Earth's orbitally driven insolation forcing and time slice 487 simulations (H0K, H9K), were conducted with the coupled atmosphere-ocean-sea ice general circulation 488 model, the Kiel Climate Model (KCM). Model results have been compared to synchronous multi-proxy 489 records of precipitation/moisture for the monsoonal Asia and marginal monsoon regions. Overall the 490 model results are generally comparable to the synthesis of the multi-proxy records. A tripole spatial 491 structure and diverging trends of summer precipitation across the Asian monsoon region in the 9500 492 year-long transient simulation (HT) were revealed. According to the simulations by KCM, a relatively 493 high precipitation prevailed over the ISM influenced area (Indian sub-continent, northern India, 494 Himalayas, southwestern China, northern China and southern Mongolia) during the early to middle 495 Holocene (from 9.5 to roughly 5.5-4.5 ka BP), which is closely related to the stronger Indian summer 496 monsoon at that period than present day. The precipitation over the eastern EASM influenced areas 497 (Region D in China, Korea and Japan) is of the opposite phase of that in the ISM influenced area, 498 suggesting the different responses of the Indian and East Asian summer monsoon systems to the 499 Holocene insolation forcing. In particular, the regional dissimilarities in the evolution of EASM 500 precipitation during the Holocene (e.g. Regions D, E) imply that the response of the EASM to the 501 Holocene insolation changes is in conjunction with internal feedbacks within climate system, such as the 502 air-sea interactions associated with the ENSO and subsequent north/southward shifts in the position of 503 504 the inter-tropical convergence zone (ITCZ).

505 The timing of Holocene summer precipitation/moisture maximum in northwestern and northern 506 China (Regions A and B) was about during 8.5 to 4-5.5 ka BP, slightly later than that during 9-6 ka BP 507 in the Asian summer monsoon region (E, F, G, H), reflecting the different response of rainfall changes in

508	the mid-latitudinal westerly wind influenced areas (A, B) and EASM domain to the Holocene insolation
509	change. This is closely related to the regional temperature change directly influenced by insolation
510	change and associated reorganization of atmospheric circulation over Eurasia and EASM region.
511	An early Holocene (9-8 ka BP) drought epoch over westerly wind dominated region (A) inferred by
512	proxy records was not resolved by model simulation, suggesting that further experiments including more
513	possible impacting factors such as solar irradiance forcing on Holocene Asian climate changes are
514	necessary to test the contribution of the insolation effect versus oceanic feedbacks through
515	tele-connection with North Atlantic and Pacific Oceans as well as the changes in GHGs concentration to
516	the Holocene Asian summer monsoon changes.
517	
518	Acknowledgements This research was jointly supported by the National Basic Research Program of
519	China (973 Program, Nr. 2010CB950202; Nr. 2010CB950204), the National Natural Science
520	Foundation of China (NSFC, Nr 41275071; Nr. 41130102) and the Deutsche Forschungsgemeinschaft
521	(DFG) supported Cluster of Excellence "The Future Ocean" (EXC 80/1). Sincere thanks are extended to
522	four anonymous reviewers for their constructive comments and helpful suggestions for the earlier
523	version of this paper. The KCM modeling experiments were performed at Kiel University's computing
524	center, which is also appreciated.
525	
526	
527	
528	
529	
530	References

531	An, Chengbang, Feng, Zhaodong, Tang, Lingyu, 2003. Evidence of a humid mid-Holocene in the
532	western part of the Chinese Loess Plateau. Chinese Science Bulletin 48, 2472–2479. (23B, 24B)
533	An, Z., Porter, S.C., Zhou, W., Lu, Y., Donahue, D., Head, J., Wu, X., Ren, J., 1993. Episode of
534	strengthened summer monsoon climate of Younger Dryas age on the Loess Plateau of central China.
535	Quaternary Research 39, 45–54. (20B)
536	An, Z., Porter, S.C., Kutzbach, J.E., Wu, X., Wang, S., Liu, X., Li, X., Zhou, W., 2000. Asynchronous
537	Holocene optimum of the East Asian monsoon. Quaternary Science Reviews 19, 743-762.
538	Beaufort, L., van der Kaars, S., Bassinot, F.C., Moron, V., 2010. Past dynamics of the Australian
539	monsoon: precession, phase and links to the global monsoon concept. Climate of the Past 6, 695–706.
540	Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary
541	Science Review 10 (4), 297–317.
542	Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F.S.R., Yoshimura, K., 2012. An abrupt shift
543	in the Indian monsoon 4000 years ago, in Climates, Landscapes, and Civilizations, Geophys. Monogr.
544	Ser., vol. 198, edited by L. Giosan et al., 75–87, AGU, Washington, D. C.,
545	doi:10.1029/2012GM001207. (88H)
546	Björnsson, H., Venegas, S.A., 1997. A manual for EOF and SVD analyses of climate data. McGill
547	University, CCGCR Report No. 97-1, Montr éal, Qu cbec, 52pp.
548	Bosmans, J.H.C., Drijfhout, S.S., Tuenter, E., Lourens, L.J., Hilgen, F. J., Weber, S. L., 2012. Monsoonal
549	response to mid-holocene orbital forcing in a high resolution GCM. Climate of the Past 8, 723–740,
550	2012, doi:10.5194/cp-8-723-2012.
551	Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R.L., Kelly, M.J., Kong, X., Wang, X., 2010. The variation
552	of summer monsoon precipitation in central China since the last deglaciation. Earth and Planetary

553 Science Letters 291, 21-31. doi:10.1016/j.epsl.2009.12.039. (27B)

554	Chen, Fahu, Li, Jijun, Zhang, Weixin, Pan, Baotian, 1991a. The loess profile of south bank, climate
555	information and lake-level fluctuation of Qinghai Lake during the Holocene. Scientia Geographica
556	Sinica 11 (1), 76–85 (in Chinese). (13B)

- 557 Chen, F., Li, J., Zhang, W., 1991b. Loess stratigraphy of the Lanzhou profile and its comparison with 558 deep-sea sediment and ice core record. GeoJournal 24 (2), 201–209. (18B)
- Chen, F., Chen, B., Zhao, Y., Madsen, D., 2006. Holocene environ- mental change inferred from
 high-resolution pollen records from inland lake deposits, arid China. The Holocene 16, 675–684.
 (16B)
- Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato, T., Birks, H.J.B.,
- Boomer, I., Chen, J., An, C., Wünnemann, B., 2008. Holocene moisture evolution in arid central Asia
 and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27,

565 351–364.

- Chen, W., Wang, W.M., Dai, X.R., 2009. Holocene vegetation history with implication of human impact
 in the lake Chaohu area, Anhui Province, East China. Vegetation History and Archaeobotany 18,
 137–146. (64E)
- Cui, Zhijiu, Song, Changqing, 1992. The periglacial phenomenon and environmental evolution during
 Holocene in Daqingshan (mountain). Glacier and Permafrost 14, 325–331 (in Chinese). (35B, 39B)
- 571 Dallmeyer, A., Claussen, M., Wang, Y., Herzschuh, U., 2013. Spatial variability of Holocene changes in
- 572 the annual precipitation pattern: a model-data synthesis for the Asian monsoon region. Climate
- 573 Dynamics 40, 2919–2936, doi: 10.1007/s00382-012-1550-6.
- Dao, Shih, Chen, Lungshun, 1957. The structure of general circulation over continent of Asia in summer.
 Acta Meteorologica Sinica 28 (3), 234–247 (in Chinese).
- 576 Dong, J., Wang, Y., Cheng, H., Hardt, B., Edwards, R.L., Kong, X., Wu, J., Chen, S., Liu, D., Jiang, X.,

- Zhao, K., 2010. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt
 Shennongjia, central China. The Holocene 20 (2), 257–264. (69E)
- 579 Du, Naiqiu, Kong, Zhaochen, Shan, Fashou, 1989. A preliminary investigation on the vegetational and
- 580 climatic changes since 11,000 years in Qinghai Lake. An analysis based on palynology in core
- 581 QH85-14C. Acta Botanica Sinica 31, 803–814 (in Chinese).
- 582 Dykoski, C.A., Edwards, R.L., Cheng, H., Yuang, D.X., Cai, Y.J., Zhang, M.L., Lin, Y.S., Qing, J.M., An,
- 583Z.S., Revenaugh, J, 2005. A high-resolution absolute-dated Holocene and deglacial Asian monsoon
- record from Dongger Cave, China. Earth and Planetary Science Letters 233, 71–86.
- Editorial Committee of Studies on Poyang Lake, 1987. Study on Poyang Lake. Shanghai Press of
 Science and Technology, Shanghai pp. 63 –69 (in Chinese). (65E)
- Feng, S., Hu, Q., 2004. Variations in the Teleconnection of ENSO and Summer Rainfall in Northern
 China: A role of the Indian summer monsoon. Journal of Climate, 4871–4881.
- Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene
 forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300,
- 591 1737–1739.
- Fleitmann, D, Burns, S.J., Mangini, A., Mudelsee, M., Kramers. J., Villa. I., Neff. U., Al-Subbary. A.A.,
 Buettner, A, Hippler, D., Matter, A., 2007. Holocene ITCZ and Indian monsoon dynamics recorded in
 stalagmites from Oman and Yemen (Socotra). Quaternary Science Review 26, 170–188.
- 595 Gao, Shangyu, Chen, Weinan, Jin, Heling, Dong, Guangrong, Li, Baosheng, Yang, Gensheng, Liu,
- 596 Lianyou, Guan, Youzhi, Sun, Zhong, Jin, Jiong, 1993. Preliminary study on the Holocene desert
- 597 evolution on the northwestern margin of monsoon area in China. Science in China 23, 202–208.
- 598 (31B)
- 599 Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gilbert, E., Huc, A., Li, Bingyan, Li, Yuanfang, Liu, Qing,

600	M di ères, F., Van Campo, E., Wang, Fubao, Zhang, Qingsong, 1991. A 13,000-year climate record
601	from western Tibet. Nature 353, 742 –745. (93H)
602	Geng, Kan, 1988. The geomorphologic features and evolution of the Holocene lakes in Dalainoer area,
603	Inner Mongolia. Bulletin of Beijing Normal University (Natural Sciences) 4, 94–100 (in Chinese).
604	(43B, 48B)
605	Goswami, B.N., Krishnamurthy, V., Annamalai, H., 1999. A broad-scale circulation index for the
606	interannual variability of the Indian summer monsoon. Quarterly Journal of the Royal Meteorological
607	Society 125, 611–633.
608	Gu, Zhaoyan, Liu, Jiaqi, Yuan, Baoyin, Liu, Tungsheng, Liu, Rongmo, Liu, Yu, Zhang, Guangyu, 1993.
609	The evolution of the Qinghai-Xizang Plateau monsoon; evidence from the geochemistry of the
610	sediments in Seling Co Lake. Chinese Science Bulletin 38, 61-64 (in Chinese). (92H)
611	Guo, Z.T., Berger, A., Yin, Q.Z., Qin, L, 2009. Strong asymmetry of hemispheric climates during MIS-13
612	inferred from correlating China loess and Antarctica ice records. Climate of the Past 5, pp. 21–31.
613	(26B)
614	Gupta, A.K., Das, M., Anderson, D.M., 2005. Solar influence on the Indian summer monsoon during the
615	Holocene. Geophysical Research Letters 3, L17703, doi:10.1029/2005GL022685.
616	Han, Shuti, 1992. Holocene environmental change sequence of Barkol Lake, Northern Xinjiang.
617	Scientia Geologica Sinica (Suppl.), 247–260 (in Chinese). (8A)
618	Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the
619	Intertropical Convergence Zone through the Holocene. Science 293, 1304–1308.
620	He, Y., Theakstone, W., Zhang, Z., Zhang, D., Yao, T., Chen, T., Shen, Y., Pang, H., 2004. Asynchronous
621	Holocene climatic change across China. Quaternary Research 61, 52–63.
622	Herzschuh, U., Tarasov, P., Wuennemann, B., Hartmann, K., 2004. Holocene vegetation and climate of

- the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeography, Palaeoclimatology,
 Palaeoecology 211, 1–17. (14B)
- Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal central Asia during the last 50,000 years.
 Quaternary Science Reviews 25, 163–178. (91H)
- Hewitt, C.D., Mitchell, J.F.B., 1998. A fully-coupled GCM simulation of the climate of the
 mid-Holocene. Geophysical Research Letters 25, 361–364.
- Higginson, M.J., Altabet, A.A., 2004. A solar (irradiance) trigger for millennial-scale abrupt changes in
 the southwest monsoon? Paleoceanography 19, PA3015, doi:10.1029/2004PA001031.
- Hong, Y.T, Hong, B., Lin, Q.H., Zhu, Y.X., Yasuyuki, S., Masashi, H., Masao, U., Leng, X.T., Jiang,
- H.B., Xu, H., H. Wang, H., Yi, L., 2003. Correlation between Indian Ocean summer monsoon and
- North Atlantic climate during the Holocene. Earth and Planetary Science Letters 211(3-4), 371–380.
 (22B)
- Hong, Y.T, Hong, B., Lin, Q.H., Shibata Y., Hirota M, Zhu YX, Leng XT, Wang Y, Wang H, Yi L, 2005.
- Inverse phase oscillations between the east Asian and Indian Ocean summer monsoons during the last
 12 000 years and paleo-El Nino. Earth and Planetary Science Letters 231, 337–346. (52C)
- Hu, C., G.M. Henderson, J. Huang, S. Xie, Y. Sun, and K.R. Johnson, 2008: Quantification of Holocene
 Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters
 266, 221–232, doi:10.1016/j.epsl.2007.10.015. (71E)
- Huang, Qi, Chai, Biqiang, Yu, Jungqing, 1980. The¹⁴C dating and the Psedimentary cycle in the saline
 lakes on the Qinghai-Xizang Plateau. Chinese Science Bulletin 25, 990–994 (in Chinese). (9A)
- 643 Institute of Geochemistry, Chinese Academy of Sciences, 1977. Environmental changes in southern
- Liaoning Province during the last 10,000 years. Scientia Sinica, Series B 22, 603–614 (in Chinese).
- 645 (58D)

- Jarvis, D.I., 1993. Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China.
 Quaternary Research 39, 325–337. (85G)
- Ji, J., Shen, J., Balsam, W., Chen, J., Liu, L., Liu, X., 2005. Asian monsoon oscillations in the
 northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of
- 650 Qinghai Lake sediments. Earth and Planetary Science Letters 233 (1-2), 61–70,
- 651 doi:10.1016/j.epsl.2005.02.025.
- Jiang, D., X. Lang, X., Tian, Z., Ju, L., 2013. Mid-Holocene East Asian summer monsoon strengthening:
 Insights from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Palaeogeography,
 Palaeoclimatology, Palaeoecology 369, 422–429.
- Jiang, Q.H., Piperno, D.R., 1999. Environmental and archaeological implications of a late Quaternary
 palynological sequence, Poyang Lake, southern China. Quaternary Research 52, 250–258. (65E)
- 657 Jiang, W.Y., Gao, Z.T., Sun, X.J., Wu, H.B., Chu, G.Q., Yuan, B.Y., Hatt é, C., Guiot, J., 2006.
- 658 Reconstruction of climate and vegetation changes of the lake Bayanchagan (Inner Mongolia):
- Holocene variability of the East Asian monsoon. Quaternary Research 65, 411–420. (44B)
- Jiang, W.Y., Leroy, S.A.G., Ogle, N., Chu, G.Q., Wang, L., Liu, J.Q., 2008. Natural and anthropogenic
- forest fires recorded in the Holocene pollen record from a Jinchuan peat bog, northeastern China.
- Palaeogeography, Palaeoclimatology, Palaeoecology 261, 47–57. (54C)
- Jiang, Xiuyang, He, Yaoqi, Shen, Chuanzhou, Kong, Xinggong, Li, Zhizhong, Zhang, Yuwei, 2012.
- 664 Stalagmite-inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous
- termination of the Climatic Optimum in the Asian monsoon territory. Chinese Science Bulletin 57,
- 666 795–801, doi: 10.1007/s11434-011-4848-6. (73E)
- Jin, L., Chen, F., Morrill, C., Otto-Bliesner, B.L., Rosenbloom, N., 2012. Causes of early Holocene
 desertification in arid central Asia. Climate Dynamics 38, 1577–1591, doi:

669 10.1007/s00382-011-1086-1.

- Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, F. B., Kutzbach, E., Harrison, S. P., Prentice, I. C.,
- 671 Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J., Herterich, K., Hewitt,
- 672 C. D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson, V., McAvaney, B.,
- 673 McFarlane, N., Noblet, N. D., Peltier, W. R., Peterschmitt, J. Y., Pollard, I. D., Rind, D., Royer, F.,
- 674 Schlesinger, M. E., Syktus, J., Thompson, S., Valdes, P., Vettoretti, G., Webb, R. S., and Wyputta, U.,
- 1999. Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate
- 676 Modeling Intercomparison Project (PMIP). Geophysical Research Letters 26, 859–862.
- Kelts, K., Zao, C.K., Lister, G., Hong, G.Z., Niessen, F., Bonani, G., 1989. Geological fingerprints of
- climatic history; a cooperative study of Qinghai Lake, China. Ecologae Geology 82, 167–182. (12B)
- Khon, V. C., Park, W., Latif. M., Mokhov, I.I., Schneider, B., 2010. Response of the hydrological cycle
 to orbital and greenhouse gas forcing. Geophysical Research Letters 37, L19705,
- 681 doi:10.1029/2010GL044377.
- Koutavas, A., deMenocal, P.B., Olive, G.C., Lynch-Stieglitz, J., 2006. Mid-Holocene El Niño-Southern
 Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific
 sediments. Geology 34, 993–996.
- Kutzbach, J.E., 1981. Monsoon climate of the early Holocene: climate experiment using the earth's
 orbital parameters for 9000 years ago. Science 214, 59–61.
- Kutzbach, J.E., Otto-Bliesner, B.L., 1982. The sensitivity of the African-Asian monsoonal climate to
 orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. Journal
 of Atmospheric Science 39, 1177–1188.
- 690 Latif, M., Park, W., Ding, H., Keenlyside, N. S., 2009. Internal and external North Atlantic Sector
- 691 variability in the Kiel Climate Model. In: Meteorologische Zeitschrift 18 (2009), Nr. 4, S. 433–443.

692	Lau, N., Nath, M., 2006. ENSO modulation of the interannual and intraseasonal variability of the East
693	Asian monsoonda model study. Journal of Climate 19, 4508–4530.
694	Levitus, S., 1982. Climatological Atlas of the World Ocean, NOAA/ERL GFDL Professional Paper 13,
695	Princeton, N.J., 173 pp. (NTISPB83-184093).
696	Li, Huazhang, Liu, Qingsi, Wang, Jiaxing, 1992a. Study of evolution of Huangqihai and Daihai Lakes in
697	Holocene in Inner Mongolia Plateau. Journal of Lake Sciences 4 (1), 31–39 (in Chinese). (40B)
698	Li, Pingri, Zheng, Jiansheng, Fang, Guoxiang, 1991. Quaternary Geology in the Guangzhou area.
699	Printing House of the Huanan University of Science and Technology, pp. 53-81 (in Chinese). (76F,
700	77F)
701	Li, Wenyi, Liang, Yulian, 1985. Vegetation and environment of the hypsithermal interval of Holocene in
702	the eastern Hebei Plain. Acta Botanica Sinca 27, 640–651 (in Chinese). (56D)
703	Li, Wenyi, Liu, Guangxiu, Zhou, Mingming, 1992b. The vegetation and climate of the Holocene
704	Hypsithermal in Northern Hubei Province. In: Shi, Y.F. (Ed.), The Climate and environments of
705	Holocene Megathermal in China. China Ocean Press, Beijing: pp. 94–99 (in Chinese). (68E, 70E)
706	Li, Wenyi, Liu, Guangxiu, Liang, Yulian, Xu, Qinghai, 1993. Forest history and environmental changes
707	in Bajiaotian of Miaoershan Mt. In: Li, W.Y., Yao, Z.J. (Eds.), Late Quaternary Vegetation and
708	Environment of North and Middle Subtropical Region of China. Ocean Press, Beijing, China, pp.
709	121–132 (in Chinese). (72E)
710	Li, Xiaoqiang, An, Zhisheng, Zhou, Jie, Gao, Huijun, Zhao, Hongli, 2003. Characteristics of vegetation
711	in the Loess Plateau area since Holocene. Marine Geology & Quaternary Geology 23, 109-114 (in
712	Chinese). (28B, 29B)
713	Li, X.Q., Zhou, W.J., An, Z.S., Dodson, J., 2003. The vegetation and monsoon variations at the

desert-loess transition belt at Midiwan in northern China for the last 13 ka. The Holocene 13,

715 779–784. (28B, 29B)

- Li, Y. and Morrill, C., 2010. Multiple factors causing Holocene lake level change in monsoonal and arid
 central Asia as identified by model experiments. Climate Dynamics 35,1119–1132.
- Lin, Shaomeng, 1987. The vegetation history from the late Pleistocene to Holocene at Eryuan, Yunnan
- Province. In: Sino-Australia Cooperative Group (Ed.). Contributions to the Quaternary Symposium.
 Science Press, Beijing, pp. 56 –67 (in Chinese). (86G, 87G)
- Lin, Shuji, Zheng, Honghan, 1987. Evolution of Caohai Lake. Guizhou People's Press, Guiyang: pp.
 7–38 (in Chinese). (81G)
- Liu, G.X., Li, W.Y., Chou, M.M., 1993. Study of modern pollen rain at Dajiuhu area. In: Li, W.Y., Yao,
- Z.J. (Eds.), Late Quaternary Vegetation and Environment of North and Middle Subtropical Region of
 China. Ocean Press, Beijing, China, pp. 121–132 (in Chinese). (68E)
- Liu, H., Xu, L., Cui, H., 2002. Holocene history of desertification along the woodland–steppe border in
 northern China. Quaternary Research 57, 259–270. (46B, 47B)
- Liu, J., 1989. Vegetational and climatic changes at Gushantun Bog in Jilin, NE China since 13,000 a BP.
 Acta Palaeontologica Sinica 28, 240–248 (in Chinese). (51C, 53C)
- Liu, K.-B, Qiu, H., 1994. Late Holocene pollen records of vegetational changes in China: climate or
 human disturbance. Tao 5, 393–410. (12B)
- Liu, K.-B, S, S., Jiang, X., 1992. Environmental change in the Yangtze River Delta since 12,000 years
 B.P. Quaternary Research 38, 32–45. (61E)
- Liu, K.-B., Yao, Z.J., Thompson, L.G., 1998. A pollen record of Holocene climatic changes from Dunde
 ice cap, Qinghai–Tibetan Plateau. Geology 26, 135–138. (10A)
- Liu, Z., Harrison, S.P., Kutzbach, J., Otto-Bliesner, B., 2004. Global monsoons in the mid-Holocene and
 oceanic feedback. Climate Dynamics 22, 157-182, doi:10.1007/s00382-003-0272-y.

738	Liu, Z., Kutzbach, J., Wu, L., 2000. Modeling climate shift of El Nino variability in the Holocene.
739	Geophysical Research Letters 27(15), 2265–2268, doi: 10.1029/2000GL011452.
740	Lorenz, S., Lohmann, G., 2004. Acceleration technique for Milankovitch type forcing in a coupled
741	atmosphere-ocean circulation model: method and application for the Holocene. Climate Dynamics 23,
742	727–743, doi:10.1007/s00382-004-0469-y.
743	Madec, 2008. NEMO reference manual, ocean dynamics component: NEMO-OPA. Preliminary version.
744	Note Pole Model. 27, Inst. Pierre Simon Laplace, Paris.
745	Maher, B.A., 2008. Holocene variability of the east Asian summer monsoon from Chinese cave records:
746	a re-assessment. The Holocene 18, 861–866.

- Maher, B.A., Hu, M., 2006. A high-resolution record of Holocene rainfall variations from the western
 Chinese Loess Plateau: antiphase behaviour of the African/Indian and east Asian summer monsoons.
 The Holocene 16, 309–319.
- 750 Mayewski, P.A., Rohling, E.E., Stager, C.J., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A.,
- 751 Gasse, F., Van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M.,

Schneider, R.R., Steig, E.J., 2004. Holocene climate variability. Quaternary Research 62, 243–255.

- 753 Mitchell, J.F.B, Grahame, N.S., Needam, K.J., 1988. Climate simulation for 9000 years before present:
- Seasonal variations and effect of the Laurentide Ice Sheet. Journal of Geophysical Research 93 (D7),
 8283–8303.
- Mitchell, T.D., Jones, P.D., 2005. An improved method of constructing a database of monthly climate
 observations and associated high-resolution grids. International Journal of Climate 25, 693–712.
- Morrill, C., Overpeck, J.T., Cole, J.E., Liu, K.-B., Shen, C., Tang, L., 2006. Holocene variations in
 theAsian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary
 Research 65, 232–243.
- 761 Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño-Southern

- Oscillation activity at millennial time scales during the Holocene epoch. Nature 420, 162–165.
- Nanjing Institute of Geography, and Limnology (CAS), 1989. Environments and Sedimentation of Fault
- 764Lake, Yunnan Province. Science Press, Beijing (in Chinese). (84G)
- 765 Otto-Bliesner, B. L., Brady, E.C., Shin, S.I., Z. Liu, Z., Shields, C., 2003. Modeling El Niño and its
- tropical teleconnections during the last glacial-interglacial cycle. Geophysical Research Letters
- 767 30(23), 2198, doi:10.1029/2003GL018553.
- Overpeck, J., Anderson, D., Trumbore, S., Prell, W., 1996. The southwest Indian monsoon ove the last
 18,000 years. Climate Dynamics 12, 213–225.
- Park, W., Latif, M., 2008. Multidecadal and multicentennial variability of the meridional overturning
 circulation. Geophysical Research Letters 35, L22703. doi:10.1029/2008GL035779.
- Park, W., Keenlyside, N., Latif, M., Stroeh, A., Redler, R., Roeckner, E. and Madec, G., 2009. Trpocal
 Pacific climate and its response to global warming in the Kiel Climate Miodel. Journal of Climate 22,
 774 71–92.
- Park, W., Latif, M., 2010. Pacific and Atlantic multidecadal variability in the Kiel Climate Model.
 Geophysical Research Letters 37, L24702. doi:10.1029/2010GL045560.
- Parthasarathy, B., Munot, A.A., Kothawale, D.R., 1994. All-India Monthly and Seasonal Rainfall Series:
 1871-1993. Theoretical and Applied Climatology 49, 217–224.
- Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., 1999. An
- ~15,000-year record of El Niño–Driven Alluviation in southwestern Ecuador. Science 283, 516-520.
- Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S.,
- 782 Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., Tompkins, A.,
- 2003. The atmospheric general circulation model ECHAM5. Part I: Model description, Rep. 349,
- 127pp., ISSN 0937-1060, Max Planck Institut für Meteorologie, Hamburg, Germany.

785	Ruddiman, W.F., 2008. Earth's Climate: Past and Future, second ed. W.H. Freeman and Company, New
786	York, pp.138–142.
787	Selvaraj, K., Chen, C.T.A., Lou, JY., 2007. Holocene East Asian monsoon variability: Links to solar
788	and tropical Pacific forcing. Geophysical Research Letters 34, L01703, doi:10.1029/2006GL028155.
789	Shen, C.M., 2003. Millennial-scale variations and centennial-scale events in the Southwest Asian
790	monsoon: pollen evidence from Tibet. PhD Dissertation, Louisiana State University, Banta Rouge.
791	(90H)
792	Shen, J., Liu, X.Q., Wang, S.M., Matsumoto, R., 2005. Palaeoclimatic changes in the Qinghai
793	Lake area during the last 18,000 years. Quaternary International 136, 131-140. (12B)
794	Shen, J., Jones, R.T., Yang, X.D., Dearing, J.A., Wang, S.M., 2006. The Holocene vegetation
795	history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings.
796	The Holocene 16, 265–276. (87G)
797	Shi, Peijun, Song, Changqing, 2003. Palynological records of environmental changes in the middle part
798	of Inner Mongolia, China. Chinese Science Bulletin 48, 1433–1438. (37B)
799	Shi, Yafeng, 1990. Quaternary Climatic Environmental Change and Hydrogeologic Events in Caiwopo
800	Basin in Xinjiang. Ocean Press, Beijing, pp. 46–72 (in Chinese). (6A)
801	Shi, Z., Liu, X., Cheng, X., 2012. Anti-phased response of northern and southern East Asian summer
802	precipitation to ENSO modulation of orbital forcing. Quaternary Science Reviews 40, 30-38.
803	Shukla, J., Paolino, D.A., 1983. The southern oscillation and long-range forecasting of the summer
804	monsoon rainfall over India. Monthly Weather Review 111, 1830–1837.
805	Song, Xieliang, 1994. Palaeolimnological Studies on the Limestone District in Central Yunnan. Science
806	and Technology Press, Beijing (in Chinese). (83G)
807	Staubwasser, M., Sirocko, F., Grootes, P.M., Segl, M., 2003. Climate change at the 4.2 ka BP

- termination of the Indus valley civilization and Holocene south Asian monsoon variability.
- 809 Geophysical Research Letters 30, 1425, doi: 10.1029/2002GL016822.
- Sun, Dapeng, 1990. The soda Lakes on the Inner Mongolia Plateau, China. Oceanologia et Limnologia
 Sinica 21, 44–53 (in Chinese). (41B)
- Sun, Jianzhong, Zhao, Jinbo, 1991. Quaternary of the Loess Plateau. Science Press, Beijing pp 186–205
 (in Chinese). (33B)
- Sun, Shuncai, Wu, Yifan, 1987a. The formation and evolution of Taihu Lake and sedimentation. Science
 in China (B) 30, 1329–1339 (in Chinese). (62E)
- Sun, Xiangjun, Du, Naiqin, Chen, Yinshuo, Gu, Zhaoyan, Liu, Jiaqi, Yuan, Baoyin, 1993. Holocene
 palynological records in Lake Selinco, Northern Xizang. Acta Botanica Sinica 35, 943–950 (in
 Chinese). (92H)
- Sun, Xiangjun, Du, Naiqin, Weng, Chengyu, Lin, Ruifeng, Wei, Keqin, 1994. Paleovegetation and
 paleoenvironment of Manas Lake, Xinjiang, N.W. China during the last 14,000 years. Quaternary
 Sciences 3, 239–246 (in Chinese with English Abstract). (4A)
- 822 Sun, Xiangjun, Wu, Yushu, 1987b. Holocene vegetation history and environmental changes of the
- 823 Dianchi Lake area, Yunnan Province. Proceedings of China-Australia Academia Symposium on
- Quaternary Geology. Science Press, Beijing, pp. 28–41 (in Chinese) (82G)
- Sun, Xiangjun, Yuan, Shaomin, 1990. Pollen data and evolution of the vegetation for the last 10,000
 years in Jinchuan basin, Jiling Province. In: Loess, Quaternary Geology, and Global Change, Vol. 2.
 Science Press, Beijing, pp. 46–47 (in Chinese). (54C)
- Tan, Qixiang, 1980. Yunmen and Yunmence. Bulletin of Futan Univer-sity (Special Issue on Historical
 Geography) 1911 (in Chinese). (67E)
- Tang, Lingyu, Shen, Caiming, 1992. The vegetation and climates of the Holocene Megathermal in

831	northern Jiangsu Province. In: Shi, Y.F. (Ed.), The climates and environments of the Holocene
832	Megathermal in China. Chinese Ocean Press, Beijing pp. 80–93 (in Chinese). (60E)
833	Tang, Lingyu, Shen, Caiming, Liu, KB., Overpeck, J.T., 2000. Changes in south Asian monsoon: new
834	high-resolution paleoclimatic records from Tibet, China. Chinese Science Bulletin 45, 87–91. (89H)
835	Tarasov, P., Jin, G.Y., Wagner, M., 2006. Mid-Holocene environmental and human dynamics in
836	northwestern China reconstructed from pollen and archaeological data. Palaeogeography,
837	Palaeoclimatology, Palaeoecology 241, 284–300. (45B)
838	Tiwari, M., Ramesh, R., Somayajulu, B.L.K., Jull, A.J.T., Burr, G.S., 2005. Solar control of southwest
839	monsoon on centennial timescales. Current Science 89, 1583-1589.
840	Tiwari, M., Ramesh, R., Bhushan, R., Sheshshayee, M.S., Somayajulu, B.L.K., Jull, A.J.T., Burr, G.S.,
841	2010. Did the Indo-Asian summer monsoon decreasing during the Holocene following insolation?
842	Journal of Quaternary Science 25, 1179–1188, ISSN 0267–8179.
843	Valcke, S., 2006. OASIS3 user guide, PRISM Tech. Rep. 3, 64 pp., Partnership for Res. Infrastructures
844	in Earth Syst. Model., Toulouse, France. (Available at
845	http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf)
846	Van Campo, E., Gasse, F., 1993. Pollen- and diatom-inferred climatic and hydrological changes in
847	Sumxi Co Basin (Western Tibet) since 13,000 yr B.P. Quaternary Research 39, 300–313. (1A)
848	Van Campo, E., Cour, P., Hang, S.X., 1996. Holocene environmental changes in Bangong Co basin
849	(Western Tibet). Part 2: the pollen record. Palaeogeography, Palaeoclimatology, Palaeoecology 120,
850	49–63. (94H)
851	Wang, B., Lin, H., 2002. Rainy season of the Asian-Pacific summer monsoon. Journal of Climate 15,
852	386-396.

853 Wang, B., Wu, R., Fu, X., 2000. Pacific-East Asian teleconnection: how does ENSO affect East Asian

- climate? Journal of Climate 13, 1517–1536.
- Wang, B., Wu, R., Li, T., 2003. Atmosphere-warm ocean interaction and its impacts on AsianeAustralian
 monsoon variation. Journal of Climate 16, 1195–1211.
- Wang, B., Wu, Z., Li, J., Liu, J., Chang, C-P, Ding, Y., Wu, G., 2008. How to measure the strength of the
 East Asian summer monsoon. Journal of Climate 21, 4449–4463.
- Wang, Bengyu, Sun, Xiangjun, 1997. Preliminary study of Holocene environmental change in Chasuqi.
 Chinese Science Bulletin 42, 514–518 (in Chinese). (36B)
- 861 Wang, Shilan, Chen, Fahu, Cao, Jixiu, 1991. The pollen assemblage and climatic fluctuations in
- Lanzhou River Basin since 10,000 a B.P. Journal of Glaciology and Geocryology 13, 307–314 (in
 Chinese). (19B)
- Wang, Sumin, Ji, Lei, Yang, Xiangdong, Xue, Bin, Ma, Yan, Hu, Shouyun, 1994. Record of Younger
 Dryas event in the lacustrine in Zhalainuoer of Inner Mongolia. Chinese Science Bulletin 39,
 348–351 (in Chinese). (50C)
- Wang, Sumin, Wu, Ruijin, Jiang, Xinhe, 1990a. Environmental evolution and paleoclimate of Daihai
 Lake, Inner Mongolia, since the last glaciation. Quaternary Sciences 3, 223–232 (in Chinese). (38B)
- Wang, Sumin, Yu, Yuansheng, Wu, Ruijin, Feng, Min, 1990b. Daihai Lake environmental evolution and
 climate change. Printing House of University of Science and Technology of China, pp. 117–182 (in
 Chinese). (38B)
- Wang, Shuyun, Lu, Houyuan, Liu, Jiaqi, Negendank, J.F.W., 2007. Early Holocene climate optimum
 revealed by high-resolution pollen record from Huguangyan Maar Lake. Chinese Science Bulletin 52,
 1285–1291. (78F)
- Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski,
- 876 C.A., Li, X.D., 2005. The Holocene Asian monsoon links to solar changes and North Atlantic climate.

Science 308, 854–857. (74E) 877

- Wang, Y., Liu, X, Herzschuh, U., 2010. Asynchronous evolution of the Indian and east Asian summer 878 monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews 879 103.135-153. 880
- Webster, P. J., Yang, S., 1992. Monsoon and ENSO: Slectively interactive systems. Quarterly Journal of 881 the Royal Meoterological Society 118, 877-926. 882
- Weber, S.L., Crowley, T.J., van der Schrier, G., 2004. Solar irradiance forcing of centennial climate 883 884 variability during the Holocene. Quaternary Science Reviews 22, 539–553.
- Wu, Jinglu, Wang, Sumin, Wang, Hongdao, 1996. Characters of the evolution of climate and 885 environment of Holocene in Aibi Lake Basin in Xinjiang. Oceanologia et Limnologia Sinica 27, 886 524–530 (in Chinese). (3A) 887
- Xia, Yumei, 1988. A preliminary study on vegetational development and climatic changes in the 888 Sanjiang Plain since 12,000 yr B.P. Scientia Geographica Sinica 8, 240–249 (in Chinese). (55C) 889
- Xiao, J.L., Xu, Q.H., Nakamura, T., Yang, X.L., Liang, W.D., Inouchi, Y., 2004. Holocene vegetation 890 variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon 891 climatic history. Quaternary Science Reviews 23, 1669–1679. (38B) 892
- Xiao, Jiayi, Lu, Haibo, Zhou, Weijian, Zhao, Zhijun, Hao, Ruihui, 2007. Evolution of vegetation and 893 climate since the last glacial maximum recorded at Dahu peat site, south China. Science in China 894 (Series D) 50, 1209–1217. (75F) 895
- Xu, Qinghai, Chen, Shuying, Kong, Zhaochen, Du, Naiqiu, 1988. Preliminary discussion of vegetation 896 succession and climate change since the Holocene in the Baiyangdian Lake district. Acta
- Phytoecologica et Geobotanica Sinica 12, 143–151 (in Chinese). (57D) 898
- 899 Xu, Xin, Zhu, Minglun, 1984. The vegetational and climatic changes in the Zhenjiang region since

- 900 15,000 years B.P.. Acta Geographica Sinica 39, 277–284. (63E)
- Xu, Yingqin, 1998. The assemblage of Holocene spore pollen and its environment in Boston Lake area
 Xinjiang. Arid Land Geography 21 (2), 43–49 (in Chinese). (7A)
- 903 Yan, G., Wang, F.B., Shi, G.R., Li, S.F., 1999. Palynological and stable isotopic study of
- palaeoenvironmental changes on the northeastern Tibetan Plateau in the last 30,000 years.
- Palaeogeography, Palaeoclimatology, Palaeoecology 153, 147–159. (80G)
- Yang, X., Scuderi, L., 2010. Hydrological and climatic changes in deserts of China since the late
 Pleistocene. Quaternary Research 73, 1–9. (15B)
- Yang, X., Scuderi, L., Paillou, P., Liu, Z., Ren, X., 2011. Quaternary environmental changes in the
 drylands of China A critical review. Quaternary Science Reviews 30, 3219-3233. (2A)
- Yang, Xiangdong, Wang, Sumin, 1996. The vegetation and climatic environmental changes in Hunlun
 Lake and Wulun Lake during Holocene. Oceanologia et Limnologia Sinica 27, 67–72 (in Chinese).
 (5A, 49C)
- Yang, X, Zhu, B., Wang, X., Li, C., Zhou, Z., Chen, J., Wang, X., Yin, J., Lu, Y., 2008. Late Quaternary
 environmental changes and organic carbon density in the Hunshandake Sandy Land, eastern Inner
 Mongolia, China. Global and Planetary Change 61, 70–78. (42B)
- Yeh, Tucheng, Dao, Shihyen, Li, Meitsiun, 1958. The abrupt change of circulation over Northern
 Hemisphere during June and October. Acta Meteorologica Sinica 29 (4), 249–263 (in Chinese).
- Yi, S., Saito, Y., Oshima, H., Zhou, Y.Q., Wei, H.L., 2003. Holocene environmental history inferred from
 pollen assemblages in the Huanghe (Yellow River) delta, China: climatic change and human impact.
 Quaternary Science Reviews 23, 609–628. (59D)
- 921 Yuan, Baoyin, 1988. Geological significance of the climatic geomorphology of the Late Pleistocene in
- North China. Acta Scientiarum Naturalism Universitatis Pekinensis 24, 235–244 (in Chinese). (30B)

923	Zhang, H.C., Ma, Y.Z., Wuennemann, B., Pachur, HJ., 2000. A Holocene climatic record from arid
924	northwestern China. Palaeogeo- graphy, Palaeoclimatology, Palaeoecology 162, 395-397. (17B)
925	Zhang, J.W., Chen, F.H., Holmes, J.A., Li, H., Guo, X.Y., Wang, J.L., Li, S., Lü, Y.B., Zhao, Y., Qiang,
926	M.R., 2011. Holocene monsoon climate documented by oxygen and carbon isotopes from lake
927	sediments and peat bogs in China: a review and synthesis. Quaternary Science Reviews 30,
928	1973–1987.
929	Zhang, Xiaoyang, 1991. The formation and evolution of Dongting Lake and delta deposit. M.S. Thesis,
930	Nanjing Institute of Geography (in Chinese). (66E)
931	Zhao, Y., Yu, Z.C., Chen, F.H., Ito, E., Zhao, C., 2007. Holocene vegetation and climate history at
932	Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology 145,
933	275–288. (11A)
934	Zhao, Y., Chen, F.H., Zhou, A.F., Yu, Z.C., 2010. Vegetation history, climate change and human
935	activities over the last 6200 years on theLiupan Mountains in the southwestern Loess Plateau in
936	central China. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 197–205. (25B)
937	Zhao, Y., Yu, Z.C., Chen, F.H., 2009a. Spatial and temporal patterns of Holocene vegetation and climate
938	changes in arid and semi-arid China. Quaternary International 194, 6-18
939	Zhao, Y., Yu, Z.C., Chen, F.H., Zhang, J.W., Yang, B., 2009b. Vegetation response to Holocene climate
940	change in monsoon-influenced region of China. Earth-Science Reviews 97, 242–256.
941	Zhao. Y., Yu, Z.C., Zhao, W.W., 2011. Holocene vegetation and climate histories in the eastern Tibetan
942	Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?
943	Quaternary Science Reviews 30, 1173–1184. (21B)
944	Zhao, Y., Yu, Z.C., 2012. Vegetation response to Holocene climate change in East Asian mon-
945	soon-margin region. Earth-Science Reviews 113, 1–10.
946	Zheng, Zhuo, Wang, Jianghua, Wang, Bing, Liu, Chunlian, Zou, Heping, Zhang, Hua, Deng, Yun, Bai, 41

- Yan, 2003. High-resolution records of Holocene from Shuangchi Maar Lake in Hainan Island.
 Chinese Science Bulletin 48 (50, 497–502. (79F)
- 249 Zhou, Mingfu, Shen, Chengde, Huang, Baolin, Qiao, Yulou, 1992. 14C chronology of the variation of
- 950 Fuxian Lake and the neotectonic movement of Chengjiang basin in Yunnan Province during the last
- 50 ka. In: Loess, Quaternary Geology, and Global Change, 3. Science Press, Beijing, pp. 155–160
 (in Chinese). (81G)
- Zhou, Weijian, An, Zhisheng, 1991. 14C chronology of Loess Plateau in China. In: Liu, Tungsheng (Ed.),
 Quaternary Geology and Environ-ment in China. Science Press, Beijing, pp. 192–200 (in Chinese).
 (32B, 34B)
- Zhou, W.J., Yu, X.F., Timothy J., A.J., Burr, G., Xiao, J.Y., Lu, X.F., Xian, F., 2004. High resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during
 the past 18,000 years. Quaternary Research 62, 39–48. (75F)
- Zhu, Cheng, Ma, Chunmei, Zhang, Wenqing, Zheng, Chaogui, Tang, Lingyu, Lu, Xuefeng, Liu, Kexin,
 Chen, Huizhong, 2006. Pollen record from Dajiuhu Basin of Shennongjia and environmental
- 961 changes since 15.753 kaB.P. Quaternary Sciences 5, 814–826 (in Chinese with English abstract).

962 (70E)

- 263 Zhu, Haihong, 1989. Lacustrine Environment and Sediments of the Yunnan Fault-Downwarped Lakes.
- 964 Science Press, Beijing (in Chinese). (82G)

1 Table 1

-		Eccentricity	Obliquity (°)	Precession (ω -180°)	CO_{2} (ppm)	CH_{ℓ} (nnh)	$N_{2}O(nnh)$
		Lecentricity	Obliquity ()		CO ₂ (ppm)	C114 (ppb)	1420 (ppb)
-	H0K	0.0167	23.4	102	286.2	805.6	276.7
	H9K	0.0194	24.2	303	same as H0	K	
	HT	varying from	H9K to H0K		same as H0	K	

2 Boundary conditions used in KCW simulations.	2	Boundary conditions used in KCM simulations.
--	---	--

1 Table 2

2

List of proxy record sites from different regions in this study (Each of the references is noted in the

3 References of the text with site NO.)

Site NO.	Site name	Latitude(N)	Longitude(E)	Reference
1A	Sumxi Co(N)	35°30′	81°00′	Van Campo and Gasse (1993)
2A	Taklamakan	37°-42°	75°-90°	Yang et al. (2011)
3A	Aibi Lake	44°54′	82°35′	Wu et al. (1996)
4 A	Manas Lake	45°45′	86°00′	Sun et al. (1994)
5A	Wulun Lake	46°59′	87°00′	Yang and Wang (1996)
6A	Chaiwopo	43°25′	87°15′	Shi (1990)
7A	Boston Lake	41°56′	86°40′	Xu (1998)
8A	Balikun	43°42′	92°44′	Han (1992)
9A	Daqaidan	37°50′	95°15′	Huang et al. (1980)
10A	Dunde	38°06′	96°24′	Liu et al. (1998)
11A	Hurleg Lake	37°19′	96°54′	Zhao et al. (2007)
12B	Qinghai lake	36°32′	99°36′	Du et al. (1989)
				Kelts et al. (1989)
				Liu and Qiu (1994)
				Shen et al. (2005)
13B	Halali	36°40′	99°53′	Chen et al. (1991a)
14B	Eastern Juyanze	41.89°	101.85°	Herzschuh et al. (2004)
15B	Badain Jaran	38°-43°	99°-107°	Yang et al. (2010)
16B	Sanjiaocheng	39°00′	103°20′	Chen et al. (2006)
17B	Hongshui River	38°10′46″	102°45′53″	Zhang et al. (2000)
18B	Jiuzhoutai	36°05′	103°48′	Chen et al. (1991b)
19B	Lanzhou	36°03′	103°73′	Wang et al. (1991)
20B	Baxie	35°34′	103°35′	An et al. (1993)
21B	Zoige peatland	33.5°	103°	Zhao et al. (2011)
22B	Hongyuan	32°46′	102°31′	Hong et al. (2003)
23B	Sujiawan	35°32′20″	104°31′22″	An et al. (2003)
24B	Dadiwan	35°01′	105°54′	An et al. (2003)
25B	Lianchi Lake	35°16′	106°19′	Zhao (2010)
26B	Xiteng	35°42'	10/~38	Guo et al. (2009)
2/B	Jiuxian	33°34'	109°06	Callet al. (2010)
28B	Y aoxian	34-50	108-50	Li et al. (2003)
29B 20D	Selevenev	37-39	108°37	Li et al. (2003)
30B	Salawusu	37 30	108 40	$\frac{1}{2} \frac{1}{2} \frac{1}$
31D 22D	Lucabuan	30.4 25°44/	109.25 100°25′	(1993)
32D 22D	Eurochuan	33 44 34°50'	109 23 100°50′	Sup and Zhao (1001)
34B	Beizhuangeun	34 30	109 30	They and $An (1991)$
34D 35R	Wudangzhao	74 22 70°50'	110°15′	Cui and Song (1002)
36B	Chasuai	40°40′	111015	Wang and Sun (1992)
37B	Diagijao Lake	41°18′	112°21′	Shi and Song (2003)
38R	Daibai Lake	40°35′	112 21	Wang et al. $(1990a b)$
300	Damai Lake	40 55	112 40	$\begin{array}{c} \text{Xiao et al.} (19904,0) \\ \text{Xiao et al.} (2004) \end{array}$
39R	Baisuhai	41°08′	112°40′	Cui and Song (1992)
40B	Huanggihai	40°50′	113°15′	Li et al $(1992a)$
41B	Chaganlimenoer	43°16′	112°53′	Sun (1990)
42B	Hunshandake	42°-44°	112°-118°	Yang et al. (2008)
43B	Chanhanzhao	41°30′	113°52′	Geng (1988)
44B	Bavanchagan	41.65°	115.21°	Jiang et al. (2006)
45B	Taishizhuang	40°21.5′	115°49.5′	Tarasov et al. (2006)
46B	Xiaoniuchang	42°37′	116°48′	Liu et al. (2002)
47B	Haoluku	42°57.38′	116°45.42′	Liu et al. (2002)
48B	Dalainoer	43°20′	116°40′	Geng (1988)

49C	Hulun Lake	48°30'40″	116°58′	Yang and Wang (1996)
50C	Hulong Lake	49°00′	117°20′	Wang et al. (1994)
51C	Gushantong	42°30′	126°10′	Liu (1989)
52C	Hani	42.21°	126.21°	Hong et al. (2005)
53C	Gushantun	42°30′	126°10′	Liu (1989)
54C	Jinchuan	42°20′	126°22′	Sun and Yuan (1990)
				Jiang et al. (2008)
55C	Qindeli	48°00′	133°15′	Xia (1988)
56D	Maohebei	39°32′	119°12′	Li and Liang (1985)
57D	Baiyangdian	38°50′	116°00′	Xu et al. (1988)
58D	Pulandian	39°30′	112°00′	Institute of Geochemistry (1977)
59D	Yellow River Delta	37°47.8′2	118°54.3′	Yi et al. (2003)
60E	Jianhu	33°30′	119°45′	Tang and Shen (1992)
61E	Qidong	31°50′	121°40′	Liu et al. (1992)
62E	Taihu Lake	30°55′-31°35′	119°50′-120°35′	Sun and Wu (1987a)
63E	Zhenjiang	32°12′	119°25′	Xu and Zhu (1984)
64E	Chao Lake	31°25′28″	117°16′54″	Chen et al. (2009)
65E	Poyang Lake	28°52′	116°15′	Editorial Committee of a Studies
				on Poyang Lake (1987)
				Jiang and Piperno (1999)
66E	Dongting Lake	28°40′-29°30′	111°45′-113°10′	Zhang (1991)
67E	Guyuanmence	29°40′-30°20′	111°40′-112°25′	Tan (1980)
68E	Longquan Lake	30°53′	111°52′	Li et al. (1992b)
(0)	0.1	210404	11000(1	Liu et al. (1993)
69E	Sanbao	31°40'	110°26′	Dong et al. (2010)
70E	Dajiuhu Lake	31°25′	110°10'	L1 et al. $(1992b)$
711	TT 1	20027/	1100051	Zhu et al. (2006)
71E 72E	Hesnang	30°27 25949/	110°25'	Hu et al. (2008)
72E	Shizee	23 48	110 20	Li et al. (1993)
73E 74E	Dengge	26 11 25°17'	10/ 10	$W_{\text{and ot al.}}(2012)$
74E 75E	Doligge	23 17	108 03	The stal (2003)
/31	Danu	24 41	115	Xiao et al. (2007)
76F	Fanova	22°55′	113°25′	I i et al. (1991)
70F	Huangsha	22°33 23°10′	110°20′	Lietal (1991)
78F	Huguang Maar Lake	21°9′	110°20	Wang et al. (2007)
79F	Shuangchi Maar Lake	19°57′	110°11 ′	Zheng et al. (2003)
80G	Zoige Basin	32°20′	103°25′	Yan et al. (1999)
81G	Caohai Lake	26°50′	104°12′	Lin and Zheng (1987)
				Zhou et al. (1992)
82G	Dianchi	24°40′-25°03′	102°35′-40′	Sun et al. (1987b)
				Zhu (1989)
83G	Fuxian Lake	24°25′-35′	102°50′-55′	Song (1994)
84G	Jimenghai	24°10′	102°45′	Nanjing Institute of Geography
	-			and Limnology, CAS (1989)
85G	Shayema Lake	28°05′	101°35′	Jarvis (1993)
86G	Eryuan	26°08′	99°55′	Lin (1987)
87G	Erhai Lake	25°36′	100°05′	Lin (1987)
				Shen et al. (2006)
88H	Mawmluh	25°16′	91°53′	Berkelhammer et al. (2012)
89H	Hidden Lake	29°49′	92°48′	Tang et al. (2000)
90H	Qongjiamong Co	29°48.77′	92°22.37′	Shen (2003)
91H	Zigetang Lake	32.0°	90.9°	Herzschuh et al. (2006)
92H	Seling Co	31°34′-37′	88°31'-89°21'	Gu et al. (1993)
				Sun et al. (1993)
93H	Sumxi Co(S)	34°18′	80°08′	Gasse et al. (1991)
94H	Bangong Lake	33°40′	79°00′	Van Campo et al. (1996)

1 **Figure captions**

- Fig. 1. Comparison of annual mean precipitation (mm/day) (a, c) and annual mean surface temperature (°C) (b, d) from the Climate Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation (c, d).
- Fig. 2. Insolation changes (W/m²) in boreal summer (June) (solid lines) and winter (December) (dash
 lines) (Berger and Loutre, 1991), shown as deviations relative to 9.5 ka BP. The 9.5 ka BP insolation
 at 30°N is 509.87 (W/m²) for June and 207.07 (W/m²) for December, respectively.
- Fig. 3. Simulated boreal summer (June-July-August, JJA) surface temperature (°C) over Eurasian
 continent at 0 ka BP relative to 9.5 ka BP.
- Fig. 4. Asian summer monsoon indices calculated from HT simulation with a 99-point smoothing 10 average. Black line indicates the Indian summer monsoon index (ISMI), and the red line indicates the 11 East Asian summer monsoon index (EASMI). Both the ISMI and EASMI values are relative to values 12 13 of 9.5 ka BP, respectively. The ISMI is adapted from Goswami et al. (1999) as the difference of JJA meridional wind anomalies at 850 hPa and 200 hPa averaged over the ISM region (70°E-110°E, 14 10°N-30°N), i.e. $ISMI = V^*_{850} - V^*_{200}$, where V^*_{850} and V^*_{200} are boreal summer season (JJA) 15 meridional wind anomalies at 850 hPa and 200 hPa, respectively. The EASMI used here was defined 16 as shear vorticity by Wang et al. (2008), i.e. $EASMI = U_{850}$ (110°E-140°E, 22.5°N-32.5°N) – U_{850} 17 (90°E-130°E, 5°N-15°N), where U_{850} is boreal summer (JJA) horizontal wind speed at 850 hPa. 18 Shading area shows contrasting phase of the ISMI and EASMI during around 7 ka BP to 4.5 ka BP. 19
- Fig. 5. Spatial patterns (shading color) and associated time series of the EOF modes (principal components, PCs) of the Asian summer (JJA) precipitation for H9K (a: EOF1; b: PC1), H0K (c: EOF1; d: PC1), and HT (e: EOF2; f: PC2). The contour lines in the figures (a, c, e) are correlation square of JJA precipitation with PC1 (a, b) and PC2 (c), respectively. Correlation square above 0.1 is

significant at 95% confidence level.

•)	Δ	
-		Ε.

Fig. 6. Same as Fig. 5 but for the HT JJA precipitation (a: EOF1; b: PC1). 25

- Fig. 7. Map showing subdivisions of the locations of the paleoclimatic proxy records (see Table 2 for 26 cite information and references). The division of regions A-H is after An et al. (2000). The sites of 27 proxy records in the Figure are numbered with 1-94, which match those listed in Table 2. Solid dots in 28 the sub-regions A, B, C, D, E, F, G and H in the Figure indicate proxy records used in An et al. (2000) 29 to divide China into eight sub-regions. Different color of the dots indicates proxy records in different 30 sub-regions. 31
- Fig. 8. Comparison of simulated summer (July, August) precipitation in the HT simulation with moisture 32 33 indices from the synthesis of multi-proxy records for the Holocene in Regions A, B, C. Shading areas indicate relative wetter period based on proxy data from Zhao et al. (2009a) and Yang et al. (2011). 34
- Fig. 9. Same as Fig. 8 but for Regions D, E, F, G, H. The shading areas indicate relative wetter period 35 based on proxy data from Zhao et al. (2009b) and Zhang et al. (2011). 36
- 37 Fig. 10. Correlation between the Asian summer monsoon intensity (represented by PC1 of HT JJA precipitation, blue line) and ENSO index (represented by DJF Niño 3.4 SST of HT, red line). The 38 proxy record for Holocene ENSO frequency from Laguna Pallcacocha sediment color changes (Moy 39 et al., 2002) is overlapped for a comparison (black line). 40
- Fig. 11. Zonal mean Outgoing Longwave Radiation (OLR) (W/m²) over region [40°E-140°E, 0°-40°N] 41 for the last 9.5 ka, calculated from experiment HT (shading color). Time series of PC1 of HT (pink 42 line) and proxy record (black line) for the ITCZ (Titanium concentrations (%) in ODP site 1002C 43 from the Cariaco Basin, Haug et al., 2001) are overlapped for a comparison. Relatively strong (S1, 44 S2,..., S8) and weak (W1, W2,..., W8) intervals for summer monsoon strength are marked on the PC1 45 46 curve.

47	Fig. 12. Composite differences in simulated (HT) summer (JJA) sea level pressure (SLP) (pa) (shaded)
48	and 850 hPa wind vectors (m/s) (arrows) between low (9-8 ka BP) and high (2.5-1.5 ka BP) DJF
49	Niño 3.4 SST years.
50	Fig. 13. Composite differences in simulated (HT) seasonal SST over Pacific in boreal winter (DJF) (a),
51	spring (MAM) (b) and summer (JJA) (c) between low (9-8 ka BP) and high (2.5-1.5 ka BP) DJF

52 Niño 3.4 SST years.

Supplementary Information

Supplementary Figure captions

Fig. S1. Comparison of spring (March-April-May, MAM) mean precipitation (mm/day) (a, c) and MAM mean surface temperature (°C) (b, d) from the Climate Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation (c, d).

Fig. S2. Comparison of summer (June-July-August, JJA) mean precipitation (mm/day) (a, c) and JJA mean surface temperature (°C) (b, d) from the Climate Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation (c, d).

Fig. S3. Comparison of autumn (September-October-November, SON) mean precipitation (mm/day) (a, c) and SON mean surface temperature (°C) (b, d) from the Climate Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation (c, d).

Fig. S4. Comparison of winter (December-January-February, DJF) mean precipitation (mm/day) (a, c) and DJF mean surface temperature (°C) (b, d) from the Climate Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation (c, d).

Fig. S5. Comparison of simulated trends of last 6 ka for global zonal-mean JJA precipitation (PREC) and surface air temperature (SAT) by KCM (Liya_Jin, brown line) with other models (referenced from the INTERDYNAMIK 2010 Status Seminar, Bremen, Germany, http://www.geo.uni-bremen.de/interdynamik/)

(a) Summer (June-July-August, JJA) precipitation

(b) Summer (JJA) surface air temperature

Fig. S5. Comparison of simulated trends of last 6 ka for zonal-mean summer (JJA) (a) precipitation (PREC) and surface air temperature (SAT) (b) by KCM (Liya_Jin, brown line) with other models (referenced from the INTERDYNAMIK 2010 Status Seminar, Bremen, Germany, http://www.geo.uni-bremen.de/interdynamik/)