1,269 research outputs found

    A solution method for a two-layer sustainable supply chain distribution model

    Get PDF
    This article presents an effective solution method for a two-layer, NP-hard sustainable supply chain distribution model. A DoE-guided MOGA-II optimiser based solution method is proposed for locating a set of non-dominated solutions distributed along the Pareto frontier. The solution method allows decision-makers to prioritise the realistic solutions, while focusing on alternate transportation scenarios. The solution method has been implemented for the case of an Irish dairy processing industry׳s two-layer supply chain network. The DoE generates 6100 real feasible solutions after 100 generations of the MOGA-II optimiser which are then refined using statistical experimentation. As the decision-maker is presented with a choice of several distribution routes on the demand side of the two-layer network, TOPSIS is applied to rank the set of non-dominated solutions thus facilitating the selection of the best sustainable distribution route. The solution method characterises the Pareto solutions from disparate scenarios through numerical and statistical experimentations. A set of realistic routes from plants to consumers is derived and mapped which minimises total CO2 emissions and costs where it can be seen that the solution method outperforms existing solution methods

    Comparison between the machinability of different titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) employing the multi-objective optimization

    Get PDF
    Titanium and its alloys are amongst the most important metallic materials used by many industries, such as those pertaining to the aerospace, automotive, and biomedical sectors. This is due to the reliability and functionality of titanium components, in addition to their high strength-to-weight ratio and corrosion resistance. Thus, titanium and its alloys are of great importance to the challenging operations of these sectors. The manufacturing of titanium requires great accuracy to ensure that resulting products meet quality requirements, due to its difficult machinability. In this study, the cutting forces and surface roughness of the turning were analysed to compare different titanium alloys, Ti–6Al–4V and Ti–6Al–7Nb, with CVD-coated and uncoated inserts. The effect of control factors on the response variables was measured using ANOVA. Response surface methodology was applied to the creation of a model of responses and to a bi-objective optimization process via the normalized normal constraint method. The Pareto-optimal sets of both alloys were achieved, which may be applied to practical situations to achieve optimal results for these responses. The models and optimization results confirmed the similarity of machinability values between the Ti–6Al–4 V and Ti–6Al–7Nb alloys. The uncoated inserts yielded the best surface roughness and cutting force results when used with both titanium alloys.publishe

    Efficiency of the rail sections in Brazilian railway system, using TOPSIS and a genetic algorithm to analyse optimized scenarios

    Get PDF
    A railway system plays a significant role in countries with large territorial dimensions. The Brazilian rail cargo system (BRCS), however, is focused on solid bulk for export. This paper investigates the extreme performances of BRCS through a new hybrid model that combines TOPSIS with a genetic algorithm for estimating the weights in optimized scenarios. In a second stage, the significance of selected variables was assessed. The transport of any type of cargo, a centralized control of the operation, and sharing the railway track pushing competition, and the diversification of services are significant for high performance. Public strategies are discussed.Indisponível

    A contribution to support decision making in energy/water sypply chain optimisation

    Get PDF
    The seeking of process sustainability forces enterprises to change their operations. Additionally, the industrial globalization implies a very dynamic market that, among other issues, promotes the enterprises competition. Therefore, the efficient control and use of their Key Performance Indicators, including profitability, cost reduction, demand satisfaction and environmental impact associated to the development of new products, is a significant challenge. All the above indicators can be efficiently controlled through the Supply Chain Management. Thus, companies work towards the optimization of their individual operations under competitive environments taking advantage of the flexibility provided by the virtually inexistent world market restrictions. This is achieved by the coordination of the resource flows, across all the entities and echelons belonging to the system network. Nevertheless, such coordination is significantly complicated if considering the presence of uncertainty and even more if seeking for a win-win outcome. The purpose of this thesis is extending the current decision making strategies to expedite these tasks in industrial processes. Such a contribution is based on the development of efficient mathematical models that allows coordinating large amount of information synchronizing the production and distribution tasks in terms of economic, environmental and social criteria. This thesis starts presents an overview of the requirements of sustainable production processes, describing and analyzing the current methods and tools used and identifying the most relevant open issues. All the above is always within the framework of Process System Engineering literature. The second part of this thesis is focused in stressing the current Multi-Objective solution strategies. During this part, first explores how the profitability of the Supply Chain can be enhanced by considering simultaneously multiple objectives under demand uncertainties. Particularly, solution frameworks have been proposed in which different multi-criteria decision making strategies have been combined with stochastic approaches. Furthermore, additional performance indicators (including financial and operational ones) have been included in the same solution framework to evaluate its capabilities. This framework was also applied to decentralized supply chains problems in order to explore its capabilities to produce solution that improves the performances of each one of the SC entities simultaneously. Consequently, a new generalized mathematical formulation which integrates many performance indicators in the production process within a supply chain is efficiently solved. Afterwards, the third part of the thesis extends the proposed solution framework to address the uncertainty management. Particularly, the consideration of different types and sources of uncertainty (e.g. external and internal ones) where considered, through the implementation of preventive approaches. This part also explores the use of solution strategies that efficiently selects the number of scenarios that represent the uncertainty conditions. Finally, the importance and effect of each uncertainty source over the process performance is detailed analyzed through the use of surrogate models that promote the sensitivity analysis of those uncertainties. The third part of this thesis is focused on the integration of the above multi-objective and uncertainty approaches for the optimization of a sustainable Supply Chain. Besides the integration of different solution approaches, this part also considers the integration of hierarchical decision levels, by the exploitation of mathematical models that assess the consequences of considering simultaneously design and planning decisions under centralized and decentralized Supply Chains. Finally, the last part of this thesis provides the final conclusions and further work to be developed.La globalización industrial genera un ambiente dinámico en los mercados que, entre otras cosas, promueve la competencia entre corporaciones. Por lo tanto, el uso eficiente de las los indicadores de rendimiento, incluyendo rentabilidad, satisfacción de la demanda y en general el impacto ambiental, representa un area de oportunidad importante. El control de estos indicadores tiene un efecto positivo si se combinan con la gestión de cadena de suministro. Por lo tanto, las compañías buscan definir sus operaciones para permanecer activas dentro de un ambiente competitivo, tomando en cuenta las restricciones en el mercado mundial. Lo anterior puede ser logrado mediante la coordinación de los flujos de recursos a través de todas las entidades y escalones pertenecientes a la red del sistema. Sin embargo, dicha coordinación se complica significativamente si se quiere considerar la presencia de incertidumbre, y aún más, si se busca exclusivamente un ganar-ganar. El propósito de esta tesis es extender el alcance de las estrategias de toma de decisiones con el fin de facilitar estas tareas dentro de procesos industriales. Estas contribuciones se basan en el desarrollo de modelos matemáticos eficientes que permitan coordinar grandes cantidades de información sincronizando las tareas de producción y distribución en términos económicos, ambientales y sociales. Esta tesis inicia presentando una visión global de los requerimientos de un proceso de producción sostenible, describiendo y analizando los métodos y herramientas actuales así como identificando las áreas de oportunidad más relevantes dentro del marco de ingeniería de procesos La segunda parte se enfoca en enfatizar las capacidades de las estrategias de solución multi-objetivo, durante la cual, se explora el mejoramiento de la rentabilidad de la cadena de suministro considerando múltiples objetivos bajo incertidumbres en la demanda. Particularmente, diferentes marcos de solución han sido propuestos en los que varias estrategias de toma de decisión multi-criterio han sido combinadas con aproximaciones estocásticas. Por otra parte, indicadores de rendimiento (incluyendo financiero y operacional) han sido incluidos en el mismo marco de solución para evaluar sus capacidades. Este marco fue aplicado también a problemas de cadenas de suministro descentralizados con el fin de explorar sus capacidades de producir soluciones que mejoran simultáneamente el rendimiento para cada uno de las entidades dentro de la cadena de suministro. Consecuentemente, una nueva formulación que integra varios indicadores de rendimiento en los procesos de producción fue propuesta y validada. La tercera parte de la tesis extiende el marco de solución propuesto para abordar el manejo de incertidumbres. Particularmente, la consideración de diferentes tipos y fuentes de incertidumbre (p.ej. externos e internos) fueron considerados, mediante la implementación de aproximaciones preventivas. Esta parte también explora el uso de estrategias de solución que elige eficientemente el número de escenarios necesario que representan las condiciones inciertas. Finalmente, la importancia y efecto de cada una de las fuentes de incertidumbre sobre el rendimiento del proceso es analizado en detalle mediante el uso de meta modelos que promueven el análisis de sensibilidad de dichas incertidumbres. La tercera parte de esta tesis se enfoca en la integración de las metodologías de multi-objetivo e incertidumbre anteriormente expuestas para la optimización de cadenas de suministro sostenibles. Además de la integración de diferentes métodos. Esta parte también considera la integración de diferentes niveles jerárquicos de decisión, mediante el aprovechamiento de modelos matemáticos que evalúan lasconsecuencias de considerar simultáneamente las decisiones de diseño y planeación de una cadena de suministro centralizada y descentralizada. La parte final de la tesis detalla las conclusiones y el trabajo a futuro necesario sobre esta línea de investigaciónPostprint (published version

    An integrated operation and maintenance framework for offshore renewable energy

    Get PDF
    Offshore renewable devices hold a large potential as renewable energy sources, but their deployment costs are still too high compared to those of other technologies. Operation and maintenance, as well as management of the assets, are main contributors to the overall costs of the projects, and decision-support tools in this area are required to decrease the final cost of energy.\\ In this thesis a complete characterisation and optimisation framework for the operation, maintenance and assets management of an offshore renewable farm is presented. The methodology uses known approaches, based on Monte Carlo simulation for the characterisation of the key performance indicators of the offshore renewable farm, and genetic algorithms as a search heuristic for the proposal of improved strategies. These methods, coupled in an integrated framework, constitute a novel and valuable tool to support the decision-making process in this area. The methods developed consider multiple aspects for the accurate description of the problem, including considerations on the reliability of the devices and limitations on the offshore operations dictated by the properties of the maintenance assets. Mechanisms and constraints that influence the maintenance procedures are considered and used to determine the optimal strategy. The models are flexible over a range of offshore renewable technologies, and adaptable to different offshore farm sizes and layouts, as well as maintenance assets and configurations of the devices. The approaches presented demonstrate the potential for cost reduction in the operation and maintenance strategy selection, and highlight the importance of computational tools to improve the profitability of a project while ensuring that satisfactory levels of availability and reliability are preserved. Three case studies to show the benefits of application of such methodologies, as well as the validity of their implementation, are provided. Areas for further development are identified, and suggestions to improve the effectiveness of decision-making tools for the assets management of offshore renewable technologies are provided.European CommissionMojo Ocean Dynamics Ltd. T/A Mojo Maritime Lt

    Conceptual Design of Wind Farms Through Novel Multi-Objective Swarm Optimization

    Get PDF
    Wind is one of the major sources of clean and renewable energy, and global wind energy has been experiencing a steady annual growth rate of more than 20% over the past decade. In the U.S. energy market, although wind energy is one of the fastest increasing sources of electricity generation (by annual installed capacity addition), and is expected to play an important role in the future energy demographics of this country, it has also been plagued by project underperformance and concept-to-installation delays. There are various factors affecting the quality of a wind energy project, and most of these factors are strongly coupled in their influence on the socio-economic, production, and environmental objectives of a wind energy project. To develop wind farms that are profitable, reliable, and meet community acceptance, it is critical to accomplish balance between these objectives, and therefore a clean understanding of how different design and natural factors jointly impact these objectives is much needed. In this research, a Multi-objective Wind Farm Design (MOWFD) methodology is developed, which analyzes and integrates the impact of various factors on the conceptual design of wind farms. This methodology contributes three major advancements to the wind farm design paradigm: (I) provides a new understanding of the impact of key factors on the wind farm performance under the use of different wake models; (II) explores the crucial tradeoffs between energy production, cost of energy, and the quantitative role of land usage in wind farm layout optimization (WFLO); and (III) makes novel advancements on mixed-discrete particle swarm optimization algorithm through a multi-domain diversity preservation concept, to solve complex multi-objective optimization (MOO) problems. A comprehensive sensitivity analysis of the wind farm power generation is performed to understand and compare the impact of land configuration, installed capacity decisions, incoming wind speed, and ambient turbulence on the performance of conventional array layouts and optimized wind farm layouts. For array-like wind farms, the relative importance of each factor was found to vary significantly with the choice of wake models, i.e., appreciable differences in the sensitivity indices (of up to 70%) were observed across the different wake models. In contrast, for optimized wind farm layouts, the choice of wake models was observed to have no significant impact on the sensitivity indices. The MOWFD methodology is designed to explore the tradeoffs between the concerned performance objectives and simultaneously optimize the location of turbines, the type of turbines, and the land usage. More importantly, it facilitates WFLO without prescribed conditions (e.g., fixed wind farm boundaries and number of turbines), thereby allowing a more flexible exploration of the feasible layout solutions than is possible with other existing WFLO methodologies. In addition, a novel parameterization of the Pareto is performed to quantitatively explore how the best tradeoffs between energy production and land usage vary with the installed capacity decisions. The key to the various complex MO-WFLOs performed here is the unique set of capabilities offered by the new Multi-Objective Mixed-Discrete Particle Swarm Optimization (MO-MDPSO) algorithm, developed, tested and extensively used in this dissertation. The MO-MDPSO algorithm is capable of dealing with a plethora of problem complexities, namely: multiple highly nonlinear objectives, constraints, high design space dimensionality, and a mixture of continuous and discrete design variables. Prior to applying MO-MDPSO to effectively solve complex WFLO problems, this new algorithm was tested on a large and diverse suite of popular benchmark problems; the convergence and Pareto coverage offered by this algorithm was found to be competitive with some of the most popular MOO algorithms (e.g., GAs). The unique potential of the MO-MDPSO algorithm is further established through application to the following complex practical engineering problems: (I) a disc brake design problem, (II) a multi-objective wind farm layout optimization problem, simultaneously optimizing the location of turbines, the selection of turbine types, and the site orientation, and (III) simultaneously minimizing land usage and maximizing capacity factors under varying land plot availability

    Sustainability and intermodality in humanitarian logistics: A two-stage multi-objective programming formulation

    Get PDF
    When managing crises and disasters, decision-makers face high uncertainty levels, disrupted supply chains, and damaged infrastructure. This complicates delivering resources that are essential for the survival of the victims. Flexible and adaptable supply networks are needed to ensure a consistent flow of relief to the areas affected by disasters. Intermodality is a valuable approach when infrastructure is damaged, as it allows the use of different delivery modes to reach demand areas. Nevertheless, involving different transportation modes has an impact on the environment. Looking at the importance of helping victims and considering the environmental impact of humanitarian operations for long-term sustainability, intermodality and carbon emission reduction measures can be an interesting combination. This area, however, is currently understudied. This article introduces a two-stage stochastic formulation to fill that gap. The model addresses facility location, resource allocation, and intermodal relief distribution considering carbon emission reduction in facilities, intermodal activities, and distribution. The formulation minimises costs and the level of shortage of relief. The model is tested using a case study in Sinaloa, Mexico, to investigate the impact of intermodality and carbon emission reduction measures on costs and shortage of relief for disaster victims. The findings confirm that the model proposed allows for the diversification of transportation modes and reduces carbon emissions whilst achieving a good level of performance in both metrics. The comparison with a benchmark model without intermodality and carbon reduction measures suggests that the formulation can increase flexibility and reduce the level of CO2 emissions whilst maintaining high satisfaction rates

    Responsible Inventory Models for Operation and Logistics Management

    Get PDF
    The industrialization and the subsequent economic development occurred in the last century have led industrialized societies to pursue increasingly higher economic and financial goals, laying temporarily aside the safeguard of the environment and the defense of human health. However, over the last decade, modern societies have begun to reconsider the importance of social and environmental issues nearby the economic and financial goals. In the real industrial environment as well as in today research activities, new concepts have been introduced, such as sustainable development (SD), green supply chain and ergonomics of the workplace. The notion of “triple bottom line” (3BL) accounting has become increasingly important in industrial management over the last few years (Norman and MacDonald, 2004). The main idea behind the 3BL paradigm is that companies’ ultimate success should not be measured only by the traditional financial results, but also by their ethical and environmental performances. Social and environmental responsibility is essential because a healthy society cannot be achieved and maintained if the population is in poor health. The increasing interest in sustainable development spurs companies and researchers to treat operations management and logistics decisions as a whole by integrating economic, environmental, and social goals (Bouchery et al., 2012). Because of the wideness of the field under consideration, this Ph.D. thesis focuses on a restricted selection of topics, that is Inventory Management and in particular the Lot Sizing problem. The lot sizing problem is undoubtedly one of the most traditional operations management interests, so much so that the first research about lot sizing has been faced more than one century ago (Harris, 1913). The main objectives of this thesis are listed below: 1) The study and the detailed analysis of the existing literature concerning Inventory Management and Lot Sizing, supporting the management of production and logistics activities. In particular, this thesis aims to highlight the different factors and decision-making approaches behind the existing models in the literature. Moreover, it develops a conceptual framework identifying the associated sub-problems, the decision variables and the sources of sustainable achievement in the logistics decisions. The last part of the literature analysis outlines the requirements for future researches. 2) The development of new computational models supporting the Inventory Management and Sustainable Lot Sizing. As a result, an integrated methodological procedure has been developed by making a complete mathematical modeling of the Sustainable Lot Sizing problem. Such a method has been properly validated with data derived from real cases. 3) Understanding and applying the multi-objective optimization techniques, in order to analyze the economic, environmental and social impacts derived from choices concerning the supply, transport and management of incoming materials to a production system. 4) The analysis of the feasibility and convenience of governmental systems of incentives to promote the reduction of emissions owing to the procurement and storage of purchasing materials. A new method based on the multi-objective theory is presented by applying the models developed and by conducting a sensitivity analysis. This method is able to quantify the effectiveness of carbon reduction incentives on varying the input parameters of the problem. 5) Extending the method developed in the first part of the research for the “Single-buyer” case in a "multi-buyer" optics, by introducing the possibility of Horizontal Cooperation. A kind of cooperation among companies in different stages of the purchasing and transportation of raw materials and components on a global scale is the Haulage Sharing approach which is here taken into consideration in depth. This research was supported by a fruitful collaboration with Prof. Robert W. Grubbström (University of Linkoping, Sweden) and its aim has been from the beginning to make a breakthrough both in the theoretical basis concerning sustainable Lot Sizing, and in the subsequent practical application in today industrial contexts

    Operational research IO 2021—analytics for a better world. XXI Congress of APDIO, Figueira da Foz, Portugal, November 7–8, 2021

    Get PDF
    This book provides the current status of research on the application of OR methods to solve emerging and relevant operations management problems. Each chapter is a selected contribution of the IO2021 - XXI Congress of APDIO, the Portuguese Association of Operational Research, held in Figueira da Foz from 7 to 8 November 2021. Under the theme of analytics for a better world, the book presents interesting results and applications of OR cutting-edge methods and techniques to various real-world problems. Of particular importance are works applying nonlinear, multi-objective optimization, hybrid heuristics, multicriteria decision analysis, data envelopment analysis, simulation, clustering techniques and decision support systems, in different areas such as supply chain management, production planning and scheduling, logistics, energy, telecommunications, finance and health. All chapters were carefully reviewed by the members of the scientific program committee.info:eu-repo/semantics/publishedVersio

    Low-carbon multi-objective location-routing in supply chain network design

    Get PDF
    Traditional supply chain modelling tends to focus on singular objectives, with a predominant focus on cost. Within this discipline location-routing problems are one of the most researched categories in recent years. This study extends this paradigm to consider the multi-objective of cost and environmental impact in the form of carbon emissions. The focus of this study is on the design of a low-cost low-carbon structure for the demand side of supply chain networks. This research has developed two-layer and three-layer multi-objective 0-1 mixedinteger AHP-integrated location-routing models. Disparate multi-objective Genetic Algorithm, Particle Swarm, and Simulated Annealing-based optimisers are used to execute these developed models. The main execution platform used is modeFRONTIER®, a multi-objective optimisation and design environment. The main contributions from this research are 1) the modelling extension to include low carbon emissions; costs; demand as an objective function component; and the inclusion of the decision makers’ priority as a green constraint, 2)with regard to implementing these specific NP-hard models, a DoE-guided solution approach is used. Various heuristics/meta-heuristics are adopted and compared in terms of their efficiency, with the three-layer model being solved in two phases, 3) both sets of developed models are applied to the demand side of a dairy supply chain in Ireland
    corecore