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Abstract 25 

    Paleoclimate proxy records of precipitation/effective moisture show spatial-temporal 26 

inhomogeneous over Asian monsoon and monsoon marginal regions during the Holocene. To investigate 27 

the spatial differences and diverging temporal evolution over monsoonal Asia and monsoon marginal 28 

regions, we conduct a series of numerical experiments with an atmosphere-ocean-sea ice coupled 29 

climate model, the Kiel Climate Model (KCM), for the period of Holocene from 9.5 ka BP to present (0 30 

ka BP). The simulations include two time-slice equilibrium experiments for early Holocene (9.5 ka BP) 31 

and present-day (0 ka BP), respectively and one transient simulation (HT) using a scheme for model 32 

acceleration regarding to the Earth's orbitally driven insolation forcing for the whole period of Holocene 33 

(from 9.5 to 0 ka BP). The simulated summer precipitation in the equilibrium experiments shows a 34 

tripole pattern over monsoonal Asia as depicted by the first modes of empirical orthogonal function 35 

(EOF1) of H0K and H9K. The transient simulation HT exhibits a wave train pattern in the summer 36 

precipitation across the Asian monsoon region associated with a gradually decreased trend in the 37 

strength of Asian summer monsoon, as a result of the response of Asian summer monsoon system to the 38 

Holocene orbitally-forced insolation change. Both the synthesis of multi-proxy records and model 39 

experiments confirm the regional dissimilarity of the Holocene optimum precipitation/effective moisture 40 

over the East Asian summer monsoon region, monsoon marginal region, and the westerly-dominated 41 

areas, suggesting the complex response of the regional climate systems to Holocene insolation change in 42 

association with the internal feedbacks within climate system, such as the air-sea interactions associated 43 

with the El Nino/Southern Oscillation (ENSO) and shift of the Intertropical Convergence Zone (ITCZ) 44 

in the evolution of Asian summer monsoon during the Holocene. 45 

Keywords: Holocene; Asian summer monsoon; coupled climate model; orbital forcing 46 

1. Introduction 47 
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    Monsoon is a large-scale phenomenon of the seasonal cycle in various regions around the world 48 

and the associated precipitation changes are stronger in summer, i.e. June-July-August (JJA) over the 49 

Northern Hemisphere and December-January-February (DJF) over the Southern Hemisphere. Monsoon 50 

is also part of the global energetics and participates in the redistribution of heat and water across the two 51 

hemispheres as well as between land and ocean. Paleoclimate records and climate model simulations 52 

suggest that orbitally forced change in insolation was a major factor causing longer-term climate 53 

variations in the Holocene (e.g., Mitchell et al., 1988; Hewitt and Mitchell, 1998; Fleitmann et al., 2003, 54 

2007; Mayewski et al., 2004; Gupta et al., 2005). Previous climate simulations (Weber et al., 2004) and 55 

proxy records (Staubwasser et al., 2003; Higginson and Altabet, 2004; Gupta et al., 2005; Selvaraj et al., 56 

2007) have also shown that small (<1%) decadal to centennial scale solar irradiance can bring 57 

pronounced changes in the tropical monsoon during the Holocene. Accordingly, regional monsoon 58 

systems have undergone significant changes during the Holocene, and a common forcing mechanism 59 

(the Earth's orbital precession cycle) has been proposed to underlie low latitude climate dynamics acting 60 

synchronously on the different monsoon sub-systems (Beaufort et al., 2010). The Indian summer 61 

monsoon (ISM) and East Asian summer monsoon (EASM) are two sectors of the Asian summer 62 

monsoon systems, which are thought to be different from each other and also interactive with each other 63 

(Dao and Chen, 1957; Yeh et al., 1958). The East Asian summer monsoon climate during the Holocene 64 

associated with the summer precipitation in the monsoon influenced regions has been extensively 65 

studied in recent few decades with multiple climate models (e.g. Paleoclimate Modelling 66 

Intercomparison Project (PMIP) Mid-Holocene Climate Simulation, http://pmip.lsce.ipsl.fr/; Jiang et al., 67 

2013) and various proxy records from cave deposits (speleothems), lake sediments (pollen, carbon 68 

isotopes of organic matter, total organic matter, stable isotopes of carbonates), peats (carbon isotopes of 69 

organic matter) and loess-paleosol sequences (grain size, magnetic susceptibility). Emerging empirical 70 
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evidences suggest a decreasing trend of East Asian summer monsoon strength from the early Holocene 71 

(with the maximum monsoon intensity) to present day following the Northern summer insolation trend 72 

(Kutzbach, 1981; Ruddiman, 2008). However, dissimilarities have also been identified in the 73 

spatiotemporal patterns of the Asian summer monsoon during the Holocene. For example, a 74 

time-transgressive (asynchronous) Holocene climatic optimum was suggested that the Holocene East 75 

Asian summer monsoon precipitation (or effective moisture) reached the maximum at different periods 76 

in different regions of China with the trend of frontal migration paralleling the trend of Northern 77 

summer insolation across the monsoon region in a number of researches (An et al., 2000; He et al., 2004; 78 

Wang et al., 2010). A recent study by Jiang et al. (2012) suggested asynchronous termination of the 79 

Holocene climatic optimum in the Asian monsoon territory based on stalagmite-inferred precipitation in 80 

southwestern China. An anti-phase relationship is found in a few studies between the oxygen isotope 81 

records from stalagmites in caves in southern China and from loess/paleosol magnetic properties, the 82 

former indicating gradual monsoon weakening for the last 9 ka, while the latter indicating variable East 83 

Asian monsoon intensity through the entire Holocene (Hong et al., 2005; Dykoski et al., 2005; Maher 84 

and Hu, 2006; Maher, 2008). Multiple geochemical proxies (e.g. Organic carbon concentration (wt%), 85 

Organic carbon burial flux and C/N ratio) from the western Arabian Sea for the ISM strength, however, 86 

do not exhibit an inverse relationship with the EASM records, suggesting both the ISM and EASM 87 

varied in unison under common forcing factors on sub-Milankovitch timescales (Tiwari et al., 2005, and 88 

references therein). Tiwari et al. (2010) argued that during the Holocene, the ISM did not follow 89 

insolation, implying that there were more than one controlling factors than insolation (which declined 90 

monotonically) responsible for the monsoon strength and that other internal feedback process might be 91 

equally important. Recent work by Shi et al. (2012) suggested strong anti-phasing response of northern 92 

and southern East Asian summer precipitation to seasonal variability of the El Niño-Southern 93 
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Oscillation (ENSO) activity in a period of 20 ka in a long-term transient simulation. 94 

The apparent inconsistences imply that the evolution history of Asian summer monsoon during the 95 

Holocene evidenced from paleoclimatic proxy records and confirmed with model simulations still have 96 

many controversies and uncertainties. The mechanisms that drive Asian summer monsoon at 97 

millennial-to centennial or longer time scales are still not fully understood. Therefore, more well-dated 98 

proxy records and climate modeling experiments as well as their comparison and further analyses are 99 

required for understanding the mechanisms behind the climate evolution of the Holocene. In this study, 100 

by using a coupled atmosphere-ocean-sea ice general circulation model (AOGCM), we performed a 101 

series of simulations of Holocene climate changes with varied orbital parameters, to investigate the 102 

mechanisms of Asian summer monsoon evolution and possible causes of asynchronous trends as some 103 

paleoclimate proxy data indicated in the two Asian sub-monsoon systems (i.e. the ISM and EASM). The 104 

outline of the paper is as follows. Section 2 briefly describes the climate model used in this study and 105 

the experimental setup. Section 3 displays the model results with a focus on the spatiotemporal patterns 106 

of summer precipitation in monsoonal and non-monsoon regions during the Holocene. Section 4 gives a 107 

comparison of simulated summer precipitation in sub-regions of China with multi-paleoclimate proxy 108 

records. A discussion is presented in Section 5 followed by the summary and concluding remarks in the 109 

final Section 6. 110 

2. Methods 111 

2.1. Model description 112 

    The coupled climate simulations discussed in this paper are performed with the Kiel Climate Model 113 

(KCM; Park et al., 2009), a non-flux-corrected coupled general circulation model, which consists of the 114 

atmospheric general circulation model ECHAM5 (Roeckner et al., 2003) and the Nucleus for European 115 

Modeling of the Ocean (NEMO) (Madec, 2008) ocean-sea ice general circulation model, with the 116 

javascript:openreferences('made06')
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OASIS3 coupler (Valcke, 2006). The atmospheric resolution is T31 (3.75º×3.75º) horizontally with 19 117 

vertical levels. The ocean horizontal resolution is on average 1.3º based on a 2º Mercator mesh, with 118 

enhanced meridional resolution of 0.5º in the equatorial region. The present-day climate simulated by 119 

KCM has been validated against the observation (Park et al., 2009) and used for the internal climate 120 

variability studies (Park and Latif, 2008, 2010) and externally forced variability (Latif et al., 2009). 121 

Schneider et al. (2010) showed the Holocene trends of the temperature simulated in a series of time-slice 122 

experiments with the KCM and provided in-depth analysis to explain the trends of the different proxy 123 

data in the Holocene. Khon et al. (2010) further presented the responses of the hydrological cycles 124 

simulated in the KCM. A detailed description of the KCM is given by Park et al. (2009) with further 125 

information of the performance of the model. 126 

2.2. Experiment setup 127 

    First, we ran equilibrium simulations for two time slices using the KCM: the early Holocene (9.5ka 128 

BP, H9K) and the pre-Industrial (0 ka BP, H0K). The H9K and H0K experiments were both initialized 129 

with Levitus climatology data (Levitus, 1982) and were integrated 1000 years under the orbital 130 

configurations for the 9.5 ka BP and 0 ka BP, respectively. Greenhouse gas (GHG, i.e. the atmospheric 131 

concentrations of CO2, CH4 and N2O) concentrations are held constant with pre-industrial levels. We 132 

analyze the last 500 years of the integrations after skipping initial 500 years to exclude model drifts. 133 

Secondly, we performed a transient simulation (HT) for the period from the early Holocene (9.5 ka 134 

BP) to present day (0 ka BP). The transient simulation HT was started from the last year of the 135 

1000-year equilibrium time-slice experiment H9K and is integrated under the orbital forcing for 1000 136 

years after spin-up, thus the transient response of climate system during the Holocene (9.5 ka BP to 0 ka 137 

BP) is achieved. The Earth's orbital parameters (eccentricity, obliquity and precession; Berger and 138 

Loutre, 1991) are varied from 9.5 ka BP to 0 ka BP with a 10-times acceleration scheme (Lorenz and 139 

javascript:openreferences('park09')
javascript:openreferences('park09')
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Lohmann, 2004) in the HT simulation to save calculation resources. Since the variations in orbital 140 

parameters for the period of Holocene are very slow, the orbital accelerating effect for a factor of 10 can 141 

be neglected when considering the interannual-timescale changes of atmospheric and oceanic systems, 142 

such as the seasonal variability of paleo-ENSO in the model. GHGs were kept as constant as in the two 143 

time-slice simulations mentioned above and over the entire period of the transient Holocene simulation 144 

(from 9.5 to 0 ka BP). The three experiment setup is summarized in the Table 1. 145 

Fig. 1 shows a comparison of model output from KCM simulation with observations of annual mean 146 

precipitation and surface temperature for 1901-1930 from the Climate Research Unit TS 2.1 climate 147 

dataset (Mitchell and Jones, 2005). The data quality of the observation during the periods can be 148 

questioned due to lack of the sampling, but the mean state at this period can be closer to the 149 

pre-industrial period that is simulated with the model. The spatial distribution and absolute values of 150 

simulated annual mean precipitation (Fig. 1c) and surface temperature (Fig. 1d) represent well the 151 

general features of the observations (Fig. 1a, b), in particular over the Indian and east Asian sectors. The 152 

same holds true for seasonal patterns (Figs. S1, S2, S3, S4). 153 

It is to note here that the transient Holocene simulation (HT) by KCM has also made a comparison 154 

with 10 other climate modeling experiments in the Integrated Analysis of Interglacial Climate Dynamics 155 

Program (INTERDYNAMIK, http://www.geo.uni-bremen.de/Interdynamik/). The simulated trends of 156 

last 6 ka for global zonal-mean JJA precipitation and surface air temperature by KCM are in generally 157 

agreement with other models (Fig. S5), suggesting a reliable performance of KCM for the Holocene 158 

climate simulation. 159 

2.3. EOF analysis 160 

To investigate the spatial and temporal variations of Asian summer monsoon during the Holocene, the 161 

empirical orthogonal function (EOF) analysis (Björnsson and Venegas, 1997) was used in this study. 162 

http://www.geo.uni-bremen.de/Interdynamik/
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The EOF analysis is a novel statistical technique that simplifies an original spatial-temporal data set by 163 

transforming it into spatial patterns of variability and temporal projections of the patterns. The spatial 164 

patterns are the EOFs as basic functions in terms of variance. The associated temporal projections are 165 

the principal components (PCs) and are the temporal coefficients of the EOF patterns. Individual EOFs 166 

can sometimes have physical interpretation assigned to them. If there are geophysical data maps that are 167 

time series with any m×n matrix, Z, square or rectangular, there exist uniquely two orthogonal matrices, 168 

X and Y and diagonal matrix L such that, 169 

Z = X×L×Y
T
                                                                  (1) 170 

where Y
T
 is the transpose of a matrix Y. The columns of X called the EOFs of Z, and the corresponding 171 

diagonal elements of L are called the eigenvalues. Each row of Y serves as a series of time coefficients 172 

associated with each EOF, i.e. PC. The map associated with an EOF represents a pattern that is 173 

statistically independent and spatially orthogonal to the others. The eigenvalues indicates the amount of 174 

variance accounted for by the patterns. 175 

   In this study, Asian summer precipitation from the experiments H0K, H9K and HT by KCM, as a 176 

data set, respectively, constitutes a matrix Z, and is then performed with EOF analysis. 177 

3. Model results  178 

3.1. Surface temperature 179 

   Orbitally-induced changes in the seasonal distribution of insolation during the Holocene (Fig. 2) are 180 

clearly reflected by changes in surface temperature between simulations of H0K and H9K (Fig. 3). The 181 

zonally averaged northern Hemisphere insolation at 0 ka BP is over 30 W/m
2
 lower than that at 9.5 ka 182 

BP in the middle and high latitudes during boreal summer (June) (Fig. 2). In response to the seasonal 183 

insolation changes, the simulated summer (June-July-August, JJA) surface temperatures in H0K shows a 184 

general cooling trend across most of the Eurasian continent relative to H9K, and extend to the 185 
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northeastern EASM area (northeastern China, Korea and Japan) with maximum cooling, in excess of 2º 186 

C (Fig. 3). The cooling in H0K compared to H9K is simulated north of 20ºN that extends from the 187 

Sahara in the northern Africa to 65º N central Russia (Fig. 3). Surface temperatures over the ISM area 188 

(including India, southern and southwestern China), however, are warmer in H0K than H9K (Fig. 3). 189 

This warming trend over the ISM and southern EASM areas from 9.5 ka BP to 0 ka BP does not follow 190 

the summer (June) insolation evolution, which is gradually decreased during the Holocene (Fig. 2). The 191 

warming trend in summer surface temperature over the ISM and southern EASM regions, where is in 192 

contrast to the cooling trend over the middle and northern EASM regions, could be attributed to local 193 

effects related to a gradually decreasing summer monsoon cloud cover towards present day since early 194 

Holocene (Li and Morrill, 2010). Although a gradually decreasing summer insolation (Fig. 2) since the 195 

early Holocene tends to reduce the JJA surface temperature over the ISM and southern EASM regions, 196 

the decreasing cloud cover related to a weakening of the summer monsoon tends to increase the surface 197 

temperature over the ISM and southern EASM regions, which result in an asynchronous trends (from 198 

9.5 ka BP to 0 ka BP) of surface temperatures during the Holocene in the ISM and EASM regions (Fig. 199 

3). 200 

3.2. Asian summer monsoon and associated precipitation 201 

3.2.1. Summer monsoon intensity by index 202 

  Two Asian summer monsoon indexes (for the ISM and EASM regions, respectively) are calculated to 203 

indicate the strength and variability of the Asian summer monsoon. The Indian summer monsoon index 204 

(ISMI) used here is adapted from Goswami et al. (1999) as the difference of JJA meridional wind 205 

anomalies at 850 hPa and 200 hPa averaged over the ISM region, expressed as: 206 

ISMI = V*850―V*200                                                                                  (2)                                                                                  207 

, where V*850 and V*200 are boreal summer (JJA) meridional wind anomalies at 850 hPa and 200 hPa 208 
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respectively, averaged over the ISM region (70º–110º E, 10º–30º N).  209 

The EASMI used here was defined as shear vorticity by Wang et al. (2008),  210 

 EASMI = U850 (110º–140º E, 22.5º–32.5º N)―U850 (90º–130º E, 5º–15º N)          (3) 211 

, where U850 is boreal summer (JJA) horizontal wind speed at 850 hPa. 212 

Both the ISMI and EASMI have been used extensively to indicate the intensity and variability of the 213 

Asian summer monsoon in modern climate change studies (e.g. Goswami et al., 1999, Wang et al., 214 

2008). The Indian summer monsoon index, ISMI, in Eq. (2), proposed by Goswami et al. (1999) is based 215 

on the same dynamical premise as Webster and Yang Index (1992) that the monsoon flow is a first 216 

baroclinic response to the diabatic heating over southern Asia but with a better representation of the 217 

convective heating associated with the Indian summer monsoon precipitation. In addition, the ISMI in 218 

Eq. (2) is also a good measure of the strength of the monsoon Hadley circulation (Goswami et al., 1999). 219 

The All-India (India taken as one unit) monsoon rainfall has been used as a proxy data for Indian 220 

monsoon (Shukla and Paolino, 1983; Parthasarathy et al., 1994), but the ISMI represents much 221 

characteristics of the monsoon system (i.e., wind and rainfall) (Goswami et al., 1999). For the EASMI, 222 

Wang et al. (2008) once made a synthetic analysis on 25 existing EASM indices, and recommended a 223 

simple index of EASM intensity as shown in Eq. (3), which is nearly identical to a unified measure for 224 

the intensity of EASM, and has unique advantages over all the existing indices. 225 

Fig. 4 depicts time series of the ISMI and EASMI derived from the transient Holocene simulation, 226 

HT. As can be seen in Fig.4, the ISMI indicates a generally declined trend of the Indian summer 227 

monsoon during the entire period of the Holocene (from 9.5 ka BP to 0 ka BP) (Fig. 4, black line), while 228 

the EASMI shows large oscillations of multi-centennial variability during mid-Holocene (roughly 229 

between 7 ka BP to 4.5 ka BP) (Fig. 4, red line), reflecting significant regional differences of the ISM 230 

and EASM, despite a similar overall decreased trend over the last 9.5 ka. 231 
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To further check the different regional evolution of Asian summer monsoon during the Holocene, we 232 

used an empirical orthogonal function (EOF) analysis (Björnsson and Venegas, 1997) on JJA 233 

precipitation in the following section. 234 

3.2.2. Asian summer precipitation 235 

  EOF analysis is applied to summer (JJA) precipitation simulated in the experiments H0K, H9K and 236 

HT to provide the spatial structures and their time evolution. EOF modes from the time slice 237 

experiments with fixed orbital parameters (i.e. H0K and H9K) represent the internal variability of the 238 

precipitation that can be related to the monsoon system, while those from the transient simulations may 239 

provide the forced and internal variability as HT is forced by the varying orbital parameters. 240 

The first EOF (EOF1) (Fig. 5a) derived from H9K JJA precipitation, which accounts for 18.77% of 241 

the total variance, depicts a tri-pole pattern with two significantly positive rainfall anomalies over the 242 

Indian subcontinent and the eastern EASM area including eastern China, Korea, most part of Japan and 243 

the adjacent marginal seas, respectively, and one negative rainfall anomalies in a broad corridor 244 

extending from Indochina Peninsula, crossing South China Sea and stretching to western North Pacific. 245 

The area with negative rainfall anomalies over western North Pacific was just described as the third 246 

sector of Asian-Pacific monsoon systems in modern climate (Wang and Lin, 2002). The associated time 247 

series of EOF1 (PC1) (Fig. 5b) shows a regular annual cycle. The EOF1 derived from H0K JJA 248 

precipitation (Fig. 5c) shows a quite similar spatial pattern with that derived from H9K (Fig. 5a), except 249 

that the explained variance of H0K JJA precipitation is slightly greater with 20.32% than that of 18.77% 250 

of H9K. The EOF1 derived from H9K and H0K JJA precipitation can be efficiently separated in the 251 

transient simulation, HT, as the second EOF mode (EOF2) (Fig. 5e) derived from HT JJA precipitation. 252 

Combining the patterns of EOF1 of H0K and H9K with their respective time series PC1 (Fig. 5b, d) and 253 

the pattern of EOF2 of HT with its time series PC2 (Fig. 5f), we see a distinct summer precipitation 254 
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variation that could be attributed to the internal feedback processes within coupled monsoon systems 255 

over the ISM and EASM regions. 256 

We next describe the forced mode obtained as the EOF1 derived from HT JJA precipitation, which 257 

accounts for 20.20% of the total variance. The EOF1 of HT JJA precipitation (Fig. 6a) shows a wave 258 

train pattern with significant negative rainfall anomalies extending from Peninsular India, crossing 259 

northern India along the foot of the Himalayas and stretching to northern China and southern Mongolia. 260 

The positive rainfall anomalies extending from the middle reaches of the Yangtze River Valley 261 

(100º–122ºE, 28º–35ºN) to Korea, Japan and adjacent marginal seas can also be observed in the EOF1 262 

(Fig. 6a). Then, by combining the spatial pattern (EOF1) with associated time series (PC1) (Fig. 6b) of 263 

HT JJA precipitation, the spatial-temporal structure of the Asian summer monsoon precipitation can be 264 

described as follows. During the early to middle Holocene (from 9.5 to roughly 5.5-4.5 ka BP), a 265 

relatively high precipitation amount could be expected over the ISM influenced area (Indian 266 

sub-continent, northern India, Himalayas, southwestern China, northern China and southern Mongolia); 267 

while the precipitation over the eastern EASM influenced areas (Region D in China and Korea and 268 

Japan) is of the opposite phase. During the late Holocene (roughly from 5.5-4.5 ka BP to present), an 269 

inverse phase of precipitation amount could be expected over the above mentioned regions. The wave 270 

train pattern in EOF1 derived from HT JJA precipitation is on the millennial to centennial time scales, 271 

which is quite similar to a summer rainfall pattern in the semiarid region of northern China at the 272 

interannual and multidecadal time scales where teleconnection to the ENSO on summer rainfall in 273 

northern China through the Indian summer monsoon is suggested (Feng and Hu, 2004). 274 

4. Comparison with paleoclimate proxy records 275 

A great number of researches have been carried out on the history of Holocene climate changes 276 

over China from various proxy records including pollen and diatom assemblages, sediment lithology, 277 
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lake levels, and geochemistry data in the past few years. The spatiotemporal changes of Holocene 278 

monsoon climate in China, especially the Holocene optimum in the monsoon region of China, have 279 

drawn much attentions to paleoclimatologists as it was not only an important recent climatic episode, it 280 

might as well be served as an important analog for future climatic change in a global warming 281 

background in the vast region. In this study, multi-proxy data, such as lake-level records, lacustrine and 282 

swamp deposits, fossil pollen sequences, peat bogs, speleothem cores and the magnetic susceptibility of 283 

loess-paleosol squences, were compiled for a measure or estimate of summer precipitation/effective 284 

moisture, or summer monsoon intensity during the Holocene in the regions where proxy record samples 285 

were collected. We concentrate on the period of Holocene optimum evaluated from model experiments 286 

and from proxy records. In order to show regional differences of changes in the simulated summer 287 

precipitation during the last 9.5 ka, we divide China into eight sub-regions (A-H) after An et al. (2000), 288 

based on physiography and model horizontal resolution used in this study (Fig. 7; Table 2). Table 2 lists 289 

the sites of proxy records in different regions with numbers 1-94. The sub-regions A, B, C, D, E, F, G 290 

and H in Table 2 match those in Fig. 7. 291 

Region A is located in northwestern China, a vast area with extensively spreading of sandy deserts 292 

(e.g. Taklamakan Desert), where the climate is dominantly influenced by westerly winds. Region B is 293 

located at a transitional area that is both influenced by the westerly winds and monsoon front. In Region 294 

C (northeastern China), proxy data are from only few sites of lakes and swamps, peats, and pollen 295 

sequences (Table 2). Regions D (northern east-central China), E (southern east-central China), F 296 

(southeastern China), G (southwestern China), and H (southern Tibetan Plateau) are typical Asian 297 

summer monsoon influenced areas. 298 

For Regions A, B, C, the entire desert belt in northern and northwestern China generally 299 

experienced a relatively wetter period from 8 to 4 ka BP (Yang et al., 2011) as evident from the synthesis 300 
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of multi-paleoenvironmental records of geomorphologic, lacustrine, pedologic, geochemical, and faunal 301 

and floral fossil from China’s Taklamakan (within Region A in Fig. 7), Badain Jaran Desert (within 302 

Region A in Fig. 7) and Hunshandake Sandy Lands (within Region B in Fig. 7). This is also generally 303 

consistent with the pollen and lake-level derived effective moisture records in western Inner Mongolia 304 

and Xinjiang (sites in Region A + some in Region B) supporting a relatively wetter period during 8.5-5.5 305 

ka BP (Zhao et al., 2009a). A synthesis curve based mostly on pollen records across the monsoon margin 306 

region (the transitional zone between the East Asian summer monsoon and the westerly dominated 307 

region, covering most of proxy-record sites in region B, Fig. 7) shows the maximum moisture occurred 308 

during the middle Holocene (8-4 ka BP) (Zhao and Yu, 2012). In the summer monsoon influenced 309 

regions of China (Regions D, E, F, G, H and some areas in Regions C and A in Fig. 7), several 310 

synthesized analyses on the effective moisture index based on multi-proxy records for the Holocene 311 

yielded a generally consistent timing of the Holocene optimum during the period of 9.5-6 ka BP (e.g. 312 

Herzschuh, 2006; Zhao et al., 2009; Wang et al., 2010; Zhang et al., 2011). 313 

Generally speaking, the period of the Holocene optimum was about during the early to middle 314 

Holocene (9-6 ka BP), based on the syntheses of multi-proxy data in the Asian summer monsoon region 315 

(Regions D, E, F, G, H + parts in Regions A, C) (Zhao et al., 2009a; Zhang et al., 2011); whereas in the 316 

westerly-dominated regions including the desert areas and monsoon marginal zone in northern China 317 

(Regions A, B, C), the timing of the Holocene optimum was about from 8 to 4 ka BP (Yang et al., 2011; 318 

Zhao et al., 2009b). The synthesis of vegetation indices for the monsoon margin region (as shown in Fig. 319 

1 in work of Zhao and Yu, 2012, corresponding to region B in this study) as a whole shows that the 320 

maximum moisture occurred during the middle Holocene (8-4 ka BP) and the driest conditions during 321 

the late Holocene (4-0 ka BP) (Zhao and Yu, 2012), coinciding with the simulated summer precipitation 322 

(July, August) for region B (Fig. 8). 323 
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The described coupled AOGCM transient experiment (HT) reveals temporal response of summer 324 

precipitation to orbitally induced insolation forcing over the last 9.5 ka. The tripole spatial pattern of 325 

summer (JJA) precipitation seen in the first EOF mode (EOF1) of the HT experiment (Fig. 6) indicates 326 

regional difference within Asian monsoon regions. Time series of anomalies of boreal summer 327 

precipitation evaluated using model grid points that correspond as closely as possible to eight regions 328 

are compared with the syntheses of multi-proxy data given in Fig. 8. As can be seen from Fig. 8, the 329 

simulated maximum summer precipitation (positive anomalies) are similar in Regions A and B, occurred 330 

about 9-4.5 ka BP (July, A, B), 9-4.5ka BP (August, A) and 8.5-6 ka BP (August, B) respectively, while 331 

in Region C, the simulated maximum precipitation were about 7-3 ka BP (July, C) and 9.5- 4.5 ka BP 332 

(August, C), respectively. The simulated maximum summer precipitation in Regions A, B, C is in 333 

generally consistent (or overlapped) to the timing of the Holocene optimum from proxy-based moisture 334 

index (Zhao et al., 2009a; Yang et al., 2011) (Fig. 8). But it is noticed that in Regions A and B, the 335 

multi-proxy records showed a relatively drying period during 9.5-8.5 ka BP (Zhao et al., 2009a; Yang et 336 

al., 2011), while the simulated summer (July, August) precipitation over the regions is about positive 337 

normalies (Fig. 8). This may be due to the fact that in the mid-latitude westerly-dominant areas, like the 338 

arid central Asia (Chen et al., 2008) and the northwestern China (Region A), the dry conditions in the 339 

early Holocene seem to result mostly from changes in winter rather than summer climate (Jin et al., 340 

2012). The simulated maximum summer (July, August) precipitation in the monsoon regions (Regions E, 341 

F, G) (Fig. 9) experienced a roughly synchronous period of rich rainfall (positive anomalies) at 9-5.5 ka 342 

BP, which can be comparable to the moisture index induced Holocene optimum period based on the 343 

syntheses of multi-proxy data for the period of Holocene (Zhao et al., 2009b; Zhang et al., 2011). 344 

It is worthy to note that in Region H (southern Tibetan Plateau), a wetter period during 9.5 to 5.5 ka 345 

BP (with positive anomalies) was similar to that in regions E, F and G, but in the late half of the 346 
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Holocene (i.e. from 5.5 ka BP to present), the rapidly decreased trend of summer precipitation is quite 347 

different from that in Regions E, F and G (Fig. 9). This might be due to the result of Region G is much 348 

more influenced by the ISM than by EASM (compare with the ISMI in Fig. 4). Also in Region D 349 

(northern east-central China), we noticed an obvious reverse phase trend of summer (July, August) 350 

precipitation during 9.5 ka-5.5 ka BP, as compared with that in region E (southern east-central China) 351 

(Fig. 9). The distinct temporal patterns of the simulated summer precipitation during the last 9.5 ka 352 

between Region D (within the northern EASM region) and Region E (within the southern EASM region) 353 

is similar to a reverse phase relation between northern (105º–150º
 
E, 30º–45º

 
N) and southern 354 

(105º–150º
 
E, 15º–30º

 
N) East Asian summer monsoon precipitation found from the outputs of an orbital 355 

forcing-driven 284 ka long-term transient simulation (Shi et al., 2012). 356 

5. Discussion 357 

5.1. The role of orbital forcing 358 

It has been widely accepted that the Earth’s orbital forcing induced insolation changes play a central 359 

role in the global scale climate changes in the last 11.5 cal ka (Mayewski et al., 2004). This insolation 360 

driving mechanism on Holocene climate change is supported by climate modeling experiments of global 361 

monsoon variations (e.g. Kutzbach et al., 1982; Liu et al., 2004; Bosmans et al., 2012). These modeling 362 

experiments of monsoonal response to Holocene orbital forcing are mostly time-slice experiments for 9 363 

ka BP (e.g. Kutzbach et al., 1982) or 6 ka BP (e.g. Joussaume et al. 1999) with the orbital parameters 364 

assigned to constant values at corresponding time (i.e. 9ka BP or 6 ka BP). In the present study, the 365 

orbital parameters are set varying along with time (from 9.5 ka BP to 0 ka BP) in the transient 366 

experiment HT, making it to allow for checking the entire Holocene course of the variations of the 367 

spatial patterns of summer precipitation. 368 

The inhomogeneous distribution of summer precipitation in the Asian monsoon region in EOF 1 of 369 
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HT (Fig. 6a) implies the different response of the individual sub-regions of the Asian summer monsoon 370 

domain (i.e. the ISM and EASM) to the Holocene insolation change. The ISM is primarily characterized 371 

by meridional thermal contrast and pressure gradient between northern Asian continent and southern 372 

Indian Ocean, while the EASM is controlled by the zonal land-ocean thermal contrast and pressure 373 

gradient between the Asian continent and the western Pacific. Consequently, the Holocene insolation 374 

change has a different effect on the two sub-systems of ISM and EASM, as suggested by Dallmeyer et al. 375 

(2013) that the different response of the Indian and East Asian monsoon systems to the Holocene 376 

insolation forcing is due to their dynamical change in the different seasons. 377 

The stronger boreal summer insolation during the early to middle Holocene compared to 378 

present-day is believed to have strengthened monsoon activity and accentuated the northerly bias of the 379 

Intertropical Convergence Zone (ITCZ) (e.g., Kutzbach, 1981; Koutavas et al., 2006). Accordingly, sites 380 

affected by the monsoons typically reflect positive precipitation anomalies during the early to middle 381 

Holocene, as evidenced by multi-proxy records in the Asian summer monsoon regions and simulated in 382 

the HT experiment (Figs. 8, 9). Previous researches have shown that tropical Pacific SST changes may 383 

have great influences on the East Asian monsoon system within ENSO cycles (e.g. Wang et al., 2000, 384 

2003; Lau and Nath, 2006). Thus, a strong relationship was suggested to operate between the ITCZ 385 

position, tropical Pacific SSTs, and ENSO throughout the Holocene (e.g. Koutavas et al., 2006). To 386 

examine whether a tele-connection between Asian summer monsoon and Pacific existed or not during 387 

the Holocene, the correlation coefficient is calculated between PC1 of HT JJA precipitation 388 

(representing the Asian summer monsoon intensity) and ENSO index (representing ENSO variability) 389 

(Fig. 10). The ENSO index here is based on the Niño 3.4 SST from the 9.5 ka transient simulation (HT). 390 

It shows that the simulated ENSO variability (Fig. 10, red line) is quite well consistent with the 391 

Holocene ENSO frequency (Fig. 10, black line) inferred from Laguna Pallcacocha sediment color 392 
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changes (Moy et al., 2002), with a relatively weak ENSO variability during the early Holocene (about 393 

9-7 ka BP) and an increased variability during late Holocene (2.5-1.0 ka BP) (Fig. 10), which is also 394 

inferred from previous modeling experiment (Liu et al., 2000). The PC1 of HT JJA precipitation shows a 395 

stepwise increased trend during 9.5 ka BP to 0 ka BP with relative large centuary-scale variations during 396 

2.5-1 ka BP (which is similar to that in ENSO variability) corresponding to gradually weakened summer 397 

monsoon precipitation as can be compared with the Holocene evolution of two sub-Asian summer 398 

monsoon systems (Fig. 4). The high correlation (R = 0.74) (Fig. 10) between the PC1 of the Asian 399 

summer precipitation and ENSO index during the last 9.5 ka suggests an important ENSO modulation in 400 

the millennial-centennial time-scales of orbital forcing, similar as the ENSO influence on interannual 401 

change in the East Asian summer precipitation (Wang et al., 2000) and in the precession scale East Asian 402 

summer monsoon variability from a long-term (284 ka) transient simulation using the fully-coupled fast 403 

ocean-atmosphere model (FOAM) (Shi et al., 2012). 404 

The ITCZ is usually located over the warmest surface in association with high cloudiness, frequent 405 

thunderstorms and heavy rainfall. The position of the ITCZ can be represented by the variations of 406 

zonally averaged mean JJA outgoing longwave radiation (OLR) between 105º–150ºE. As is seen from 407 

Fig. 11, the gradually increased OLR (negative values mean upward radiation) along 20ºN indicates a 408 

mean southward shift in the position of the ITCZ in the last 9.5 ka, which can be well compared with the 409 

runoff variability in the Ti record of the Cariaco Basin, a proxy indicator for the Pacific ITCZ in the 410 

Holocene (Haug et al., 2001). The general southward shift of the ITCZ over the course of the Holocene 411 

(Fig. 11) is accompanied by gradually weakened Asian summer monsoon (Fig. 4) and associated 412 

summer precipitation variations in monsoon regions (Figs. 8, 9). Since around 5 ka BP, there seemed to 413 

be a phase transition of the summer (July, August) precipitation anomalies from positive sign to negative 414 

in Regions E, F, G, H (Fig. 9), implying an increased coupling interaction between the enhanced ENSO 415 
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variability (Fig. 10, red line) and southward ITCZ (Fig. 11, black line) with the smooth insolation 416 

forcing in the late Holocene (Fig. 2). The temporal trends in the Asian summer precipitation, ENSO 417 

variability, and the shifting ITCZ suggest that the potential of orbital forcing induced insolation to affect 418 

the Asian summer monsoon precipitation acts through its influence on the large annual cycle of SST, 419 

convection and cloud cover in the eastern tropical Pacific. 420 

5.2. Holocene optimum in monsoonal Asia and marginal monsoon regions 421 

As shown in Figs. 8, 9, the timing of Holocene optimum of summer precipitation appears to vary in 422 

different regions from various proxy records and model results. Most sites in the monsoon regions (E, F, 423 

G, H) show approximately consistent variations of peak summer precipitation or effective moisture at 424 

9-6 ka BP (Fig. 9), suggesting that the Holocene optimum, defined by peak summer monsoon 425 

precipitation/effective moisture (An et al., 2000), occurred broadly synchronous and that the 426 

previously-proposed time-transgressive Holocene climate across China (e.g., An et al., 2000) is not 427 

supported by current study. The general comparability of Asian summer monsoon (Fig. 4) with the 428 

northern hemisphere summer insolation curve (Fig. 2) during the last 9.5 ka indicates that the orbitally 429 

induced insolation was a major controller on the variability of Asian summer monsoon during the 430 

Holocene, in spite of the fact that various climatic feedbacks within Asian summer monsoon system is of 431 

great importance, such as the effect of oceanic feedback (e.g. Liu et al., 2004). However, the appearance 432 

of the distinct spatial-temporal patterns in the simulated summer precipitation (Fig. 6a, Fig. 9) in the 433 

ISM area (Indian sub-continent, southwestern, southern China) (Regions F, G, H in Fig. 7) and northern 434 

east-central China (Region D in Fig. 7) reveals the complexity of the response of the Asian summer 435 

monsoon system to the Holocene insolation change. The simulated summer precipitation in the southern 436 

Tibetan Plateau (Region H), where is mainly influenced by the ISM, shows a rapidly decreased trend (a 437 

transition of precipitation from positive to negative) after about 5 ka BP (Fig. 9) that largely different 438 
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from that in EASM influenced areas (Regions D, E). This further confirms that the variability of the 439 

ISM and EASM systems may not be synchronous due to different mechanism between the two monsoon 440 

domains. 441 

The climate of Regions A, B, C (Fig. 7) is influenced by large-scale climate forcing, including the 442 

Asian monsoon (Indian monsoon, the East Asian monsoon) and the prevailing mid-latitude westerly 443 

winds (Chen et al., 2008). The timing of Holocene summer precipitation/moisture maximum during 8.5 444 

to 4-5.5 ka BP evidenced by multi-proxy records (Yang and Scuderi, 2010; Yang et al., 2011) in most 445 

sites in Regions A and parts in B (including Xinjiang, the northwestern Loess Plateau, and western Inner 446 

Mongolia), where the westerly winds dominates, is to some extent later than that during 9-6 ka BP in the 447 

monsoon region (E, F, G, H) (Fig. 9), reflecting the difference in the response of regional climate to 448 

Holocene insolation change. The relatively dry period during 9.5-8.5 ka BP in most sites in Regions A 449 

and parts in B and further to the west in arid central Asia (Chen et al., 2008) is closely related to a 450 

reduction in moisture advection brought both by the weakening of mid-latitude westerly winds and 451 

decreased upstream evaporation, which is resulted from a reduced meridional temperature gradient 452 

forced by latitudinal differences in orbital forcing in the early Holocene compared to present day (Jin et 453 

al., 2012). In the Asian summer monsoon marginal region (corresponding to most sites in Region B), the 454 

simulated positive (negative) anomalies in summer precipitation during 9.5 to 5-6 ka BP (during 4.5-0 455 

ka BP in July and 6-0 ka BP in August) (Fig. 8) are in general agreement with the synthesized vegetation 456 

indices of Maximum moisture (during 8-4 ka BP) and gradually drying conditions afterwards (Zhao and 457 

Yu, 2012), likely to reflect the northward extension of the Asian summer monsoon during the early- to 458 

middle Holocene and the retreat during the late Holocene in response to the insolation change during 459 

these periods. 460 

5.3. Air-sea interactions 461 
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As discussed above, the spatial-temporal patterns in the Asian summer monsoon precipitation 462 

inconsistently responded to the Holocene insolation change. Here, we analyze the circulation pattern 463 

using HT experiment result to explain the different evolutions of the ISM and EASM and regional 464 

differences in the East Asian region. Fig. 12 shows the spatial pattern of composite differences of 850 465 

hPa wind vectors and sea level pressure (SLP) over northern and tropical Pacific and adjacent continents 466 

between low- and high- DJF Niño SST extremes (ENSO events), where the low (high) SST extremes are 467 

corresponded to the low (high) frequency of ENSO events at early (late) Holocene (corresponding to 9-8 468 

ka BP (2.5-1.5 ka BP) (Fig. 10). A high pressure center is over northwestern Pacific with an enhanced 469 

anticyclone activity, which delivers large water vapor from northwestern Pacific toward the northern 470 

China and southern Mongolia (Fig. 12), which is favorable for the development of East Asian summer 471 

monsoon and associated rainfall over there (Fig. 6a; some areas in Regions B, C in Fig. 7). Similar 472 

northward lower level winds (from ocean to land) can be seen over the sub-Indian continent and 473 

southeastern Asia (corresponding to Regions E, F, G, H), bringing large water vapor to the regions and 474 

hence plentiful rainfall (Fig. 6a). 475 

The pronounced changes in the SLP over the northwestern Pacific (Fig. 12) are closely related to 476 

the SST changes over northwestern Pacific (Fig. 13). The negative SST anomalies (cooling) over the 477 

northwestern Pacific, lasting out from preceding winter (Fig. 13a) to the present summer (Fig. 13c) 478 

through the springtime (Fig. 13b), tends to induce an anomalous high pressure over the northwestern 479 

Pacific (Fig. 12), which in turn with an enhanced anticyclone strengthens southeasterly wind over East 480 

Asia and favors the development of East Asian summer monsoon as discussed above (Fig. 12). And then 481 

the displacement of the east-west oriented precipitation belt following the ITCZ north- and southward 482 

movement (Fig. 11) could be resulted from changes in the regional circulation due to the change in 483 

sea-land temperature difference (Figs. 12, 13). 484 



22 

6. Conclusions 485 

A series of numerical experiments, including the Holocene transient simulation (HT) by using a 486 

method for model acceleration regarding to the Earth's orbitally driven insolation forcing and time slice 487 

simulations (H0K, H9K), were conducted with the coupled atmosphere-ocean-sea ice general circulation 488 

model, the Kiel Climate Model (KCM). Model results have been compared to synchronous multi-proxy 489 

records of precipitation/moisture for the monsoonal Asia and marginal monsoon regions. Overall the 490 

model results are generally comparable to the synthesis of the multi-proxy records. A tripole spatial 491 

structure and diverging trends of summer precipitation across the Asian monsoon region in the 9500 492 

year-long transient simulation (HT) were revealed. According to the simulations by KCM, a relatively 493 

high precipitation prevailed over the ISM influenced area (Indian sub-continent, northern India, 494 

Himalayas, southwestern China, northern China and southern Mongolia) during the early to middle 495 

Holocene (from 9.5 to roughly 5.5-4.5 ka BP), which is closely related to the stronger Indian summer 496 

monsoon at that period than present day. The precipitation over the eastern EASM influenced areas 497 

(Region D in China, Korea and Japan) is of the opposite phase of that in the ISM influenced area, 498 

suggesting the different responses of the Indian and East Asian summer monsoon systems to the 499 

Holocene insolation forcing. In particular, the regional dissimilarities in the evolution of EASM 500 

precipitation during the Holocene (e.g. Regions D, E) imply that the response of the EASM to the 501 

Holocene insolation changes is in conjunction with internal feedbacks within climate system, such as the 502 

air-sea interactions associated with the ENSO and subsequent north/southward shifts in the position of 503 

the inter-tropical convergence zone (ITCZ). 504 

The timing of Holocene summer precipitation/moisture maximum in northwestern and northern 505 

China (Regions A and B) was about during 8.5 to 4-5.5 ka BP, slightly later than that during 9-6 ka BP 506 

in the Asian summer monsoon region (E, F, G, H), reflecting the different response of rainfall changes in 507 
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the mid-latitudinal westerly wind influenced areas (A, B) and EASM domain to the Holocene insolation 508 

change. This is closely related to the regional temperature change directly influenced by insolation 509 

change and associated reorganization of atmospheric circulation over Eurasia and EASM region. 510 

An early Holocene (9-8 ka BP) drought epoch over westerly wind dominated region (A) inferred by 511 

proxy records was not resolved by model simulation, suggesting that further experiments including more 512 

possible impacting factors such as solar irradiance forcing on Holocene Asian climate changes are 513 

necessary to test the contribution of the insolation effect versus oceanic feedbacks through 514 

tele-connection with North Atlantic and Pacific Oceans as well as the changes in GHGs concentration to 515 

the Holocene Asian summer monsoon changes. 516 
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Table 1  1 

Boundary conditions used in KCM simulations. 2 

Eccentricity  Obliquity (º)  Precession (-180º)  CO2 (ppm)  CH4 (ppb)  N2O (ppb)

H0K   0.0167      23.4        102                286.2        805.6       276.7 

H9K   0.0194      24.2        303                same as H0K 

HT    varying from H9K to H0K                     same as H0K 

 3 
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Table 2  1 

List of proxy record sites from different regions in this study (Each of the references is noted in the 2 

References of the text with site NO.) 3 

Site NO. Site name Latitude(N) Longitude(E)  Reference 
1A Sumxi Co(N) 35°30′ 81°00′ Van Campo and Gasse (1993) 
2A Taklamakan 37°-42° 75°-90° Yang et al. (2011) 
3A Aibi Lake 44°54′ 82°35′ Wu et al. (1996) 
4A Manas Lake 45°45′ 86°00′ Sun et al. (1994) 
5A Wulun Lake 46°59′ 87°00′ Yang and Wang (1996) 
6A Chaiwopo 43°25′ 87°15′ Shi (1990) 
7A Boston Lake 41°56′ 86°40′ Xu (1998) 
8A Balikun 43°42′ 92°44′ Han (1992) 
9A Daqaidan 37°50′ 95°15′ Huang et al. (1980) 
10A Dunde 38°06′ 96°24′ Liu et al. (1998) 
11A Hurleg Lake 37°19′ 96°54′ Zhao et al. (2007) 
12B Qinghai lake 36°32′ 99°36′ Du et al. (1989) 

Kelts et al. (1989) 
Liu and Qiu (1994) 
Shen et al. (2005) 

13B Halali 36°40′ 99°53′ Chen et al. (1991a) 
14B Eastern Juyanze 41.89° 101.85° Herzschuh et al. (2004) 
15B Badain Jaran 38°-43° 99°-107° Yang et al. (2010) 
16B Sanjiaocheng 39°00′ 103°20′ Chen et al. (2006) 
17B Hongshui River 38°10′46″ 102°45′53″ Zhang et al. (2000) 
18B Jiuzhoutai 36°05′ 103°48′ Chen et al. (1991b) 
19B Lanzhou 36°03′ 103°73′ Wang et al. (1991) 
20B Baxie 35°34′ 103°35′ An et al. (1993) 
21B Zoige peatland 33.5° 103° Zhao et al. (2011) 
22B Hongyuan 32°46′ 102°31′ Hong et al. (2003) 
23B Sujiawan 35°32′20″ 104°31′22″ An et al. (2003) 
24B Dadiwan 35°01′ 105°54′ An et al. (2003) 
25B Tianchi Lake 35°16′ 106°19′ Zhao (2010) 
26B Xifeng 35°42′ 107°38′ Guo et al. (2009) 
27B Jiuxian 33°34′ 109°06′ Cai et al. (2010) 
28B Yaoxian 34°56′ 108°50′ Li et al. (2003) 
29B Midiwan 37°39′ 108°37′ Li et al. (2003) 
30B Salawusu 37°50′ 108°40′ Yuan (1988) 
31B Sandaogou 38.4° 109.25° Gao et al. (1993) 
32B Luochuan 35°44′ 109°25′ Zhou and An (1991) 
33B Fuping 34°50′ 109°50′ Sun and Zhao (1991) 
34B Beizhuangcun 34°22′ 109°32′ Zhou and An (1991) 
35B Wudangzhao 40°50′ 110°15′ Cui and Song (1992) 
36B Chasuqi 40°40′ 111°08′ Wang and Sun (1997) 
37B Diaojiao Lake 41°18′ 112°21′ Shi and Song (2003) 
38B Daihai Lake 40°35′ 112°40′ Wang et al. (1990a,b) 

Xiao et al. (2004) 
39B Baisuhai 41°08′ 112°40′ Cui and Song (1992) 
40B Huangqihai 40°50′ 113°15′ Li et al. (1992a) 
41B Chaganlimenoer 43°16′ 112°53′ Sun (1990) 
42B Hunshandake 42°-44° 112°-118° Yang et al. (2008) 
43B Chanhanzhao 41°30′ 113°52′ Geng (1988) 
44B Bayanchagan 41.65° 115.21° Jiang et al. (2006) 
45B Taishizhuang 40°21.5′ 115°49.5′ Tarasov et al. (2006) 
46B Xiaoniuchang 42°37′ 116°48′ Liu et al. (2002) 
47B Haoluku 42°57.38′ 116°45.42′ Liu et al. (2002)
48B Dalainoer 43°20′ 116°40′ Geng (1988) 



2 

49C Hulun Lake 48°30′40″ 116°58′ Yang and Wang (1996) 
50C Hulong Lake 49°00′ 117°20′ Wang et al. (1994) 
51C Gushantong 42°30′ 126°10′ Liu (1989) 
52C Hani 42.21° 126.21° Hong et al. (2005) 
53C Gushantun 42°30′ 126°10′ Liu (1989) 
54C Jinchuan 42°20′ 126°22′ Sun and Yuan (1990) 

Jiang et al. (2008) 
55C Qindeli 48°00′ 133°15′ Xia (1988) 
56D Maohebei 39°32′ 119°12′ Li and Liang (1985) 
57D Baiyangdian 38°50′ 116°00′ Xu et al. (1988) 
58D Pulandian 39°30′ 112°00′ Institute of Geochemistry (1977) 
59D Yellow River Delta 37°47.8′2 118°54.3′ Yi et al. (2003) 
60E Jianhu 33°30′ 119°45′ Tang and Shen (1992) 
61E Qidong 31°50′ 121°40′ Liu et al. (1992) 
62E Taihu Lake 30°55′-31°35′ 119°50′-120°35′ Sun and Wu (1987a) 
63E Zhenjiang 32°12′ 119°25′ Xu and Zhu (1984) 
64E Chao Lake 31°25′28″ 117°16′54″ Chen et al. (2009) 
65E Poyang Lake 28°52′ 116°15′ Editorial Committee of a Studies 

on Poyang Lake (1987) 
Jiang and Piperno (1999) 

66E Dongting Lake 28°40′-29°30′ 111°45′-113°10′ Zhang (1991) 
67E Guyuanmence 29°40′-30°20′ 111°40′-112°25′ Tan (1980) 
68E Longquan Lake 30°53′ 111°52′ Li et al. (1992b) 

Liu et al. (1993) 
69E Sanbao 31°40′ 110°26′ Dong et al. (2010) 
70E Dajiuhu Lake 31°25′ 110°10′ Li et al. (1992b) 

Zhu et al. (2006) 
71E Heshang 30°27′ 110°25′ Hu et al. (2008) 
72E Bajiaotian 25°48′ 110°20′ Li et al. (1993) 
73E Shigao 28°11′ 107°10′ Jiang et al. (2012) 
74E Dongge 25°17′ 108°05′ Wang et al. (2005) 
75F Dahu 24°41′ 115° Zhou et al. (2004) 

Xiao et al. (2007) 
76F Fangyu 22°55′ 113°25′ Li et al. (1991) 
77F Huangsha 23°10′ 110°20′ Li et al. (1991) 
78F Huguang Maar Lake 21°9′ 110°17′ Wang et al. (2007) 
79F Shuangchi Maar Lake 19°57′ 110°11 ′ Zheng et al. (2003) 
80G Zoige Basin 32°20′ 103°25′ Yan et al. (1999) 
81G Caohai Lake 26°50′ 104°12′ Lin and Zheng (1987) 

Zhou et al. (1992) 
82G Dianchi 24°40′-25°03′ 102°35′-40′ Sun et al. (1987b) 

Zhu (1989) 
83G Fuxian Lake 24°25′-35′ 102°50′-55′ Song (1994) 
84G Jimenghai 24°10′ 102°45′ Nanjing Institute of Geography 

and Limnology, CAS (1989) 
85G Shayema Lake 28°05′ 101°35′ Jarvis (1993) 
86G Eryuan 26°08′ 99°55′ Lin (1987) 
87G Erhai Lake 25°36′ 100°05′ Lin (1987) 

Shen et al. (2006) 
88H Mawmluh 25°16′ 91°53′ Berkelhammer et al. (2012) 
89H Hidden Lake 29°49′ 92°48′ Tang et al. (2000) 
90H Qongjiamong Co 29°48.77′ 92°22.37′ Shen (2003) 
91H Zigetang Lake 32.0° 90.9° Herzschuh et al. (2006) 
92H Seling Co 31°34′-37′ 88°31′-89°21′ Gu et al. (1993) 

Sun et al. (1993) 
93H Sumxi Co(S) 34°18′ 80°08′ Gasse et al. (1991) 
94H Bangong Lake 33°40′ 79°00′ Van Campo et al. (1996) 
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Figure captions 1 

Fig. 1. Comparison of annual mean precipitation (mm/day) (a, c) and annual mean surface temperature 2 

(ºC) (b, d) from the Climate Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM 3 

pre-industrial simulation (c, d). 4 

Fig. 2. Insolation changes (W/m2) in boreal summer (June) (solid lines) and winter (December) (dash 5 

lines) (Berger and Loutre, 1991), shown as deviations relative to 9.5 ka BP. The 9.5 ka BP insolation 6 

at 30ºN is 509.87 (W/m2) for June and 207.07 (W/m2) for December, respectively.  7 

Fig. 3. Simulated boreal summer (June-July-August, JJA) surface temperature (ºC) over Eurasian 8 

continent at 0 ka BP relative to 9.5 ka BP. 9 

Fig. 4. Asian summer monsoon indices calculated from HT simulation with a 99-point smoothing 10 

average. Black line indicates the Indian summer monsoon index (ISMI), and the red line indicates the 11 

East Asian summer monsoon index (EASMI). Both the ISMI and EASMI values are relative to values 12 

of 9.5 ka BP, respectively. The ISMI is adapted from Goswami et al. (1999) as the difference of JJA 13 

meridional wind anomalies at 850 hPa and 200 hPa averaged over the ISM region (70ºE-110ºE, 14 

10ºN-30ºN), i.e. ISMI = V*850 – V*200, where V*850 and V*200 are boreal summer season (JJA) 15 

meridional wind anomalies at 850 hPa and 200 hPa, respectively. The EASMI used here was defined 16 

as shear vorticity by Wang et al. (2008), i.e. EASMI = U850 (110ºE-140ºE, 22.5ºN-32.5ºN) – U850 17 

(90ºE-130ºE, 5ºN-15ºN), where U850 is boreal summer (JJA) horizontal wind speed at 850 hPa. 18 

Shading area shows contrasting phase of the ISMI and EASMI during around 7 ka BP to 4.5 ka BP. 19 

Fig. 5. Spatial patterns (shading color) and associated time series of the EOF modes (principal 20 

components, PCs) of the Asian summer (JJA) precipitation for H9K (a: EOF1; b: PC1), H0K (c: 21 

EOF1; d: PC1), and HT (e: EOF2; f: PC2). The contour lines in the figures (a, c, e) are correlation 22 

square of JJA precipitation with PC1 (a, b) and PC2 (c), respectively. Correlation square above 0.1 is 23 
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significant at 95% confidence level. 24 

Fig. 6. Same as Fig. 5 but for the HT JJA precipitation (a: EOF1; b: PC1). 25 

Fig. 7. Map showing subdivisions of the locations of the paleoclimatic proxy records (see Table 2 for 26 

cite information and references). The division of regions A-H is after An et al. (2000). The sites of 27 

proxy records in the Figure are numbered with 1-94, which match those listed in Table 2. Solid dots in 28 

the sub-regions A, B, C, D, E, F, G and H in the Figure indicate proxy records used in An et al. (2000) 29 

to divide China into eight sub-regions. Different color of the dots indicates proxy records in different 30 

sub-regions. 31 

Fig. 8. Comparison of simulated summer (July, August) precipitation in the HT simulation with moisture 32 

indices from the synthesis of multi-proxy records for the Holocene in Regions A, B, C. Shading areas 33 

indicate relative wetter period based on proxy data from Zhao et al. (2009a) and Yang et al. (2011). 34 

Fig. 9. Same as Fig. 8 but for Regions D, E, F, G, H. The shading areas indicate relative wetter period 35 

based on proxy data from Zhao et al. (2009b) and Zhang et al. (2011). 36 

Fig. 10. Correlation between the Asian summer monsoon intensity (represented by PC1 of HT JJA 37 

precipitation, blue line) and ENSO index (represented by DJF Niño 3.4 SST of HT, red line). The 38 

proxy record for Holocene ENSO frequency from Laguna Pallcacocha sediment color changes (Moy 39 

et al., 2002) is overlapped for a comparison (black line). 40 

Fig. 11. Zonal mean Outgoing Longwave Radiation (OLR) (W/m2) over region [40ºE-140ºE, 0º-40ºN] 41 

for the last 9.5 ka, calculated from experiment HT (shading color). Time series of PC1 of HT (pink 42 

line) and proxy record (black line) for the ITCZ (Titanium concentrations (%) in ODP site 1002C 43 

from the Cariaco Basin, Haug et al., 2001) are overlapped for a comparison. Relatively strong (S1, 44 

S2,..., S8) and weak (W1, W2,..., W8) intervals for summer monsoon strength are marked on the PC1 45 

curve. 46 
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Fig. 12. Composite differences in simulated (HT) summer (JJA) sea level pressure (SLP) (pa) (shaded) 47 

and 850 hPa wind vectors (m/s) (arrows) between low (9-8 ka BP) and high (2.5-1.5 ka BP) DJF 48 

Niño 3.4 SST years. 49 

Fig. 13. Composite differences in simulated (HT) seasonal SST over Pacific in boreal winter (DJF) (a), 50 

spring (MAM) (b) and summer (JJA) (c) between low (9-8 ka BP) and high (2.5-1.5 ka BP) DJF 51 

Niño 3.4 SST years. 52 
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Supplementary Information 

Supplementary Figure captions 

Fig. S1. Comparison of spring (March-April-May, MAM) mean precipitation 

(mm/day) (a, c) and MAM mean surface temperature (ºC) (b, d) from the Climate 

Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation 

(c, d). 

Fig. S2. Comparison of summer (June-July-August, JJA) mean precipitation (mm/day) 

(a, c) and JJA mean surface temperature (ºC) (b, d) from the Climate Research Unit 

TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation (c, d). 

Fig. S3. Comparison of autumn (September-October-November, SON) mean 

precipitation (mm/day) (a, c) and SON mean surface temperature (ºC) (b, d) from the 

Climate Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial 

simulation (c, d). 

Fig. S4. Comparison of winter (December-January-February, DJF) mean precipitation 

(mm/day) (a, c) and DJF mean surface temperature (ºC) (b, d) from the Climate 

Research Unit TS 2.1 dataset for 1901-1930 (a, b) and KCM pre-industrial simulation 

(c, d). 

Fig. S5. Comparison of simulated trends of last 6 ka for global zonal-mean JJA 

precipitation (PREC) and surface air temperature (SAT) by KCM (Liya_Jin, brown 

line) with other models (referenced from the INTERDYNAMIK 2010 Status Seminar, 

Bremen, Germany, http://www.geo.uni-bremen.de/interdynamik/) 











 

(a) Summer (June-July-August, JJA) precipitation 

 

(b) Summer (JJA) surface air temperature 

 

Fig. S5. Comparison of simulated trends of last 6 ka for zonal-mean summer (JJA) (a) 

precipitation (PREC) and surface air temperature (SAT) (b) by KCM (Liya_Jin, 

brown line) with other models (referenced from the INTERDYNAMIK 2010 Status 

Seminar, Bremen, Germany, http://www.geo.uni-bremen.de/interdynamik/)  
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