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Low-Carbon Multi-Objective Location-Routing  

in Supply Chain Network Design  

 

Traditional supply chain modelling tends to focus on singular objectives, with a 

predominant focus on cost. Within this discipline location-routing problems are one of 

the most researched categories in recent years. This study extends this paradigm to 

consider the multi-objective of cost and environmental impact in the form of carbon 

emissions. The focus of this study is on the design of a low-cost low-carbon structure 

for the demand side of supply chain networks. 

This research has developed two-layer and three-layer multi-objective 0-1 mixed-

integer AHP-integrated location-routing models. Disparate multi-objective Genetic 

Algorithm, Particle Swarm, and Simulated Annealing-based optimisers are used to 

execute these developed models. The main execution platform used is 

modeFRONTIER®, a multi-objective optimisation and design environment. 

The main contributions from this research are 1) the modelling extension to include low 

carbon emissions; costs; demand as an objective function component; and the inclusion 

of the decision makers’ priority as a green constraint, 2) with regard to implementing 

these specific NP-hard models, a DoE-guided solution approach is used. Various 

heuristics/meta-heuristics are adopted and compared in terms of their efficiency, with 

the three-layer model being solved in two phases, 3) both sets of developed models are 

applied to the demand side of a dairy supply chain in Ireland.  

 

Keywords: green supply chain network design, location-routing modelling, multi 

criteria decision making, heuristics/meta-heuristics, Irish dairy market  
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1.1. Introduction  

An essential aspect of modern business is Supply Chain Management (SCM) 

(Schroeder et al. 2013). SCM is a cross-functioning approach to the management of a 

network of activities, entities, processes, and businesses, from initial suppliers to the 

end consumers in any Supply Chain (SC). SCM can be defined as managing an 

integrated system or network which synchronises a series of inter-related business  

processes in order to: (a) acquire raw materials, (b) add value to the raw materials by 

transforming them into finished/semi-finished goods, (c) distribute these products to 

Distribution Centres (DCs) or sell to retailers or directly to the customers, (d) facilitate 

the flow of raw materials/finished goods, cash and information among the various 

partners which include suppliers, manufacturers, retailers, distributors and third-party 

logistics providers (Amoozad-khalili et al. 2010). Considering the components of a SC 

and the players of any supply chain, a broad span of disciplines is used to manage a SC 

efficiently (Ganeshan et al. 2000). 

In traditional SCs, managers tended to focus on operations, viz. providing the customer 

with a finished product at the right place, with the correct quality and in the shortest 

time, reducing delay times and costs throughout the chain. However, improving 

environmental performance and in turn reducing the impact of environmental 

destruction was generally not considered as being very important. As the necessity to 

protect and optimise the usage of limited natural resources becomes ever more apparent, 

and with increasing pressure from both internal and external factors, increasing numbers 

of SCs are attempting to exercise environmentally friendly practices with an ultimate 

goal of ultimately becoming classified as ‘green’.  

Managing industrial pollution has been a critical issue since the early days of the 

industrial revolution.  But it was only at the end of 1980s that clean technologies were 

being introduced and programs were being implemented in an attempt to reduce the 

impact of company’s on natural resources (Noci 1997). At the beginning of the 1990s 

operations procedures began to change and eco-auditing frameworks were introduced. 
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In parallel and what contributed to these movements was the quality revolution in the 

1980s and the supply chain revolution in the 1990s. These two major revolutions began 

to get businesses to become a little more concerned about environmental issues 

(Srivastava 2007; Fortes 2009). 

Green SCs strive to be environmentally friendly and attempt to reduce the consumption 

of resources and energy while minimising environmental pollution. This is generally 

achieved through the design of environmentally friendly processes throughout the SC 

(Wang et al. 2007). Some of the strongest drivers that move companies towards green 

exercises are: governments, customers, competitive advantages and society. 

In order to consider the environmental issues of the businesses, the influence and the 

relationships between SCM and the natural environment are added as the green 

component to SCM (Sirvastava, 2007). Green SCM (GrSCM) is an emerging field 

stranding out of the traditional supply chain perspective (Fortes 2009). GrSCM is a 

consistent practice which affects the performance of management at all levels in an 

organisation (Diabat and Govindan 2010) with the boundaries of GrSCM studies very 

much based on the goal of the researcher (Srivastava, 2007). 

In order to make a SC more efficient many decisions have to be made related to the 

flow of material, information, and other resources (Chopra 2003). Five major decisions 

related to SC strategy or design, SC planning or tactical level decisions, and SC 

operations have to be made (Farahani and Hekmatfar 2009). These decisions are 

production, inventory, location, transportation and information. Among these decisions 

facility location has a critical strategic role. Decisions related to establishing a facility 

(e.g. warehouse, manufacturing plants, distribution centres) or developing a facility are 

costly, difficult to reverse, time-sensitive, and have long term effects (Owen and Daskin 

1998). Such decisions are made through models evolved in the field of operations 

management and optimisation. The decision-making models that attempt to integrate 

different functionalities of the SC are considered as supply chain decision models (Min 

and Zhou 2002). These models deal with the multi-functional problems of location-

routing, production-distribution, location-inventory, inventory control-transportation, 

and supplier selection-inventory control (Min and Zhou 2002). 

A general view on sustainable development is that it connects economy, society and 

environment in order to satisfy the global needs of people for their better quality of life 
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now and into the future (DEFRA 2011). Sustainable distribution strategy espouses an 

approach that seeks to achieve mutually reinforcing benefits for the economy, 

environment and society (Ilbery and Maye 2005). This leads to carbon trading 

mechanism such as defined in the Kyoto protocol. The Kyoto protocol encourages firms 

to reduce carbon emissions throughout their operations (Diabat and Simchi-Levi 2009). 

Effective logistics and technologies are critical success factors for distribution systems 

in supply chain networks (Tarantilis et al. 2005). Traditionally, the critical success 

factors for an effective distribution system include meeting the requirements of the 

demand side of a supply chain through delivery of good quality products in appropriate 

quantities to the right place using the optimal path at the right time with optimal costs 

(Aghazadeh 2004). 

The distribution of products to DCs or retailers, on the demand side of a SC network, 

using outbound transport has a significant impact on the environment. Issues related to 

sustainability of production and greening supply chains are of increasing importance in 

modern society and business. However, there is little evidence reported wherein the 

distribution routes are closely examined from both sustainability and a cost perspective. 

Hence, an effective blueprint for a modern competitive logistics system calls for the 

inclusion of the elements in a green-SC network so as to operate the demand side of the 

SC network on optimised carbon emissions, low operating costs and optimal traversed 

path. 

Driven by sustainability issues, the economy and societal aspects of the SC, this 

research formulates both a two and three-layer green location routing model for the 

demand side of a SC. The proposed green logistics systems involves five inter-

dependent decisions, viz., (i) allocation of customers to facilities, (ii) routing the 

vehicles to serve customers, (iii) optimisation of carbon emissions from the vehicles 

used for transporting product(s), (iv) determination of optimal costs of serving routes, 

and (v) locating optimal distance for the distribution. In this regard two integrated 

multi-objective location-routing models are designed by integrating 0-1 mixed-integer 

programming with Analytic Hierarchy Process (AHP) (Saaty 1977). 

This introductory chapter is organised as follows. Section 1.2 presents a background on 

the research. Section 1.3 discussed the scope of the research. Section 1.4 highlights 
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research aims and objectives. Section 1.5 lays out the significance of the research study. 

And section 1.6 presents the structure of the dissertation.  

 

1.2. Background to the Research  

Increased consciousness amongst consumers, firms and governmental organisations 

towards the escalated deterioration of the environment caused by human actions has 

boosted the momentum on GrSCM. Firms are now held responsible for their 

environmental and social performances (Seuring and Müller 2008). Considering this 

responsibility, one of the success parameters of enterprises depends on the efficacy of 

the location-routing decisions (Lopes et al. 2008). Therefore, an efficient design of an 

effective low-carbon location-routing system is now a strategic objective for many 

businesses.  

The Kyoto protocol identifies six greenhouse gases. According to the United Nations 

Framework Convention on Climate Change (UNFCCC 2012), CO2 is considered as the 

principal greenhouse gas in the “carbon market”. Often the quantity of emitted 

greenhouse gases is expressed as CO2 equivalent (CO2e) in carbon footprint. The “total 

amount of CO2e emissions that is directly and indirectly caused by an activity or is 

accumulated over the life stages of a product” is considered as the carbon footprint 

(Wiedmann and Minx 2008). More precisely, CO2e gases emitted across a SC for a 

single unit of a product is referred to as the carbon footprint (Reclay Holding GmbH 

2012). Therefore, it is recommended to measure the total amount of CO2e and propose 

the possible ways to minimise the carbon footprint in an SC thereby enhancing the 

efficiency of present day’s green-SC network. In this research the term “low-carbon” is 

referred to as an alternative of carbon footprint. 

Location-routing is considered to be one of the major concerns in SC logistics with 

substantial implications on a low-carbon SC as there is a significant contribution of the 

product distribution cost attributable to the total SC cost. In modern SC networks, the 

design of an efficient logistics system should operate on reduced carbon emissions in 

addition to low operating costs in today’s competitive environment. Therefore the low-

carbon operation of a SC is one today’s most important strategic challenges.  
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A traditional location-routing model can be found in Berger (1997), which has been 

improved by, Daskin et al. (2005). This research considers the models proposed by 

Berger (1997) and Daskin et al. (2005) and contributes to the literature in the field of 

low-carbon capacitated two-layer and three-layer Location-Routing Problems (LRPs).  

 

1.3. Scope of the Research 

GrSCM is an emerging environmental practice for competitive businesses that assists 

growth in the economy through sustainable development by way of optimising 

transportation of products, information and capital along a value chain (Kumar et al. 

2012; Zhu and Sarkis 2007). Green operation of SC logistics on reduced carbon 

emission and costs is one of todays’ current strategic challenges (Srivastava 2007). 

Transportation activities are identified as one of the significant sources of air pollution 

and greenhouse gas emissions within a SC (Wang et al. 2011; Wu and Dunn 1995). An 

efficient and effective design of outbound logistics is one of the critical success factors 

for a sustainable distribution of products to multiple retailers and consumers through 

multiple DCs in SC networks (Lopes et al. 2008; Tarantilis et al. 2005). Therefore, low-

carbon location-routing is one of the major concerns in SC. However, low-carbon 

operations in the SC logistics research and practices are still in the phase of infancy 

(Srivastava 2007; Vachon 2007; Seuring and Müller 2008). 

The scope of this research is confined within the demand side of the two-layer and 

three-layer SC-networks (i.e., physical distribution system). Further the scope of this 

research is limited within the formulation of two multi-objective Analytic Hierarchy 

Process (AHP) integrated multi-objective 0-1 mixed integer programming models in 

order to address the LRPs for the two-layer (Figure 1.1) and three-layer (Figure 1.2) 

physical distribution systems. AHP is integrated with the MO-LRPs to add a green 

element in the modelling phase. The scope of this research is extended to a Design of 

Experiment (DoE)-guided meta-heuristic-based solution approach and the analysis of 

the final results using Pareto frontiers and a multi-attribute decision-making tool, 

TOPSIS. DoE is involved in the solution approach to ensure robustness while TOPSIS 

is used after solving the model for ranking results. Scenario analysis of the green 

location-routing for assisting the decision-makers ends the scope of this research. 
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Figure 1.1 The two-layer demand side supply-chain (adopted from: Bowersox et al. 

2013) 

 

Figure 1.2 The three-layer demand side supply chain (adopted from: Bowersox et 

al. 2013) 
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1.4. Research Aims and Objectives  

This PhD research study mainly aims to include the eco-friendly concerns in location-

routing decisions in the context of supply chain network design. This main aim is 

planned to be pursued by focusing on improving Berger’s (1997) two-layer LRP and 

Perl’s (1983) three-layer LRP. As location-routing models are quantitative NP-hard 

models, the main purpose of this PhD thesis is three-fold. First: developing a low-

carbon location-routing model for two and three-layer supply chain networks, 

considering DMs’ priorities regarding choice of vehicles. Second: finding an effective 

solution approach to implement the developed models. And third, Offering tailored 

solutions to DM’s based on their priorities.  

1.4.1. Developing low-carbon location-routing models  

Berger’s (1997) two-layer LRP and Perl’s (1983) three-layer LRP are the 

considered as the basis for developing low-carbon models. One of the main 

outcomes of this study is improving these two well-established LRPs to include 

low-carbon elements in them. The low-carbon elements appear as new objective 

function and new constraint in the developed LRPs. The objective function is 

focused on minimising the CO2 emission form transportation within the SCN 

while the constraint introduces the DMs’ priorities to the model.  Hence the 

developed models are multi-objective 0-1 mixed integer LRPs integrated with a 

MCDM technique that can represent the DMs’ priorities efficiently .  

1.4.2. Finding an effective solution approach to implement the developed models 

Literature states that, two and three-layer LRPs are computationally NP-hard. 

One of the known characteristics of NP-hard models is that traditional 

techniques do not yield an optimal set of solutions. It is an established fact that 

the application of meta-heuristic approach generates an optimal solution space in 

a better manner from such NP-hard formulations. This research aims to explore 

the solution approaches and implement an effective approach that suits the 

developed models and its characteristics. Survey of literature shows that a 

variety of heuristics/meta-heuristics are used to solve these types of models. 

This study aims to solve these models using more than one heuristics/meta-

heuristics and compare their performance. Furthermore, a proper implementation 

platform has to be recognised that can effectively solve the developed models.  
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1.4.3. Offering targeted and tailored low-carbon low-cost scenarios to DM’s considering 

their priorities  

As the LRPs are NP-hard, the solution approach provides a large number of non-

dominated optimal solutions distributed along the Pareto front. In order to 

further analyse the outcome of the solution approach, MCDM techniques are 

considered in order to rank and prioritise the optimal solutions based on the 

priorities of DMs’ regarding the importance of cost and CO2 emission.  

In order to address the aims and objectives of the research, low-carbon multi-objective 

location-routing models are considered to be developed. These models are meant for 

designing two-layer and three-layer supply chain networks. In designing these models 

DMs’ priorities regarding choice of vehicles are considered. In the next step, an 

effective solution approach to solve the developed models will be implemented. Finally, 

tailored solutions will be offered to DM’s based on their priorities.  

 

1.5. Significance of the Research Study  

Low-carbon distribution strategy through logistics espouses an approach that seeks to 

achieve mutually reinforcing benefits for the economy, environment and society (Ilbery 

and Maye 2005). The Kyoto protocol encourages businesses to significantly reduce 

their carbon emissions from their operations (Diabat and Simchi-Levi 2009). Businesses 

are responsible for the environmental and social performance of their suppliers within 

an SC (Seuring and Müller 2008). As the transportation activities within the physical 

distribution network of a SC via roadways leave harmful effects on human health and 

environment, they are required to be investigated thoroughly. Minimisation of the 

traversed distance and overall costs and optimal utilisation of the vehicles during 

transportation of the products are the solutions for physical distribution in a SCN to 

operate on a reduced gas emission. 

Traditional supply chain network modelling tends to focus on singular objectives, with a 

predominant focus on costs. Within this discipline location-routing problems are one of 

the most researched categories in recent years. The study reveals that low-carbon LRPs 

are not researched. Multi-objective modelling considering CO2 emission from 

transportation as an objective is missing in literature. This research tries to extend this 
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paradigm and develop low-carbon low-cost multi-objective LRPs to contribute to the 

literature in LR.  

Study shows that Decision Maker’s priorities are widely ignored in mathematical 

modelling; LRPs are not an exemption. This research considers the DM’s priorities in 

the mathematical model by using MCDM techniques. As the focus of the study is on 

low-carbon LRPs, then the use of MCDM techniques in developing components of 

LRPs are considered. The main aim is to develop a constraint for the MO-LRPs that 

guide the model toward choosing a choice of transportation with lower level of CO2 

emission based on the priorities of the DMs.  

LRPs are NP-hard models with no exact solution to them but a space of solutions. 

Literature shows that a number of solutions approached have been introduced to solve 

LRP models. This study explores the solution approaches and looks for a more efficient 

one that suits the developed MO-LRPs in this study. The MO-LRPs are generic implied 

to a case of an Irish dairy supply chain network in east of Ireland.  

1.6. Structure of the Dissertation  

This dissertation comprises of seven inter-linked chapters. Chapter one introduces the 

elements of supply chain management and green location-routing for supply chain 

network design. Chapter two critically reviews the relevant literature in order to locate 

the research gaps. The following two chapters (three and four) are dedicated to the 

formulation of the two-layer and three-layer multi-objective integrated location-routing 

models, their solution approaches and analysis procedures. In these two chapters 

numerical and statistical experimentation of the proposed models and solution 

approaches has been conducted on the case of a two and three layer Irish dairy supply 

chain network. Findings from this numerical experimentation are discussed in Chapter 

five. Chapter six concludes the research outlining its significance. Scope for future 

research is also presented in Chapter six. Figure 1.3 provides an overview on the 

structure of this dissertation. 
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2.1. Introduction  

The initial concept of Supply Chain (SC) and Supply Chain Management (SCM) first 

appeared in business literature in 1961, when Forrester (1961) suggested that ‘the 

success of industrial companies hinged on the interactions between flows of 

information, materials, manpower and capital equipment’. An essential aspect of 

modern business is now SCM (Schroeder et al. 2013). Traditionally SCM has been seen 

as a melting pot of various disciplines, with influences from logistics and transportation, 

operations management and material and distribution management, marketing, as well 

as purchasing and information technology (Giunipero et al. 2005; Jain et al. 2009). 

Ideally, the all-encompassing philosophy of SCM should embrace each of these 

functions to produce an overall SC strategy that ultimately enhances firm performance 

(Croom et al. 2000). 

The origin of the supply chain concept has been inspired by many fields including (i) 

the quality revolution, (ii) notions of materials management and integrated logistics, (iii) 

a growing interest in industrial markets and networks, (iv) the notion of increased focus, 

and (v) influential industry-specific studies. Researchers thus found themselves 

inundated with terminologies such as ‘supply chains’, ‘demand pipelines’, ‘value 

streams’, ‘support chains’, and many others (Chen and Paulraj 2004). Min and Mentzer 

(2004) and Mentzer et al. (2001) suggest that SCM should be investigated in the context 

of managed SCs that are organized through the collective efforts of supply chain 

members and thus are distinguished from SCs. SC has been defined many times in a 

variety of ways by researchers (Porter 1985; Christopher 1992; La Londe and Masters 

1994; Mentzer et al 2001; Ganeshan 2002; Heizer and Render 2010; Amoozad-khalili et 

al. 2010). Zheng and Katzumi (2010) define SCM: a) as a set of approaches utilized to 

effectively integrate suppliers, manufacturers, logistics, and customers for improving 

the long term performance of individual companies and supply chain as a whole, b) as 

an actor-oriented approach, focusing on how to organize and manage flow of materials 

from ‘point of origin’ to ‘end user’ as the point of departure, c) as a relation-oriented 

approach focusing on relationship between the actors in the supply chain, and how co-
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operation and mutual interests can lead to improvement, and d) by using a process-

oriented approach as the integration key business process from end-user to original 

suppliers that provide products and services and information that add value to 

customers and other stakeholders. A schematic presentation of a traditional SC is 

depicted in Figure 2.1. 

 

 

 

Figure 2.1  A traditional SC (Adapted from: Schroeder et al. 2013; Heizer and Ren-
der 2010) 
 
 
With a ‘network perception’ of SCM, Christopher (2011) defines SCM as a ‘network of 

organizations that are involved, through upstream and downstream linkages, in the 

different processes and activities that produce value in the form of products and services 

in the hands of the ultimate customer’. Aitken et al. (2005) and Jain et al. (2009) share 

the same perspective on SCM. Min and Zhou (2002), reviewing analytical modelling 

literature in SC, characterise a supply chain by a forward flow of goods and a backward 

flow of information. Figure 2.2 presents this approach. 

 

 

 

 

Figure 2.2  The supply chain process (Min and Zhou 2002) 
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Simchi-Levi et al. (2003), in an effort to discuss the design and management of  SCs, 

introduces a number of ‘key issues in SCM: (i) distribution/logistics network configura-

tion, (ii) inventory control, (iii) supply contracts, (iv) distribution strategies, (v) supply 

chain integration and strategic parenting, (vi) outsourcing and procurement strategies, 

(vii) product design, (viii) information technology and design-support systems and (ix) 

customer value. These main key issues can be categorised on three levels, viz. strategic 

(the number, location, and capacity of warehouses and manufacturing plants, flow of 

material through the logistics network), tactical (purchasing and production decisions, 

inventory policies, transportation strategies) and operational (scheduling, lead time quo-

tations; routing, truck loading) level (Simchi-Levi et al. 2003).  

In today’s fiercely competitive business environment, companies are confronted with 

new elements. Sundarakani et al. (2010) argues companies that are trying to design and 

operate a modern SC networks traditionally focusing on the efficiency of the network 

and value creation for customers. The value has been created by increasing the benefit 

of the product for the customers by lowering the costs of the product, improving deliv-

ery services and delivery time, and improving quality (Christopher and Gattorna 2005; 

Ulaga and Eggert 2006; Melnyk et al. 2009). Recently, customers have attached value to 

some less obvious factors, such as low-risk supply chains and security (Wagner and 

Bode 2008; Melnyk et al. 2009), more visibility across supply chain (Balan et al. 2009), 

socially responsible supply chains and responsiveness (Boyd et al. 2007; Melnyk et al. 

2010), resilience and innovation (Melnyk et al. 2010), and green SCs and sustainability 

(Quariguasi Frota Neto et al. 2008). 

In recent years, Green SCM (GrSCM) has begun to emerge as an important field with 

direct lineage with the traditional supply chain perspective (Fortes 2009). ‘Adding the 

green component to supply chain management involves addressing the influence and 

relationships between supply chain management and the natural environment’ (Sir-

vastava 2007). GrSCM is a practice that affects the performance of management at all 

levels of any organisation. Toke et al. (2010) consider four major functions within a 

green supply chain and from this they attempt to develop an understanding of ‘what a 

green supply chain is’ based on discussions around their relationships (Figure 2.3).  
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Figure 2.3  Operational functions and environmental practices within the green sup-
ply chain (Toke et al. 2010) 
 

The four major functions discussed (Figure 2.3), are purchasing and in-bound logistics, 

production, distribution (i.e., outbound logistics and marketing), and reverse logistics. 

Outbound logistics is one of the major areas of green practices in the SC. It deals with 

location analysis, inventory management, warehousing, transportation, and packaging. 

These functions contribute greatly to the amount of greenhouse gasses in the environ-

ment.  

GrSCM as defined by Green et al. (1996) is: ‘Green supply refers to the way in which 

innovations in supply chain management and industrial purchasing can be considered 

in the context of the environment’. GrSCM is an ‘integrating environmental thinking 

into supply chain management, including product design, material sourcing and selec-

tion, manufacturing processes, delivery from the final product to the consumers as well 

as end-of-life management of the product after its useful life’ (Srivastava 2007). As 

these two selected definitions show, the definition of GrSCM has moved for focusing 

on just one aspect of the system (organisation) to considering the whole system ele-

ments in making decisions. Definitions of GrSCM by different authors show that there 

is a range of focus and purpose on green SC and its management (Toke et al. 2010). 

Literature identifies a variety of driver for implementing GrSCM practices (Noci 1997; 
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Guide and Srivastava 1998; Walton et al. 1998; Gunger and Gupta, 1999; Rao and Holt 

2005; Srivastava 2007; Lee 2008; Walker et al. 2008; Fortes 2009; Diabat and Go-

vindan 2010).  

Many different aspects and facets of green SCs are found in the literature. In a compre-

hensive literature review, Fortes (2009) categorises the ‘key themes’ in GrSCM in the 

past twenty years as: green design, green operations, waste management, and green 

manufacturing. Sarkis (2003) offers a classification of environmentally conscious busi-

ness practices which includes five major practices or elements: reduction (reduce), re-

use, remanufacture, recycle, and disposal alternatives. Srivastava (2007) reviews all 

aspects and facets of GrSCM in literature and categorises them based on two main 

streams, viz. context and methodology/approach. In the context based category the 

problem in SC design is classified into two main themes: ‘green design’ and ‘green op-

erations’ with sub-categories/sub-themes under each main theme. Figure 2.4 shows this 

context-base classification. 

Green manufacturing and re-manufacturing, competition and its effects on remanufac-

turers, product design, logistics, purchasing, reverse logistics, integrating reverse logis-

tics and re-manufacturing in supply chain design (Srivastava 2007; Fortes 2009; Sarkis 

et al. 2011) with environmental focus are all issues covered by green operations. In the 

green operations arena, the focus of this research in on green SC network design. 

In order to design an efficient SC network many decisions are to be made. Amongst 

these strategic decisions, network design decisions are pointed out (Farahani and Hek-

matfar 2009). In this strategic level one of the major design decisions is facility location 

related decision. Once the structure of the SC is determined the next set of decisions 

focuses on decisions such as logistics and distribution decisions. Riopel et al. (2010) 

discuss the network of logistics decisions by focusing on the precedence relationship 

between 48 logistics decisions. Table C.1 shows these logistics decisions and the prece-

dence relationships between these decisions and also the type of information that might 

be needed to make any one of these decisions. 
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This chapter reviews the related literature. This chapter is organised as follows. Section 

2.2 deals with supply chain network design. Under this section logistic decisions and 

green logistic decisions are discussed. Section 2.3 discusses facility location problems. 

The sub-section of Section 2.3 illustrates classifications and mathematical modelling. 

Section 2.4 reports literature on integrated location-routing problem. Sub-sections of 

Section 2.4 elucidate mathematical formulation of LRP, applications of LRPs and 

solutions methods of LRPs. The next section deals with implementation platforms for 

LRPs. Under this section modeFRONTIER® platform is introduced. Finally in Section 

2.6 the research gaps found from the critical survey of the literature are pointed out. 

 

2.2. Supply Chain Network Design 

In order to manage a SC successfully many decisions related to the flow of material, 

information, and other resources have to be made (Chopra and Meindl 2003). Accord-

ing to Farahani and Hekmatfar (2009) five major decisions related to SC strategy (and 

design), SC planning (and tactical level decisions), and SC operations have to be made. 

These decisions are: (i) production (what, how, and when to produce), (ii) inventory 

(how much to make and how much to store), (iii) location (where best to do each activi-

ty), (iv) transportation (how and when to move products), and (v) information (the basis 

for making these decisions). Among these decisions, facility location has a critical stra-

tegic role. Decisions related to establishing a new facility (e.g., warehouse, manufactur-

ing plants, distribution centres (DCs)) or developing a facility are costly, difficult to 

reverse, time-sensitive, and have long term effects. For instance inventory, transporta-

tion, and information decisions can be changed based on the changes in the market more 

quickly and easily (Owen and Daskin 1998; Melo et al. 2009; Farahani and Hekmatfar 

2009; Snyder 2006; Daskin et al. 2010). In a SC network, design decisions broadly cov-

er the location of production/processing factory, warehouses/DCs and transportation-

related facilities and the allocation of roles to each facility through the SC (Farahani and 

Hekmatfar 2009; Daskin et al. 2010). Literature reveals that these issues are categorised 

into two main areas, viz. logistics decisions and facility location decisions.  

2.2.1. Logistics decisions 

The field of logistics, in the context of business, has changed substantially during the 

past few decades. Riopel et al. (2010) report that in the 1960s, business logistics was 
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only really dealing with two functions of logistics, viz. materials management and dis-

tribution. In the 1970s, there was a move to ‘focus on the interdependence of these func-

tions’ and it gained a more integrated view. Logistics professionals have begun to focus 

attention on ‘integrating the activities of the supply chain’ since the 1990s. The para-

digm shift in the area of logistics started from physical distribution and has evolved into 

SCM. This evolution of logistics, demands a more comprehensive and global vision of 

logistics and logistics decision making. Riopel et al. (2010) report that the decision-

making environment has become more and more complex when new approaches, new 

strategies and new models are developed, markets are changed and globalised, SCs are 

more and more global, information technology keeps developing and evolving, custom-

er demands are ever changing and with more focus on customer satisfaction. All these 

require a new approach to logistics and affect logistic decision making. Logistics in 

SCM has a primary and important role in arranging the flow of products and services to 

link focal firms to both the supply and market network (Bowersox et al. 2013).  

In particular, the Council of Logistics Management (CLM) defined logistics in 2003 as:  

‘that part of the supply chain process that plans, implements, and controls the effi-

cient, effective forward and reverse flow and storage of goods, services, and related 

information between the point or origin and the consumption in order to meet cus-

tomers’ requirements’.  

A logistics system consists of the following components (Rushton et al. 2006), viz. (i) 

storage, warehousing and material handling, (ii) packaging and unitization, (iii) invento-

ry, (iv) transport, and (vi) information and control.  

Logistics decisions range from long-term strategic decisions to short-term tacti-

cal/operational decisions (Riopel et al. 2010; Farahani and Hekmatfar, 2009). As Seifi et 

al. (2011) mentions, there are diverse categorisations of logistics decisions and they all 

consist of these three strategic decisions: (i) customer service, (ii) logistics network de-

sign, and (iii) outsourcing versus vertical integration. Riopel et al. (2009) categorises 

logistics decisions into three levels, viz. (i) strategic planning level, (ii) network level 

(physical facility network, and communication and information network) and (iii) op-

erations level (demand forecasting, inventory management, production, procurement 

and supply management, transportation, product packaging, material handling, ware-

housing, order processing). Strategic level decisions are discussed by many researchers 
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in literature. Wanke and Zinn (2004) report that logistics managers are dealing with 

three strategic level decisions: (i) make to order vs. make to stock; (ii) push vs. pull in-

ventory deployment logic; and (iii) inventory centralisation vs. decentralisation. Riopel 

et al. (2010) (Appendix A.1) discuss that strategic planning level decisions are involved 

with: definition of customer service and the associated metrics, customer service objec-

tives, degree of vertical integration and outsourcing within a SC. Further, strategic plan-

ning level decisions involve ‘a variety of additional decisions that affect logistics, such 

as determining organization’s overall economic objectives and strategy, determining the 

range of products and services offered, determining the geographical scope of produc-

tion, distribution, and marketing’ (Riopel et al. 2010).  

Physical location decisions are strategic decisions which are affecting many other logis-

tics decisions in any system. A physical facility network design decision includes types 

of facilities, number of each type of facility, size of facility, facility location, activities 

and services from each facility, utilisation of new or existing facilities, and links be-

tween facilities (Riopel et al. 2010). Prior to the network design decision, customer ser-

vice objectives, and degree of vertical integration and outsourcing must be determined. 

2.2.2. Green logistics decisions 

In recent years, eco-conscious and eco-friendly logistics have grown exponentially as a 

competitive element of logistics (Lee et al. 2008). Considering the environmental bur-

dens of manufacturing, the elements of modern day SC networks tend to operate on low 

carbon emissions. This becomes possible when the usage of energy-efficient vehicles, 

waste reduction, recycling, along with the deployment of optimisation techniques is 

considered. Greening a logistics system may occur in four phases: (i) green inbound 

logistics, (ii) operations and manufacturing, (iii) marketing/outbound logistics, and (iv) 

reverse logistics (Sarkis 2003).  

Significant control on the emissions from the distribution of products through transpor-

tation is a pre-requisite as it is one of the major sources for environmental concern in 

transportation. There is an increasing concern regarding the growth of GNP in the in-

dustrialised world (Aronsson and Brodin, 2006). Therefore, substantial efforts are being 

made by the European Union (EU) to decrease the total emissions from the transporta-

tion sector (European Commission 2001). However, plenty of scope is still available to 

optimise the carbon emissions from the SC logistics.  
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One of the benefits of the Kyoto protocol carbon trading mechanism is that it encour-

ages firms to minimise carbon emissions throughout their operations (Diabat and Sim-

chi-Levi 2009). The Kyoto protocol identifies six greenhouse gases, viz., Carbon diox-

ide (CO2), Methane (CH4), Nitrous oxide (N2O), Hydrofluorocarbons (HFC), Perfluoro-

carbons (PFC), Sulphur hexafluoride (SF6). According to the United Nations Frame-

work Convention on Climate Change (UNFCCC 2012), CO2 is considered as the prin-

cipal greenhouse gas in the ‘carbon market’. Often the quantity of emitted greenhouse 

gases is expressed as CO2 equivalent (CO2e) in carbon footprints. The ‘total amount of 

CO2e emissions that is directly and indirectly caused by an activity or is accumulated 

over the life stages of a product’ is considered as the carbon footprint (Wiedmann and 

Minx 2008). More precisely, CO2e gases emitted across a SC for a single unit of a 

product is referred to as the carbon footprint (Reclay Holding GmbH 2012). Therefore, 

it is recommended to measure the total amount of CO2e and propose possible ways to 

minimise the carbon footprint in a SC in order to enhance the efficiency of today’s 

green-SC network. In this research the term ‘low-carbon’ is referred to as an alternative 

of ‘carbon footprint’. 

There are plenty of recommended low-carbon SC principles in businesses. Recom-

mended principles are: the in-depth discernment of the impact of the carbon footprint in 

manufacturing locations and raw material sources, alternative sourcing options, operat-

ing speed of SCs, reduction of the use of packaging, proportionate increase in reverse 

logistics and re-design of distribution channels etc. In a SC network, logistics service 

providers are required to contribute by increasing SC efficiency and simultaneously 

reducing associated costs and carbon emissions. Transportation activities are one of the 

significant sources of air pollution and greenhouse gas emissions within a SC (Wang et 

al. 2011). These activities leave harmful effects on human health and the environment. 

Therefore, transportation activities of products from plants to customers via roadways 

are required to be investigated thoroughly. Minimisation of the traversed distance and 

maximum utilisation of the vehicles during transportation are possible solutions to min-

imise gas emissions. Considering the principles of a low-carbon SC and the effect of 

transportation activities on society and the environment, this research is focused on op-

timising the efficiency of SC carbon management through location-routing models, 

which are a variant of facility location problems.  
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2.3. Facility Location Problems 

Facility location is a well-established area of research and within the operations research 

(OR) domain (Melo et al. 2009). Facility location models and techniques have begun to 

appear gradually in a SC context (Chopra and Meindl 2007) and have become one of its 

most important applications. In the literature, facility location is also much discussed 

and studied in the context of logistic decisions (e.g. Lanagevin and Riopel 2010).  

Location theory formulation started in 1909 when Alfred Weber tried to position a sin-

gle warehouse to minimise the total distance between the warehouse and several cus-

tomers. Following this in 1964 Hakimi tried to locate switching centres in a communi-

cation network and police stations in a highway system (Owen and Daskin, 1998). Since 

the mid-1960s the study of location theory, specifically the mathematical science of 

facility location (ReVelle and Eiselt, 2005), has attracted much research attention and as 

a result many models have been developed.  

Location analysis has been defined by ReVelle and Eiselt (2005) as: ‘modelling, formu-

lation, and solution of a class of problems that can be best described as sitting facilities 

in some given space’. ReVelle et al. (2008) suggest that ‘even though the context in 

which Facility Location models are situated may differ, their main features are always 

the same: a space including a metric, customers whose locations in the given space are 

known, and facilities whose locations have to be determined according to some objec-

tive function’. These four components characterise the location problems (ReVelle and 

Eiselt 2005):  

‘(1) Customers: who are presumed to be already located at points or on routes, (2) Fa-

cilities that will be located, (3) A Space in which customers and facilities are located, 

and (4) A Metric that indicates distances or times between customers and facilities’.  

2.3.1. Classifications and mathematical modelling 

Categories and taxonomies of facility location models are found in Francis and White 

(1974), Bradndeau and Chiu (1989), Daskin (1995), Owen and Daskin (1998), ReVelle 

et al. (2008), Jia et al. (2007), Daskin (2008), Klose and Drexl (2005), and Eiselt and 

Marianov (2011).  

In literature, categories and taxonomies of facility location models under different con-

texts of OR, logistics, and SCM are overlapped. Riopel et al. (2010) and Langevin and 
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Riopel (2010) discuss the physical facility network in the context of logistics decisions 

considering several inter-dependent key decisions, viz. the type and the number of dif-

ferent facilities (warehouses, DCs and terminals), size and the location of each facility, 

the products and services provided from each facility and whether to use new or existing 

facilities or open a new one. 

Riopel et al. (2010) categorise mathematical facility location models as followed: 

(i) the fixed charge facility location problem. Extensions of this model con-

sider: a) facility capabilities and single sourcing requirements, b) multi-

ple echelons in the supply chain, and c) multiple products, 

(ii) integrated location/routing models, 

(iii) integrated location /inventory models, 

(iv) planning under uncertainty, 

(v) location models with facility failures. 

Daskin et al. (2010) and Alizadeh-Shabdiz (2009) classify and review facility location 

models into three main groups. This research uses the above-mentioned classification 

system. Based on integrated location-routing models (ii) in this classification system, 

two-layer and three-layer models are proposed. This classification system is as follows.  

 Classical/traditional models: This category consists of classical facility loca-

tion problems which forms the basis of most location models. In this type of location 

problem a set of customer locations with known demand and a set of candidate facility 

locations are given. The problem is finding the location of facilities and the movement 

(shipment) pattern between the facilities and the customers in order to minimise the 

combination of facility location and movement (shipment) costs subject to the constraint 

that all customer demand be met (Daskin et al. 2010). Sub-models of this group of mod-

els are:  

i. fixed charge facility location problem, 

ii. uncapacitated facility location model (with single sourcing), 

iii. capacitated facility location model, 

iv. locating plants and distribution centres (with multiple commodity). 

Fixed charge facility location problem is discussed below.  
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Fixed charge facility location problem: Fixed charge facility location problem is the 

basis of most of location models used in SC design. In this type of model, there is a set 

of data available: (a) a set of customer locations with known demand, (b) a set of candi-

date facility locations, if the model maker decided to locate a facility in a known site 

then a fixed cost is implied and (c) a known unit delivery/transportation cost between 

each candidate site and each customer. The problem here is to find the optimum loca-

tions of the facilities in order to minimise the costs of transportation and facilities, sub-

ject to the requirement of meeting all customer demands. The mathematical formula-

tions of the other three facility location models, viz. uncapacitated facility location 

model (with single sourcing), capacitated facility location model, and locating plants 

and distribution centres (with multiple commodity), are included in Appendix A.2.  

 Integrated decision making models: A study of the literature reveals many 

studies, and a variety of models for the purpose of attempting to integrate any two of the 

important decisions regarding SC design (Daskin et al. 2005; Hassanzadeh et al. 2009). 

These efforts in integration and combining elements of SC design are categorised as: 

i. Integrated location-routing models (LR) 

ii. Integrated inventory-routing models (IR) 

iii. Integrated location-inventory Models (LI) 

LR is the main concern of this research. This group of combined facility location mod-

els is discussed in more details in the following section.  

 Other models: The following models do not fall into classical or integrated cat-

egories and are classified as ‘other models’:  

i. model with routing cost estimation, 

ii. model with capacitated DCs (distribution centres), 

iii. model with multiple levels of capacity, 

iv. model with service considerations, 

v. profit maximising model with demand choice flexibility, 

vi. model with multiple commodities, 

vii. model with unreliable supply, 

viii. model with facility failures, 

ix. planning under uncertainty. 
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2.4. Integrated Location-Routing Problem 

The introductory concept of a Location-Routing Problem (LRP) was first reported in the 

1960s and early 1970s (Maranzana 1964; Webb 1968; Lawrence and Pengilly 1969; 

Higgins 1972; and Christofides and Eilon 1969). In the late 1970s and 1980s studies on 

LRP, as an integrated combined problem, began to appear separately (Jacobsen and 

Madsen 1978; Or and Pierskalla 1979; Laporte and Norbert 1981).  

Integrated LRPs combine three important components of a SC design: facility location, 

customer allocation to facilities, and vehicle routing (Daskin et al. 2010). These prob-

lems merge two different problems in nature, viz., facility location and vehicle routing. 

Literature discusses LRPs under both categories. Facility location decisions are strategic 

decisions by nature, while vehicle routing decisions are not.  

In the early attempts LRP is mostly discussed as a part of Vehicle-Routing Problems 

(VPR). VRPs are complex themselves and LRPs are considered a component of the 

VRPs. Laporte et al. (1988), in one of the early reviews on different types of LRP mod-

els and solution techniques, define VRP and LRP as follows: 

‘The VRP is commonly defined as the problem of designing optimal delivery or collec-

tion routes from one or several depots to a set of geographically scattered customers, 

under a variety of side conditions. LRPs are VPRs in which the optimal depot locations 

and route design must be decided simultaneously.’ 

Min et al. (1998) tried to offer a comprehensive categorisation of LRP studies by using 

a two way classification: (i) classifying LRP with regard to its problem perspective and 

(ii) classifying LRP problem with regard to its solution method. Table 2.1 presents these 

classifications. 

Table 2.1  Classification of LRPs (Min et al. 1998) 
Classification of LRP with regard to 
problem perspective 

Classification of LRP with regard to solu-
tion method 

I. Hierarchical level 
a. Single stage 
b. Two stages 

II. Nature of demand/supply 
a. Deterministic 
b. Stochastic 

III. Number of facilities 
a. Single facility 
b. Multiple facility 

IV. Size of vehicle fleets 
a. Single vehicle 

I. Exact algorithm 
a. Direct tree search / Branch & bound 
b. Dynamic programming 
c. Integer programming 
d. Non-Linear programming 

II. Heuristic 
a. Location-allocation-first, route-second 
b. Route-first, location-allocation-second 
c. Savings / insertion 
d. Improvement / exchange 
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b. Multiple vehicles 
V. Vehicle capacity 

a. Uncapacitated 
b. Capacitated 

VI. Facility capacity 
a. Uncapacitated 
b. Capacitated 

VII. Facility layer 
a. Primary 
b. Secondary 

VIII. Planning horizon 
a. Single period (static) 
b. Multiple periods (dynamics) 

IX. Time window 
a. Unspecified time with no deadline 
b. Soft time windows with loose dead-

lines 
c. Hard time windows with strict dead-

lines 
X. Objective function 

a. Single objective 
b. Multiple objectives 

XI. Types of model data 
a. Hypothetical  
b. Real-world 

 

Then Min et al. (1998) states the LRP as: ‘In general, the combined location-routing 

model solves the joint problem of determining the optimal number, capacity, and loca-

tion of facilities (domiciles) serving more than one customer/supplier, and finding the 

optimal set of vehicle schedules and routes’.  

There is a main difference between the LRP and the classical location-allocation. The 

classical location allocation problem ignores tours when locating facilities. This eventu-

ally leads to more distribution costs (Salhi and Rand 1989; Min et al. 1998). Min et al. 

(1998) and Daskin (1995) consider two types of trips between facilities and customers, 

viz. direct trips and tour trips. Based on these two types of trips between facilities and 

customers, Hassanzadeh et al. (2009) in an effort to define LRP, describes the different 

types of serving customers (Figure 2.5): 

 

Figure 2.5  Different types of servicing a customer (adopted form Hassanzadeh, 
2009) 
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Hassanzadeh et al. (2009) define the LRP as: ‘a feasible set of potential facility sites 

and locations and expected demands of each customer which are given. Each customer 

is to be assigned to a facility which will supply its demand. The shipments of customer 

demand are carried out by vehicles which are dispatched from the facilities, and oper-

ate on routes that include multiple customers. The location of distribution facilities and 

the distribution of products from these facilities to customers are two key components of 

a distribution system.’  

Nagy and Salhi (2007) look at the LRP as an approach for modelling and solving 

locational problems as the LRP is not a single well defined problem from their point of 

view. In a state-of-the-art survey on location-routing, Nagy and Salhi (2007) classify 

literature at the time based on a classification system that includes a number of criteria. 

They state that ‘classifying location-routing problems is at least as difficult a task as 

that of classifying location problems, with added complexity provided by the variability 

in the underlying vehicle routing problems’.  

Literature reports mathematical formulation of the integrated LRPs in two-layer (Berger 

1997; Hassanzadeh et al. 2009) and three-layer (Perl 1983; Perl and Daskin, 1985) 

stages or echelons. In the literature an example of a four-layer LRP is also presented 

(Hamidi et al. 2012). The number of layers represents the main players on the demand 

side of the supply chain considered in these models. Figure 2.6 presents a general 

representation of a SC. It consists of the supply side, the demand side, and the 

connections between the supply and the demand sides with the focal company. Most SC 

network design models are focused on the demand side and physical distribution of 

products.  
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Figure 2.6  A general representation of a SC (Bowersox et al. 2013)  

The two-layer LRP considers two players on the demand side of the SC. These two-

layers can be the plant(s) and DC(s), or plant(s) and customer(s) (Hassanzadeh et al. 

2009). The mathematical formulations of a two-layer LRP developed by Berger (1997) 

and a three-layer LRP developed by Perl (1983) are presented in Appendix A.3.  

2.4.1. Applications of LRPs 

A full review of the literature reveals implementation of location-routing in various sec-

tors. A summary of LRP application in literature since its inception is provided in Table 

2.2. 

Table 2.2  A summary of LRP applications (updated based on Nagy and Salhi 2007; 
Hassanzadeh et al. 2009) 

Author Application Area 
Watson-Gandy & Dohrn (1973) 
Bednar & Strohmeier (1979) 
Or & Pierskalla (1979)  
Jacobson & Madsen (1980) 
Nambiar et al. (1981) 
Madsen (1983)  
Perl & Daskin (1984,1985) 
Labe & Laporte (1986) 
Nambiar et al. (1989) 
Semet & Taillard (1993) 
Kulcar (1996) 

Food & drink distribution 
Consumer goods distribution 
Blood bank location 
Newspaper distribution 
Rubber plant location 
Newspaper Distribution  
Goods distribution 
Post-box location 
Rubber plant location 
Grocery distribution 
Waste collection 
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Murty & Djang (1999) 
Burns et al. (2000) 
Chan et al. (2001) 
Lin et al. (2002) 
Lee et al. (2003)  
Wasner & Zapfel (2004) 
Cappanera et al. (2004) 
Billionnet et al. (2005) 
Gunnarsson et al. (2006) 
Alumur and Kara (2007) 
Rönnqvist et al. (2007) 
Apaydin and Gonullu (2008) 
Aksen and Altinkemer (2008) 
Wang et al. (2011)  
Stenger et al. (2012) 
Validi et al. (2012)  
Erdoğan and Miller-Hooks (2012) 

Military equipment location 
Parcel delivery 
Medical evacuation 
Bill delivery 
Optical network design 
Parcel delivery 
Obnoxious facility LR 
Telecom network design 
Shipping industry 
Disposal of hazardous material 
Forest harvesting 
Waste collection  
Distribution logistics 
Environmental impact of SC 
Small package shippers 
Green distribution system  
Green vehicle-routing  

 

The literature also reports green initiatives with respect to location routing, particularly 

in green reverse logistics (Fleischmann et al. 2001; Zhu et al. 2008; Neto et al. 2009). 

Trade-offs between the cost factors and the environmental impact of a supply chain is 

reported in Wang et al. (2007). A green VRP is reported that uses a mixed-integer linear 

programming approach (Erdoğan and Miller-Hooks 2012). A dairy manufacturer’s sup-

ply chain distribution system is reported using a multi-objective programming approach 

(Validi et al. 2012). In the next section, solutions offered to facility location and inte-

grated location-routing models are discussed.  

2.4.2. Solution methods 

LRP combines facility location and customer allocation to facilities with vehicle rout-

ing. These problems are hard to solve since they merge two different problems in na-

ture: facility location and vehicle routing. Mathematically, such problems are consid-

ered as NP-hard problems (Karp 1972; Nagy and Salhi 2007; Marinakis and Marinaki 

2008; Yu et al. 2010; Daskin et al. 2010; Perl and Daskin 1985; Hassanzadeh et al. 

2009). Due to the computational complexity of such problems there is no unique solu-

tion to them. Therefore, a solution space is defined by the use of a solution approach 

and an optimiser. Within the specified solution space the optimum solution(s) consider-

ing the goal(s) of the problem and its constraints are found.  

Hassanzadeh et al. (2009) categorises the solution methods into three groups, viz. exact, 

heuristic, and meta-heuristic. Brimberg and Hodgson (2011) argue that the classical 

location problems fall into a two-dimensional space and can be depicted in three ways, 

viz. continuous, discrete, network space. In network space, according to Brimberg and 
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Hodgson (2011), ‘demands are expressed at vertices of networks, facility locations (in 

the case of medians) are selected from network vertices, and distances are calculated 

over the shortest paths in the network’. Nagy and Salhi (2007) categorise the methods 

used for solving LRPs in four main groups (Figure 2.7). 

 
Figure 2.7  LRPs solution methods (adopted form Nagy and Salhi 2007) 

 

Solution methods to facility location problem and its variants in the context of SC de-

sign are depicted in Table 2.3:  

Table 2.3  Solution methods for supply chain design problems 
References Problem Solution Method 

Cooper (1963-1964)  Fixed charge FLP  
Teitz  and Bart (1968)  Fixed charge FLP Exchange or ‘swap’ algorithm 
Maranzana (1964) Uncapacitated fixed charge LP Neighbourhood search im-

provement algorithm 
Geoffrion and Garves (1974) Fixed charge LP Lagrangian relaxation algorithm 
Galovo et al. (2002) and Daskin 
(1995) 

Uncapacitated fixed charge LP Lagrangian relaxation algorithm 

Hansen and  Mladenvic (1997) Fixed charge FLP Variable neighbourhood search 
algorithm 

AL-Sultan and Al-Fawzan 
(1999) 

Uncapacitated fixed charge LP Tabu search 

Jayaraman and Pirkul (2001) Multi-Commodity, multi-plant, 
capacitated facility FLP (supply 
chain design problem) 

Heuristic approach base on 
Lagrangian relaxation 

Jang et al. (2002) Design of SC network Lagrangian heuristics 
Sayrif et al. (2002) Multi-source, single-product, 

multi-stage SC network design 
problem 

Spanning tree-based GA ap-
proach 

Shen et al. (2003) Basic model  Column generation approach 
Oszen et al. (2003) Model with routing cost estima-

tion 
Lagrangian relaxation based 
solution algorithm 

Jayaraman and Ross (2003) Designing of distribution net-
work and management in supply 
chain environment 

Heuristic approach based on 
simulated annealing 

Shen and Daskin (2005)  Model with service considera-
tion 

Weighting method 

LRP Solution Methods, 
based on the problme type 

Exact Solution Methods for 
Deterministic Problems

Heuristic Solution Methods for 
Deterministic Problems

Stochastic & Dynamic Problems

Problems with Non-Standard 
Hierarchical Structure
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Shen and Daskin (2005) Model with service considera-
tion 

Genetic algorithm 

Shen (2000) Model with multiple commodi-
ties 

Lagrangian relaxation embed-
ded in a branch and bound algo-
rithm 

Yeh (2005) Multistage supply chain network 
problem (MSCN) 

Hybrid heuristic algorithm 

Amiri (2006) Designing a distribution network 
in a supply chain system with 
allow for multiple levels of 
capacities 

Lagrangian based solution algo-
rithm 

Yeh (2006) Multistage supply chain network 
problem (MSCN) 

Memetic algorithm (MA) 

Shen (2006) Profit maximising model with 
demand choice flexibility  

Branch-and-price algorithm 

Altiparmak et al. (2006) Multi-objective SC network 
design problem 

New solution procedure based 
on genetic algorithm 

Romeijn et al. (2007) Two-echelon SC design problem Column generation 
Shen (2007) Model with unreliable supply Algorithm based on the bisec-

tion search and the outer ap-
proximate algorithm 

Synder et al. (2007) Model with parameter uncertain-
ty  

Lagrangian relaxation based 
solution algorithm  

Hinojosa et al. (2008) Dynamic supply chain design 
with inventory 

Lagrangian approach which 
relaxes the constraints connect-
ing the distribution levels 

Schütz et al. (2008)  Two-stage stochastic supply 
chain design problem 

Sample average approximation 
in combination with dual de-
composition 

Altiparmak et al. (2009)  Design of a single-source, multi-
product, multi-stage SC network 

Solution procedure based on 
steady-state genetic algorithm 
(SSGA) 

Bischoff et al. (2009) Multi-dimensional mixed-
integer optimization problem 
(multi-facility location–
allocation problem with polyhe-
dral 
barriers) 

Heuristic methods (alternate 
location–allocation; alternate 
location-with-barriers allocation 
algorithm, & alternate location 
allocation-with-routes 
algorithm) 

Li et al. (2009)  Capacitated plant location prob-
lem with multi-commodity flow 

Lagrangian-based method in-
cluding a Lagrangian relaxa-
tion, a Lagrangian heuristic and 
a sub-gradient optimisation + 
Tabu search to further improve 
upper bounds provided by the 
Lagrangian procedure 

Liberatore et al. (2011) Stochastic R-interdiction median 
problem with fortification (S-
RIMF) 

- Pre-processing techniques 
based on the computation of 
valid lower and upper bounds 
- Heuristic approach 

Reddy et al. (2011) Single echelon supply chain two 
stage distribution inventory 
optimisation  

No solution offered! 

 

Several optimisation algorithms are adopted by researchers in LRPs. A good number of 

these algorithms are heuristics/meta-heuristics. A detailed survey of the location-routing 

techniques is provided in (Madsen 1983; Min et al. 1998; Kenyon and Morton 2001; 
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Nagy and Salhi, 2007). A synopsis of the optimisation techniques is illustrated in Table 

2.4. 

Table 2.4  A synopsis of the reported optimisation techniques for LRPs 
Optimisation techniques used  Publications 
Self-organised optimisation using 
artificial neural network  

Schwardt and Fischer (2009) 

Honey bees mating optimisation  Marinakis et al. (2008) 
Ant colony optimisation Bell and McMullen (2004), Bin et al. (2009), Ting 

and Chen (2013) 
Particle swarm optimisation Yang and Zi-Xia (2009); Liu et al. (2012)  
Tabu search Gendreau et al. (1994), Melechovský et al. (2005), 

Albareda-Sambola et al. (2005), Caballero et al. 
(2007) 

Simulated annealing Lin et al. (2002), Yu et al. (2010), Stenger et al. 
(2012). 

Greedy randomised adaptive search 
optimisation 

Prins et al. (2006), Duhamel et al. (2010), Nguyen 
et al. (2012) 

Variable neighbourhood search op-
timisation 

Melechovský et al. (2005), Ghodsi and Amiri 
(2010), Derbel et al. (2011) 

Genetic algorithms Zhou and Liu (2007), Marinakis and Marinaki 
(2008), Jin et al. (2010), Karaoglan and Altipar-
mak (2010) 

Branch and cut optimisation  Belenguer et al. (2011), Karaoglan et al. (2011) 
Mixed-integer programming; Integer 
linear programming 

Alumur and Kara (2007), Diabat and Simchi -Levi 
(2009); Laporte et al. (1989); Ambrosino and 
Scutella (2005) 

 
NP-hard LRP is broken down into its components by heuristics/meta-heuristic methods. 

These components (Karp 1972) are solved and then the final solution to the problem is 

reached. These heuristic/meta-heuristic methods can follow location-allocation-routing 

algorithms or allocation-routing-location algorithms. Location-allocation-routing algo-

rithms first locate the facilities, then allocated the customers to facilities and then define 

the connection routes. Instead, allocation-routing-location algorithms deal with alloca-

tion of facilities and routing simultaneously. Usually allocation-routing-location algo-

rithm defines a set of routes and assumes that all facilities are open, allocates customers 

to facilities and drops the unselected facilities from the system and updates the location 

and routing decision (Karp 1972; Perl 1983; Wu et al. 2002). Heuristics and meta-

heuristics tend to search the solution space more electively when compared to conven-

tional approaches.  
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Considering the nature of the solution methods and optimisers, the next challenge in 

dealing with LRPs and any other form of SC network design model is finding a proper 

platform to solve the constructed model. Next section reviews the most used software 

packages and programs used as a solution platform for LRPs.  

 

2.5. Implementation Platforms for LRPs 

In the context of Facility Location, Tafazzoli and Mozafari (2009) have done a literature 

review on the ‘classification of location models and location software tools’. They first 

tried to review the classification of facility location problems and then presented a soft-

ware survey on FLPs. They categorised the software packages used for solving FLPs 

into general specialised software packages for solving specific problems. A brief review 

of some of the main software used for solving/modelling facility location problems are 

presented in Table 2.5. 

Table 2.5  A brief review of the main solution software tools and programmes for 
facility location modelling (Tafazzoli and Mozafari 2009) 

Software Covering Methods/Models Source 
 

General software packages and programs  
LOLA Network, and discrete FLPs including: median, 

centre, q-median, q-centre (q: the number of 
facilities in a multi facility problem or the num-
ber of objective functions in a multi-objective 
problem) 

Hamacher et al. 1996 

SITATION p-median, set covering, maximal covering, p-
centre, UFLP FLs;  
using branch & bound, Lagrangian relaxation, 
genetic algorithm, variable neighbourhood  

Daskin, 2002 
(accompanies Daskin text: 
Network and Discrete 
Location: models, algo-
rithms, and applications) 

S-Distance focused on location-allocation analysis:  
p-median, p-centre, maximal covering, multi-
objective;  
using greedy and randomised algorithms, local 
search heuristics, meta-heuristics, Lagrangian 
relaxation 

Sirigos and Photis, 2005 

More specifically focused software programs and tools (limited)  
Mathematical Pro-
gramming  

1. LINGO 
2. LINDO 
3. GAMS 
4. CPLEX 

These software programs need a different level of programming and coding to 
solve the mathematical model.  

Jure Mihelic (k-
centre algorithms)  

K-centre algorithms; a program for solving facil-
ity location problems with k-centres 

Mihelic 2004 

RLP Solving restricted one facility location problem  Nickel and Hamacher, 
1992 
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Advanced Interactive Multidimensional Modelling System (AIMMS), a software sys-

tem designed for modelling and solving optimisation models has been tested as an op-

tion. The software is not compatible to the nature of the models and failed in reaching a 

feasible solution space. 

For the purpose of this research a commercial solver capable of solving the two-layer 

and three-layer multi-objective 0-1 mixed integer AHP-integrated LRP is required. Fur-

thermore, a commercial solver that offers a variety of optimisers of different natures is 

desirable. Conventional software packages and tools are not capable of providing a Pa-

reto efficient optimum solution space for these two SC network design models using a 

variety of advance multi-objective heuristics/meta-heuristics. A multi-disciplinary and 

multi-objective software capable of handling complex optimisation problems is availa-

ble for designing purposes. modeFRONTIER® is a multi-disciplinary and multi-

objective optimisation and design environment developed by ESTECO SpA (ESTECO 

2013). The complex algorithms within modeFRONTIER® can spot the optimal results, 

even conflicting with each other or belonging to different fields. modeFRONTIER® 

consists of Design of Experiments (DoE), optimisation algorithms, and robust design 

tools, capable of blending to create an efficient strategy to solve complicated multi-

disciplinary problems. It is offering a wide range of evolutionary optimisers to manage 

continuous, discrete, and mixed variable problems.  

After initial evaluation of available software solution platforms, it was concluded that 

modeFRONTIER® is the most suitable platform for solving complex NP-hard multi-

objective LRPs as are being developed in this study based on its extended capabilities 

and multi optimiser availability. modeFRONTIER® is  a commercial solver, which can 

be described as a design environment in contrast to  a final stage software package. As 

such a development platform it allows significant scope and flexibility to the designer. 

In modeFRONTIER®, MOGA-II, NSGA-II, MOSPOS, MOSA and HYBRID are se-

lected to solve the two and three-layer MO-LRPs. MOGT works using a combination of 

Game Theory and a Simplex algorithm and uses only the first entry of DoE table, there-

fore this optimiser is not selected to solve the models in this study. SAnGeA is devel-

oped for unconstrained models. As the MO-LRPs are both constrainted in this study, it 

is deemed not suitable for these models. modeFRONTIER® is explained in more details 

in Appendix A.4.  
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2.5. Research Gaps 

 Survey of literature shows that there has been very little research into the 

environmental impacts of SC network design. This area of research has the potential to 

offer a considerable contribution to the environment in terms of GHG emission. Facility 

location and vehicle-routing are already well established areas of study in SC network 

design. However, the literature review reveals that more focus should take into account 

green considerations on the use of facility location and vehicle-rooting techniques and 

methods.  

The main three objectives of this study are: (a) Developing low-carbon location-routing 

models, (b) Finding an effective solution approach to implement the developed models, 

and (c) Offering targeted and tailored low-carbon low-cost scenarios to DM’s 

considering their priorities. In order to consider green elements in SC network design, 

this research is particularly focused on improvement of Berger’s (1997) two-layer LRP 

and Perl’s (1983) three-layer LRP. The critical survey of literature reveals the following 

gaps in location-routing modelling in the context of SC network design:  

 From modelling perspectives of LRPs 

» Prior research fails to include cost of serving routes while optimising 

CO2 emission in SC network. Therefore this research optimises the total 

CO2 emission caused from transportations throughout the SC network 

considering the cost of serving the routes. Existing LRPs do not include 

the capacity of DCs and the demand of retailers. The effect of the capaci-

ty of DCs and the demand of retailers on the total cost is studied in this 

research by adding these components to the developed models. 

» DM’s priorities are not considered in designing prior LR models. This 

research considered the DM’s priorities in the mathematical model by 

using MCDM tools and techniques. This will make the mathematical 

model capable of responding to the priorities of the DM with qualitative 

nature 

 From solution perspective on LRPs  

» The developed models in this research are multi-objective. Besides, 

MCDM techniques are used to consider the DM’s priorities. The combi-
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nation of these two characteristics makes the developed models quite dif-

ferent from any prior LRPs. Therefore, an effective implementation plat-

form for low-carbon multi-objective LRPs is to be identified and de-

ployed.  

» One of the shortfalls of evolutionary algorithms such as genetic algo-

rithms is that they generate a considerable number of irrelevant solutions. 

By introducing DoE to the solution algorithms robust solution approach 

is achieved.  

 From analysis of results perspective 

» Prior research to LRPs doesn’t consider MCDM techniques to rank the 

results. This research considers MCDM techniques for ranking results 

obtained from evolutionary algorithms used for implementing the mod-

els.  

» Prior research fails to provide the decision-makers with various scenarios 

and analysis related to these scenarios. This research suggests multiple 

scenarios followed by analysis based on the scenarios and the solutions 

offered by each one of them.  

 

2.6. Summary  

This research is focused on low-carbon low-cost integrated location-routing and this 

chapter reviewed the highly inter-disciplinary relevant literature to this topic. The litera-

ture on Supply Chain Design, Facility Location Problems and Integrated Location-

Routing Problems are reviewed. Logistics Decisions and Green Logistics Decisions are 

surveyed as sub-sections to SC design. The survey of available literature in these three 

main sections reveals that the environmental issues have been considerably neglected in 

Integrated Location-Routing modelling. The next observation from reviewing the avail-

able literature is that the decision-makers opinions are not considered in making LR 

decisions. There is possibility of considering DM’s opinion and their priorities in the 

modelling phase and/or in the analysis of results phase. Implementation platforms and 

solution approaches available to LRPs are studied in this chapter. Literature shows that 

there is room for improvement in the solution approaches to LRPs.  
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The thorough survey of literature reveals that low-carbon low-cost LRPs have not been 

studied before. To the best of my knowledge there is no evidence of a multi-objective 

low-carbon LRP in literature. This is the exact area this PhD research is focused on. 

Next chapters of this dissertation explain two sets of multi-objective LRPs developed to 

minimise cost and carbon emissions simultaneously.  
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3.1. Introduction  

Chapter One presented an introduction to the study outlining its background, scope, 

aims and objectives and significance. Chapter Two presented a survey of the literature 

in the main context of SC network design. This chapter presents and overview of the 

adopted methodology to meet the aims and objectives of the research.  

The chapter outlines as follows. The research method is introduced in section 3.2. 

Section 3.3 describes the modelling approach. Section 3.4 deals with solution approach 

while section 3.5 describes the data analysis approach. A summary on the chapter is 

presented in section 3.6.  

 

3.2. Research Method  

This research is focused on ‘Integrated Location-Routing’, one of the Facility Location 

integrated models in Supply Chain Network design. Facility Location is a well-

established subject area in Operations Research. Thus, in order to explore and enquire 

the aims and objectives of this study mathematical optimisation is adopted. 

Mathematical optimisation involves three main steps in Operations Research: i) 

Modelling approach, ii) Solution approach and iii) Analysis approach.  In the following 

section these main steps of the methodology for this research are briefly introduced.  

 

3.3. Modelling Approach  

One of the main aims of this research is to improve Berger’s (1997) two-layer LRP and 

Perl’s (1983) three-layer LRP. The improvement is focused on inclusion of the green 

elements into these models. The ‘green’ element in this research is defined as 

‘minimising CO2 emission from transportation within the two and three SCNs’. The 

focus is on developing and introducing two components to the two and three layer 
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LRPs: developing a new green objective function and developing a new green 

constraint.  

Conventionally two and three layer LRPs are single-objective primarily focused on cost. 

The developed models are multi-objective with two objective functions. The traditional 

objective function exists which focuses on ‘costs’. The green objective function aims to 

minimise the ‘CO2 emission from transportation’. These two objective functions work 

simultaneously in order to find an optimum solution space to the developed models.   

The green constraint leads the model to find the best transportation option considering 

the DMs’ priorities. In the construction of this constraint the DMs’ priority regarding 

the importance and weight of ‘cost’ and ‘CO2 emission’ when it comes to transportation 

(i.e. types of trucks) is considered. Contribution of this constraint to the model is 

offering a transportation option tailored based on the DMs’ priorities and within the 

main framework of the model. MCMD techniques are considered to construct this 

constraint. 

 

3.4. Solution Approach and Solution Platform 

Literature reveals that two-layer LRPs are computationally NP-hard problems. There is 

no unique solution to these types of models but a feasible solution area. In different 

attempts a variety of heuristics/meta-heuristics in one or multi-phase algorithms have 

been implemented to solve LRPs.  

Two-layer LRPs are solvable in a one phase solution approach while multi-phase 

solution approaches are implemented in order to solve three-layer LRPs. Typically the 

multi-phase solution algorithms break the problem into its main components (facility 

location, allocation of customers to facilities, vehicle routing). These algorithms follow 

a consecutively connected multi-phase approaches to solve the three-layer LRPs. The 

Perl (1983) three-layer LRP has been solved by him using a three phased heuristic. In 

another attempt, Wu et al. (2002) solves the Perl’s (1983) three-layer LRP in two 

phases.  

One of the main aims of this study is to find or offer an effective solution approach for 

both the two-layer and the three-layer MO-LRPs. The two-layer MO-LRP is an exten-

sion of the Berger (1997) LRP and the three-layer MO-LRP is an extension of the Perl 
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(1983) and a variation of the two-layer MO-LRP. Implementation platforms, solution 

approaches and different optimisers are considered to be studied in this research to find 

or offer the best possible implementation platform, the most effective solution approach 

and the most efficient optimiser.  

After reviewing available software solution platforms, modeFRONTIER® is recognised 

as the most suitable platform for solving complex NP-hard multi-objective LRPs as are 

being developed in this study. This commercial solver can be described as a design en-

vironment in contrast to a final stage software package. It allows significant scope and 

flexibility to the designer. In modeFRONTIER®, MOGA-II, NSGA-II, MOSPOS, MO-

SA and HYBRID are selected to solve the two and three-layer MO-LRPs. 

 

3.5. Supply Chain Cases and Data Analysis Approach  

In order to elucidate the efficacy of the formulated generic mathematical models, a dairy 

supply chain network in east of Ireland is considered. Two case studies consisting of 

two-layer and three-layer dairy SC networks in east of Ireland are developed. The 

required data is collected and calculated according to their availability and their nature. 

The structure of  these SC cases are validated by means of: (i) interviewing a consultant 

to few dairy  companies in Ireland, (ii) interviewing experts from two major dairy 

companies in Ireland, (ii) using company profiles, technical reports from dairy 

companies, outcomes of researches on dairy SCs, and SC text books. There is a 

questionnaire designed to collect data from experts (Appendix B.1). Based on this 

validated real structure of the dairy supply chain network in Ireland, two-layer and 

three-layer SC cases are considered to test the models on. Carbon-emission related data 

is calculated based on the available recognised methodologies for calculating carbon 

emission from transportation. Due to unavailability of production fixed and variable 

cost-related data, they are assumed based on: i) interviewing a consultant to dairy SC 

companies in Ireland, and ii) the real available data regarding costs of dairy products in 

Ireland. Vehicle-routing costs are calculated using real data. After validating the 

structure of the SC networks, distance-related data are calculated using google map. 

And finally, DM’s priorities are collected by interviewing experts in the modelling 

phase to develop the green constraint. The process of collection and calculation of the 

required data is respected to the two-layer and the three-layer SC networks structures.  
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In LRPs, Analysis of the obtained results is of a great importance as there is a feasible 

solution area not a single optimum solution to them. The analysis process consists of 

checking all feasible solutions, ranking them and offering the best possible solutions to 

the DMs. DMs’ opinions is considered in this process using MCDM tools and 

techniques.  

 

3.6. Summary  

This research is dealing with Integrated-Location Routing in Supply Chain (SC) 

network design. Two-layer and three-layer SC networks are considered in this study. 

The two-layer SC network consists of plants and retailers while the three-layer SC 

network includes plants, distribution centres and retailers. The main outcome of the 

research would be a generic low-cost low-carbon framework to design a network of 

facilities and offering a routing pattern to connect these facilities.  

The main subject area of this research is an interdisciplinary field in supply chain 

covered by operations research. The effective method to conduct research in this subject 

area is mathematical optimisation. This is the approach that this PhD study has taken to 

pursue its aims and objectives. Multi-objective location-routing optimisation is adapted 

to design two and three-layer supply chain networks. The developed optimisation 

models are explained in details in the following chapters of this dissertation.  
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Two-Layer Multi-Objective Integrated Location-Routing  
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4.1. Introduction  

A conventional two-layer Location-Routing Problem (LRP) on the demand side of a SC 

is found in Berger (1997) and Daskin et al. (2005). A proposed low-carbon/green two-

layer Multi-Objective-Location Routing Problem (MO-LRP) improves the conventional 

models of Berger (1997) and Daskin et al. (2005) and contributes to the literature in the 

field of low-carbon capacitated two-layer LRPs. 

The demand side of a two-layer SC with two facilities and multiple retailers is 

illustrated in Fig. 4.1. This two-layer SC network consists of plants and retailers. The 

flow of materials is also indicated in Fig. 4.1. The physical distribution of a two-layer 

SC network is the subject of analysis in this chapter. 

 

Figure 4.1 A two-layer SC with multiple retailers (Adapted from: Schroeder et al. 
2013) 
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The main contribution of this chapter is three inter-linked aspects of the proposed 

variant of the two-layer MO-LRP, viz.:  

(i) a green location-routing model is designed by integrating AHP with 0-1 mixed 

integer programming 

(ii) a Design of Experiment (DoE) guided meta-heuristic-based robust solution 

approach under the modeFRONTIER® commercial solver is provided and  

(iii) the decision-makers’ (DMs’) prioritisation and subsequent ranking of the realistic 

solutions are examined using Pareto frontiers, ‘Technique for Order Preference by 

Similarity to Ideal Solution’ (Hwang and Yoon 1981) (TOPSIS) and various scenarios 

of the green location-routing are featured. 

This chapter is divided into three connected parts. Part-I presents the integrated green 

MO-LRP. Part-II elucidates the DoE-guided meta-heuristic-based robust solution 

approach under the modeFRONTIER® commercial solver followed by the deployment 

of a case of a two-layer supply chain. Part-III delineates the DMs’ prioritisation and 

subsequent ranking of the realistic solutions using Pareto frontiers and TOPSIS. In this 

part various scenarios of the two-layer routing events are featured by determining 

alternative possible outcomes. This validates the robustness of the realistic solution sets.  

The two-layer MO-LRP, its efficient solution approach and analysis of the realistic 

results contribute to the following aspects on the demand side of the SC in the following 

ways: 

(i) a low-carbon two-layer MO-LRP optimisation model on the demand side of an SC is 

formulated. Green elements are embedded in an objective function and an AHP-

integrated constraint. 

(ii) the model allocates retailers to the facilities, i.e., plants. 

(iii) the model optimally routes the vehicles to serve the demand-side of the SC. 

(iv) the total carbon emission and total cost are optimised. These criteria are conflicting 

in nature having incommensurable units of measurements. 
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(v) the optimisation model is found to be computationally NP-hard. The model is 

implemented using DoE-guided meta-heuristic disparate optimisers under the 

modeFRONTIER® commercial solver platform (ESTECO 2013). 

(vi) sets of Pareto efficient realistic optimum results are found. The results are then 

prioritised and ranked by the DMs. TOPSIS assists in evaluating sets of selected results. 

An analysis reflecting the DMs’ preferences is performed. This analysis reflects the 

changes in the controlling parameters with respect to the changes in the decision 

weights of TOPSIS. 

(vii) a scenario analysis of the location-routing events is performed. The scenario 

analysis offers possible alternatives to DMs when the closed routes are forced to open. 

This shows the robustness of the realistic solution sets.  

(viii) the set of low-carbon vehicle routes are geographically mapped. 
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Figure 4.2 The formulation of the multi-objective two-layer location-routing model, 
its solution approach and analysis procedure 
 

Multi-objective integrated two-layer 
location-routing model  

 

Objective One:  
Minimising the total CO2 emission during transporta-
tion of products between processing plants to retail-
ers 

- Demand and the number of vehicles required for 
transportation of the products at each node are consid-
ered 
Objective Two: 

1. Minimising the sum of costs:  
- Total fixed cost of operating processing plant  
- Total variable cost of covering the demand of each 

retailer at each processing plant  
- Total cost of delivering products in each route.  

Constraint 1: Each 
retailer on one route 
 
Constraint 2:  Assigns 
routes only to one open 
facility 
 
Constraint 3: Allots 
vehicles using AHP-
integrated constraint 
(Green constraint) 

Analysis of Results 

 

 

 

 ANOVA 
- compares the means of two or more groups 

of the optimised realistic solutions   

Pareto Efficiency: 
- analyses realistic 

solutions  
- analyses Pareto 

Efficiency  

TOPSIS 
- ranks selected 

solutions 
- considers DM’s 

opinions 
 

Outcomes 

 

 

 

 

 

 

 

 

 

 

Scenario 
Analysis 
- analyses effect 

of opening 
closed routes on 
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and costs 

 
 
 
 

 

Geographical Maps 
- realistic set of low-

carbon low-cost 
vehicle routes are 
geographically mapped  

AHP is 
integrated in 
the 0-1 
programming 
framework as 
a green 
constraint.  

Features:  
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- Multi-objective 
- Low-carbon 
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- Single commodity 
- 0-1 mixed-integer 

framework 
- Computationally NP-hard 
 

DoE-guided meta-heuristic based 

solution approach 

 
Deployment based on 
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Number of 
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Case of the demand 
side of an Irish dairy 
market supply chain  
 

Summary of results: 
- Optimal feasible 

results obtained. 
- Identical and non-

realistic results 
eliminated. 

- A set of feasible results 
selected. 

-  Selected realistic 
results are prioritised 
and ranked.  

Execution platform: 
modeFRONTIER®
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Part I: Modelling 

4.2. Two-Layer Multi-Objective Integrated Location-Routing  

The low-carbon MO-LRP is formulated by integrating AHP with a 0-1 programming 

approach. This model is developed to be generic and can be extended to any two-layer 

supply chain network. Realistically the model can be extended to any number of plants 

and retailers on the demand-side of a supply chain. 

The integrated model is formulated considering a set of realistic assumptions. Similar 

vehicle capacities are considered. Transportation of the products between plants and 

retailers results in CO2 emission. In summary, the following assumptions are considered 

while formulating the optimisation model: 

Box 4.1 Assumptions 
 Demand side of the SC is considered  
 Multiple facilities, multiple retailers  and a single product is considered 
 Plants always remain open 
 Locations of the plants and retailers are known 
 Vehicle routes have known start and end points 
 Total demand on each distribution route is less than or equal to the plant capacity  
 A portion of the variable cost is dependent on the demand at retailer  points 
 Each distribution route is served by at least one vehicle 
 Diesel operated refrigerated heavy duty vehicles  / heavy goods vehicles are con-

sidered 
 Fuel consumption of the vehicles is dependent on the total mass of the vehicles   

 

Conventional location-routing problems are single-objective in nature with the principal 

aim of minimising total costs. The multi-objective mathematical programming model is 

formulated within a mixed integer programming framework. A detailed nomenclature of 

the optimisation model is elucidated in Table 4.1.  
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Table 4.1 Nomenclature 
 
Sets and indices 

  
Parameters 

I  Set of retailer locations indexed by i    
jf  Fixed costs of locating at plant j J  

J  Set of plants indexed by j   
 

 
jv  Variable costs of serving retailers at each 

plant j J  

jP   Set of feasible paths from plants to 
retailers, j J   

 
ja  Variable cost of providing a retailer with 

the products at a DC per unit, j J  
K  Set of routes, indexed by k    

jr  Demand at retailer location, j J     
 

M  Set of attributes in AHP decision matrix 
(CO2 emission and costs) , indexed by m  

 
jkc  Cost of serving path, jk P  

N  Set of alternative vehicles in AHP 
decision matrix, , indexed by n 

 
jip  CO2 emission from transportation in each 

path from plant j J  to retailer i I  
 
Decision variables 

 z  Speed in different roads, km /hr 
 

jkV  Set of feasible paths form processing 
plant j J  to retailer i I  

 
mnw
 

Matrix of weights for each truck option 

nT  Trucks with different specifications; 
(1, 2, 3)n  

 
mB  Right hand side matrix for green constraint 

jX   Set of processing plants j J   
mS  Values of 

jip  and jkc  depending on the 
values of 

mB   

  

The model includes a ‘green’ objective function that aims to minimise the total CO2 

emission during the transportation of the products to the retailers. A low-carbon element 

is introduced to this integrated model as an objective function by way of integrating an 

AHP-based constraint. Based on the assumptions of the model, a multi-objective 0-1 

mixed-integer two-layer location routing AHP-integrated model is developed as 

follows:  

minimise ,ji jk j
j J i I

    p V             k P
 

                                                                  (4-1) 

The first objective function of this model (4-1) is designed to minimise the total CO2 

emission related to transportation between plants and retailers. jip is calculated using 

the following formula (4-8) (The Department of Energy and Climate Change (DECC) 

2008; Department for Environment, Food and Rural Affairs (DEFRA) 2008):  

2       k        2.64 ( ) CO emission from a diesel vehicle in g Litres of diesel burnt kg    (4-2) 

The litres of diesel burnt by heavy duty vehicles/trucks are calculated using formula    

(4-3): 
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           (   / )Litres of diesel burnt in each path fuel efficiency Distance kmlitre km          (4-3) 

Fuel consumption (efficiency) is dependent on vehicle mass. Average fuel efficiency is 

considered as 0.35 /litre km  (DECC 2008; Nylund and Erkkilä 2005). As the 

geographical start and end points of the routes are known, distances can be measured 

between each plant and each retailer. jkV defines all feasible routes from plants to 

retailers. jkV is a 0-1 integer variable where 0 refers to the closed routes and 1 open 

routes.  

The second objective function (4-10) minimises the total costs. The total costs include 

the sum of the fixed costs for operating the plants, variable costs for serving the retailers 

at each plant and vehicle-routing costs: 

 ,       minimise         j j j jk jk jk j
j J j J j J

k Pf X v V c V
  

                   (4-4) 

The following three costs are considered in this objective function (4-4):  

 Fixed costs  

Fixed costs of operating plants ( jf ) are not dependent on the number of products 

produced or processed at each plant.  

 Variable costs  

Variable costs ( jv ) are dependent on the number of products produced or processed to 

serve each retailers. Cost of serving retailers at each plant is considered ( ja ) for each 

unit of product and it is dependent on the demand at retailer location ( jr  ). Open routes 

define a retailer to be served by a plant represented by jkV . Equation (4-5) calculates the 

sum of variable costs at each plant:  

( . )j j iv a r                                                                   (4-5) 

In equation (4-5) the demand at a particular retailer location is considered while in 

conventional two-layer Location-Routing Problems (LRP) demand is not included.  

 Vehicle-routing costs 
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In order to calculate vehicle-routing costs two main cost components are considered – 

total cost of fuel and the total wage of the driver on each route. Based on the 

assumptions of Box 3.1 equations (3-6), (3-7) and (3-8) are defined in order to calculate 

total vehicle-routing costs:   

     (€)    (€)  ’   (€) Cost of Serving Each Route Fuel Cost Driver s Wage             (4-6) 

   (   (   Total Fuel Cost €) Diesel burnt litre) Fuel Price (€ / litre)                 (4-7)

’   ( '  
 

  Distance (km)
Driver s Wage €) Driver s wage (€ / hr) × 

z (km / hr)
Total                       (4-8) 

The driver’s wage is paid on an hourly basis. On different roads and different countries 

velocity limits are considered in different ways. Therefore, in order to consider the ef-

fect of velocity on driver’s wage a variable ( z ) is introduced representing the average 

speed for each type of road.   

The two-layer MO-LRP has three operational constraints. Conventional LRPs have two 

constraints - (i) a constraint ensuring a demand node is on a particular route and (ii) a 

constraint assigning a route only to open facilities. The green MO-LRP covers both of 

these constraints and adds a green constraint suitably. The three constraints of the two-

layer MO-LRP are illustrated in (4-9), (4-10) and (4-11).  

Constraint 1:      1    ,    jk j
j J

V k P


                            (4-9) 

The above constraint defines all open known operating routes from plants to retailers.  

Constraint 2:     0       ,           jk j j
j J

V X k P


                   (4-10) 

Constraint 2 assigns a route only to one open facility.  

Constraint 3:   ( )       ,          and  on m mn n m jk
m M n N

S w T B i j V
 

                           (4-11) 

Constraint 3 infuses AHP into the 0-1 programming framework. This constraint 

determines the type of vehicle used for transportation of the products. This is the green 

constraint of the model involving the DMs’ priorities. The DMs are asked to evaluate 

the candidate-vehicles/trucks considering two criteria in order to select the best 
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vehicles/trucks. The two criteria for decision-making are: CO2 emissions and cost. The 

process of decision-making using this AHP-integrated constraint is illustrated in Figure 

4.3:  

 

Figure 4.3 The process of developing a weight matrix in order to contract an AHP-

integrated constraint  

 

Three types of vehicles/trucks are considered for transportation of products. The 

characteristics of the trucks are considered as follows:  

1 :T  Truck type 1 (Medium CO2 emission / Medium cost) 

2 :T Truck type 2 (Low CO2 emission / High cost)  

3 :T Truck type 3 (High CO2 emission / Low cost)  

 

The third constraint of the integrated MO-LRP introduces the flexibility in the DMs’ 

consensus opinions in selecting the type of vehicles/trucks used for the distribution of 

the products in an environmental-friendly manner. DMs’ priorities are converted by 

AHP into a weight matrix. The elements mB  and mnw  of the constraint use the results 

obtained from the decision-making approach through AHP. Figure 4.4 depicts how the 

vehicles/trucks, attributes of the decision-making and mB (i.e., right hand side of the 

third constraint 4-11) contribute to the parameters of the objective functions (4-1) and 

(4-4).  
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Figure 4.4 The integration of AHP to the objective functions 

 

The standard integer (4-12 and 4-13) and non-negativity (4-14) constraints of the model 

are as follows:   

Integer constraints:  
if path  is operating out of plant                     

 if not 
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if truck  is selected to transport the products             

if not
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Part II: Solution Approach 

4.3. Solution Approach  

Literature reports that LRPs are NP-hard combinatorial optimisation problems (Karp 

1972; Nagy and Salhi 2007; Marinakis and Marinaki 2008; Yu et al. 2010). The two-

layer MO-LRP is NP-hard as well. It is an improvement to Berger’s (1997) NP-hard 

LRP and is a multi-objective combinatorial optimisation model. Such LRPs are very 

hard to solve as they combine two different conflicting-in-nature problems, viz. facility 

location and vehicle routing (Daskin et al. 2010). Conventional LRPs are single 

objective in nature with the main aim of minimising the total costs of operating facilities 

and transportation.  

The multi-objective low-carbon two-layer AHP-integrated 0-1 mixed integer location-

routing model, discussed in Part-I of this chapter, comprises of conflicting-in-nature 

objectives and constraints. In a Multi-Objective Problem (MOP) more than one 

objective function is optimised in order to find a set of Pareto optimal solutions (Coello 

et al. 2007). The two-layer MO-LRP features the characteristics of a MOP and LRP. 

Therefore, no exact solution exists for the two-layer MO-LRP. The technical details of 

the two-layer MO-LRP are presented in Table 4.2:  

Table 4.2 Technical details of the two-layer MO-LRP 
Scope Vehicle routing decisions for routes connecting plants to retailers 

Goals Vehicle routing decision:  
- Routes connecting open plants to retailers 

 
Objective 
functions 

Objective function I:  
Minimise the total CO2 emitted during the transportation of the products from plants 
to retailers  
Objective function II:  
Minimise the total cost of operating plants, cost of serving the retailers and cost of 
vehicle routing  
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Constraint 1: Each demand node on one route 
Constraint 2: A route can be assigned only to one open facility 
Constraint 3: AHP integrated constraint (green constraint), considering the DM’s 
priorities 
Integer constraints 
Non-negativity constraint  

Outcomes Low-carbon, low-cost routing patterns connecting open plants to retailers  

 

The feasibility of the proposed two-layer MO-LRP is then examined by deploying the 

model in a SC network. The next section describes the details of the evaluation of the 

two-layer MO-LRP.  

 

4.4. Validation of the two-layer MO-LRP – the case of an Irish dairy SC network 

The two-layer MO-LRP is developed without considering the specifications of a partic-

ular supply chains. It is a generic model that can be applied to any SC. A set of data, as 

indicated in Box 4.2, is required to run the model and design a two-layer SC network.  

Box 4.2 Required data set for the two-layer MO-LRP 
a. Number of plants, number of retailers 

b. Geographical location of plants and retailers in order to calculate the distances between 

each node in the SC 

c. Fixed cost of operating plants 

d. Variable cost of providing retailers with one unit of product at each plant  

e. Vehicle routing-related costs: 

- Driver’s wage  
- Cost of fuel per litre  

 

f. Demand at each retailer location 

g. Distance between plants and retailers, divided by the type of roads 

h. CO2 emission from transportation at each route from one vehicle  

i. AHP related data: 

- DM’s pair-wise matrix regarding the truck types based on CO 2 emission and costs  
- The limits (maximum allowed) for CO 2 emission and costs (RHS matrix)  

 

In Ireland (according to latest EPA report of March 2012) the total GHG emission is 

61.31 million tonnes. Agriculture is the largest contributor to the overall emission 

(30.5% of total) followed by energy (at 21.8%) and transport (at 18.9%). Ireland’s 



 
Chapter Four 
 

57 
 

Kyoto limit in the period 2008-2012 was 62.84 million tonnes per annum and the 

combined emission in the period 2009-2010 was 5.48 million tonnes above this limits. 

CO2, as a primary GHG gas, comes from both natural sources and human activities. The 

main human activity that emits CO2 is the burning of fossil fuels for energy and 

transportation, followed by some industries that burn fossil fuel as well. As Irish dairy 

sector is one of the most important agricultural sectors in Ireland’s economy this 

research is focused on the demand side of a dairy SC network in east of Ireland.  

Main players of dairy market in Ireland have been recognised and a questionnaire has 

been prepared to gather information about the structure of demand side of SCs in 

Ireland. The questionnaire is presented in Appendix B.2. The structure of the two-layer 

SC case is validated by means of: (a) interviewing a consultant to few dairy  companies 

in Ireland, (b) interviewing experts from two major dairy companies in Ireland, (c) 

using company profiles, technical reports from dairy companies, outcomes of researches 

on dairy SCs, and SC text books.  

The two-layer MO-LRP consists of two main nodes in the demand side of the supply 

chain: plants and retailers. Plants are assumed ‘open’ therefore the facility location deci-

sion doesn’t exist in this model. In order to solve the two-layer MO-LRP based on the 

data from the assumed case, a set of assumptions have been made. The details of the 

case of the two-layer dairy SC network in east of Ireland is explained in the following 

sections.  

4.4.1 Number and geographical location of plants and retailers  

Table 4.3 illustrates the number and the geographical location of the nodes of the supply 

chain network. A ‘Node’ refers to plants and retailers. Geographic locations of plants 

are the real locations of the two main processing plants owned by the dairy company the 

assumed case is built based on.  

Table 4.3 Number and location of plants and retailers  
Nodes Number 

of nodes 
Geographical locations 

Plants  2 Drogheda, Ballitore 
 
 
Consumers 

 
 

22 

Drogheda, Dundalk, Navan, Tullamore, Naas, Newbridge, 
Leixlip, Port Laoise, Bray, Arklow, Wicklow, Greystones, 
Clonmel, Waterford, Tramore, Kilkenny, Wexford, Ennoscor-
thy, Dublin City, Dun Laogharie/Rathdawn, Fingal, South Dub-
lin  

 



 
Chapter Four 
 

58 
 

 Retailers are located in the east of Ireland in 15 counties within the 50 km radius 

from each processing plant. According to Irish Central Statistics Office (CSO) of-

ficial statistics report (Population of each Province, County and City 2011), 22 

population centres are considered within the 50 km radius from each processing 

plant based on having a population of >=10,000 inhabitants at the location.  

4.4.2. Fixed and variable costs for the plants  

Fixed and variable costs for plants are considered in the second objective function       

(4-10) and are presented in Table 4.4. The unit of product is considered to be a 2 litre 

container of milk.  

Table 4.4 Fixed and variable costs for plants 
             Costs 
 
Plants 

Fixed costs (€) Variable costs  
(€ / unit of 
product) 

Plant I  1,500 0.20 
Plant II 2,000 0.24 

 
 
4.4.3. Demand at retailer locations  

Demand at retailer locations is considered to be 2/3 of the population for each 

population centre. Population information is adopted from CSO 2012 official reports. 

Demand information is for a delivery cycle time which is considered to be 2 to 3 days. 

Table 4.5 depicts the demand at each consumer location. 

Table 4.5 Demand at retailer locations 
Retailer  
Location 

Demand 
(unit)  

 Retailer  
Location 

Demand 
(unit) 

1. Drogheda  25,000  12. Greystones  11,000 
2. Dundalk  25,000  13. Clonmel  12,000 
3. Navan  19,000  14. Waterford  35,000 
4. Tullamore    9,000  15. Tramore    7,000 
5. Naas  14,000  16. Kilkenny  16,000 
6. Newbridge  14,500  17. Wexford  13,000 
7. Leixlip  10,000  18. Ennoscorthy    7,000 
8. Port Laoise    9,000  19. Dublin City 350,000 
9. Bray  21,000  20. Dun Laogharire /Rathdawn 138,000 
10. Arklow    9,000  21. Fingal 182,000 
11. Wicklow    7,000  22. South Dublin 177,000 
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4.4.4. Distance between plants and retailers 

Variety of speeds on different roads is considered in the model as a factor affecting the 

green objective function. The speed limits (Table 4.6) as defined in the ‘Road Traffic 

Act 2004’ are currently being enforced in Ireland. An average speed is assumed in this 

case study.  

Table 4.6 Speed limits and average speeds  
Type of road Speed limit  by Road Traffic  

Act 2004 (km/hr) 
Averages speed  

 (km/hr) 
Motorway 120 100 
National Primary & Secondary Routes  
(dual carriageways included)  

100 80 

Regional and Local Roads 80 50 
Built Up Areas (Town & City) 50 30 

 

Table A.2 in Appendix A depicts the distances between processing plants and retailers 

on different roads. Total distance between each processing plant and each retailer 

location is calculated in Table 4.7.  

Table 4.7 CO2 emission and costs of serving each route by heavy duty trucks               
Plant 

( j J ) 
 
 

Retailer 
( i I ) 

I
  Drogheda 

II
  Ballitore 

 
Distance 

km   
 

CO2  
Emission 

kg  

Cost of   
serving 
route 

€   

 
Distance 

km   
 

CO2  
emission  

kg   

Cost of   
serving 
route 

€
 

1. Drogheda 2.0 1.85 1.84 117.0 108.11 77.70 
2. Dundalk 36.4 33.63 23.68 146.0 134.90 96.59 
3. Navan 25.8 23.84 19.75 105.0 97.02 68.30 
4. Tullamore 110.0 101.64 74.72 62.5 57.75 47.84 
5. Naas 75.4 69.67 57.72 29.1 26.89 22.28 
6. Newbridge  103.0 95.17 67.00 24.5 22.64 18.75 
7. Leixlip 47.5 43.89 36.36 61.1 56.46 39.75 
8. Port Laoise 143.0 132.13 93.02 37.1 34.28 27.38 
9. Bray 74.6 68.93 48.53 71.4 65.97 48.50 
10. Arklow 128.0 118.27 85.29 57.6 53.22 44.09 
11. Wicklow 121.0 111.80 78.71 48.0 44.35 36.74 
12. Greystones 83.6 77.25 54.38 70.4 65.05 53.89 
13. Clonmel 226.0 208.80 147.01 111.0 102.56 73.63 
14. Waterford 219.0 202.36 142.46 105.00 97.02 68.30 
15. Tramore 232.0 214.37 150.92 117.0 108.11 76.11 
16. Kilkenny 178.0 164.47 115.79 63.4 58.58 41.24 
17. Wexford 197.0 182.03 128.15 94.8 87.59 64.39 
18. Ennoscorthy 184.0 170.02 124.98 72.4 66.90 52.64 
19. Dublin City 52.4 48.42 34.09 59.8 55.25 40.62 
20. Dun Laogharire/Rathdawn 62.9 58.12 40.92 66.7 61.63 45.31 
21. Fingal 29.2 26.98 22.35 85.5 79.00 58.08 
22. South Dublin 61.5 56.83 47.08 45.1 41.67 30.63 
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4.4.5. CO2 emission and cost of serving each route  

CO2 emissions from transportation are calculated using formulae (4.12), (4.13) and 

(4.14) presented in Table 4.7. The average price of diesel in Ireland in April/May 2012 

is 1.53 €/lit. The average wage of a heavy duty truck driver in April/May 2012 is 

€11.50/hr (sources: irishjobs.ie; payscale.com based on individual reports). The total 

cost of serving each route is calculated and presented in Table 4.7.  

4.4.6. Green constraint data 

The AHP constraint considers three types of vehicles/trucks as preferred by the DMs for 

the transportation of the products. Each type of truck considers different levels of CO2 

emission and costs. DMs have been asked to compare these truck types based on two 

attributes: CO2 emission and cost. The outcome of this comparison is a pair-wise 

comparison matrix as shown in Table 3.8. Saaty’s nine point scale (Saaty 1977; 1980) 

has been used to compare the truck types and a weight matrix is generated (Table 4.9):  

 Table 4.8 Vehicle comparison matrix            Table 4.9 Weight matrix for vehicle types 
CO2 Emission  Costs       

 T1 T2 T3   T1 T2 T3  Alternatives  
T1 

 
T2 

 
T3 

 
Sum T1 1 ¼ 6  T1 1 4 1/3  Attributes 

T2 4 1 1/8  T2 1/4 1 6  CO2 Emission 0.33 0.24 0.43 1 
T3 1/6 8 1  T3 3 1/6 1  Costs 0.32 0.43 0.25 1 
 

The RHS matrix for the AHP-integrated constraint is considered as an average of the 

maximum and minimum value for CO2 emissions and cost as calculated in Table 4.7, as 

no limit is defined for CO2 emissions from transportation in Ireland. Table 4.10 depicts 

the limits for CO2 emission and costs in the AHP constraint:  

Table 4.10 CO2 emission and costs limit  
Limits for 3 Type of Trucks  Min   Max RHS Matrix 
CO2 Emission (kg) 2 215 108 
Costs (€) 2 150 76 

 

 

4.4. Solution Steps 

modeFRONTIER® is a multi-disciplinary and multi-objective optimisation and design 

environment developed by Esteco SpA (ESTECO 2013). This study is the first case 
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where LRPs are solved using this package. Extensive experimentation with the package 

reveals that the software is capable of handling LRPs by way of producing robust de-

signs which have previously not been considered in the literature. However, the mode-

FRONTIER® package is not designed particularly to handle LRPs. Therefore, extensive 

customisation of the robust design optimisation solver using multi-objective meta-

heuristics has been made before implementing the two-layer MP-LRP. Design of Exper-

iments (DoE) is coupled to the optimisers in such a manner that the solution of the two-

layer MO-LRP is possible only if optimal feasible designs are obtained. A schematic 

description of the solution steps using modeFRONTIER® is presented in Figure 3.5:   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 The process of implementing the two-layer MO-LRP using mode-
FRONTIER®  

 

4.5.1. Transforming the two-layer MO-LRP into modeFRONTIER® 

The two-layer MO-LRP is transformed using modeFRONTIER®’s input components 

and then connected properly to create a full logical imitation of the mathematical model 

Transforming the quantified two-
layer MO-LRP into the 

modeFRONTIER® language 

Introduction of DoE to guide the 
chosen optimiser 

 

Deployment of the optimisers 
 

Setting-up the chosen optimiser 
followed by execution of the model 

 

Analysing results 
 Scenario Analysis 
 Graphical Maps 

 

DoE is used to define the 
initial population for the 
optimisers; using:  
- Design of Experiment 

Sequence 
- Random 
- Sobol 
- Uniform Latin Hypercube 
- Incremental Space Filler  
- Constraint Satisfaction 
 

Using modeFRONTIER® 

workflow components to transfer 
the mathematical model into mF 
format;  
1. Following the logic of 

modeFRONTIER® 
 in creating 

component of the model 
properly  

2. Following the logic of mF in 
connecting the components of 
the model properly  

 
Defined based on the type of optimiser; 
Initial population table: guided by 
DoE 
Number of generations: 
For MOGA-II optimisers:  
Probability of crossover: 0.5 
Crossover type: directional crossover 
Probability of selection: 0.05 
Probability of mutation: 0.1 
Mutation type: DNA string mutation 
with ratio of 0.05 
Elitism: Enable 
Random generator Seed: 1 
 
For NSGA-II optimiser: 
Max number of evaluations: 2000 
Crossover probability: 0.9 
Mutation probability in real-coded 
Vectors: 1.0 
Mutation probability for binary 
Strings: 1.0 
 
For MOPSO optimiser: 
Turbulence: 0.2 
Random generator seed: 1 
 
 

 

 

Genetic Algorithm-based 
optimisers: 
MOGA-II, NSGA-II,  
HYBRID 
 
Particle Swarm-based 
optimiser: MOPSO 
 
Simulated Annealing -
based optimiser: MOSA 

 Refinement of results 
 Selection of results 
 Ranking the selected 

results using TOPSIS 
 Pareto frontier 
 ANOVA 
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in modeFRONTIER®. The workflow of the model in modeFRONTIER® is presented in 

Figure 4.6:  

 

  

Figure 4.6 The two-layer MO-LRP design in modeFRONTIER® 

 

Figure 4.6, presents the logical design for the two-layer MO-LRP model in mode-

FRONTIER® using the MOPSO optimiser. Graphically the design looks the same for all 

optimisers only the name of the optimiser is changed. The mathematical details of the 

developed model are all satisfied in this designed workflow using modeFRONTIER®. 

4.5.2. Introducing DoE to the chosen optimiser  

Logically in modeFRONTIER® the optimiser is connected to the main two-layer MO-

LRP by the use of DoE. DoE generates the initial population sets for the optimisers to 

ensure the achievement of an optimum set of non-dominated solutions. The initial popu-

lation table consists of 51 designs. The initial 51 DoE-guided designs consist of: (i) 10 

‘design of experiment sequence’, (ii) 10 ‘random’, (iii) 10 ‘sobol’, (iv) 10 ‘uniform Lat-

in hypercube’, (v) 10 ‘incremental space filler’ and (vi) 1 ‘constraint satisfaction’ de-

signs. The process of optimisation in modeFRONTIER® is DoE-guided by way of in-

troducing the initial population table to the optimisers.  

 

Constraint 3; 
AHP vector 

Decision variables with 
Constraints 1 & 2 embedded 
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4.5.3. Deployment of optimisers  

Five multi-objective evolutionary optimisers in modeFRONTIER® are initially selected 

to deploy the two-layer MO-LRP. The optimisers include three multi-objective Genetic 

Algorithm (GA)-based, one multi-objective Particle Swarm (PS)-based and one multi-

objective Simulated Annealing (SA)-based. Based on extensive literature reviews in this 

area, it is believed that this is the first time that the modeFRONTIER® solver has been 

used to implement an LRP. Therefore, there is no report available on the performance of 

its multi-objective optimisers on LRPs. In this research disparate optimisers are used to 

compare the optimisers’ performance on the two-layer MO-LRP. Results reveal that 

two of these optimisers, viz., HYBRID and MOSA, do not perform efficiently in solv-

ing the two-layer MO-LRP.  

4.5.4. Setting-up the selected optimisers and executing the model 

The chosen optimisers are set up separately. These optimisers have different 

requirements and distinctive specifications. Therefore they have disparate set up details. 

In order to compare the results obtained from these GA-based optimisers, the initial 

population and number of generations are kept the same in those optimisers. Table 4.11 

presents the set up details for the GA-based optimisers: 

Table 4.11 Set up details for GA-based optimisers in modeFRONTIER® 
MOGA-II NSGA-II 

Number of generations: 50 
Initial population: 51 
Probability of crossover: 0.5 
Type of crossover: Directional 
Probability of mutation: 0.1 
Type of mutation: DNA String 
DNA string mutation ratio: 0.05 
Elitism: Enabled  
Random generator seed: 1 
 
 

Number of generations: 50 
Initial population: 51 
Crossover probability: 0.9 
Mutation probability for real-coded 
vectors: 1.0 
Mutation probability for binary strings: 
1.0 
Distribution index for real-coded 
crossover: 20.0 
Distribution index for real-coded 
Mutation: 20.0 

 

The set up specifications for MOPSO is presented in Table 4.12:  

Table 4.12 Set up details for PS-based optimiser 
MOPSO 

 
Number of generations: 50 
Initial population: 51 
Turbulence: 0.2 
Random generator seed: 1 
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The workflow and the mathematical model in modeFRONTIER® remain the same 

during implementation of the LRP. In order to compare the optimisers’ performance, 

the initial population is kept the same in all generation-based optimisers. 50 generations 

with an initial population of 51, which generates 2,500 results. HYBRID in 

modeFRONTIER® works with number of iterations instead of generations. This 

optimiser is set at 2,500 evaluations with a DoE table that is identical to the other 

optimisers. Part-III of this chapter presents the categorised and analysed results.   
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Part III: Results and Analysis 

4.6. Introduction  

The two-layer MO-LRP is implemented and a set of results are obtained. Execution of 

the model using each optimiser offers 2,500 results. These results are further refined so 

as to obtain a realistic set of results from each optimiser. A set of best results, with 

regard to the two objective functions, have been selected from these realistic results to 

prioritise the process of decision-making and subsequent ranking. As both the 

objectives of the two-layer MO-LRP are minimum in nature, the selected results are 

picked from the best results belonging to the three lowest sets of feasible results 

obtained from modeFRONTIER®  using each optimiser. After selecting a set of results, 

these results are ranked using TOPSIS considering a variety of DMs with different 

combinations of priorities. The process of analysing the results in obtaining the 

outcomes is shown in Figure 4.7. The results are presented and analysed in the next two 

sub-sections (i) a comparative analysis on the three multi-objective GA-based 

optimisers’ performance, and (ii) the results of multi-objective PS-based optimisers.  
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Analysing results in feasible real solution space   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Process of analysing the results   
 

Refinement of results  
 All results table 
Consists of all feasible solutions generated by the optimiser 
 Realistic results table 
Consists of realistic designs, un-realistic and identical results removed 

 
 
 
 
 
 
 
 
 
 

Selection of results 
 Selecting 30 best results from realistic results table 

 
 Selection criteria:  
Selecting designs from the three lowest sets of feasible results; 
shown in three shades of blue in 4D-Bubble plots 
 
 
 
 

 
 
   
 
 
 
 
 
 
 
 
 
  

Ranking of selected results: 
 

Ranking Method: TOPSIS 
Attributes: Two objective functions, viz., CO2 emission and cost 
Alternatives: Each selected result as an alternative 
Weight Matrices: Defined based on Saaty’s nine-point scale  
Platform: SDI tools: Triptych  
 
 
 
 

 
 
   
 
 
 
 
 
 
 
 
 
  

Pareto efficiency  

Pareto frontier on selected results 

 
 
 

 
 
   
 
 
 
 
 
 
 
 
 
  

ANOVA 
ANOVA results on refined realistic results 

 

 
 

 
 
   
 
 
 
 
 
 
 
 
 
  

Performance study on optimisers   
Comparative convergence study  

 
 
 

 
 
   
 
 
 
 
 
 
 
 
 
  

Scenario Analysis 
 

Analysing open/close routes offered by results and examining the 
effect of opening the closed routes on total CO2 emission and  

total costs 
 
 

 
 
   
 
 
 
 
 
 
 
 
 
  

Geographical mapping  

Schematic presentation of results on the map  
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4.7. Results of GA-based optimisers in the real feasible solution space  

The results obtained from the two multi-objective GA-based optimisers used for the 

implementation of the two-layer MO-LRP are presented in this section. Firstly the 

results are analysed and then the outcomes are presented.  

4.7.1. Analysis of results   

In order to analyse the results obtained from the GA-based optimisers: (i) results are 

refined and a set of realistic results are identified, (ii) a performance study is conducted 

on each optimiser, (iii) Analysis of Variance (ANOVA) test is performed to compare 

means of multiple groups for the optimised data, (iv) a set of results are selected for 

further analysis, (v) selected results are ranked using TOPSIS, and finally (vi) Pareto 

efficiency is examined on the selected designs.  

All results from the two optimisers are feasible and real. A statistical summary of these 

results is illustrated in Table 4.13. These results assist to analyse: a) the total result 

designs table consisting of all feasible real results obtained from the optimisers, b) the 

refined realistic results table consisting of realistic and non-identical results, and c) the 

selected results table consisting of selected results from the three lowest sets of feasible 

results from 4D-Bubble plots (Figures 4.8 and 4.9). 30 results have been selected for 

further analysis using each optimiser. These results are selected based on two criteria: 

costs and CO2 emission. Using the bubble plots (Figures 4.8 and 4.9) and considering 

these two criteria these 30 results are selected. In the selection process different types of 

DMs have been considered as well.  

Table 4.13 Statistical summary for multi-objective GA-based optimisers 
 

Type of result designs on optimisers 
Number of real 
feasible result 

designs  
 

(Alternatives) 

CO2 emission 
value 
(kg) 

(Objective Function I) 

Costs  
value 

(€) 
(Objective Function II) 

Min Max Min Max 

M
O

G
A

-I
I Total results table 2,550 1,182 2,187 186,776 299,444 

Refined realistic results table 187 1,182 2,187 186,776 299,444 
Selected results table 
 

30 1,182 1,729 186.776 249,716 

 

N
SG

A
-I

I Total results table 2,550 1,171 2,352 185,948 299,444 
Refined realistic results table 543 1,171 2,187 185,948 299,444 
Selected results table 
 

30 1,171 1,729 185,948 248,985 
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As presented in Table 4.13 the minimum value for total CO2 emission is offered by 

NSGA-II. This does not necessarily yield a minimum value for the total costs. NSGA-II 

offers more refined realistic results as compared with MOGA-II.   

Guided by the DoE, MOGA-II and NSGA-II optimisers generate the feasible solution 

space. Figures 4.8 and 4.9 illustrate the feasible real solution space for MOGA-II and 

NSGA-II respectively. In these 4D plots, colour and diameter of bubbles are used to 

represent the values of both of the objective functions as explained in the plot legends. 

Colours range from dark blue to red signifying lowest to highest values of the objective 

functions respectively. Similarly, diameters of bubbles range from small to large indi-

cating lowest to highest value of the objective functions respectively. Selected results 

are highlighted with green circles with reference to their IDs. 

 

 
Figure 4.8 Feasible real solution space w.r.t. costs and CO2 emission for MOGA-II 
optimiser 

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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Figure 4.9 Feasible real solution space w.r.t. costs and CO2 emission for NSGA-II 
optimiser 
 

 

4.7.1.1.  Performance of optimisers  
The performance of the optimisers regarding their convergence is studied comparatively 

through plots presented in Figure 4.10, with respect to the objective functions:  

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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a. Convergence w.r.t CO2 emission                    b.  Convergence w.r.t costs 
 
Figure 4.10 Comparative convergence plots of the GA-based optimisers 

 

It is evident from plot ‘a’ and plot ‘b’ of Figure 4.10 that the NSGA-II algorithm is 

converging in a comparatively better way than that of MOGA-II. History plots, Box 

Whiskers and Density plots (Appendix B.3) are considered for statistical analysis of the 

results.  

4.7.1.2. ANOVA  
One-way ANOVA is performed for both the total CO2 emission and total costs of trans-

portation to compare the means of multiple groups of the optimised data. ANOVA 

computes the p-value for the null hypothesis to detect if data from several groups have a 

common mean. Tables 4.14 and 4.15 present the ANOVA results for the two GA-based 

optimisers with respect to CO2 emission and costs respectively. The ANOVA statistics 

are used to test the null-hypothesis (Walpole et al. 2006). For the two optimisers ANO-

VA computes the source of the variability, sum of squares (SS) due to each source, de-

grees of freedom (Df) associated with each source, mean squares (MS) for each source 

(SS/Df ratio), F-statistic (ratio of two MS) and p-value given by the cdf of F. It is noted 

that as the F-ratio increases, the p-value decreases. The ANOvA test presented in Tables 

4.14 and 4.15 are calculated for refined realistic results. The insignificance in p-value 

could be a result of this selection of results. It is necessary to mention again that not all 

results are realistic and they have to be refined in order to find the realistic results.  

Table 4.14 ANOVA for CO2 emission on the refined realistic results 
 

Optimiser 
Source of  
Variation 

SS Df MS F-ratio p-value 

 
MOGA-II 

Between groups 6.0825E6 8.1000E1 7.5093E4 3.1338E0 2.5970E-8 
Within groups 2.5160E6 1.0500E2 2.3962E4 –– –– 
Total 8.5985E6 1.8600E2    

 
NSGA-II 

Between groups 1.7674E6 4.0000E0 4.4185E5 1.6424E1 1.0559E-12 
Within groups 1.4419E7 5.3600E2 2.6902E4 –– –– 
Total 1.6187E7 5.4000E2    
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grees of freedom (Df) associated with each source, mean squares (MS) for each source 

(SS/Df ratio), F-statistic (ratio of two MS) and p-value given by the cdf of F. It is noted 

that as the F-ratio increases, the p-value decreases. The ANOvA test presented in Tables 

4.14 and 4.15 are calculated for refined realistic results. The insignificance in p-value 

could be a result of this selection of results. It is necessary to mention again that not all 

results are realistic and they have to be refined in order to find the realistic results.  

Table 4.14 ANOVA for CO2 emission on the refined realistic results 
 

Optimiser 
Source of  
Variation 

SS Df MS F-ratio p-value 

 
MOGA-II 

Between groups 6.0825E6 8.1000E1 7.5093E4 3.1338E0 2.5970E-8 
Within groups 2.5160E6 1.0500E2 2.3962E4 –– –– 
Total 8.5985E6 1.8600E2    

 
NSGA-II 

Between groups 1.7674E6 4.0000E0 4.4185E5 1.6424E1 1.0559E-12 
Within groups 1.4419E7 5.3600E2 2.6902E4 –– –– 
Total 1.6187E7 5.4000E2    
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a. Convergence w.r.t CO2 emission                    b.  Convergence w.r.t costs 
 
Figure 4.10 Comparative convergence plots of the GA-based optimisers 
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Table 4.15 ANOVA for costs on the refined realistic results 

 
Optimiser 

Source of 
Variation 

SS Df MS F-ratio p-value 

 
MOGA-II 

Between groups 6.9805E10 8.1000E1 8.6180E8 2.0491E0 2.8399E-4 
Within groups 4.4160E10 1.0500E2 4.2057E8 –– –– 
Total 1.1397E11 1.8600E2    

 
NSGA-II 

Between groups 3.5138E10 4.0000E0 8.7845E9 1.2999E1 4.1364E-10 
Within groups 3.6222E11 5.3600E2 6.7579E8 –– –– 
Total 3.9736E11 5.4000E2    

 

4.7.1.2. Selection of results  
Un-realistic and identical results are eliminated from the feasible solutions space and the 

refined realistic results are considered for further analysis. Statistical summaries of the 

refined realistic results with respect to the two GA-based optimisers are presented in 

Table 4.13. Amongst the refined realistic results, a set of 30 results are selected for 

further analysis. The next paragraph illustrates the selection process. 

Selected results are chosen from the three lowest sets of objective function values as 

depicted in the plot legends. Figures 4.8 and 4.9 present values of the objective 

functions offered by the two optimisers with reference to colour and bubble diameter. 

The first three shades of blue in these plots represent the lowest three sets of values for 

the objective functions. Therefore the selcted results, with respect to the objcetive 

function values, are selected from these three sets of results. From Figures 4.8 and 4.9 it 

is found that the relationship between the two objective fucntions are not linear. 

Therefore, a low value for one objective fucntion may not necessarily yield a low value 

for the other objective function and vice versa. DMs’ priorities are considered in the 

selection of the two-layer MO-LRP results. Therefore in each set of the selected results 

at least two results represent extreme decision-making events. Figures 4.11 and 4.12 

exhibit the set of 30 selected result from MOGA-II and NSGA-II respectively:  
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Figure 4.11 Selected results from feasible real solution space w.r.t. costs and CO2 
emission for MOGA-II optimiser 
 

Bubble size represents 
costs;  
Colour represents CO2 
emission 
 

Bubble size represents 
CO2 emission;  
Colour represents costs  
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a. Bubble size represents costs; Colour represents CO2 emission 

 

Figure 4.12 Selected results from feasible real solution space w.r.t. costs and CO2 
emission for NSGA-II optimiser 
 

The selected results of Figures 4.11 and 4.12 are ranked in order to prioritise the best 

optimised results. The ranking process is explained in the following section.  

4.7.1.4 .Ranking the selected results  
After selecting a set of 30 results, these selected results are ranked using TOPSIS in 

order to find the set of best results for differenet types of DMs. TOPSIS is a multi-

criteria decision-making method originally developed by Hwang and Yoon (1981). It is 

a compensatory aggregation method that compares a set of alternatives by defining 

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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weights for each criterion, normalising scores for each criterion. The main concept 

behind TOPSIS is that the chosen alternative (here ‘result’) should have the shortest 

distance from the ideal solution and farthest distance from the negative ideal solution 

(Zavadskas et al. 2006; Yoon and Hwang 1995). TOPSIS allows trading-off between 

criteria so a weak result in one criterion could be negated by a good result in another 

criterion. This capacity provides a more realistic type of modelling comparing to non-

compensatory methods (Asgharpour 1998). 

Nine weight matrices are defined for TOPSIS. Each one of these weight matrices 

represents a type of DM and by selecting all nine weight matrices from Saaty’s nine-

point scale (1977; 1978) all DMs are covered. These weight matrices are:  

1 3 5 7 9(0.1 0.9),  (0.3 0.7),  (0.5 0.5),  (0.7 0.3),  (0.9 0.1)w w w w w     and 2 (0.2 0.8) ,w   

4 8(0.4 0.6),  (0.8 0.2)w w  . 
 
Selected results offered by each optimiser are ranked using the above nine weight 

matrices, using SDI Tools – a commercial statistical tool. Ranking results show that the 

weight matrices can affect the ranking process by TOPSIS considering both objective 

functions. In order to illustrate the reflection of the DMs’ priorities (i.e., weight matrices 

in TOPSIS) Figures 4.13-a and 4.13-b are presented.  

 
Figure 4.13-a  Reflection of the DMs’ priorities on TOPSIS ranking w.r.t. CO2 
emission 

 
 

Figure 4.13-b  Reflection of the DMs’ priorities on TOPSIS ranking w.r.t. costs 
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Figures 4.13-a and 4.13-b demonstrate that TOPSIS offers results with considerable 

differences between the values of the two objective functions when weight matrices 

represent extreme decision-making events. The first three ranked results obtained from 

the three different weight matrices for MOGA-II and NSGA-II optimisers are presented 

in Table 4.16. Selected weight matrices ( 3 5 7, ,w w w ) represent a vast majority of DMs. 

 
Table 4.16 First three ranked results w.r.t the GA-based optimisers using weight 
matrices 3 5 7, ,w w w  
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As shown in Table 4.16, the lowest value for CO2 emission (1227) has been ranked as 

first and second result by MOGA-II using 5w and 7w . The same result appears in NSGA-

II as third result using 5w  and 7w . The lowest value for costs (185948) has been ranked in 

second place by NSGA-II using 3w . It is evident from the results that NSGA-II has been 

more successful in minimising both the objective functions simultaneously.  

4.7.1.5 .Pareto efficiency  
Pareto efficiency is examined to evaluate the performance of optimisers and the selected 

result designs. 30 selected results obtained from MOGA-II and NSGA-II optimisers are 

separately examined with regard to their Pareto efficiency and the outcomes are 

presented in Figures 4.14(a) and 4.14(b) respectively. 
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Figure 4.14 Pareto frontier of selected results w.r.t. the GA-based optimisers 
 
 
As is evident from Figure 4.14, selected results from all three GA-based optimisers 

follow the Pareto optimality and are strongly efficient. In the selection process of 

results, extreme decision-making events are considered. Therefore one or two extreme 

results exist in each selected results table that is outside of the Pareto frontier. Four out 

of 60 selected results (2 results from MOGA-II and 2 results from NSGA-II) are out of 

the Pareto Frontier. All these 4 results represent extreme decision-making events and 

are not affecting the Pareto efficiency of the selected results. None of these four results 

placed outside the Pareto frontier are ranked by TOPSIS as the first three ranked results.  

b. MOGAII 

a. NSGAII 
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4.7.2.  Interpretation of Results 

The resulting outcomes are categorised in two groups: scenario analysis and schematic 

presentation of the results on a map. The scenario analysis is a step towards building 

resilience in SCs by analysing the effect of opening a closed route on objective 

functions. In order to present the geographical location of the plants and retailers and 

the optimum vehicle-routing patterns, schematic presentation of the results on map are 

presented.  

4.7.2.1. Scenario analysis  
Once the selected results are ranked scenario analysis is conducted. Scenario analysis 

provides an analysis on closed routes for different results. Open routes have directly 

contributed to the total CO2 emission and the total cost. Scenario analysis offers the 

contribution of each closed route to the total CO2 emission and total cost if forcibly 

opened. After a DM selects a result, the scenario analysis related to that result will be 

offered. Once a particular TOPSIS weight matrix is selected by a DM the same matrix 

should be used for scenario analysis in order to identify the closed and open routes. 

Scenario analysis for MOGA-II and NSGA-II resulting from the weight matrix 

 
5

0.5 0.5W  is presented in Table 4.17. 

Table 4.17 Scenario analysis for MOGA-II and NSGA-II on weight matrix 
 

5
0.5 0.5W   
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V1II 108 5,108 108 5,108 
V2I   34 3,834 
V2II 135 1,935   
V3II 97 2,997 97 2,997 
V4I 102 2,102 102 2,102 
V5I 70 4,270 70 4,270 
V6I 96 1,495 96 1,459 
V7II 34 7,056 34 7,056 
V8I 132 1,532 132 1,532 
V9I 69 2,669 69 2,669 
V10I 118 70,118 118 70,118 
V11I 112 36,512 112 36,512 
V12I 77 6,077 77 6,077 
V13I 209 4,769 209 4,769 
V14I 202 3,562 202 3,562 
V15I 214 2,614 214 2,614 
V16I 164 5,204 164 5,204 
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V17I 182 1,862 182 1,862 
V18I   170 3,050 
V18II 67 8,467   
V19II 55 3,895 55 3,895 
V20I 58 3,178 58 3,178 
V21I 27 84,027 27 84,027 
V22I 57 43,737 57 43,737 

 

After conducting the scenario analysis, the first ranked results offered by TOPSIS using 

weight matrix 5w  are presented on the map as an output of the two-layer MO-LRP. 

4.7.2.2. Schematic presentation of a result 
Scenario analysis (Table 4.17) is an example of the guide available to the DMs to locate 

the feasible and realistic optimal vehicle routing patterns, with the trade-offs with 

respect to objective functions, if a closed route is forcibly opened. In order to present 

the results in a more tangible way, a schematic presentation of the results is presented 

on a geographical map, in this case for the first two ranked results. Figure 4.14 depicts a 

sample presentation of the vehicle routing patterns on the map of Ireland using the 

findings for MOGA-II and NSGA-II for the weight matrix 5w .  
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Figure 4.15 Presentation of first ranked result of MOGA-II and NSGA-II using 
weight matrix 5 (0.5 0.5)w   

a. MOGAII 
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4.8. Particle Swarm-Based Optimiser  

The results obtained from the multi-objective PS-based optimiser during 

implementation of the two-layer MO-LRP are presented in this section.  

4.8.1.  Analysis of results   

Results obtained from the MOSPO optimiser are all feasible and real. A statistical 

summary of these results is presented in Table 4.18. These results assist analysis of: a) 

all the results tables consisting of all feasible real results obtained from the optimiser, b) 

the refined realistic results table consisting of realistic and non-identical results, and c) 

the selected results table consisting of selected results from the three lowest sets of 

feasible results from the 4D-Bubble plots.  

Table 4.18 Statistical summary for the MOPSO optimiser 
 
 

Result 

Number of real  
feasible results 

(Alternatives) 

CO2 emission value 
(kg) 

(Objective Function I) 

Costs value 
(€) 

(Objective Function II) 
Min Max Min Max 

M
O

PS
O

 

All results table 2,600 1,171 2,225 185,948 299,444 
Refined realistic results table 1,065 1,174 2,225 185,948 299,444 
Selected results table 30 1,174 1,898 185,948 250,185 

 

More than 40% of the results table population in MOPSO are realistic and out of these 

refined realistic results table, 30 are selected for further analysis.  

Guided by the DoE, MOPSO generates the feasible space of solutions. Figure.16 illus-

trates the feasible real solution space for MOPSO. As discussed earlier, in Figures 4.16 

colour and diameter of bubbles are used to represent the values of both of the objective 

functions as illustrated in the plot legends. Colours range from dark blue to red signify-

ing lowest to highest value of the objective functions respectively. The diameter of the 

bubble ranges from small to large indicating lowest to highest values of the objective 

functions respectively.  
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Figure 4.16 Feasible real solution space w.r.t. costs and CO2 emission for the 
MOPSO optimiser 
 

4.8.1.1. Performance study on MOPSO  
The convergence of MOPSO is presented to examine its performance while solving the 

two-layer MO-LRP. Figure 3.16 presents the convergence of MOPSO with respect to the 

objective functions. 

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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a. Convergence on CO2 emission       b. Convergence on costs  
 
Figure 4.17 Convergence for the MOPSO optimiser w.r.t. the objective functions 
 
 
MOPSO is converging in a steady manner as it is evident from Figure 4.17(a) and 

4.17(b). History plots, Box Whiskers, and Density plots representing the convergence 

performance of the optimiser with reference to ID are presented in Appendix A.4 for 

further analysis. 

4.8.1.2. ANOVA  
One-way ANOVA is conducted for both the total CO2 emission and total costs of 

transportation for comparing the means of two or more groups of the optimised data. 

Table 4.19 presents the ANOVA results for the MOPSO optimiser with respect to both 

the objective functions. 

Table 4.19  ANOVA for the MOPSO optimiser  
Objective 
function 

Source of 
variation 

SS Df MS F-ratio p-value 

 
CO2  

emission  

Between groups 1.2570E7 5.5000E1 2.2855E5 1.0303E1 0.0000E0 
within groups 5.6454E7 2.5450E3 2.2182E4 –– –– 
Total 609024E7 2.6000E3    

 
Costs 

Between groups 1.2298E11 5.5000E1 2.2359E9 3.5136E0 2.2204E16 
within groups 1.6196E126 2.545.E3 6.3637E8 –– –– 
Total 1.7425E12 2.6000E3    

 

The p-value of the ANOVA table for the CO2 emission (Table 4.19) using the MOPSO 

optimiser is zero suggesting significant differences ‘between the groups’. It signifies 

that at least one sample mean is considerably different than the other sample means. 

4.8.1.3 .Selection of results  
The refined realistic results table is presented in Table 3.18 that eliminates un-realistic 

and identical results. Amongst the refined realistic results, a set of 30 results is selected 
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that at least one sample mean is considerably different than the other sample means. 

4.8.1.3 .Selection of results  
The refined realistic results table is presented in Table 3.18 that eliminates un-realistic 

and identical results. Amongst the refined realistic results, a set of 30 results is selected 
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Figure 4.17 Convergence for the MOPSO optimiser w.r.t. the objective functions 
 
 
MOPSO is converging in a steady manner as it is evident from Figure 4.17(a) and 

4.17(b). History plots, Box Whiskers, and Density plots representing the convergence 

performance of the optimiser with reference to ID are presented in Appendix A.4 for 

further analysis. 

4.8.1.2. ANOVA  
One-way ANOVA is conducted for both the total CO2 emission and total costs of 

transportation for comparing the means of two or more groups of the optimised data. 

Table 4.19 presents the ANOVA results for the MOPSO optimiser with respect to both 

the objective functions. 
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for further analysis. The selecting process is the same process explained and used for 

GA-based optimisers by way of selecting from the three lowest sets of objective 

function values. Figure 4.18 exhibit set of 30 selected results from MOPSO optimiser. 

Selected results are ranked using TOPSIS to obtain the best optimised results. The 

ranking process is explained in the following section. 

 

 
 

Figure 4.18 Selected results in feasible real solution space w.r.t. costs and CO2 
emission for the MOPSO optimiser 
 

4.8.1.4. Ranking selcted results  
Selected results are ranked following the same ranking procedure adopted for the GA-

based optimisers by defining nine weight matrices for TOPSIS. SDI Tools is used as the 

Bubble size represents 
costs;  
Colour represents CO2 
emission 
 

Bubble size represents 
CO2 emission;  
Colour represents costs  
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implementation platform for TOPSIS. Figures 4.19-a and 4.19-b present the reflection 

of DMs priorities (i.e., weight matrices in TOPSIS) using the first three ranked results 

using weight matrices in TOPSIS.  

 

Figure 4.19-a Reflection of the DMs’ priorities on TOPSIS ranking w.r.t. CO2 emission  
 

Figure 4.19-b Reflection of the DMs’ priorities on TOPSIS ranking w.r.t. costs 

 

Figure 4.19-a shows that the lowest and highest values for CO2 emission (first objective 

function) are picked by 9w  and 1w respectively. Both of these weight matrices represent 

extreme decision-making events. The same is correct with regard to costs as well. The 

first three results ranked by TOPSIS using weight matrices 3 5,  w w and 7w  are presented in 

Table 4.20. 

Table 4.20  First three ranked results w.r.t the MOPSO optimiser using weight 
matrices 3 5 7, ,w w w  
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implementation platform for TOPSIS. Figures 4.19-a and 4.19-b present the reflection 

of DMs priorities (i.e., weight matrices in TOPSIS) using the first three ranked results 

using weight matrices in TOPSIS.  
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implementation platform for TOPSIS. Figures 4.19-a and 4.19-b present the reflection 

of DMs priorities (i.e., weight matrices in TOPSIS) using the first three ranked results 

using weight matrices in TOPSIS.  
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implementation platform for TOPSIS. Figures 4.19-a and 4.19-b present the reflection 

of DMs priorities (i.e., weight matrices in TOPSIS) using the first three ranked results 

using weight matrices in TOPSIS.  
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implementation platform for TOPSIS. Figures 4.19-a and 4.19-b present the reflection 

of DMs priorities (i.e., weight matrices in TOPSIS) using the first three ranked results 

using weight matrices in TOPSIS.  
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implementation platform for TOPSIS. Figures 4.19-a and 4.19-b present the reflection 

of DMs priorities (i.e., weight matrices in TOPSIS) using the first three ranked results 

using weight matrices in TOPSIS.  
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4.8.1.5 .Pareto efficiency  
Pareto efficiency is examined in order to evaluate the performance of the MOPSO 

optimiser. Figure 4.20 presents the Pareto frontier for the selected results obtained from 

the feasible real solution space for the MOPSO optimiser. 

 
Figure 4.20  Pareto frontier w.r.t. selected results for the MOPSO optimiser 

In Figure 4.20 the selected results from MOPSO optimiser follow the Pareto optimality 

and are strongly efficient. In the selection process of the results, extreme decision-

making events are considered. Out of 30 selected results in MOPSO, 1 result is out of 

the Pareto frontier representing an extreme decision-making event. Therefore, this result 

does not affect the Pareto efficiency. The result placed outside of the Pareto Frontier is 

not ranked by TOPSIS.  

4.8.2.  Interpretation of Results  

The two outcomes from the MOPSO optimiser include scenario analysis and schematic 

presentation of the results on map.  

4.8.2.1. Scenario Analysis  
In order to provide the details of open and close routes for different result IDs, a 

scenario analysis is presented on Table 4.21. The first ranked result using weight matrix 

5w  obtained from MOPSO is selected for presenting the scenario analysis. DMs can 
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observe the CO2 emission and costs for the closed routes forced to open under certain 

circumstances and decide which route to open, if necessary. 

 
Table 4.21 Scenario analysis for MOPSO on 

5 (0.5 0.5)w   
Route

s 
Open(1)/ 
close(0)  
routes 

Closed routes 
analysis 

(effect on CO2 
emission if open) 

Closed routes 
analysis 

(effect on costs 
if open) 

V1II 0 108 5,108 
V2I 0 34 3,834 
V2II 0 135 1,935 
V3II 0 97 2,997 
V4I 0 102 2,102 
V5I 0 70 4,270 
V6I 0 95 1,495 
V7II 0 56 7,056 
V8I 0 132 1,532 
V9I 0 69 2,669 

V10I 0 118 70,118 
V11I 0 112 36,512 
V12I 0 77 6,077 
V13I 0 209 4,769 
V14I 0 202 3,562 
V15I 0 214 2,614 
V16I 0 164 5,204 
V17I 0 182 1,862 
V18I 0 170 3,050 
V19II 0 55 3,895 
V20I 0 58 3,178 
V21I 0 27 84,027 
V22I 0 57 43,737 

 

4.8.2.2. Schematic presentation of a result  
The first ranked MOSPO result picked by TOPSIS suing weight matrix 5w  is presented 
geographically in Figure 4.21.  

 
Figure 4.21 Schematic presentation of the a result for  5 0.5 0.5W   
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4.9. Summary and Conclusions  

This chapter elucidates the two-layer multi-objective AHP-integrated location-routing 

model, its solution approach, and the analysis process of the results obtained. The 

proposed MO-LRP considers plants and retailers as two players on the demand side of 

the supply chain network. A green objective function with the main aim of lowering the 

level of CO2 emission caused from transportation is introduced to the model. An AHP-

integrated constraint is developed in order to consider the priorities of the DMs in the 

model. Demand has been considered in this two-layer MO-LRP as a co-efficient in the 

objective function.   

The execution platform is modeFRONTIER®, a multi-disciplinary commercial solver. 

Two different GA-based and a PS-based optimisers have been used to implement the 

model using modeFRONTIER®. The model has been validated using the case of an 

Irish dairy supply chain network based in east of Ireland. A questionnaire has been used 

to validate the structure of the SC and the data are generated based on a set of real 

logical assumptions. The model has been deployed to modeFRONTIER® using DoE-

guided meta-heuristic optimisers. An identical initial population is defined for the meta-

heuristics to ensure an experimental validation. The computation time for each attempt 

of solving the model has not been calculated separately, based on the procedure and the 

types of reports the calculation time varied between five minutes to 24+ hours. All 

optimisers have been set as similar as possible to make a comparative study feasible on 

the performance of the optimisers in solving the proposed model.   

The proposed two-layer MO-LRP is mathematically NP-hard. Therefore, there is no 

unique solution to the two-layer MO-LRP but a set of optimum solutions. Results 

obtained from each optimiser have been analysed in details. With an initial population 

of 51, MOGA-II, NSGA-II and MOSPO are set on 50 generations. A number of 2,550 

results, each from MOGA-II and NSGA-II optimisers, have been obtained while the 

MOPSO optimiser provides 2,600 results. The ‘total results’ have been refined by 

eliminating the un-realistic and identical results. Amongst these ‘refined realistic 

results’ a set of 30 results have been selected. These ‘selected results’ have been ranked 

by TOPSIS, using nine different weight matrices. 

As there is no unique solution to the two-layer MO-LRP, a range of decision-making 

weights are considered in order to make sure all types of DMs with different priorities 
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are taken into account to rank the results. A scenario analysis has been conducted on the 

first ranked results offered by TOPSIS using a moderate weight matrix. Scenario 

analysis offers the open and closed routes on the demand side of the two-layer MO-LRP. 

Furthermore, they analyse the effect of opening a ‘closed route forced to open’ under 

some circumstances, e.g. any kind of emergencies, natural disasters, etc. And finally, 

the first ranked results offered by TOPSIS using a moderate weight matrix has been 

geographically mapped to show the structure of the optimised two-layer supply chain 

network. 

The comparative analysis on the GA-based optimisers (MOGA-II and NSGA-II) shows 

that NSGA-II has been converging in a steadier manner as compared with MOGA-II. 

The GA-based optimisers are strongly efficient on the Pareto fronts.  

modeFRONTIER® proves to be efficient in implementing the NP-hard two-layer MO-

LRP. The same commercial solver is used to execute the three-layer model which is 

much more complicated and larger in size comparing to the two-layer MO-LRP. The 

next chapter deals with a three-layer multi-objective AHP-integrated 0-1 mixed integer 

location-routing model for designing the demand side of a supply chain network. As 

proved to be more successful, convergent, and Pareto efficient, MOGA-II, NSGA-II, 

and MOSPSO have been used for implementing the three-layer model.  

 
 

 

 

 

 

 

 



 
Chapter Five 

89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE 

Three-layer Multi-Objective Integrated Location-Routing  
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5.1. Introduction 

The proposed three-layer low-carbon/green Multi-Objective-Location Routing Problem 

(MO-LRP) improves the conventional models of Perl (1983) and Perl and Daskin 

(1985) and contributes to the literature in the field of low-carbon capacitated three-layer 

LRPs. The three-layer MO-LRP is a variant of the two-layer MO-LRP presented in 

Chapter Three.  

The green three-layer MO-LRP is a capacitated model on the demand side of the SC 

network. The three-layer model considers three main players on the demand side of the 

SC network, viz., plants, DCs and retailers with multiple routes connecting them. An 

example of the demand side of a three-layer SC network with multiple facilities and 

multiple retailers is presented in Figure 5.1. The physical distribution of the three-layer 

SC network is the concern of this chapter.  

 

Figure 5.1  Three-layer SC with multiple consumers (Adapted from: Schroeder et al. 
2013) 
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The main contribution of this chapter is three inter-linked aspects of the green three-

layer MO-LRP, viz.:  

(i) a green three-layer MO-LRP is designed by integrating AHP into the 0-1 mixed 

integer programming framework 

(ii) a two phased Design of Experiment (DoE)-guided meta-heuristic-based robust 

solution approach under the modeFRONTIER® commercial solver is provided 

(iii) the DMs’ prioritisation and subsequent ranking of the realistic solutions are 

examined using Pareto frontiers, TOPSIS and various scenarios of the green location-

routing are featured. 

The implementation of the formulated three-layer MO-LRP is a challenging task as it is 

computationally NP-hard. In the case of NP-hard models conventional techniques do 

not yield an optimal set of solutions, instead a heuristic/meta-heuristic generates an 

optimal solution space. Due to the computational complexity in solving the entire model 

in a single run, the solution approach is divided into two inter-connected phases. Phase-I 

of the solution approach considers: (i) facility location decisions by opening/closing 

DCs, and (ii) vehicle routing decisions by offering routing patterns for connecting the 

three layers of the SC. Phase-II considers vehicle routing decisions on the demand side 

of the SC by setting the routing patterns with connections among the retailers. The 

three-layer MO-LRP is implemented using DoE-guided disparate meta-heuristic 

optimisers using the modeFRONTIER® commercial solver (ESTECO 2013).  

The low-carbon three-layer MO-LRP, its efficient inter-linked two phased solution 

approach and analysis of the realistic results contribute to the demand side of the SC 

network in the following ways: 

(i) a low-carbon three-layer MO-LRP on the demand side of a SC network is 

formulated. Green elements are embedded in an objective function and an AHP-

integrated constraint. 

(ii) the model optimally routes DCs to plants and allocates retailers to DCs, and retailers 

to retailers. 

(iii) the total carbon emission and total cost are optimised. These criteria are conflicting-

in-nature having incommensurable units of measurements. 
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(iv) an inter-linked two phased solution approach for the computationally NP-hard 

three-layer MO-LRP is proposed. The model is implemented using DoE-guided 

disparate meta-heuristic optimisers using the modeFRONTIER® commercial solver 

platform (ESTECO 2013). 

(v) sets of Pareto efficient realistic optimum results are found. The results are then 

prioritised and ranked by the DMs. TOPSIS assists in evaluating sets of selected results. 

An analysis reflecting the DMs’ preferences is performed. This analysis reflects the 

changes in the controlling parameters with respect to the changes in the decision 

weights of TOPSIS. 

(vi) a scenario analysis of the location-routing events is obtained to guide the DMs in 

order to locate the feasible and realistic optimal routing patterns by trading-off the 

objective functions. 

(vii) the routing patterns are schematically presented on map. 

This chapter is organised in three parts (Figure 5.2). Part I presents the three-layer MO-

LRP. Part II delineates the two phased DoE-guided meta-heuristic-based robust solution 

approach using the modeFRONTIER® commercial solver followed by the deployment 

of a case of a three-layer supply chain network. Part III elucidates the DM’s 

prioritisation and subsequent ranking of the realistic solutions using Pareto frontiers and 

TOPSIS. In this section various scenarios of the green location-routing events are 

featured by determining alternative possible outcomes. 
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Figure 5.2  The formulation of the multi-objective three-layer location-routing 
model, its solution approach and analysis procedure 
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Part I: Modelling  

5.2. Three-Layer Multi-Objective AHP-Integrated Location-Routing 

The three-layer low-carbon MO-LRP is formulated integrating AHP with a 0-1 

programming approach. The purpose of this model is to minimise the level of CO2 

emission caused from transportation and minimise a combination of costs on the 

demand side of three-layer supply chain networks. This model is generic and can be 

extended to any three-layer supply chain network.  

The proposed model is formulated based on a set of realistic assumptions (Box 5.1). 

The three-layer MO-LRP considers three key players on the demand side of a SC, viz., 

plants, DCs and retailers. Two fleets of vehicles/trucks are considered for transporting 

the products throughout the SC network. A fleet of trucks transport products from plants 

to DCs, and a different fleet of trucks transport products from DCs to retailers and then 

from retailers to other retailers. Each route may be a combination of different types of 

roads. In every country different speed limits apply to different types of roads. Speeds 

in different types of routes are captured in the model by the use of an appropriate 

variable.  

Box 5.1  Assumptions for the three-layer MO-LRP 
 Demand side of the SC is considered 
 Multiple facilities, multiple retailers and single product are considered 
 Location of facilities (plants, DCs) are known  
 Retailers have known geographical locations 
 Plants are always open 
 DCs can be open or closed 
 Vehicle routes have known geographical start and end points 
 Vehicle routes are all real and feasible  
 Multi-stop routes from DCs to retailers and from retailers to retailers are considered  
 Routes are capacitated 
 Each vehicle route is served by one or more vehicle based on the demand at the dest i-

nation 
 Two fleets of vehicles/trucks are considered 
 Heavy duty trucks/Heavy Goods Trucks (HGVs), class 7 are used for transporting 

products are considered 
 If the product is perishable the vehicle is refrigerated HGV  
 Fuel consumption of vehicles is dependent on  the total mass of the vehicles 
 HGVs are diesel operated, average price (€/lit) of Diesel in a specific period of time 
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is assumed in the model 
 Consumption of the fuel is dependent on the speed of the vehicle/trucks 
 Truck drivers’ wage is dependent on the speed of the trucks 
 The average wage of a truck driver ( €/hr) is considered for a specific period of time 
 A portion of variable cost is dependent on the capacity at the DC locations and de-

mand at the retailer locations. 
 
The detailed nomenclature of the three-layer MO-LRP is elucidated in Table 5.1. 
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Table 5.1  Nomenclature 
Sets and indices   Parameters (cont’d)  
I  Set of retailer locations indexed by i    

sjd
 

Distance from plant s S to DC j J  in 
km 

J  Set of DCs indexed by j    
jid

 

Distance from DC j J to retailer i I in 
km 

S  Set of processing plants indexed by s    
iid
 

Distance from retailer i I to retailer i I  in 
km 

P  Set of points S J I  indexed by  s S ,
j J , i I  

 
sju

 

Number of vehicles needed to transport the 
products; from processing plant s S  to DC 

K  Set of paths defined in set P    
jiu

 

Number of vehicles needed to transport the 
products; from DC j J  to retailer i I  

M
 

Set of attributes in AHP decision matrix 
(CO2 emission and costs) indexed by m  

 
iiu

 

Number of vehicles needed to transport the 
products; from retailer i I to retailer i I  

N  Set of alternative in AHP decision matrix 
(trucks) indexed by n  

 
k  

Length of combined routes limit 

Parameters  z  Speed in different roads in km 

sf  
Sum of fixed cost of locating at plant j J   

mnw
 

Matrix of weights for each truck option 

sv  
Sum of variable costs of serving customers 
at each plant j J  

 
mB

 

Right hand side matrix for green constraint 

jf
 

Sum of fixed costs of locating at plant 
j J  

 
mS

 
Values of 

jip  and jkc  depending on the values 
of 

mB   

jv
 

Sum of variable costs of serving customers 
at each plant j J  

 Decision variables  

sa  
Variable cost of providing DC with the 
products at a processing plant per unit 
s S  

 
jY
 

Set of DCs ( =1 if DC j J is open, = 0 if 
not) 

ja
 

Variable cost of providing a retailer with the 
products at a DC per unit j J  

 
sjV
 

Set of feasible paths form processing plant
s S  to DC j J  

jr
 

Capacity at DC j J      
jiL

 

Set of feasible paths form DC j J  to 
retailer i I   

ir  
Demand at retailer location i I      

iiO
 

Set of feasible paths form retailer i I to 
retailer i I  

sjc
 

Cost of serving each route from plant s S  
to DC j J  

 
sjQ

 

Quantity shipped from processing plant 
s S to DC j J  

jic
 

Cost of serving each route from DC j J  
to retailer i I  

 
jiQ

 

Quantity shipped from DC j J to retailer 
i I  

iic  
Cost of serving each route from retailer
i I to retailer i I  

 
iiQ

 
Quantity shipped from retailer i I to retailer 
i I  

sjVp
 

CO2 emission from transportation in each 
route from processing plant s S to DC
j J  

 
nT

 

Trucks with different specifications 
(1, 2,3)n  

jiLp
 

CO2 emission from transportation in each 
route from retailer i I  to retailer i I  

 
sX

 

 Set of  processing plants s S  
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The model addresses low-carbon element by the way of introducing two green 

components, viz., (i) a green objective function, and (ii) a AHP-integrated green 

constraint. Same set of data is fed to these two green components of the model. 

Considering the assumptions of the model, a three-layer multi-objective AHP-integrated 

0-1 mixed integer location-routing model is developed.  

The three-layer MO-LRP has two objectives: 

minimise +
sj ji ii iisj V sj ji L ji O O ii

s S j J j J i I i I i I
u p V u p L u p O

     

                        (5-1) 

The first objective function (5-1) of this three-layer MO-LRP has been designed to 

minimise the total CO2 emission from transportation between facilities in the SC. This 

objective function considers the CO2 emitted from transporting the products in the 

routes from ‘plants to DCs’, ‘DCs to retailers’ and ‘retailers to retailers’. Two sets of 

decision variables and one set of parameters are used to calculate the amount of CO2 

emission from transportation in the first objective function.  

A set of decision variables sjV , jiL  and iiO define all real feasible routes from plants to 

DCs, DCs to retailers and routes connecting retailers to retailers respectively. sjV , jiL

and iiO  are 0-1 integer decision variables where 0 refers to closed routes and 1 to open 

routes.  

Another set of decision variables sju , jiu  and iiu represent the number of vehicles needed 

to transport the products from plants to DCs, DCs to retailers, and retailers to retailers. 

In this three-layer MO-LRP demand is included as an objective coefficient. Therefore 

the number of trucks required to transport the products in the routes are one of the 

outcomes of the model.  

A set of parameters
sjVp ,

jiLp and
iiOp represent the amount of CO2 emission in each real 

feasible route from plants to DCs, DCs to retailers, and among retailers respectively. 

There is no standard formula set by the Irish government or EU for calculating the 

amount of CO2 emission from road freight. In order to measure this, the following 

formula (5-2) developed and adapted by two UK government departments (The 

Department of Energy and Climate Change (DECC) 2008; Department for 

Environments, Food and Rural Affairs (DEFRA) 2008) is adopted: 
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2       k        2.64 kg CO emission from a diesel vehicle in g Litres of diesel burnt                (5-2) 

According to DECC (2008) ‘for vehicles, regardless of their type, engine size, axles and 

gross vehicle weight, 2.64kg CO2 will be emitted for each litre of diesel burnt (or 2.30kg 

for petrol)’. Therefore, in order to calculate the litres of Diesel burnt by HGVs the 

formula (5-3) is used: 

           (   kmlit/km)Litres of diesel burnt in each path fuel efficiency Distance                (5-3) 

Fuel consumption is dependent on vehicle mass and is considered in average as 0.35

lit/km  for HGVs (Nylund and Erkkilä 2005; DECC 2008). Equations (5-2) and (5-3) 

measure the CO2 emission for one truck. Distances among plants, DCs and retailers are 

measured using GoogleTM maps. This is because the geographical start and end point of 

routes are known. 

The second objective function (4-4) minimises the total costs: 

sj ji ii ii

s s j j s s j j
s S j J s S j J

sj V sj ji L ji O O ii
s S j J j J i I i I i I

f X f Y v X v Y

u c V u c L u c O

   

     

   
      

   

 
  

 

   

     

   

The three-layer MO-LRP considers three different types of costs in this objective 

function (5-4), viz. fixed costs, variable costs and vehicle-routing costs. The details of 

each type of costs are illustrated as followed: 

 Fixed costs 

This type of cost consists of the fixed cost for operating the plants ( sf ) and the DCs       

( jf ). The fixed costs for operating the plants and the DCs are not dependant on the 

number of the products produced or processed or held at each plant or DC.   

 Variable costs  

This type of cost consists of cost of serving retailers at each plants and DCs, sv and jv

respectively. Variable costs ( sv , jv ) are dependent on the number of products produced 

or processed at each plant to cover the capacity of each DC. Considering the capacity in 

minimise 

(5-4) 
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each DC location ( jr ), a variable cost of providing DC with each unit of products is 

defined at each plant ( sa ) by equation (5-5): 

( . )s s jv a r                          (5-5) 

Consequently considering the demand at retailer location ( ir ), a variable cost of 

providing the retailers with each unit of product is calculated at each DC ( ja ) by 

equation (5-6):  

( . )j j iv a r                            (5-6) 

 Vehicle-routing costs 

Vehicle-routing cost calculates the total cost of serving all operating routes throughout 

the demand side of the supply chain network. The routes connect plants to DCs, DCs to 

retailers, and retailers to retailers. Two main components of costs are considered, viz. 

total fuel cost, and total truck driver’s wage in each open route. Based on the 

assumptions presented in Box 4.1, equations (5-7) and (5-8) are developed to calculate 

the total fuel cost and the total truck driver’s wage: 

   (€)   (lit    (€/lit)Total Fuel Cost Diesel burnt ) Fuel Price                                       (5-7) 

(km)
’   (€)   '  (€/hr) 

 (km/hr)
  Distance 
Total Truck Driver s Wage Truck Driver s wage × 

z
                        (5-8) 

Driver’s wage is paid on an hourly basis and there are different speed limits set for dif-

ferent types of roads in each country. In order to consider the effect of speed on driver’s 

wage, parameter z (i.e., speed in different roads in km) is introduced to the second ob-

jective function. Considering the equations (5-7) and (5-8), cost of serving each route in 

€ is calculated using the equation (5-9):  

     (€)     (€)    ’   (€) Cost of Serving Each Route Total Fuel Cost Total Truck Driver s Wage           (5-9) 

Set of parameters ,  
sj jiV Lc c and 

iiOc represent the total cost of serving each route 

connecting plants to DCs, DCs to retailers, and retailers to retailers respectively.  

Cost of serving each route is calculated for each truck. Set of variables sju , jiu  and iiu

represent the number of truck needed to transport the products from plants to DCs, DCs 

to retailers, and retailer to retailer.  
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The constraints of the three-layer MO-LRP are as followed:  

Constraint 1: Each demand node on one route                

1sj
s S j J

V
 

  : Routes from plants to DCs                       (5-10.a) 

1ji
j J i I

L
 

  : Routes from DCs to retailers                       (5-10.b) 

1ii
i I i I

O
 

   : Routes from retailers to retailers                                  (5-10.c) 

This constraint is to make sure every DC is connected to only one plant and every 

retailer is connected to only one DC.  

Constraint 2: Limits the length of each multi-stop route 

ji ji ii ii k
j J i I

d L d O 
 

                               (5-11) 

This constraint considers a set of multi-stop routes, wherein one route comprises of a 

start point from a DC to a retailer and then serving another retailer. The first fleet of 

trucks transport the products from the plants to the DCs. Then the second fleet of trucks 

transport the products from the DCs to the retailers and from one retailer to another 

retailer. Multi-stops are considered from the DCs to the retailers and from one retailer to 

another retailer. 

Constraint 3: Each route to be connected to a facility 

1sj
s S j J

V
 

  : Routes from plants to DCS            (5-12.a) 

1ji
j J i I

L
 

  : Routes from DCs to retailers                       (5-12.b) 

1ii
i I i I

O
 

  : Routes from retailers to retailers              (5-12.c) 

The routes are assumed to have known start and end points. Therefore, there is only one 

route defined to connect each plant to each DC and each DC to each retailer.   

Constraint 4: Any route entering a node must exit the same node 

0ji ji
j J i I

L L
 

   : From DCs to retailers             (5-13.a) 

0ii ii
i I i I

O O
 

   : From a retailer to the next retailer                       (5-13.b) 
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As two fleets of vehicles will transport the products, this constraint is defined for routes 

with multi-stop.  

Constraint 5: A route can operate out of only one facility  

1sj
s S j J

V
 

  : For routes from plants to DCs             (5-14.a) 

1ji
j J i I

L
 

  : For routes from DCs to retailers           (5-14.b) 

1ii
i I i I

O
 

  : For routes connecting retailers                        (5-14.c) 

The facilities are assumed to have known locations and the routes are assumed to have 

known start and end points. 

Constraint 6: Defines the flow of the products into the facilities and nodes from the 

supply points  

0sj i j
s S i I

Q rY
 

   : From plants to DCs                       (5-15.a) 

0ji i j
j J i I

Q rY
 

   : From DCs to retailers                 (5-15.b) 

In constraint 6 (5-15.a) the capacity is introduced to the constraint by ir , and in (5-15.b) 

the demand is introduced to the constraint by jr .  

Constraint 7: Restricts throughput at each facility to the maximum allowed, and links 

the flow variables to facility location variables  

0sj j s
s S

Q r X


  : From plants to DCs             (5-16.a) 

0ii i j
i I

Q rY


  : From DCs to retailers                       (5-16.b) 

Constraint 8: A retailer must be assigned to a facility if the route leaves the facility 

0ji ii j
j J i I

L O Y
 

    : Defined for multi-stop routes              (5-17) 

This constraint is applied to only multi-stop routes connecting an open DC to a retailer 

and then through the first retailer serving other retailer(s). Retailers have no supply of 

products therefore open DCs and routes connecting DCs to served retailers are included 

in constraint 8 (5-17).  
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Constraint 9: AHP-Integrated constraint  

( )       ,         ,   and  on ,   and m mn n m sj ji ii
m M n N

S w T B i j s V L O
 

                              (5-18) 

In order to involve DMs and their priorities in the model, a green constraint is defined. 

A multi-criteria decision making tool, AHP, is used to formulate this constraint. The 

DMs prioritise the available transportation options considering a number of criteria in 

order to select the best one. The process of decision-making using this AHP-integrated 

constraint is illustrated in Figure 5.3:  

 
Figure 5.3      The process of developing a weight matrix in order to contract an AHP-

integrated constraint  

 

Three types of trucks are considered for transportation of products. The characteristics 

of the trucks are considered as followed:  

1 :T  Truck type 1 (Medium CO2 emission / Medium cost) 

2 :T Truck type 2 (Low CO2 emission / High cost)  

3 :T Truck type 3 (High CO2 emission / Low cost)  
 

DMs have been asked to prioritise these three options of transportation based on two 

criteria, viz., CO2 emission and cost, thereby introducing flexibility in the decision-

making process. The priorities of the DMs form weight matrix ( mnw ). The matrices mB  

(i.e., right hand side of the third constraint 5-18) contribute to the parameters of the 

objective functions (5-1) and (5-4). Figure 5.4 depicts how the vehicles/trucks, 

attributes of the decision-making. 
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Figure 5.4 The integration of AHP to the objective functions 

 

In Ireland or the EU no limit has been defined for CO2 emissions therefore an average 

of the CO2 emission for transportation, viz. , ,
sj ji iiV L Op p p , is considered as the limit for 

this attribute. In the case of the limit for costs an average of the total costs of serving 

routes, viz. , ,sj ji iic c c , is considered as the limit for this attribute.  

…. 
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Non-negativity constraints:  

Quantity shipped from precessing plant  to DC 0     sj s S j JQ               (5-25) 
Quantity shipped from precessing DC  to retailer 0   ji j J i IQ                  (5-26) 
Quantity shipped from precessing retailer  to retailer 0   ii i I i IQ               (5-27) 
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Part II: Solution Approach  

5.3. Solution Method 

LRPs are conventionally single objective with the main aim of minimising the total 

costs of operating facilities and transportation. Mathematically LRPs are NP-hard 

combinatorial optimisation problems (Karp 1972; Nagy and Salhi 2007; Marinakis and 

Marinaki 2008; Yu et al. 2010). The three-layer MO-LRP is NP-hard as well. It is an 

improvement to Perl’s (1983) NP-hard LRP and is a multi-objective combinatorial 

optimisation model. They are very hard to solve as they combine two different 

conflicting-in-nature problems, viz. facility location problem, and vehicle routing 

problem (Daskin et al. 2010). Even for small problem sizes, the single objective three-

layer LRP is substantially difficult to solve as there are more integer variables added to 

the formulation (Karp 1972; Daskin et al. 2010). With increasing problem size of an 

NP-hard problem the computational effort required for its solution grows exponentially 

(Erdoğan and Miller-Hooks 2012).  

Multi-Objective Problems (MOP) are almost always conflicting-in-nature and 

mathematically NP-complete decision problems. In an MOP there is more than one 

objective function to optimise. Therefore, one unique solution to the problem is not 

yielded but a set of solutions. The set of solutions to an MOP are obtained through 

Pareto Optimality concept (Coello et al. 2007). 

Heuristics/meta-heuristics are used to solve these types of problems as there is no 

unique solution to LRPs and MOPs. The solution approach divides the problem into 

components, viz. facility location, allocation of consumers to facilities, and vehicle 

routing (Hassanzadeh et al. 2009), in order to solve it. This leads to the introduction of 

two and three phased approaches with specific algorithms (Perl 1983; Wu et al. 2002).  

In order to solve the three-layer MO-LRP, a two phased solution approach using GA-

based and PS-based meta-heuristics is implemented. The two phased approach divides 
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the main problem into two inter-linked problems. This solution approach is explained in 

the next section.  

 

5.4. The Two Phased Solution Approach   

The three-layer MO-LRP consists of the following components (Figure 5.5): 

- Facility location component: open/close DCs, plants are considered ‘open’ 

- Vehicle routing component: vehicle routes connecting plants to DCs, vehicle 

routes connecting open DCs to retailers, and vehicle routes connecting retailers 

to retailers (multi-stop vehicle routing).  

 

Figure 5.5   The components of the three-layer MO-LRP 
 

The heavily constrained three-layer MO-LRP is divided into phases. The appropriate 

number of phases is found through numerical experimentations. A two phased approach 

is found to be the most efficient way for solving this three-layer MO-LRP. Therefore, 

the three-layer MO-LRP is divided into two inter-linked phases, viz. Phase-I and Phase-

II. Phase-II is linked to Phase-I by the way of the components of the model and the 

solutions from Phase-I. Table 5.2 illustrates the technical details of the two phases:  

Table 5.2  Technical details of the two phased three-layer MO-LRP 

Ph
as

e-
I  

Scope 
‘Facility location’ and ‘Vehicle routing’ within:  
 Plants 
 DCs 
 Retailers (connection between retailers not considered in this phase) 



 
Chapter Five 

106 
 

 

Goals 
Facility location decision: Open/close DCs (Plants are considered always open) 
 
Vehicle routing decision:  

- Routes connecting plants to DCs 
- Routes connecting open DCs to retailers 

 
Objective 
functions 

Objective function I:  
          Min CO2 emission form transporting between plants and DCs 
Objective function II:  
          Min total cost of operating plants and DCs  and serving routes 

 

C
on

st
ra

in
ts

  
  

C
on

st
ra

in
ts

 

Constraint 1: Each demand node on one route 
Constraint 3: Each route to be connected to a facility 
Constraint 4: Any route entering a node must exit the same node  
Constraint 5: A route can operate out of only one facility 
Constraint 6: Defines the flow into a facility from the supply points (in terms of demand)  
Constraint 7: Restricts throughput at each facility to the maximum allowed at that site 
and links the flow variables and facility location variables 
Constraint 8: If route k K leaves customer node i I  and facility j J . Then re-
tailer i must be assigned to facility j  
Constraint 9: AHP-integrated constraint (Green constraint), considering the DM’s 
priorities 
Non-negativity constraints 
Integer constraints  

Outcomes 

from 

Phase-I 

 
 Open/close DCs 
 Vehicle routes connecting plants to DCs 
 Vehicle routes connecting open DCs to retailers  

 
Link between 
the two phases 

 
 

 
Results from Phase-I: Open DCs, served retailers  
Model: Constraints related to DCs from Phase-I  

Ph
as

e-
II

 

Scope ‘Vehicle routing’ within:  
 Open DCs and the routes connecting DCs to retailers from Phase-I 
 Served retailers from Phase-I to un-served retailers.  

Goal  Vehicle routing decision: 
      Finding routes connecting served retailers to un-served retailers based on the   

results from Phase-I 
 

Objective 
functions 

Objective function I:  
          Min CO2 emission form transporting between plants and DCs 
Objective function II:  
          Min total cost of operating plants and DCs  and serving routes 

 
C

on
st

ra
in

ts
 

Constraint 1: Each demand node on one route 
Constraint 2: Limits the length of each road (multi-stop vehicle routes)  
Constraint 3: Each route to be connected to a facility 
Constraint 4: Any route entering a node must exit the same node 
Constraint 5: A route can operate out of only one facility 
Constraint 6: Defines the flow into a facility from the supply points (in terms of demand)  
Constraint 7: Restricts throughput at each facility to the maximum allowed at that site 
and links the flow variables and facility location variables 
Constraint 8: If route k K leaves customer node i I  and facility j J . Then re-
tailer i must be assigned to facility j  
Constraint 9: AHP Integrated constraint (Green constraint), considering the DM’s 
priorities 
Non-negativity constraints  
Integer constraints 
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Outcomes 

from 
Phase-II 

 
 Routes connecting served retailers to un-served retailers from Phase-I 

As served retailers don’t supply products, the routes connecting them to open DCs 
from Phase-I are considered in Phase-II. 

 

As illustrated in Table 5.2 Phase-I consists of the two components of the main model, 

viz. facility location and vehicle routing. Phase-I covers all three layers of the model 

and makes decisions on open/closed DCs, vehicle routes connecting plants to DCs, and 

vehicle routes connecting open DCs to retailers. Figure 4.6 presents the scope of Phase-I 

in terms of facility location and vehicle routing components of the model. Phase-I of the 

solution approach is presented in the next section. 

 

Figure 5.6  Scope of the Phase-I 
 

5.4.1. Phase-I of the solution approach 

minimise        
sj sj ji jiV V sj L L ji

s S j J j J i I
u p V u p L

   

                                         (5-28)  

sj ji

s s j j s s j j
s S j J s S j J

sj V sj ji L ji
s S j J j J i I

f X f Y v X v Y

u c V u c L

   

   

   
      

   

 
 

 

   

 

  

 
subject to: 

 1                                                                                        5-3     0.asj
s S j J

V
 
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j J i I
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
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                   (5-36) 
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Integer constraints: 

             

                 (5-38) 

             (5-39) 

              (5-40) 

             (5-41) 

if processing plant s  is open                                         

if not

1,  
0,                                                                        s

S
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 
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Non-negativity constraints:  

Quantity shipped from precessing plant  to DC                        

Quantity shipped from precessing DC  to retailer                      

(5-43)
(5-44)
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Connections between retailers, objective function components and constraints related to 

them are excluded in the above model, as Phase-I doesn’t consider connections between 

retailers.  

If the phases of the LRP are solved separately there is a risk of sub-optimal solutions 

and not reaching a universal optimal set of solutions for the main problem (Hassanzadeh 

et al. 2009). After executing Phase-I, Phase-II can be formed and solved based on each 

selected result obtained from Phase-I. Phase-II is designed to find the optimised vehicle 
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routes connecting the served retailers to the un-served retailer from the Phase-I. Figure 

5.7 shows the scope of the Phase-II.  

 

Figure 5.7 Scope of the Phase-II 

The retailers are not supply points. Therefore the DCs and the routes connecting them to 

the served retailers from Phase-I are included in Phase-II. This is the link for connecting 

the two phases in order to reach to a final optimal solution for the three-layer MO-LRP. 

Phase-II of the solution approach is presented in the next section. 

5.4.2. Phase-II of the solution approach  
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Integer constraints: 
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Non-negativity constraints:  

Quantity shipped from precessing DC  to retailer                    

Quantity shipped from precessing retailer  to retailer                  

  (5-60)

(5-61)

0   
0   

ji

ii

j J i I

i I i I

Q
Q

 

 





 

Phase-II is responsible to make connection among retailers. Two components from 

Phase-I are included in Phase-II:  

- Open DCs 

- Vehicle routes connecting open DCs to served retailers 

 

 

5.5. Validation of the three-layer MO-LRP – the case of an Irish dairy SC network  

A set of data, as indicated in Box 5.2, is required to run the generic three-layer MO-LRP 

and design a three-layer SC network.  
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Box 5.2  Required set of data for the three-layer MO-LRP 
a. Number of plants, number of DCs and number of retailers  

b. Geographical location of plants, DCs, and retailers in order to calculate the distances 
between each node in the SC 

c. Fixed cost of: 
-  Operating plants 
-  Operating DCs 

 
d. Variable cost of: 

-  Providing DCs with one unit of product at each plant  
- Providing the retailer with one unit of product at each DC  

 
e. Vehicle routing-related costs:  

- Driver’s wage  
- Cost of fuel per litre  

 
f. Capacity at each DC and demand at each retailer location  

 
g. Distance between plants and DCs , and DCs and retailers 

 
h. CO2 emission from transportation at each route from one vehicle  

 
i. AHP-related data:  

- DM’s pair-wise matrix regarding the truck types based on CO 2 emission and costs  
- The limits (maximum allowed) for CO 2 emission and costs (RHS matrix).  

 

In order to evaluate the functionality of the three-layer MO-LRP a case is considered 

based on an Irish dairy SC network. The structure of the three-layer SC network is 

validated by the means of:  

a) discussions with a consultant to a number of SC companies in Ireland, one of which 

is an Irish based multinational dairy company,  

b) interviewing experts from another two major dairy companies in Ireland. There are 

only a small number of main players in the dairy market in Ireland and these have been 

identified and a questionnaire has been prepared to gather information about the 

structure of the demand side of their SCs in Ireland. The questionnaire is presented in 

Appendix C.1, and  

c) using company profiles, technical reports from dairy companies, research output on 

dairy SCs, and relevant documented material. 

This three-layer MO-LRP consists of two main facilities on the demand side of the 

supply chain, viz. plants and DCs. Plants are assumed ‘open’ therefore the facility 

location decision is concerned with DCs only. In order to serve the retailers, three sets 
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of vehicle routes are considered, vehicle routes connecting plants to DCs, DCs to 

retailers, and retailers to retailers. The details of the ‘case of the three-layer dairy SC 

network in the east of Ireland’ is illustrated in the next sections.  

5.5.1. Number and geographical location of plants, DCs and retailers  

Table 5.3 presents the number and the geographical location of all the nodes of the of 

the supply chain network. ‘Node’ in here refers to plants, DCs and retailers. Geographic 

locations of plants are the real locations of the two main processing plants owned by the 

dairy company on which the case is considered. 

Table 5.3  Number and location of plants, DCs and retailers  
 Nodes Number 

of nodes 
Geographical locations 

Fa
ci

lit
ie

s 

 
Plants  

 
2 

Drogheda  
Ballitore 

 
DCs 

 
6 

Dundalk, Drogheda, Dublin City, Tullamore, Bray, Waterford 

R
et

ai
le

rs
  

Retailers  
 

22 
Drogheda, Dundalk, Navan, Tullamore, Naas, Newbridge, Leixlip, 
Port Laoise, Bray, Arklow, Wicklow, Greystones, Clonmel, Water-
ford, Tramore, Kilkenny, Wexford, Ennoscorthy, Dublin City, Dun 
Laogharie/Rathdawn, Fingal, South Dublin 

 

In total a set of six DCs are considered. The distance between any two of these DCs 

ranges from 30 km to 100 km. They are considered to be geographically located in the 

east of Ireland. Retailers are located in 15 counties in the east of Ireland. They are 

considered to be located in centres with populations of 10,000+ in these counties. The 

population data is adapted from Irish Central Statistics Organisation CSO (2012) 

official reports. The exact location of the DCs and retailers are presented in Table 5.3.  

5.5.2. Fixed and variable costs for plants and DCs  

Fixed and variable costs for plants and DCs are considered in the second objective 

function (5-4). These two types of costs for each plant and each DC are presented in 

Tables 5.4 and 5.5 respectively. The unit of product is a 2 litre bottle of milk.  

Table 5.4  Fixed and variable costs at plants 
             Costs 
 
Plants 

Fixed Costs 
(€) 

Variable 
Costs  

(€ per unit of 
product) 

Plant I  1,500 0.20 
Plant II 2,000 0.24 
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Table 5.5  Fixed and variable costs at DCs 

DC  
 
Cost (€) 

DC a 
Dundalk 

DC b 
Drogheda 

DC c 
Dublin 

City 

DC d 
Tullamore 

DC e 
Bray 

DC f 
Waterford 

Fixed ( )jf  200 250 250 250 100 250 

Variable per unit ( )jv  0.02 0.03 0.03 0.03 0.01 0.04 

 

5.5.3. Capacity of DCs and demand at retailer locations  

Capacities of DCs are considered in the range of 700,000 to 1,000,000 units of products. 

Table 5.6 depicts the capacity at each DC location.   

Table 5.6  Capacity of DCs 
DCs 

 
Capacity 

(unit) 
a. Dundalk 800,000 
b. Drogheda 1,000,000 
c. Dublin City 1,000,000 
d. Tullamore 1,000,000 
e. Bray 700,000 
f. Waterford 1,000,000 

 
For four of the DCs the capacities are equally considered as 1,000,000 units of product. 

Dundalk and Bray are the two DCs which are located the shortest distance from the 

closet DC to them (Drogheda and Dublin City respectively). Therefore the capacities 

are considered less than 1,000,000.  

The demand at retailer locations is adapted from Table 4.5.  

5.5.4. Distance between plants and DCs, and DCs and retailers 

A variety of speeds on different roads is considered in the model as a factor affecting 

the green objective function. The speed limits (Table 4.6) defined in ‘Road Traffic Act 

2004’ is currently being enforced in Ireland. An average of the speed is considered in 

this case study.  Table 5.7 presents the distances between plants and DCs divided by the 

type of road:   

Table 5.7  Total distances between plants and DCs; divided by the type of road 
Plant 

( s S ) 
 

DC 
( j J ) 

I
 Drogheda 

II
  Ballitore 

Total 
Distance 

(km) 

 Distance in each Type of Road 
(average)  

(km) 

Total 
Distance 

(km) 

Distance in each Type of Road 
(average)  

(km)
 Motorway National 

Route 
Regional 
and Local 

Roads 

Built 
Up 

Areas 

Motorway National 
Route 

Regional 
and Local 

Roads 

Built 
Up 

Areas 
a. Dundalk 36.4 36.4    146.0 89.7 56.3   
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b. Drogheda 2.0    2.0 117.0 61.7 55.3   
c. Dublin City 52.4 52.4    59.8  59.8   
d. Tullamore 110.0  110.0   62.5   62.5  
e. Bray 74.6 74.6    71.4  71.4   
f. Waterford 219.0 219.0    105.0 105.0    

 

Table C.1 (Appendix C) depicts the distances between plants and retailers and Table 

C.2 present the distances between retailers by the type of roads.  

5.5.5. CO2 emission and costs of serving  each route 

CO2 emitted from transportation  is calculated using formulae (5-2) and (5-3)  The 

average CO2 emission caused from transporting products thorough the three-layer SC 

network is presented in Tables 5.8, 5.9 and B.3. Estimations account for one Diesel 

operated refrigerated HGV in each route.  

Table 5.8  CO2 emission and costs of serving each between plants and DCs 
Plant 

( s S ) 
 

DC 
( j J ) 

I
 Drogheda 

II
  Ballitore 

CO2 emission from 
fuel burnt(kg) 

 

sj
p   

Cost of 
Serving 
Route(€) 

skc
 
 

CO2 emission from 
fuel burnt (kg) 

 

sj
p  

Cost of 
Serving 
Route(€) 

skc
 

a. Dundalk 33.63 23.68 108.11 77.70 
b. Drogheda 1.85 1.84 108.11 77.70 
c. Dublin City 48.42 34.09 55.25 40.62 
d. Tullamore 101.64 74.72 57.75 47.84 
e. Bray 68.93 48.53 65.97 48.50 
f. Waterford 202.36 142.46 97.02 68.30 

 
 

5.5.6. Cost of serving each route  

In order to calculate the total cost of serving each route for the demand side of the three-

layer dairy SC, formulas 5-7, 5-8 and 5-9 have been used. Average price of fuel in 

April/May 2012 has been 1.53€/lit and the average wage of a HGV drive at the same 

period of time has been 11.50 €/hr (Part II, Chapter Three). Tables 5.9, 5.10 and C.3 

(Appendix C) depict the average Cost of serving routes and transporting products from 

plants to DCs, DCs to retailers, and in between retailers respectively. CO2 and cost 

estimations account for one refrigerated HGV in each route.  
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Table 5.9  CO2 emission estimations and costs of serving route from DCs to 
retailers 
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5.5.7. Green constraint data  

The AHP constraint considers three types of trucks as preferred by the DM for trans-

porting the products. Different levels of CO2 emission and costs are considered for each 

type of truck. DMs have been asked to compare these trucks types based on two attrib-

utes: CO2 emission and cost. The outcome of this comparison is a pair-wise comparison 

matrix which is not related or dependant on the number of layers in the SC network.  
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Ph
as

e-
I 

Ph
as

e-
II

 

Therefore, Tables 4.6, 4.7 and 4.8 depict all the data needed for the AHP constraint in 

the three-layer MO-LRP. 

 

5.6. Solution Steps  

Considering the efficiency of modeFRONTIER® in implementing the two-layer MO-

LRP, the same platform is considered for implementing the three-layer MO-LRP. The 

two-phased solution method is developed using modeFRONTIER®. A schematic illus-

tration of the consecutive steps of the solution approach is presented in Figure 5.8:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transforming Phase-II into modeFRONTIER® workflow 
and connecting the components of the model  

Results of Phase-I 

Deploying of the optimisers, setting up the chosen 
optimisers and executing the Phase-I 

 
 

 

Results of Phase-II 

Transforming the quantified Phase-I into 
modeFRONTIER® workflow and connecting the 

components of the model  

Introducing DoE to guide the chosen optimiser 
 

- Open/Clo
se DCs  

- Routes 
connectin
g plants to 
open DCs 

- Routes 
connectin
g open 
DCs to 
retailers 

 

Deployment of the optimisers, setting up the chosen 
optimisers, and executing the model 

 
 

 

Introducing DoE to the guide the chosen optimiser 
 

Analysing results of Phase-I 

- Un-served 
retailers in 
Phase-I are 
served 
through 
served 
retailers in 
Phase-I 

 

Implementing Phase-II based on Phase-I results 

Analysing results of Phase-II 
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Figure 5.8 The process of implementing the three-layer MO-LRP using mode-
FRONTIER® 

 

 

5.6.1. Transforming the three-layer MO-LRP into modeFRONTIER® 

Phase-I and Phase-II of the three-layer MO-LRP are transformed into modeFRON-

TIER®’s workflow. The logical designs of the two phases in modeFRONTIER® are 

presented disparately in Figures 5.9 and 5.10. 

 

Figure 5.9  Phase-I of the three-layer MO-LRP design in modeFRONTIER® 

 

Interpretation of results 
- - Scenario analysis 
- - Schematic presentation of results  

 

Final results of the three-layer MO-LRP  

- Open/close DCs 
- Routes connecting plants to open DCs 
- Routes connecting open DCs to retailers 
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Figure 5.10  Phase-II of the three-layer MO-LRP design in modeFRONTIER® 

The design shown in Figure 5.10 is a general presentation of Phase-II. Based on each 

result from Phase-I, Phase-II is modified and solved. Graphically the design looks the 

same for all optimisers in both phases. The mathematical details of Phase-I and Phase-II 

are all satisfied in this designed workflow using modeFRONTIER®. The setting of each 

optimiser in modeFRONTIER® for both phases of the solution approach is identical. 

Hence, in the next two sections the details of DoE setting, and then the optimiser set-

tings are explained for both phases.  

5.6.2. Introducing DoE to the chosen optimisers  

DoE connects the main three-layer MO-LRP to the optimisers by generating the initial 

set of population for the optimisers. The initial population table consists of 50 designs. 

The initial 50 DoE guided designs consist of: (i) 10 design of experiment sequence, (ii) 

10 random, (iii) 10 sobol, (iv) 10 uniform Latin hypercube, (v) 9 incremental space fill-

er and (vi) 1 constraint satisfaction designs. This combination of designs in initial table 

works efficiently for the three-layer MO-LRP.  

5.6.3. Deployment of the Optimisers 

Considering the fact that the nature of the two-layer and three-layer MO-LRPs are 

mathematically the same, the same optimisers that were efficient in solving the two-

layer MO-LRP are deployed to solve the three-layer MO-LRP. MOGA-II, NSGA-II 

(GA-based optimisers) and MOPSO (PS-based optimiser) proved to be more efficient in 

solving the two-layer MO-LRP in chapter three. These optimisers are considered to 
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solve the three-layer MO-LRP. In the next section the set up details of the chosen opti-

misers are presented and explained.  

5.6.4. Setting-up the Chosen Optimisers  

Each one of the optimisers is set up separately. Chosen optimisers have disparate 

requirements and distinctive specifications. Therefore they have different set up details. 

Table 5.10 presents the set up details of all three optimisers:  

Table 5.10  Set up details for optimisers in modeFRONTIER®, identical for both 
phases 

MOGA-II NSGA-II MOPSO 
Number of Generations: 250 
Initial Population: 50 
Probability of Crossover: 0.5 
Type of Crossover: Directional 
Probability of Mutation: 0.1 
Type of Mutation: DNA String 
DNA String Mutation Ratio: 0.05 
Elitism: Enabled  
Random Generator Seed: 1 
 

Number of Generations: 50 
Initial Population: 50 
Crossover Probability: 0.9 
Mutation Probability for Real-Coded 
Vectors: 1.0 
Mutation Probability for Binary Strings: 
1.0 
Distribution Index for Real-Coded 
Crossover: 20.0 
Distribution Index for Real-Coded 
Mutation: 20.0 

 
 
Number of Generations: 250 
Initial Population: 50 
Turbulence: 0.2 
Random Generator Seed: 1 
 

 

In order to compare the performance of the optimisers, two main details of set up have 

been kept the same initially for all optimisers; population of initial designs table and 

number of generations. The initial population table is generated by DoE identically.  

The number of generations has been set at 250 initially for all three optimisers. The 

convergence of optimisers and the number of realistic results were the main criteria in 

choosing the number of generations. For MOGA-II and MOSPSO, 250 generations 

generates a larger feasible solution area. The convergence for NSGA-II shows that this 

optimiser converges in 50 generations and after the 50th generation the optimiser is 

forced to find more solutions. For this reason, the number of generations in NSGA-II is 

set to 50 generations. The results are categorised, analysed and presented in Part-III.  
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Part III: Results and Outcomes 

5.7. Analysis of Results  

The three-layer MO-LRP is executed in a two phased inter-linked approach. Phase-I is 

solved first. Based on the results from Phase-I, Phase-II is modified and then solved. 

The final results are obtained when both phases are complete. The process of analysing 

results in the two phased approach is presented in Figure 5.11.   
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Figure 5.11  The analysis of the results from the three-layer MO-LRP 
 
 

5.7.1. Phase-I  

The results obtained from Phase-I of the solution approach for the three-layer MO-LRP, 

are presented in this section. In order to analyse the results: (i) results are refined and a 

set of realistic results are identified, (ii) a performance study is conducted on each 

optimiser, (iii) Analysis of Variance (ANOVA) test is performed to compare means of 

multiple groups for the optimised data, (iv) a set of results are selected for further 

analysis, (v) selected results are ranked using TOPSIS, and finally (vi) Pareto efficiency 

is examined on the selected designs.  

All results offered by the three optimisers are real feasible results. A statistical summary 

on these results is presented in Table 5.11. These statistical summaries assist in 

analysing:  (a) the total results table which consists of all feasible real results obtained 

by each optimiser, (b) the refined realistic results table which consists of realistic and 

non-identical results, and (c) the selected results table which consists of selected results 

from the three lowest sets of feasible results from the 4D Bubble plots.  

Table 5.11  Statistical summary on optimisers’ results 
 

Type of results on optimisers 
Number of 

real  
feasible 
results 

(alternatives) 

CO2 emission 
value 

kg 
(objective function I) 

Costs  
value 

€ 
(objective function II) 

Min Max Min Max 

M
O

G
A

-I
I Total results  12,500 26,689 63,164 2,487,644 2,671,661 

Refined realistic results  412 26,689 45,179 2,487,644 2,671,149 
Selected results 20 26,689 37,613 2,487,644 2,594,149 

 

M
O

PS
O

 Total results 12,500 25,687 61,188 2,487,052 2,674,237 
Refined realistic results 528 25,687 40,550 2,487,052 2,501,195 
Selected results 20 25,687 46,663 2,487,052 2,588,256 

 

N
SG

A
-I

I Total results 2,500 21,669 49,578 2,480,034 2,516,631 
Refined realistic results 184 21,699 38,253 2,480,034 2,501,134 
Selected results 
 

20 21,699 27,445 2,480,034 2,487887 

 

Analysis of final results  
 Scenario analysis  
 Schematic Presentation of Results 

 
 

 
 
   
 
 
 
 
 
 
 
 
 
  

Final results obtained  
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As presented in Table 5.11, the minimum value for both CO2 emissions and costs is 

obtained by NSGA-II in 50 generations. This does not necessarily yield a minimum 

value for the total costs.  

The MOGA-II, MOPSO and NSGA-II optimisers generate the feasible space of solu-

tions by using a DoE-guided solution approach. Figures 5.12, 5.13 and 5.14 illustrate 

the feasible real solution space for MOGA-II, MOPSO, and NSGA-II respectively. In 

these 4D plots, the colour and diameter of bubbles are representatives for values of the 

objective functions; which are explained in the plot legend. Colours range from dark 

blue to red; lowest to highest value of objective function respectively. And diameter of 

bubbles ranges from small to large, lowest to highest value of objective function respec-

tively.  

 

 
Figure 5.12 Feasible real solution space w.r.t. costs and CO2 emission for MOGA-II 
optimiser 

Bubble size represents 
CO2 emission;  
Colour represents costs 

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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a. Bubble size represents cost, colour represents CO2 emission 

 

Figure 5.13  Feasible real solution space w.r.t. Costs and CO2 emission for MOPSO 
optimiser 

 

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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Figure 5.14 Feasible real solution space w.r.t. costs and CO2 emission for NSGA-II 
optimiser 
 
 

5.7.1.1. Performance study on optimisers in Phase-I  
The performance of the optimisers regarding their convergence is investigated through 

convergence plots. Figure 5.15, 5.16 and 5.17 present the convergence plots for 

MOGA-II, MOPSO and NSGA-II respectively with regard to the objective functions.  

 

 

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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a. Convergence w.r.t CO2 emission         b.  Convergence w.r.t costs 

Figure 5.15  Convergence of MOGA-II w.r.t objective functions 

 

 
a.  Convergence w.r.t CO2 emission                b.  Convergence w.r.t costs 

 
Figure 5.16 Convergence of MOPSO w.r.t objective functions 
 

 

  
a. Convergence w.r.t CO2 emission  b.  Convergence w.r.t costs 

Figure 5.17  Convergence of NSGA-II w.r.t objective functions 

It can be seen from these that all optimisers are converging in a steady manner, with 

MOGA-II and MOPSO are converging in 250 generations and NSGA-II in 50 

generations.  
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5.7.1.2. ANOVA for Phase-I 
One-way ANOVA is performed for both the total CO2 emissions and total costs of 

transportation to compare the means of multiple groups for the optimised data. Table 

5.11 depicts the ANOVA statistics used to test the null-hypothesis (Walpole et al. 

2006). Tables 5.12 and 5.13 present the ANOVA results for all three optimisers with 

respect to CO2 emissions and costs respectively: 

Table 5.12  ANOVA for CO2 emission on the all results 
 

Optimiser 
Source of  
Variation 

SS Df MS F-ratio p-value 

 
MOGA-II 

Between groups 6.1885E11 1.9900E2 3.1098E9 1.6694E1 0.035 
Within groups 4.2846E11 2.3000E3 1.8629E8 –– –– 
Total 1.0473E12 2.4990E3    

 
NSGA-II 

Between groups 1.0984E10 5.4000E1 2.0341E8 1.2356E1 0.088 
Within groups 4.0249E10 2.4450E3 1.6462E7 –– –– 
Total 5.1233E10 2.4990E3    

 
MOPSO 

Between groups 7.7922E10 2.5400E2 3.0678E8 1.4877E2 0.095 
Within groups 2.5250E10 1.2245E4 2.0621E6 –– –– 
Total 1.0317E11 1.2499E4    

 
Table 5.13  ANOVA for costs on the all results 

 
Optimiser 

Source of  
Variation 

SS Df MS F-ratio p-value 

 
MOGA-II 

Between groups 6.5794E10 1.9900E2 3.3062E8 7.2896E1 0.058 
Within groups 1.0432E10 2.3000E3 4.5355E6 –– –– 
Total 7.6226E10 2.4990E3    

 
NSGA-II 

Between groups 1.0875E10 5.4000E1 2.0139E8 4.6771E0 0.158 
Within groups 1.0528E11 2.4450E3 4.3059E7 –– –– 
Total 1.1615E11 2.4990E3    

 
MOPSO 

Between groups 1.8805E12 2.5400E2 7.4035E9 3.8102E1 0.029 
Within groups 2.3793E12 1.2245E4 1.9431E8 –– –– 
Total 4.2598E12 1.2499E4    

 

The most important assumption requested by ANOVA is that the standard deviations 

within each group are the same. It is found that Hartley and Bartlett's tests are both true. 

These two statistical tests verify that the standard deviations within each groups is the 

same, therefore the most important assumption requested by ANOVA is valid. It is not-

ed that as the F-ratio increases, the p-value decreases.  

5.7.1.3. Selection of Phase-I results  
Within the feasible solution space, un-realistic and identical results are eliminated in 

order to find the refined realistic results. Statistical summary on refined realistic results 

with respect to all three optimisers is presented in Table 4.11. A set of 20 results from 

the refined realistic results are selected for further analysis. The selection process is the 

same process illustrated for the two-layer MO-LRP in Chapter Three. The first three 

shades of blue in Figures 5.12, 5.13 and 5.14 represent the lowest three sets of values 
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for the objective functions. Therefore the selcted results, with respect to the objcetive 

function values, are selected from these three sets of results. A low value for one 

objective fucntion may not necessarily yield a low value for the other objective function 

and vice versa. The selected results are shown within the feasible solution spcae in 

Figures 5.18, 5.19 and 4.20 for MOGA-II, MOSPO, and NSGA-II respectively. The 

values for objective functions offered by optimisers are preseneted with reference to the 

Design ID of results. In the selection of the three-layer MO-LRP results, DMs’ priorities 

are considered. Therefore in each set of the selected results at least one result represent 

extreme decision-making events. 

 

 
Figure 5.18  History of solution space w.r.t. CO2 emission and costs for MOGA-II 
optimiser 

 

History plot on CO2 
emission w.r.t. IDs 

 

History plot on costs 
w.r.t. IDs 
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Figure 5.19  History of solution space w.r.t. CO2 emission and costs for MOPSO 
optimiser 

 

 

History plot on CO2 
emission w.r.t. IDs 

 

History plot on costs 
w.r.t. IDs 
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Figure 5.20  History of solution space w.r.t. CO2 emission and costs; NSGA-II 
optimiser 

 

Selected results are ranked in order to prioritise the optimised results. The ranking 

process is explained in the following section.  

5.7.1.4. Ranking selected results from Phase-I 
After selecting sets of 20 results from MOGA-II, MOPSO and NSGA-II, these selected 

results are ranked using TOPSIS in order to prioritise the best results for differenet 

types of DMs. Nine weight matrices are defined for TOPSIS. Each one of these weight 

matrices represents a type of DM and by selecting all nine weight matrices from Saaty’s 

nine-point scale (1977; 1978) all DMs are covered. The first three ranked results by 

TOPSIS using the weight matrix 5w for the optimisers are presented in Table 5.14: 

History plot on CO2 
emission w.r.t. IDs 

 

History plot on costs 
w.r.t. IDs 
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Table 5.14  First three ranked results w.r.t optimisers offered weight matrices 5w  
 Rank CO2 

emission 
cost 

 
MOGA-II 

1 26,689 2,487,644 
2 27,358 2,509,288 
3 29,354 2,507,950 

 
MOPSO 

1 25,687 2,487,052 
2 26,689 2,487,644 
3 27,835 2,488,202 

 
NSGA-II 

1 21699 2480736 
2 21755 2480034 
3 22150 2480116 

 

As shown in Table 5.14, the best result with regard to objective function values is 

offered by NSGA-II. In comparison, MOPSO is in the second best and MOGA-II the 

third optimiser.  

5.7.1.5. Pareto efficiency for Phase-I 
In order to evaluate the performance of the optimisers, Pareto efficiency is examined. 

The 20 selected results obtained from MOGA-II, MOPSO and NSGA-II optimisers are 

separately examined with regard to their Pareto efficiency and the results are presented 

in Figures 5.21, 5.22, and 5.23: 

 
Figure 5.21 Pareto Frontier for selected results w.r.t. MOGA-II 
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Figure 5.22  Pareto Frontier for selected results w.r.t. MOPSO 

 

 
Figure 5.23  Pareto Frontier for selected results w.r.t. NSGA-II 
 

 
As is evident from Figures 5.21, 5.21, and 5.23 the selected results from MOGA-II and 

NSGA-II optimisers follow the Pareto optimality and are strongly efficient. MOSPO 

shows a reasonably strong Pareto efficiency on the selected results.  In the selection 

process of results, extreme decision-making events are considered as well. Therefore a 

small number of results representing these events exist in each selected results table. 

These results do not affect the Pareto efficiency of the selected results as they do not 

represent the most common decision-making events. None of the results placed outside 

the Pareto Frontier are ranked by TOPSIS as the first three ranked results.  
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5.7.2. Phase-II 

The first three ranked results obtained in Phase-I using weight matrix 5w (presented in 

Table 5.14) is the basis for implementing Phase-II of the three-layer MO-LRP. The 

same three optimisers MOGA-II, MOPSO, and NSGA-II used in Phase-I are used to 

implement the model in Phase-II. In order to analyse the results obtained from Phase-II: 

(i) results are refined and a set of realistic results are identified, (ii) a performance study 

is conducted on each optimiser, (iii) Analysis of Variance (ANOVA) test is performed 

to compare means of multiple groups for the optimised data, (iv) a set of results are 

selected for further analysis, (v) selected results are ranked using TOPSIS, and finally 

(vi) Pareto efficiency is examined on the selected designs. The process of analysing 

results obtained from Phase-II is illustrated as followed. 

5.7.2.1.  Analysis and refinement of Phase-II results in feasible real solution  
space  

All results from the MOGA-II, NSGA-II and MOPSO optimisers in Phase-II are 

feasible and real. A statistical summary of these results is illustrated in Table 5.15. 

These results assist in analysing: a) the total result designs table consisting of all 

feasible real results obtained from the optimisers, b) the refined realistic results table 

consisting of realistic and non-identical results, and c) the selected results table 

consisting of selected results from the three lowest sets of feasible results from 4D-

Bubble plots presented in Figures 4.24, 4.25 and 4.26. 

Table 5.15  Statistical summary on results obtained in Phase-II w.r.t. optimisers  
 

Type of results on optimisers 
Number of 
real feasi-
ble results 
(Alternatives) 

CO2 Emission 
Value 

kg 
(Objective Function I) 

Costs  
Value 

€ 
(Objective Function II) 

Min Max Min Max 

M
O

G
A

-I
I Total results table 12,500 988 3,622 701 2,515 

Refined realistic results table 399 988 1,778 701 1,245 
Selected results table  
 

20 988 1,514 701 1,031 

 

M
O

PS
O

 Total results table 12,500 1,423 4,057 690 2,504 
Refined realistic results table 422 1,423 2,213 690 1,234 
Selected results table  
 

20 1,423 1,980 690 1,001 

 

N
SG

A
-

II
 

Total results table 2,500 1,950 4,590 1,224 3,046 
Refined realistic results table 300 1,950 3,225 1,224 2,010 
Selected results table  
 

20 1,950 2,671 1,224 1,723 

 

As presented in Table 5.15, the minimum value for both CO2 emissions and costs is 

obtained by NSGA-II in 50 generations. This does not necessarily yield a minimum 
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value for the total costs. MOGA-II and NSGA-II are GA-bases optimisers and 

MOSPSO is a PS-based optimiser. 

MOGA-II, NSGA-II and MOPSO generate real feasible solutions spaces in Phase-II. 

Figures 5.24, 5.25, and 5.26 depict the feasible real solution space for the optimisers in 

Phase-II. In these 4D plots, colour and diameter of bubbles are used to showcase the 

values of both objective functions; explained in the plot legend. Colours range from 

dark blue to red, lowest to highest value of the objective function respectively and the 

diameter of bubbles ranges from small to large, lowest to highest value of the objective 

function respectively.    

                                                                 

 

 
Figure 5.24  Feasible real solution space w.r.t. costs and CO2 emission for MOGA-II 
optimiser 

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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Figure 5.25  Feasible real solution space w.r.t. costs and CO2 emission for MOPSO 
optimiser 
 

Bubble size represents 
costs;  
Colour represents CO2 
emission 
 

Bubble size represents 
CO2 emission;  
Colour represents costs  
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Figure 5.26  Feasible real solution space w.r.t. costs and CO2 emission for NSGA-II 
optimiser 
 

5.7.2.2. Performance study on optimisers in Phase-II 
The performance of the optimisers regarding their convergence is studied comparatively 

through plots presented in Figure 5.27, 5.28 and 5.29 presents the convergence plots for 

MOGA-II, MOPSO and NSGA-II, with respect to the objective functions: 

Bubble size represents 
CO2 emission;  
Colour represents costs  

Bubble size represents 
costs;  
Colour represents CO2 
emission 
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a. Convergence w.r.t CO2 Emission         b.  Convergence w.r.t Costs 

 
Figure 5.27  Convergence of MOGA-II w.r.t objective functions 

 
a. Convergence w.r.t CO2 Emission                  b.  Convergence w.r.t Costs    

  
Figure 5.28  Convergence of MOPSO w.r.t objective functions 

 
 
 

 
a. Convergence w.r.t CO2 Emission      b.  Convergence w.r.t Costs     

 
Figure 5.29  Convergence of MOPSO w.r.t objective functions 

As is evident from plot ‘a’ and plot ‘b' of Figure 5.27, 5.28 and 5.29, all optimisers are 

converging in a steady manner. MOGA-II and MOPSO are converging in 250 

generations and NSGA-II in 50 generations.   

5.7.2.3.  ANOVA for Phase-II 
In order to compare the means of multiple groups of the optimised data, the results of 

one-way ANOVA with respect to objective functions are presented in Tables 5.16 and 

5.17: 
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Table 5.16  ANOVA for CO2 emission on the all results 
 

Optimiser 
Source of  
Variation 

SS Df MS F-ratio p-value 

 
MOGA-II 

Between groups 4.0428E8 1.9800E2 2.0418E6 1.1066E2 0.0000E0 
Within groups 4.2456E7 2.3010E3 1.8451E –– –– 
Total 4.4673E8 2.4990E3    

 
NSGA-II 

Between groups 7.5800E7 5.0000E0 1.5160E7 1.1056E3 0.0227 
Within groups 3.4197E7 2.4940E3 1.3712E4 –– –– 
Total 1.1000E8 2.4990E3    

 
MOPSO 

Between groups 1.1126E8 5.4000E1 2.0603E6 6.0362E1 0.0199 
Within groups 8.5162E7 2.4950E3 3.4133E4 –– –– 
Total 1.9642E8 2.5490E3    

 
 
Table 5.17  ANOVA for costs on the all results 

 
Optimiser 

Source of  
Variation 

SS Df MS F-ratio p-value 

 
MOGA-II 

Between groups 1.9883E8 1.9800E2 1.0042E6 1.1161E2 0.0000E0 
Within groups 2.0702E7 2.3010E3 8.9969E3 –– –– 
Total 2.1953E8 2.4990E3    

 
NSGA-II 

Between groups 1.5379E8 5.0000E0 3.0758E7 1.0925E3 0.0923 
Within groups 7.0213E7 2.4940E3 2.8153E4 –– –– 
Total 2.2400E8 2.4990E3    

 
MOPSO 

Between groups 5.5239E7 5.4000E1 1.0229E6 6.0178E1 0.09871 
Within groups 4.2411E7 2.4950E3 1.6999E4 –– –– 
Total 9.7650E7 2.5490E3    

 

The most important assumption requested by ANOVA is that the standard deviations 

within each group are the same. In this case it can be seen that both Hartley and Bart-

lett's tests are true. These two statistical tests verify that the standard deviations within 

each of the groups is the same, therefore the most important assumption requested by 

ANOVA is valid. It is also noted that as the F-ratio increases, the p-value decreases. 

The p-values of the ANOVA table for CO2 emission and costs (Tables 5.16 and 5.17) in 

MOGA-II optimiser are zero. This suggests that there are significant differences be-

tween the groups. At least one sample mean is significantly different from the other 

sample means.  

5.7.2.4. Selection of results in Phase-II 
After eliminating the un-realistic and identical results from the feasible solutions space, 

the refined realistic results are considered for further analysis. The same process of 

analysis conducted to select results in Phase-I is adapted in here. Fiures 5.30, 5.31, and 

5.32 exhibit the bubble plots on selected results for MOGA-II, MOSPO, and NSGA-II 

respectively.  
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Figure 5.30  Bubble Plot for CO2 emission and costs of selected results w.r.t. MOGA-
II optimiser 
 

 
Figure 5.31  Bubble Plot for CO2 emission and costs of selected results w.r.t. MOPSO 
optimiser 
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Figure 5.32  Bubble Plot; CO2 emission and costs of selected results w.r.t. NSGA-II 
optimiser 
 

5.7.2.5. Ranking selected results from Phase-II 
Similar to the process of ranking rsults in Phase-I, seelcted resuts from Phase-II are 

ranked. The first three ranked results by TOPSIS using weight matrix 5w for all three 

optimisers are presented in Table 5.18: 

Table 5.18 First three ranked results w.r.t optimisers using weight matrix 5w  
  

Rank 
 

<ID> 
 

Open Routes 
CO2 

Emission 
 

Cost 
 
MOGA-II 

1 12498 O608, O1613, O1714, O1415 988 701 
2 8959 O608, O1613, 01714, O1315 1,036 722 
3 11637 O408, 01613, 01714, 01415 1,058 755 

 
 
MOPSO 

1 11647 O0608, O0416, O1018, O1817, O1314, O1415 1,423 1,000 
2 11872 O0608, O1018, O1817, O1514, O1315 1,445 690 
3 6162 O0408, O0616, O1018, O1817, O1314, O1415 1,452 919 

 
 
 
NSGA-II 

1 2415 O0103, O0408, O1718, O0719, O0920 1,950 1,423 
2 2199 O0301, O0102, O0605, O0608, O1011, O1413, O1416, 

O2022 2,445 1,224 
3 2364 O0506, O01, O1110, O0816, O1817, O0920, O1914 2,241 1,536 

 

Similar optimisers are used to implement the modified models in Phase-II; yet the 

results shown in Table 5.18 are not comparable. Each model in Phase-II is based on a 

specific result obtained from Phase-I.  
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5.7.2.6. Pareto Efficiency in Phase-II 
The 20 selected results obtained from MOGA-II, MOPSO, and NSGA-II optimisers are 

separately examined with regard to their Pareto efficiency. Pareto Frontiers are 

presented in Figures 5.33, 5.34, and 5.35: 

 

Figure 5.33  Pareto Frontier on of selected results w.r.t. MOGA-II 
 

 
Figure 5.34  Pareto Frontier on selected result w.r.t. MOPSO 
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Figure 5.35  Pareto Frontier on selected results w.r.t. NSGA-II  
 

As evident from Figures 5.33, 5.34, and 5.35 selected results from MOGA-II and 

NSGA-II optimisers follow the Pareto optimality and are strongly efficient. In MOPSO 

three results are not very strongly Pareto efficient. These results represent extreme 

decision-making events; therefore they don’t affect the efficiency of the results in 

MOPSO.   

 

5.8. Interpretation of Results  

The final outcome of the three-layer MO-LRP is a combination of the outcomes of 

Phase-I and Phase-II. These results concern facility and vehicle-routing decisions on the 

demand side of the three-layer case of the dairy SC in east of Ireland. These final results 

are analysed and presented in this section.  

5.8.1. Final results of the three-layer MO-LRP 

The three-layer MO-LRP results offer optimal facility location and vehicle-routing 

decision. With regard to facility location decisions, optimum open and closed DCs are 

offered in each result. With respect to vehicle-routing decisios: (i) optimum routes 

connecting plants to DCs, DCs to retailers and connection in between retailers, (i) type 

of vehicle and (iii) the number of HGVs required for transporting products in each route 

are offered. Table 5.19 depicts the ‘facility location’, ‘type of truck’ and the ‘routing 

pattern’ for the three-layer MO-LRP, obtained with respect to optimisers.  
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Table 5.19 Final result of the three-layer MO-LRP 
 Phase One Phase TWO Final  

CO2 
Emission 

 
Final 
Costs 

 Open Routes Transporta-
tion Option 

Open Routes Transporta-
tion Option 

M
O

G
A

-I
I 

Processing Plant I routed to:  
DC 2, 3 

Processing Plant II routed to:  
DC 1, 4, 5, 6 

Open DCs: 3, 5 
DC 3 serving Retailers: 

2,3,4,5,6,7,11,13,18,21 
DC 5 serving Retailers: 

1,9,10, 12, 16,17,19,20,22 

 
 
 

T2 

 
 
Retailer 6 to retailer 8 
Retailer 16 to retailer 13 
Retailer 17 to retailer 14 
Retailer 14 to retailer 15 
 

 
 
 

T2 

27,677  2,488,345 

M
O

PS
O

 

Processing Plant I routed to:  
DC 2, 3  

Processing Plant II routed to:  
DC 1, 4, 5, 6 

Open DCs: 3 & 5  
DC 3  serving Retailers: 

1, 3, 4, 5, 6, 7, 19, 21, 22 
DC 5 serving Retailers: 

2, 9, 10, 11, 12, 13, 20 

 
 
 

T3 

 
Retailer 6 to retailer 8 
Retailer 4 to retailer 16 
Retailer 10 to retailer 18 
Retailer 18 to retailer 17 
Retailer 13 to retailer 14 
Retailer 14 to retailer 15 
 

 
 
 

T3 

27,110 2,488,052 

N
SG

A
-I

I 

Processing Plant I routed to:  
DC 1, 2, 3 

Processing Plant II routed to:  
DC 4, 5, 6 

Open DCs: 2 & 5 
DC 2 serving Retailers: 
1, 2, 5, 7, 10, 13, 15, 16, 21, 22 
DC 5 serving Retailers: 
4, 6, 9, 11, 12, 14, 17 

 
 
 
 

T2 

 
 
Retailer 1 to retailer 3 
Retailer 4 to retailer 8 
Retailer 17 to retailer 18 
Retailer 7 to retailer 19 
Retailer 9 to retailer 20 
 

 
 
 
 

T3 

24,144 2,481,960 
 

As evident from Table 5.19, NSGA-II offers the best results for the three-layer MO-

LRP in two inter-linked phases. NSGA-II converges and offers the best results in 50 

generations while MOGA-II and MOPSO converge in 25o generations.  

With regard to vehicle-routing decisions, the quantity transported in each open route 

and numbers of HGVs required for transporting the defined load of product are present-

ed in Tables 5.20, 5.21 and 5.22 with respect to MOGA-II, MOPSO and NAGA-II first 

ranked results.  

Table 5.20          Quantities and the number of vehicles in each open route for MOGA-
II final result 

 Open  
Rotes 

Quantity Shipped Number of 
Vehicles 

Pl
an

ts
 to

 
D

C
s Pl

an
t 

I 

DC 2 800,000 67 
DC 3 1,000,000 67 
DC 4 1,000,000 67 

Pl
an

t 
II

 DC 1 1,000,000 54 
DC 5 700,000 47 
DC 6 1,000,000 67 

D
C

s 
to

 R
et

ai
le

rs
 

D
C

 3
 

Retailer 2 25,000 2 

Retailer 3 19,000 2 

Retailer 4 9,000 1 

Retailer 5 14,000 1 

Retailer 6 14,500+9,000 2 
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Retailer 7 10,000 1 

Retailer 11 7,000 1 

Retailer 18 7,000 1 

Retailer 21 182,000 13 

D
C

 5
 

Retailer 1 25,000 2 

Retailer 9 21,000 2 

Retailer 10 9,000 1 

Retailer 12 11,000 1 

Retailer 16 16,000+12,000 2 

Retailer 17 13,000+35,000+7,000 4 

Retailer 19 350,000 24 

Retailer 20 138,000 10 

Retailer 22 177,000 12 

R
et

ai
le

rs
 

C
on

ne
c-

tio
ns

 Retailer 6 to Retailer 8 

Retailer 16 to retailer 13 

Retailer 17 to Retailer 14 to Retailer 15 

 
Total CO2 Emission 26,689+988=27,677 
Total Costs 2,487,644+701=2,488,345 

 
 
Table 5.21           Quantities and the number of vehicles in each open route for MOPSO 
final result 

 Open  
Rotes 

Quantity Shipped Number of 
Vehicles 

Pl
an

ts
 to

 
D

C
s 

Plant 
I 

DC 2 1,000,000 67 
DC 3 1,000,000 67 

 
Plant 

II 

DC 1 800,000 54 
DC 4 1,000,000 67 
DC 5 700,000 47 
DC 6 1,000,000 67 

D
C

s t
o 

R
et

ai
le

rs
 

D
C

 3
 

Retailer 1 25,000 2 

Retailer 3 19,000 2 

Retailer 4 9,000+16,000 3 

Retailer 5 14,000 1 

Retailer 6 14,500+9,000 2 

Retailer 7 10,000 1 

Retailer 19 350,000 24 

Retailer 21 182,000 13 

Retailer 22 177,000 12 

D
C

 5
 

Retailer 2 25,000 2 

Retailer 9 21,000 2 

Retailer 10 9,000+7,000+13,000 3 

Retailer 11 7,000 1 

Retailer 13 12,000+35,000+7,000 4 

Retailer 20 138,000 10 

R
et

ai
le

rs
’ 

C
on

ne
ct

io
ns

 Retailer 6 to retailer 8 
Retailer 4 to retailer 16 
Retailer 10 to retailer 18 
Retailer 18 to retailer 17 
Retailer 13 to retailer 14 
Retailer 14 to retailer 15 

Total CO2 Emission 25,687+1,423=27,110 
Total Costs 2,487,052+1,000=2,488,052 
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Table 5.22            Quantities and the number of vehicles in each open route for NSGA-
II final result 

 Open  
Rotes 

Quantity Shipped Number of 
Vehicles 

Pl
an

ts
 to

 
D

C
s Pl

an
t 

I 

DC 1 1,000,000 54 
DC 2 800,000 67 
DC 3 1,000,000 67 

Pl
an

t 
II

 DC 4 1,000,000 67 
DC 5 700,000 47 
DC 6 1,000,000 67 

D
C

s t
o 

R
et

ai
le

rs
 

D
C

 2
 

Retailer 1 25,000 + 19,000 3 

Retailer 2 25,000 2 

Retailer 5 14,000 1 

Retailer 7 10,000 + 350,000 24 

Retailer 10 9,000 1 

Retailer 13 12,000 1 

Retailer 15 7,000 1 

Retailer 16 16,000  

Retailer 21 182,000 13 

Retailer 22 177,000 12 

D
C

 5
 

Retailer 4 9,000 + 9,000 2 

Retailer 6 14,500 1 

Retailer 9 21,000 + 138,000 11 

Retailer 11 7,000 1 

Retailer 12 11,000 1 

Retailer 14 35,000 3 

Retailer 17 13,000 +7,000 2 
Retailer 1 to retailer 3 
Retailer 4 to Retailer 8 
Retailer 17 to retailer 18  
Retailer 7 to retailer 19 
Retailer 9 to retailer 20 

 
Total CO2 Emission 21,699 + 2,445 = 24,144 
Total Costs 2,480,736 + 1,224 = 2,481,960 

 

5.8.2.  Scenario Analysis on final results of the three-layer MO-LRP 

Disparate scenario analysis on the first ranked results obtained from the three optimisers 

is presented in Tables 5.23, 5.24 and 5.25: 

Table 5.23  Scenario analysis for the Final result of MOGA-II  

 All  
Routes 

CO2 Emission 
if route opens 

Costs  
if route opens 

Pr
oc

es
si

ng
 P

la
nt

s t
o 

D
C

s 

Pl
an

t I
 

DC 1 1,836 1,296 
DC 2 - - 
DC 3 - - 
DC 4 - - 
DC 5 2,585 1,927 
DC 6 4,422 3,216 

Pl
an

t I
I 

DC 1 - - 
DC 2 6,834 5,025 
DC 3 13,534 9,514 
DC 4 7,236 5,226 
DC 5 - - 
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DC 6 - - 

D
C

s t
o 

R
et

ai
le

rs
 

D
C

 3
 

Retailer 1 92 56 

Retailer 2 - - 

Retailer 3 - - 

Retailer 4 - - 

Retailer 5 - - 

Retailer 6 - - 

Retailer 7 - - 

Retailer 8 87 61 

Retailer 9 40 28 

Retailer 10  65 48 

Retailer 11 - - 

Retailer 12 28 21 

Retailer 13  164 115 

Retailer 14  435 291 

Retailer 15 163 105 

Retailer 16 226 142 

Retailer 17 121 72 

Retailer 18   - - 

Retailer 19 48 48 

Retailer 20 130 100 

Retailer 21 - - 

Retailer 22 228 168 

D
C

 5
 

Retailer 1 - - 

Retailer 2 216 152 

Retailer 3 140 98 

Retailer 4  108 79 

Retailer 5 44 26 

Retailer 6 56 37 

Retailer 7 34 24 

Retailer 8 96 68 

Retailer 9  - - 

Retailer 10 - - 

Retailer 11 40 33 

Retailer 12 - - 

Retailer 13 173 122 

Retailer 14 501 354 

Retailer 15 157 115 

Retailer 16  - - 

Retailer 17 - - 

Retailer 18 90 55 

Retailer 19 - - 

Retailer 20 - - 

Retailer 21 336 204 

Retailer 22 - - 
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Table 5.24  Scenario analysis for the Final result of MOPSO 

 All  
Routes 

CO2 Emission 
if route opens 

Costs  
if route opens 

Pr
oc

es
si

ng
 P

la
nt

s t
o 

D
C

s 

Pl
an

t I
 

DC 1 1,836 1,296 
DC 2 - - 
DC 3 - - 
DC 4 7,236 5,226 
DC 5 2,585 1,927 
DC 6 4,422 3,216 

Pl
an

t I
I 

DC 1 - - 
DC 2 6,834 5,025 
DC 3 13,534 9,514 
DC 4 - - 
DC 5 - - 
DC 6 - - 

D
C

s t
o 

R
et

ai
le

rs
 

D
C

 3
 

Retailer 1 - - 

Retailer 2 150 106 

Retailer 3 - - 

Retailer 4 - - 

Retailer 5 - - 

Retailer 6 - - 

Retailer 7 - - 

Retailer 8 87 61 

Retailer 9 40 28 

Retailer 10  65 48 

Retailer 11 48 58 

Retailer 12 28 21 

Retailer 13  164 115 

Retailer 14  435 291 

Retailer 15 163 105 

Retailer 16 226 142 

Retailer 17 121 72 

Retailer 18   109 80 

Retailer 19 - - 

Retailer 20 130 100 

Retailer 21 - - 

Retailer 22 - - 

D
C

 5
 

Retailer 1 136 96 

Retailer 2 - - 

Retailer 3 140 98 

Retailer 4  108 79 

Retailer 5 44 26 

Retailer 6 56 37 

Retailer 7 34 24 

Retailer 8 96 68 

Retailer 9  - - 

Retailer 10 - - 

Retailer 11 - - 

Retailer 12 - - 

Retailer 13 - - 

Retailer 14 501 354 

Retailer 15 157 115 

Retailer 16  246 120 

Retailer 17 102 78 

Retailer 18 90 55 

Retailer 19 480 336 
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Retailer 20 - - 

Retailer 21 494 377 

Retailer 22 336 204 

 

Table 5.25            Scenario analysis for the Final result of MOGA-II  

 

All  
Routes 

CO2 Emission 
if route opens 

Costs  
if route opens 

Pr
oc

es
si

ng
 P

la
nt

s t
o 

D
C

s 

Pl
an

t I
 

DC 1 - - 
DC 2 - - 
DC 3 - - 
DC 4 7,236 5,226 
DC 5 2,585 1,927 
DC 6 4,422 3,216 

Pl
an

t I
I 

DC 1 108 108 
DC 2 6,834 5,025 
DC 3 13,534 9,514 
DC 4 - - 
DC 5 - - 
DC 6 - - 

D
C

s t
o 

R
et

ai
le

rs
 

D
C

 2
 

Retailer 1 - - 

Retailer 2 - - 

Retailer 3 48 40 

Retailer 4 72 44 

Retailer 5 - - 

Retailer 6 83 61 

Retailer 7 - - 

Retailer 8 132 93 

Retailer 9 136 96 

Retailer 10  - - 

Retailer 11 112 79 

Retailer 12 76 54 

Retailer 13  - - 

Retailer 14  606 429 

Retailer 15 - - 

Retailer 16 - - 

Retailer 17 182 128 

Retailer 18   137 125 

Retailer 19 1,104 672 

Retailer 20 580 410 

Retailer 21 - - 

Retailer 22 - - 

D
C

 5
 

Retailer 1 136 96 

Retailer 2 216 152 

Retailer 3 140 98 

Retailer 4 - - 

Retailer 5 44 26 

Retailer 6 - - 

Retailer 7 34 24 

Retailer 8 96 68 

Retailer 9  4 4 

Retailer 10 47 34 

Retailer 11 - - 

Retailer 12 - - 

Retailer 13 173 122 

Retailer 14 501 354 
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Retailer 15 157 115 

Retailer 16  246 120 

Retailer 17 - - 

Retailer 18 90 55 

Retailer 19 480 336 

Retailer 20 90 70 

Retailer 21 494 377 

Retailer 22 336 204 

 

Table 5.23, 5.24 and 5.25 are examples of the guidance available to DMs for locating 

the feasible and realistic optimal distribution routes, considering the trade-offs with 

respect to the objective functions, if a closed route is forcibly opened.  

The final results are presented schematically in the next section.  

 

5.8.3. Schematic presentation of final results of the three-layer MO-LRP; an  

example of an output  

In order to present the results in a more tangible way, a geographical presentation of one 

of the selected results are shown on the map of Ireland. Figure 3.36 presents a 

geographical presentation of MOGA-II final result from Table 5.19:  
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Figure 5.36  Geographical presentation of the final result obtained from MOGA-II 

 
            Plants                   Open DCs                        Closed DCs 

1, …, 22 Retailers 

            Routes conning plants to collection stations 

             Routes connecting DCs to retailers                 Connection routes among retailers 

 

Schematic presentation of the final results obtained from MOPSO and NSGA-II are 

showcased in Figure 5.37: 
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objective function. The reason for this is to bring into account the level of CO2 emission 

form all the vehicles required to transport the products from plants to DCs, from DCs to 

retailers and retailers to retailers.  

modeFRONTIER®, a multi-disciplinary optimisation commercial solver, is used as the 

execution platform for the three-layer MO-LRP. modeFRONTIER® has proven to be an 

efficient solver for implementing the NP-hard two-layer MO-LRP as discussed in 

Chapter Three. Therefore, the same solver is used as the implementation platform for 

solving the heavily constrained three-layer MO-LRP. Three GA-based and PS-based 

optimisers have performed efficiently in reaching to optimum result for the two-layer 

MO-LRP. The same set of optimisers is adopted for solving the three-layer MO-LRP.  

The three-layer MO-LRP has been validated using a case of an Irish dairy supply chain 

network based in the east of Ireland. The case SC network has 2 processing plants, 6 

DCs and 22 retailers. A questionnaire has been used to validate the structure of the 

assumed SC network and the data has been generated is based on a set of realistic 

assumptions. 

The three-layer MO-LRP is heavily constrained and impossible to solve in single phase. 

A two phased approach is suggested and implemented. Three-layer LRPs deal with two 

types of decision in the design of the SC network, viz. facility location decisions and 

vehicle routing decision. These two decisions are dealt with in two phases in order to 

reach to a final solution to the three-layer MO-LRP. Phase-I considers facility location 

decision regarding opening and closing DCs and vehicle routing decision regarding 

routing patterns for connecting plants to DCs and connecting open DCs to retailers. 

Phase-II is executed based on the results obtained from the Phase-I. Phase-II deals with 

vehicle routing decision by the way of finding the optimum routing patterns for 

connecting retailers.  

The DCs and the routes connecting them to the served retailers from the Phase-I are 

included in Phase-II. The objective function and constraint elements related to open 

DCs and routes connecting them to retailers from Phase-I are considered in Phase-II. 

This is the link for connecting the two phases in order to reach to a final optimal 

solution for the three-layer MO-LRP.  

The solution approach to the three-layer MO-LRP is DoE-guided. DoE generates the 

initial population for the optimisers in modeFRONTIER®. The optimisers have been set 
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as identical as possible in order to compare their performances in solving the three-layer 

MO-LRP. Experimentally a set of designs generated by DoE is proved to be efficient in 

offering the optimum set of results for the three-layer MO-LRP. The convergence of 

optimisers is examined with regard to the objective functions for each optimiser. One 

way ANOVA is performed for all results obtained from each optimiser for the objective 

functions.  The Hartley and Bartlett's statistics tests verify that the standard deviations 

within each groups is the same. Therefore the most important assumption requested by 

ANOVA is valid. 

Based on the statistical selection criteria a set of results are selected and consequently 

ranked by TOPSIS. Pareto efficiency of the selected results is studied. Selected results 

from all the three optimisers are proved to be strongly Pareto efficient.  

Synergistically the final results are obtained when both the phases are executed. The 

final results of the three-layer MO-LRP consist of (i) information on the open/close 

DCs, (ii) the vehicle routing patterns connecting the plants to DCs, (iii) the vehicle 

routing patterns connecting the open DCs to the retailers, (iv) the vehicle routing 

patterns connecting the retailers to retailers, and (v) the number of trucks required in 

each route to transport the products. By obtaining the above optimal setting, the 

physical distribution network on the demand side of the SC network can be structured 

with the main aim of minimising the total cost, minimising the total CO2 emission 

caused from transportation while satisfying the operational constraints.  

Scenario analysis is performed on the final results. This scenario analysis provides 

guidance to DMs when a closed route is forcibly opened. Various scenarios depict the 

amount of CO2 emitted and the total costs from a closed route if forced to be open. This 

provides a support to SC network resilience.  

The performance of the optimisers in Phase-I and Phase-II shows that NSGA-II is more 

efficient in solving the multi-objective NP-hard three-layer low-carbon MO-LRP under 

the modeFRONTIER® platform. 
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6.1. Introduction 

This research introduced green elements to both a two and a three layer location-routing 

model. In order to address this issue the research formulates two computationally NP-

hard AHP-integrated multi-objective location-routing models that minimise both the 

CO2 emission and associated costs. A commercial solver, modeFRONTIER®, has been 

deployed for implementation of the DoE-guided meta-heuristic-based solution 

approaches for both location-routing models. In order to illustrate the efficacy of the 

integrated model a case of an Irish dairy market supply chain has been solved using the 

DoE-guided meta-heuristics-based approaches. The results obtained from the solutions 

approaches are analysed (prioritised and ranked) using Pareto frontier and a multi-

attribute decision-making tool, TOPSIS. One of the best location-routing solutions 

selected by TOPSIS is geographically mapped for both the two and three-layer SC-

networks. The principal focus of this research is on the two and three-layer low-carbon 

0-1 mixed-integer AHP-integrated multi-objective location-routing models, its DoE-

guided meta-heuristic based solution approaches and further decision-making analysis 

of the realistic solution sets.  

The following sections delineate issues related to location-routing models, the solution 

approaches and analysis procedures. Section 6.2 revisits the research aims and 

objectives and then in the following sections the findings are discussed.  Section 6.3 

deals with modelling. The 6.3.1 sub-sections of this section discuss the introduction of 

the green elements to the two and three-layer MO-LRPs while sub-section 6.3.2 talks 

about the location-routing component in the two-layer MO-LRP. Section 6.4 deals with 

solution approach. The three sub-sections of this section discuss the optimiser 

performance in two-layer MO-LRP, two-phased three-layer MO-LRP and optimiser 

performance in the three-layer MO-LRP. Section 6.5 discusses the analysis procedure 

with two sub-sections dealing with TOPSIS and scenario analysis.  
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6.2. Re-Visiting Research Aims and Objectives  

The main aims were to include the eco-friendly concerns in location-routing decisions 

in the context of supply chain network design. This main has been pursued by 

improving Berger’s (1997) two-layer LRP and Perl’s (1983) three-layer LRP. The 

improvement is introducing low-carbon elements to these LRPs. The specific objectives 

explained in Chapter One are briefly as follows: 

- Developing low-carbon location-routing models (Modelling)  

- Finding an effective solution approach to implement the developed models 
(Solution Approach)  

- Offering targeted and tailored low-carbon low-cost scenarios to DM’s 
considering their priorities (Analysis Procedure)  

In the following sections the above objectives are discussed in more details.  

 

6.3. Modelling  

6.3.1. Introducing green elements to the two-layer and the three-layer MO-

LRPs 

One of the aims of this research was to improve Berger’s (1997) two-layer location-

routing model. The improvement is focused on inclusion of the green elements into the 

Berger’s (1997) two-layer model. The green elements have been introduced to the 

model through additions to the ‘objective function’ and a ‘constraint’. The green 

constraint is developed by integrating AHP within the multi-objective 0-1 mixed-integer 

programming framework. AHP is integrated to the parameters of the two objective 

functions of the MO-LRPs (Figure 6.1). The two decision-making attributes, viz., CO2 

emissions from transportation ( jip  and , ,
sj ji iiV L Op p p ) and costs of serving the routes ( jkc  

and , ,sj ji iic cc ), are the parameters that link AHP to the mixed-integer programming 

framework through the constraint of the optimisation model. The two MO-LRPs are re-

presented as follows:  
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Two-layer MO-LRP: 
 
minimise
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Three-Layer MO-LRP:  
 
min +                                        (5-1)

sj ji ii iisj V sj ji L ji O O ii
s S j J j J i I i I i I

u p V u p L u p O
∈ ∈ ∈ ∈ ∈ ∈

+∑ ∑ ∑ ∑ ∑ ∑

  

min

                                          (5-4)
sj ji ii ii

s s j j s s j j
s S j J s S j J

sj V sj ji L ji O O ii
s S j J j J i I i I i I

f X f Y v X v Y

u c V u c L u c O

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

   
+ + + +   

   

 
+ + 

 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑  

 
subject to:  

( )1                                                                                     5 1 0   . sj
s S j J

V a
∈ ∈

−=∑ ∑
( )1                                                                                      5 1 0   . ji

j J i I
L b

∈ ∈

−=∑ ∑
( )                                                                                            51 10.ii

i I i I
cO

∈ ∈

= −∑ ∑
( )                                                                             5 11ji ji ii ii k

j J i I
d L d O τ

∈ ∈

+ ≤ −∑ ∑
( )1                                                                                        5 1   2.  sj

s S j J
V a

∈ ∈

−≥∑ ∑
( )                                                                                              51 12.ji

j J i I
L b

∈ ∈

≥ −∑ ∑
( )                                                                                                1 5 12.ii

i I i I
cO

∈ ∈

−≥∑ ∑

         

156 
 



 
Chapter Six 
 

( )                                                                                      5 10 3.ji ji
j J i I

L L a
∈ ∈

− −=∑ ∑
( )                                                                                    5 10 3.ii ii

i I i I
O O b

∈ ∈

− −=∑ ∑
( )1                                                                                      5 1 4   . sj

s S j J
V a

∈ ∈

−≤∑ ∑
( )                                                                                             51 14.ji

j J i I
bL

∈ ∈

≤ −∑ ∑
( )                                                                                              51 14.ii

i I i I
cO

∈ ∈

≤ −∑ ∑
( )                                                                                  5 15.0sj i j

s S i I
Q rY a

∈ ∈

− = −∑ ∑
( )                                                                         0             5 15.ji i j

j J i I
Q rY b

∈ ∈

− −=∑ ∑
( )                                                                                           5 160 .sj j s

s S
Q ar X

∈

− −≤∑
( )                                                                                    0         5 16.ii i j

i I
Q brY

∈

− −≤∑
( )                                                                                 0 5 17ji ii j

j J i I
L O Y

∈ ∈

+ − ≤ −∑ ∑
( )( )       ,         ,   and  on ,                    5 1 8andm mn n m sj ji ii

m M n N
S w T B i j s V L O

∈ ∈

≤ ∀ −∑ ∑

 
{ } ( )                                                                                                              190 1 5jY ∈ −

{ } ( )                                                                                                   0 1  5 20sjV ∈ −

{ } ( )0 1                                                                                                     5 21jiL ∈ −

{ } ( )                                                                                                          50 1  2  2iiO −∈

{ } ( )                                                                                                            230 1 5nT ∈ −

{ } ( )                                                                                                              240 1 5sX ∈ −

( )                                                                                                        0    25 5sjQ −≥

( )                                                                                                    0    2 6   5jiQ −≥

( )                                                                                                        0     7 5 2iiQ −≥

 
The estimated CO2 emission and costs related data presented in Table 3.7 is shared by 

this constraint and the objective functions. Therefore, the MO-LRPs are AHP-integrated 

optimisation model. Figure 5.1 illustrates how AHP is integrated to the    0-1 

programming framework and links to the objective functions.  
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Figure 6.1  The integration of AHP to the objective functions parameters for the 
MO-LRPs 
 

The green AHP-integrated constraint is mathematically identical in both the MO-LRPs. 

This constraint is applicable to any multi-layer LRP in order to introduce green 

elements. It can also be further modified to consider any number of criteria.  

6.3.2. Location-routing components in the two-layer MO-LRP 

Min et al. (1998) discloses that the ‘hierarchical level’ of LRP may have either one or 

two levels. The two-layer model presented in this research uses single level of hierarchy 

with one facility. According to Min et al. (1998) the ‘facility layer’ can be of ‘primary’ 

or ‘secondary / intermediate’. The two-layer location-routing model uses the ‘primary’ 

facility layer. The two-layer low-carbon location-routing model obeys the 

characteristics of the variants of LRP models provided in Min et al. (1998), Nagy and 

Salhi (2007) and Laporte (1988). Therefore, the variant of the two-layer LRP proposed 

in this research contains both the “location” and “routing” elements. 

The two-layer LRP presented in this research is a ‘static LRP’ in nature (Albareda-

Sambola et al. 2005). The characteristics of static LRP differ from each other in the 

following ways (Albareda-Sambola et al. 2005): 

• the type of facilities to be located: primary if they are the origins and 

destinations of vehicle journeys, secondary when they can only be intermediate 

depots 

• the number of facilities to be located and whether they have capacities or not 

• the number of available vehicles and whether they have capacities or not. 
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The two-layer ‘static LRP’ model uses ‘primary’ facilities, i.e., they are the origins and 

destinations of vehicle journeys. Considering Min et al. (1998), Nagy and Salhi (2007) 

and Laporte (1988) and all the aspects of our capacitated multi-objective two-layer 

AHP-integrated model it is confirmed that the two-layer model contains the elements of 

a ‘standard location problem’. 

The ‘routing’ component of the two-layer MO-LRP can be seen from the results. Tables 

3-17 and 3-21 of Chapter Three show the routing patterns. These Tables show that the 

two-layer MO-LRP aids in routing trucks in combination with the ‘standard location 

problem’. Further, the second objective function of the model considers the ‘costs for 

vehicle-routing’. The ‘standard location problem’ and ‘routing of the vehicles’ are both 

addressed in this model. It is therefore concluded that this model is truly a location-

routing problem.  

6.3.3. Findings  

In terms of modelling, this research contributes to the LR literature by inclusion of eco-

friendly concerns in modelling two-layer and three-layer LRPs. The focus has been on 

two LR models:  

- Berger’s (1997) two-layer LR model: this model has been improved by inclusion 

of low-carbon elements in the model  

- Perl’s (1983) three-layer LR model: this model has been improved by inclusion 

of low-carbon elements  

Low-carbon elements have been included by developing: i) an objective function to 

minimise the carbon emission from transportation throughout the SC, and ii) an AHP-

integrated constraint to include the DM’s priorities. To the best of our knowledge, the 

AHP-integrated green constraint is the first of its kind in LR modelling. The developed 

models are generic Multi-Objective Location-Routing models.  
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6.4. Solution Approach  

6.4.1. Optimiser performance in two-layer MO-LRP 

In addition to the results presented earlier, two more optimisers have been used to 

implement the two-layer MO-LRP model in addition to MOGA-II, NSGA-II and 

MOPSO optimisers. These two optimisers are a GA-based (HYBRID) and a Simulated 

Annealing (SA)-based optimiser (MOSA).  

HYBIRD (in modeFRONTIER®) is an algorithm which combines the global 

exploration capabilities of genetic algorithms with the accurate local exploitation 

guaranteed by SQP implementations. It is ‘a combination of a steady-state genetic 

algorithm with a Sequential Quadratic Programming optimiser’ (Turco 2011). The 

MOSA algorithm, which is inspired by thermodynamics, is based on a Single and 

Multi-Objective Simulated Annealing optimiser in modeFRONTIER®. The results 

obtained from these two optimisers show that they are not efficient in obtaining optimal 

results for the two-layer MO-LRP. Figure 5.2 presents a comparative convergence study 

on GA-bases optimisers used for solving the two-layer MO-LRP.  

 

Figures 6.2  Comparative convergence on GA-based optimisers  

As can be seen from Figure 6.2, HYBRID is converging in a very unusual way and is 

still not showing the convergence of results after the 27th generation. The combination 

of GA and SQP in HYBRID doesn’t perform effectively in reaching an optimal result 

for the two-layer MO-LRP.  

MOSA is a Simulated Annealing based optimiser. The final state of the MOSA algo-

rithm, unlike the genetic algorithms, appears out of the ‘cloud’ during the cold phase of 

the evolution – the track from generation to generation during the hot phase isn’t really 

indicative of progressive convergence. Basically the very idea of a convergence plot in 
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MOSA is not appropriate, since it should not be converging during the hot phase - it 

should be exploring. It's only in the cold phase that it starts to really make use of con-

vergence, with the Pareto set emerging from the mist. Therefore, a convergence study 

on the results obtained from MOSA is not possible. Table 5.1 presents the results ob-

tained from MOSA in 50 generations for the two-layer MO-LRP.  

Table 6.1  Statistical summary of results obtained from MOSA 
 

Type of results 
Number of Real 

Feasible  
Results 

CO2 emission  
(Objective Function I) 

Costs (Objective 
Function II) 

Min Max Min Max 
Results table 2,550 1,347 2,228 187,969 300,560 
Realistic results table 50 1,486 2,187 187,969 299,879 
Selected results table 30 1,486 2,002 187,969 298,396 

 

In comparison with the other optimisers used to solve the two-layer MO-LRP, the re-

sults obtained from MOSA are not optimum. Tables 4.11 and 4.15 presented a summary 

of the results for the MOGA-II, NSGA-II and MOPSO optimisers in Phase-I and Phase-

II. Therefore, HYBRID and MOSA optimisers were deemed not suitable for solving the 

three-layer MO-LRP.  

A Comparative study on the performance of optimisers, reveals that NSGA-II works 

efficiently as compared with MOGA-II and MOPSO in obtaining the optimal results for 

the two-layer MO-LRP. This is because: (i) NSGA-II is converging in a more steady 

manner over 50 generations, (ii) the selected results obtained from NSGA-II are 

strongly Pareto efficient, (iii) the results obtained from NSGA-II are more optimum 

than the results obtained form MOGA-II and MOPSO with respect to the value of 

objective functions (Tables 4.11 and 4.15).  

6.4.2. Two phased three-layer MO-LRP 

In the literature multi-phases heuristics, algorithms and solution approaches are used to 

solve three-layer LRPs. These solution approaches typically divide the problem into its 

components, viz. facility location, allocation of consumers to facilities, and vehicle 

routing (Hassanzadeh et al. 2009). Perl (1983) and Wu et al. (2002) offer multi-phased 

heuristics. These algorithms solve the three-layer LRP in consecutively connected 

multi-phases. Perl (1983) solves the three-layer LRP using a three phased heuristic. The 

first phase finds the optimum routes. In the second phase, open facilities are determined 

with routes from phase one being connected to open facilities. The third phase improves 

the solution ‘by moving customers between facilities and re-solving the routing problem 
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with the set of open facilities fixed’ (Daskin et al. 2010). Wu et al. (2002) solves the 

three-layer LRP in two phases. The two phased algorithm proposed by Wu et al. (2002) 

is similar to the Perl (1983) algorithm. It combines the first two phases of Perl’s (1983) 

three phased approach. Perl’s (1983) algorithm and Wu et al.’s (2002) two phased 

algorithm connect the multi-phases of the solution approach by including the results of 

each phase in the next phase. The three-layer MO-LRP presented in Chapter Four 

considers the reported practices in order to implement the model in two inter-linked 

phases.  

The two phased solution approach introduced to solve the three-layer MO-LRP in 

chapter four is implemented in two inter-linked phases. Phase-I of the solution 

approach: (i) connects the open plants to DCs (allocation and vehicle-routing decision), 

(ii) finds the optimal open DCs (facility location decision), and (iii) allocates retailers to 

open DCs (allocation and vehicle-routing decision). Phase-II of the solution approach 

considers the connections among retailers. The solution approach in this phase allocates 

the un-served retailers to served retailers from Phase-I. Retailers do not supply products. 

Therefore, DCs serving the open retailers have to be included in Phase-II. The final 

result is obtained when both the phases are solved.  

6.4.3. Optimiser performance in three-layer MO-LRP 

The three-layer MO-LRP is a variant of the two-layer MO-LRP. The two MO-LRPs are 

both computationally NP-hard with a multi-objective nature. MOGA-II, NSGA-II and 

MOPSO optimisers that performed efficiently in solving the two-layer MO-LRP are 

used to execute the three-layer MO-LRP. The solution approach of the three-layer MO-

LRP is of two phases. If an optimiser is selected to implement Phase-I, the same opti-

miser is used to solve the Phase-II. MOGA-II and MOSPSO reach the optimum solution 

space in 250 generations while NSGA-II reaches the optimum solution in 50 generation. 

Table 6.2 presents the results obtained form NSGA-II in 250 generations. Figure 6.3 

presents the convergence plots for NSGA-II in 250 generations with regard to objective 

functions.  
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Table 6.2 Statistical summary on the performance of NSGA-II 

 
Type of results 

Number of 
real results 

 

CO2 emission  
(Objective function I) 

Costs  
(Objective function II) 

Min Max Min Max 
 
Phase-I 

Results  table 12,500 26,689 55,621 2,487,644 2,552,395 
Realistic results table 398 26,689 35,369 2,487,644 2,507,100 
Selected results table 40 26,689 34,239 2,487,644 2,501,009 

 
Phase-II 
 

Results  table 12,500 1,036 3,670 722 2,536 
Realistic results table 388 1,036 1,826 722 1,266 
Selected results table 40 1,036 1,625 722 1,252 

 

As compared with results obtained from MOGA-II and MOPSO (Tables 5.11 and 5.15), 

NSGA-II obtains a set of less optimum results. It is evident from Figure 6.3 that NSGA-

II repeats the last result it obtained before the 50th generation. The curve is asymptotic 

to the ‘generations’ axis. Therefore, it can be concluded that this optimiser is not 

converging properly over 250 generations.  

 

a. Convergence w.r.t CO2 emission         b.  Convergence w.r.t costs 
 
Figure 6.3  Convergence of NSGA-II w.r.t. objective functions 
 

In comparison with results obtained from NSGA-II in 50 generations (Tables 4.11 and 

4.14), the optimum results with regard to both objective functions is reached by NSGA-

II in 50 generations.  

A comparative study on MOGA-II, NSGA-II and MOPSO reveals that NSGA-II is 

performing efficiently among the three optimisers in solving the three-layer MO-LRP. 

Some conclusive observations are: (i) the number of realistic results obtained from 

MOGA-II is 3% and from MOSPO is 4% while from NSGA-II it is 7% of the total 

results, (ii) NSGA-II achieves the best optimal results within 50 generations, and (iii) 

NSGA-II is converging in a more steady manner (Figures 5.16, 5.16 and 5.17).  
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6.4.4. Findings  

One of the objectives of this research was to find a proper platform to execute the 

developed models. modeFRONTIER® has been recognised as the most suitable 

execution platform. The solution approach is DoE-guided. The DoE-guided solution 

approach is efficiently finding optimised solution spaces. Literature reveals that this 

form DoE-guided solution approach haven’t been used before to solve LRPs. 

Optimisers with different natures have been used and their performance have been 

compared and discussed in Chapter 4, 5 and 6).  

As explained in Chapter Two, three-layer LRPs are usually solved using multi-phase 

algorithms. This research has solved the three-layer MO-LRP using a two-phased 

approach.  This solution approach approved to be efficient in finding an optimised 

solution space for the three-layer MO-LRP.  

 

6.5. Analysis Procedure 

6.5.1. TOPSIS  

The analysis process (Figure 4.11) starts with analysing the total set of results obtained 

from each optimiser and ends with finding a set of selected ranked results using TOPSIS 

in each phase. TOPSIS with its specifications is more suitable for ranking results 

obtained from MO-LRPs compared to other MCDM techniques such as ELECTRE. 

Methodologically, TOPSIS and ELECTRE (ELimination Et Choix Traduisant la 

REalité or ELimination and Choice Expressing Reality) (Roy et al. 1968) are widely 

accepted tools for ranking purposes. ELECTRE is a family of MCDM methods and 

consists of two main phases. The first phase constructs one or several outranking 

relations while the second phase elaborates on the recommendations which are obtained 

from phase one. Originally ELECTRE was used to outrank some alternatives to the 

problem which are not acceptable. When the un-acceptable alternatives are eliminated, 

another MCDM method can be used for ranking and selecting the results (Roy et al. 

1968; Jose et al. 2005). ELECTRE later was applied to choosing, ranking and selecting 

alternatives as well. On the contrary, the concept behind TOPSIS is that the selected 

alternatives must have the shortest geometric distance from the positive ideal solution 

and the longest geometric distance from the negative ideal solution. It compares a set of 
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alternatives based on a set of criteria. The comparison process is conducted by 

identifying weights for each criterion, normalising the scores for each criterion and then 

calculating the geometric distance between each alternative and the ideal alternative 

which is the best score in each criterion (Hwang and Yoon 1981; Zavadaska et al. 

2006).  

The solution spaces of the two and three-layer MO-LRPs are defined by DOE-guided 

optimisers. The GA and PS-based optimisers start from an initial point within a solution 

space which is defined by DoE to ensure robustness. The optimisers converge from the 

initial point towards the best possible point(s) based on the objective(s) of the 

optimisation model. Sets of optimal solutions reached by the optimisers for the MO-

LRPs are all real and feasible and range from maximum values for both objective 

functions towards minimum values. The maximum and minimum results can be 

considered as negative ideal and positive ideal solutions while the objective functions 

work as criteria for selecting a solution from one generation to another. Furthermore, 

the obtained results are refined and selected considering the priorities of DMs. These set 

of selected results are then ranked. Considering these specifications of the solution 

approach and the process of analysing results, TOPSIS is more suitable to rank the real 

selected results.  

6.5.2. Scenario analysis   

Tables 3.17 and 3.21 present the effect of opening a closed route on total CO2 emission 

and total cost. One of the general shortcomings of LRPs is their static nature; in the case 

of such static models, re-solving is necessary if any changes are made to the models 

original settings. Inclusion of the scenario analysis on routing patterns enables the DMs 

to rapidly respond to critical situations (e.g. natural disasters, constructions on roads, 

etc.) with a good set of clear accurate alternatives for the short term. The availability of 

the alternative scenarios in critical situations is a cost-efficient green competitive 

advantage for SCs and DMs.  

6.5.3. Findings  

The developed MO-LPRs have been tested on a dairy supply chain in east of Ireland. 

The obtained results have been ranked using TOPSIS. Different types of DMs with 

regard to two main criteria (Cost and CO2 Emission) have been considered. This 

approach suggests tailored solutions form the feasible optimise solution space to DMs. 
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As a part of the analysis procedure, scenario analysis is performed. This analysis offers 

flexibility and a variety of scenarios to DMs and managers.   

 

6.6. Summary  

This chapter summarised and discussed the findings of the research by re-visiting the 

aims and objectives of the research. The main areas of discussion have been modelling, 

solution approach and analysis procedure. The next chapter of this dissertation will 

conclude the findings of the research and will highlight the contributions.  
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Conclusions 
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7.1. Introduction  

Sustainable development in supply chains has become one of the most important socio-

economic issues in recent years. SC network design decisions are considered to be one 

of the major concerns in supply chains with substantial implications for low-carbon 

issues. Besides the environmental concerns of SCs, there is a significant contribution 

from product distribution costs which is attributable to total SC costs. Location-routing 

decisions have a dual decision-making impact on SC networks by assisting in decision-

making for both facility location and vehicle-routing patterns.  

This research on low-carbon location-routing contributes to the literature in the area of 

SC network design. Two and three layers of a SC network are considered and two 

generic multi-objective low-carbon location-routing models are designed and 

developed. The generic models integrate AHP into the multi-objective 0-1 mixed-

integer programming framework. These models minimise the total CO2 emission and 

the total cost of location-routing throughout two and three-layer SC networks. The 

green MO-LRPs are a combined strategic and tactical decision-making procedure within 

the SC networks. 

The green models assist in optimising the total carbon emission stemming from the 

transportation and optimise the total cost involved the process. Two independent GA-

based and one PS-based optimisers are employed to solve the green capacitated 

optimisation models. DoE plays a pivotal role in achieving the optimal and realistic 

solution spaces. The performances of the two GA-based and one PS-based optimisers 

involved in implementing the computationally NP-hard green integrated models are 

compared based on the objective function values and convergence. The selected Pareto 

efficient realistic results are evaluated using TOPSIS thereby suggesting the best 

candidate-results. It is found that NSGA-II is the best optimiser as compared with the 

other optimisers. The optimal facility location, vehicle routing patterns, truck types and 

number of trucks in each route are offered. The low-cost and low-carbon routing 

patterns are identified and mapped geographically. Various scenarios are offered for 
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routing patterns to analyse the effect of opening the closed routes which may be 

required to open when disruption events strike a SC network. The proposed green 

models can be applied for any capacitated two-layer and three-layer SC network.  

 

7.2. Contributions 

The two-layer MO-LRP is an improvement to the model of Berger (1997) and the three-

layer MO-LRP in an improvement to Perl’s (1983) model. The three-layer MO-LRP is a 

variant of the two-layer MO-LRP as well. The improvement is focused on inclusion of 

eco-friendly consideration into the models. These two generic models have been 

implemented on the case of a two and three-layer dairy SC network in Ireland using the 

modeFRONTIER® commercial solver and a variety of GA-based and PS-based 

optimisers. The realistic Pareto efficient results are ranked using TOPSIS. Examples of 

results are geographically mapped.  

The main contributions of this research are as follows:  

 Designing a generic low-carbon two-layer MO-LRP applicable to various 

SC networks 

 Designing a generic low-carbon three-layer MO-LRP applicable to various 

SC networks 

 Integration of AHP with the 0-1 mixed-integer framework of the two MO-

LRPs 

 DoE-guided solution approach for the two and three-layer MO-LRPs 

 Introduction of a two phased solution method for the three-layer MO-LRP 

 Ranking selected results by using TOPSIS 

 Providing scenario analysis 

 Identification of low-carbon routing patterns and mapping them 

geographically 

The green elements of the models are twofold: a green objective function is defined in 

order to minimise the total CO2 emission from transporting the products throughout the 

SC network. An AHP-integrated green constraint introduces the DMs’ priorities to the 

models on their consensus opinions in regard to selection of the trucks. AHP-integrated 

constraint brings in the priorities of DMs with regard to the choice of the trucks. The 
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trucks are categorised based on two main attribute (criteria), viz. total cost and total CO2 

emission. 

DoE is responsible for generating the initial population table for the optimisers in 

modeFRONTIER®. Disparate optimisers are used for obtaining a real feasible solution 

space and sets of solutions. A two phased inter-connected DoE-guided solution method 

is implemented to execute the NP-hard three-layer MO-LRP. TOPSIS, a MCDM 

ranking technique, is implemented to rank the selected results.  

Scenario analysis is providing the MDs with alternatives in order to maintain the 

delivery of products to customers when there is a routing-related interruption in the SC 

network. 

Nowadays companies are increasingly interested in optimising their SC networks 

considering eco-friendly considerations. In Ireland, Glanbia plc (one of Ireland’s largest 

food supply chain companies and a global nutritional and dairy business groups) has 

invested in optimising its SC network and gained good results. In 2009 Glanbia invested 

in Paragon Software Systems, a multi depo routing and scheduling system. In 2010 the 

company announced that it has saved 16% in delivery costs within six months. 

According to the companies announcements in 2012, implementing the new system cut 

106,000 km from delivery routes, improved vehicle utilisation by 15% and reduced the 

annual number of routes by 10%. As a result an overall reduction in CO2 emissions of 

over 100 tonnes per year has veen achieved. In late 2010 LLamasoft announced that its 

SAP Guru Connector module within Supply Chain Guru® has achieved certified 

integration with SAP® applications. According to the SC director of Glanbia, the 

company has ‘completed a highly successful supply chain network design and cost to 

serve initiative using LLamasoft earlier this year’. In late 2012 head of operations in 

Glanbia said that supply chain sustainability is a priority for blue chip firms. This firm 

has a Carbon Trust Accreditation and operates under ISO 50001 Global Energy 

Management Standard. Many more examples of global supply chain companies 

interested in sustainable supply chain network design are available in public record.  
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7.3. Validation and the Limitation of the Models 

In this research, in order to test the validity of the developed models on the test case, 

main players of the dairy market in Ireland have been recognised. The information has 

been gathered about the structure of demand side of SCs in Ireland by using a 

questionnaire. The structure of the two-layer and three-layer SC cases have been then 

validated by: (a) interviewing a consultant to few dairy  companies in Ireland, (b) 

interviewing experts from two major dairy companies in Ireland, (c) using company 

profiles, technical reports from dairy companies, outcomes of researches on dairy SCs, 

and SC text books.  

The main limitation of this research is that the generic two-layer and three-layer low-

carbon MO-LRPs have been tested only on dairy supply chains in Ireland. This 

limitation is due to time limits and unavailability of real data from other companies and 

their specific supply chain structures. If these constraints allow, the developed models 

can be tested on various types of supply chains with different structures. Testing the 

models on more than one supply chain will result in the possibility of comparing and 

further analysis of the obtained results.  

 

7.4. General Recommendations 

The literature review reveals that green issues are generally well represented in recent 

times. However in the field of facility location and location-routing decisions have not 

been widely studied. Considering the importance of environmental issues and the 

contribution of facility and vehicle-routing decisions to the environment, green issues 

should be more focused on in this field.  

It is also noted from the literature that DM’s opinions are generally not involved in SC 

network design models and a ‘one size fits all’ approach is generally applied. Facility 

location and location-routing models would benefit in being more flexible by including 

DMs’ preferences. MCDM techniques such as proposed here allows this flexibility.  

Another area of advancement in this this study in solving LRPs, is the use of a DoE-

guided solution approach for NP-hard multi-objective LRPs. This approach worked 

successfully with the models developed in this study and can also be considered for 

similar models.  



 
Chapter Seven 
 

172 
 

In order to offer DMs alternatives when facing sudden changes in their vehicle-routing 

patterns, scenario analysis is suggested.  

 

7.5. Suggestions for Future Research 

The developed MO-LRP models have the possibility of being tested by integrating other 

MCDM techniques into the 0-1 mixed-integer programming framework in order to 

bring flexibility to the integrated models. The traversed distance throughout the SC 

network can be minimised by including a new objective function in the models. The 

implementation of the sustainable MO-LRPs does not consider the dynamicity of the 

problem. The capacitated models do not take into account the variability in the demand. 

Therefore, a future research direction may be towards appropriate integration of 

dynamic programming with the existing green integrated optimisation models. The 

routing patterns would be fortified if closely-located multiple retailers are served by a 

single vehicle. This emerges as a more realistic and complex scenario having a large 

number of objective functions, constraints and parameters. Minimisation of the CO2 

emission from the facilities can be another issue for future research. 

The DoE-guided solution approach has scope for further improvement. Adequate, 

preventative post-hoc control can be conducted to investigate the type-I error rate. This 

analysis will assist in finding patterns of the GA-based optimisers and relationships 

among the parameters. Further, the investigation on the performance of the designed 

green models can be extended using a multi-objective agent-based approach. In order to 

benchmark the MO-LRPs different types of SC networks should be considered. The 

effect of testing different sizes of SC networks on the proposed MO-LRPs would be 

another scope for future research.  

There is a possibility of using other MCDM methods for selecting and ranking results. 

The inclusion of the facility location decisions in the scenario analysis for both the MO-

LRPs is another scope for future research. Geographical simulation of the optimal and 

realistic vehicle routes on the map using software packages like Route LogiX is another 

scope for further research. Use of eco-friendly vehicles and fuels would contribute to 

the minimisation of the CO2 emission in the SC networks. 
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Table A.1  Logistics decisions (Source: Riopel et al. 2009) 
Decisions Previous decision(s) Additional information 
Strategic planning level 
1. Definition of customer 
service 

 
 
 

 

 Organizational mission and 
strategy  
 Customer expectation 
 Competitive environment 
 Financial resource availabil-

ity 
 Existing logistics system 

2. Customer service objectives 1.Definition of customer ser-
vice 

 

3. Degree of vertical Integra-
tion & Outsourcing  

2.Customer service objectives  Resource availability (capital, 
personnel, facilities, and 
equipment) 

Physical Facility (PF) network  
4. PF Network Strategy 2.Customer service objectives 

3.Degree of vertical Integration 
& Outsourcing 

 Existing suppliers 
 Existing customers 
 Potential suppliers 
 Potential customers & mar-

kets 
5. PF Network Design, includ-
ing: 
- Type of facility 
- Number of each type of 
facility 
- Size of facility 
- Facility location 
- Activities & services from 
each facility  
- Utilization of new or existing 
facilities 
- Links between facilities 

4.PF Network Strategy  Capability & availability of 
labour & support services  
 Availability of appropriate 

facilities & sites 
 Availability of transportation 
 Government incentives 
 Community attitudes 
 Standards & regulations 
 Utilities 
 taxes 

Communication and Information (C&I) network  
6. C & I network strategy 2.Customer service objectives 

3.Degree of vertical Integration 
& Outsourcing 
4.PF Network Strategy 

 existing C&I systems of the 
organization 
 existing suppliers 
 existing customers 
 potential suppliers 
 potential customers 

Inventory management  
7. C&I network design, in-
cluding: 
- Network architecture & 
capacities 
- Hardware selection 
- Software selection 
-vendor selection 
-Extent of information tech-
nology used  

5. PF Network Design 
6. C & I network strategy 

 Capability & availability of 
labour & support services  
 Availability of appropriate 

facilities & sites 
 Government incentives 
 Community attitudes 
 Standards & regulations 

Demand forecasting 
8.Forecasts of demand magni-
tude, timing and locations 

  Historical sales data 
 Environmental & economic 

data 
 Marketing strategies 

9.Inventory management 
strategy 

2. Customer service objectives 
7.C&I network design 

 Nature of products 
 Nature of demand 

10. Relative importance of 
inventory 

20. Suppliers  Item value 
 Historical sales data 

11. Control methods 10. relative importance of in-  Nature of products 
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ventory  Nature of demand 
12. Desired inventory level 
 
 
 

2. Customer service objectives 
8.Forecasts of demand magni-
tude, timing and locations 
20. Suppliers 

 Product equipment / person-
nel characteristics 
 Replenishment delay 

 
13. Safety stock 12. Desired inventory level  Item value 

 Replenishment delay 
Production  
14. Product routing   Product characteristics 

 Production equipment / Per-
sonnel characteristics 

 
15. Facility layout 2. Customer service objectives 

5. PF network design 
14. Product routing 

 Product equipment / person-
nel characteristics 

 
16. Master production sched-
ule 

5. PF network design 
12. Desired inventory level 

 Current inventory levels 
 

17. Production scheduling 14. Product routing 
15. Facilities layout 
16. Master production schedule  

 Product equipment / person-
nel characteristics 

 
Production and supply management  
18. Procurement type 2. Customer service objectives 

5. PF network design 
 Cost to make & cost to buy 
 Resource availability (capital, 

personnel, facilities, & 
equipment)  
 Availability of products 
 Nature & magnitude of risks 

19. Specifications of goods 
procured 

18. Procurement type  Product design specifications 
 Product equipment / person-

nel characteristics 
20. Suppliers 5. PF network design 

9. Inventory management strat-
egy 
19. Specifications of goods 
procured 

 Suppliers performance & 
capabilities 
 Procurement policies 
 Transportation options 

21. Order intervals & quanti-
ties 

16. Master production schedule 
20. Suppliers 

 Discount opportunities 

22. Quality control 20. Suppliers  Characteristics of products to 
procure 

Transportation 
23. Transportation modes 2. Customer service objectives 

5. PF network design 
16. Master production schedule 

 Transportation options 
 Standards & regulations 
 Product characteristics 

24. Types of carriers 17. Production scheduling 
23. Transportation modes  

 Historical sales data 
 Carrier options 
 Standards & regulations 
 Product characteristics  

25. Carriers 24. Types of carriers  Carriers’ performance & ca-
pabilities 

26. Degree of consolidation  
 

 5. PF network design 
21. Order intervals & quantities 
24. Types of carriers 

 Customer location  
 Product characteristics  

 
27. Transportation fleet mix 8.Forecasts of demand magni-

tude, timing and locations 
24. Types of carriers 
26. Degree of consolidation  

 Product characteristics  
 Transport fleet options 

28. Assignment of customers 
to vehicles 

27. Transportation fleet mix 
35. Packaging design 

 Customer location  
 Customer demands 
 Product characteristics 
 Access to receiving/shipping 



 
Appendix A 
 

Aiii 
 

docks 
29. Vehicle routing & sched-
uling  

5. PF network design 
28. Assignment of customers to 
vehicles 

 Customer location  
 Customer demands 
 Time windows 

30. Vehicle load plans  29. Vehicle routing & schedul-
ing 

 

Product Packaging  
31. Level of protection needed 12. Desired inventor level 

23. Transportation modes 
37. Types of material handling 
equipment  

 Product value 
 Environmental conditions 
 Standards & regulations  
 Product characteristics 
 Duration of storage 

32. Information to be provided 
with product  

  Product characteristics 
 Customer needs 
 Standards & regulations 

33. Information media 32. Information to be provided 
with product 

 Options of communicating 
information 

 
34. Types of packaging  31. Level of protection needed 

32. Information to be provided 
with product 

 Product characteristics 
 Packaging material options 
 Reusing/recycling options 

35. Packaging design 34. Types of packaging  Product characteristics 
 Customer needs 

Material handling  
36. Unit loads 9. Inventory management strat-

egy 
17. Production scheduling 
21. Order intervals & quantities 
35. Packaging design 

 Characteristics of objects to 
handle 
 Customer needs 
 Production equip-

ment/personnel characteris-
tics  

37. Types of material handling  15. Facility layout 
36. Unit loads 
41. Warehouse layout 
47. Order picking procedure 

 Material handling options 

38. Material handling fleet 
mix 

37. Types of material handling 
equipment 

 Production equip-
ment/personnel characteris-
tics 
 Material handling equipment 

performance & capabilities 
39. Material handling fleet 
control 

9. Inventory management strat-
egy 
17. Production scheduling 
38. Material handling fleet mix 
47. Order picking Procedure 

 

Warehousing 
40. Warehousing mission & 
function 

2. Customer service objectives  Product characteristics 
 Nature of demand 

41. Warehouse layout 9. Inventory management  
strategy 
12. Desired inventory level 
35. Packaging design 
37. Types of material handling 
equipment 
40. Warehousing mission & 
functions 

 Safety of employees  

42. Stock location 2. Customer service objectives 
10. Relative importance of 
inventory 
41. Warehouse layout 

 Product characteristics 
 

43. Receiving/shipping dock 23. Transportation modes  Characteristics of received & 
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design 35. Packaging design 
36. Unit modes 
38. Material handling fleet mix 
40. Warehousing mission & 
functions 

shipped goods 
 Amount of product to handle 

at dock 
 Safety of employees 

 
44. Safety systems 40. Warehousing mission & 

functions 
41. Warehouse layout 
43. Receiving/shipping dock 
design 

 Product characteristics 
 

Order Processing 
45. Order entry procedure 6. C&I network strategy 

7. C&I network design 
 Customer demands 
 Range of products 
 Capability & availability of 

labour & support services 
46. Order transmission means 45. Order entry procedure  
47. Order picking procedures 6. C&I network strategy 

35. Packaging design 
36. Unit modes 
38. Material handling fleet mix 
42. Stock location 

 Customer demands 
 

48. Order follow-up proce-
dures 

5. PF network design 
7. C&I network design 

 Customer demands 
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A.2. Facility Location Models  
 
Inputs and sets: 

:I  set of customer locations, indexed by i   

:J  set of candidate facility locations, indexed by j   

:ih  demand at customer location i I   

:jf  fixed cost of locating facility at candidate site j J   

:ijc  unit cost of transporting between candidate facility site j J  and customer lo-

cation i I   

 

Decision variables: 

if we locate at candidate site                                      

if not

1,  
0,                                                                        j

j J
X


 


                   

ijY  fraction of the demand at customer location i I  that is served by a facility at site 

j J   

 

 Uncapacitated facility location model with single sourcing (Daskin et al., 

2005): 

 
Considering the above notations, the formulation of the mode is as follows:  
 
minimise j j i ij ij

j J j J i I
f X h c Y

  

                                 

  
subject to: 1          ij

j J
Y i I



           

0      ;ij jY X i I j J                          

 0,  1       jX j J            

      0,  1        ;ijY i I j J      

 Capacitated facility location model (Daskin et al., 2005)  

If jb : the maximum demand that can be assigned to a facility at candidate site j J

is added to the above notations, the formulation of the model is as follows:  

minimise j j i ij ij
j J j J i I
f X h c Y

  

                                 
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subject to: 1          ij
j J
Y i I



           

0      ;i ij j j
i I

hY b X i I j J


                          

 0,  1       jX j J             

 0,  1        ;ijY i I j J      

 Locating plants and distribution centres with multiple commodity (Geof-

frion and Garves, 1974): 

Inputs and sets:  

:K  set of plant locations, indexed by k   

:L  set of commodities, indexed by l   

:liD  demand for commodity l L  at customer i I  

:lkS  supply of commodity l L at plant k K   

:jV  variable unit cost of throughput at candidate site j J   

:lkjic  unit cost of producing and shipping commodity l L between k K , candidate 

facility site j J and customer location i I  

Decision variable:  

if demand at customer site  are served by facility at candidate site                                      
if not

1,  
0,                                                                            ij

i j J
Y




                                              




lkjiZ  quantity of commodity l L shipped between plant k K , candidate facility 

site j J and customer location i I  

Formulation for model:  

 minimise ( )j j j li ij lkji lkji
j J j J i I l L l L k K j J i I

f X v D Y c Z
       

           

 subject to:                      ;1lkji lk
j J i I

Z S k K L
 

     

        Y                       l ; ;lkji li ij
k K

Z D L j J i I


     

        1                                 ij
j J

Y i I


   

                  j j li ij j j
i I

V X D Y V X j J


    

      0,  1        jX j J           

           0,  1        ;ijY i I j J    
       0            ; ; ;lkjiZ i I j J k K l L      
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A.3. Mathematical formulation of two-layer and three-layer LRPs  

The notations for the mathematical formulation of a two-layer LRP (Berger 1997) 

are as follows: 

Inputs and sets: 

:I  set of customer locations, indexed by i   

:J  set of candidate facility locations, indexed by j   

:jf  fixed cost of locating facility at candidate site j J   

:ijc  unit cost of transporting between candidate facility site j J  and customer lo-

cation i I   

:jP  set of feasible paths from candidate distribution centre j J   

:jkc  cost of serving the path jk P   

:j
ika  1 if delivery path jk P  visits customer ;i I  0 if not 

  

Decision variables: 

if path                                       

if not

1,   is operated out of distributiin centre
0,                                                                                              

j
jk

k P j J
V

 


                




   

 

Considering the above notations Berger (1997) formulates the two-layer LRP based 

on the classical fixed charge facility location model as follows:  

minimise    
j

j j jk jk
j J j J k P
f X c V

  

           

subject to: 1            
j

j
ik jk

j J k P
a V i I

 

           

      0                 ;jk j jV X j J k P             
     {0, 1}                  jX j J          
     {0,  1}                  ;jk jV j J k P           
 

Objective function of this model minimises the sum of the facility location costs and 

the vehicle-routing costs. The first constraint of this model requires each demand 

node to be connected to one route. The second constraint states that a route can only 
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be assigned to one open facility. The third and fourth constraints and are standard 

internality constraints.  

Berger ‘s (1997) LRP is very much similar to the classical fixed charge facility loca-

tion model but it is more difficult to solve. Daskin et al. (2010) states two reasons for 

this difficulty. The first reason is regarding the linear programming relaxation which 

has a weak lower bound. Daskin et al. (2005) suggested a solution to this issue by 

replacing the second constraint with the following constraint: 

0        ;
j

j
ik jk j

k P
a V X i I j J



                        

This new constraint strengthens the linear programming relaxation of Berger’s 

(1997) LRP. The second reason for the difficulty in solving the Berger’s (1997) two-

layer LRP is that an ‘exponential number of feasible paths associated with any can-

didate facility’. 

The three-layer LRP typically considers three players on the demand side of the SC. 

These three layers are plant(s), DC(s) and retailer(s). Perl (1983) and Perl and 

Daskin (1985) extend the Geoffrion and Garves (1974) model to consider multiple 

stop tours serving the retailer. This model is limited to single commodity. Perl 

(1983) defines the following additional notations: 

Inputs and sets.  

:P  set of points I J    

:ijd  distance between node i P  and node j P   

,j jV V : minimum and maximum annual throughput allowed at DC j J  

:jv  variable cost per unit processed by a facility at candidate facility site j J  

:jt  maximum throughput for a facility at candidate facility site j J   

:ih  demand at customer location i I   

:S   set of supply points (analogous in the Geoffrion and Garves (1974) model)  

:sjc  unit cost of shipping from supply point s S  to candidate facility site j J  

:ijkZ  the quantity shipped from DC j J  to customer location i I  

:K  set of candidate vehicles, indexed by k   
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:k  capacity of vehicle k K   

:k  maximum allowable length of a route served by vehicle k K  

:k  cost per unit distance for deliver on route k K  

 

Decision variables.  

if vehicle  ,                                      

if not

1,   goes directly from point  to point
0,                                                                                           ijk

k K j Pi I
Z

 


                          




 

sjW   quantity shipped from supply source s S  to facility site j J                   

Considering the above notations and the notations previously defined for the two-

layer LRP, Perl (1983) formulates the following three-layer LRP:  

minimise    j j sj sj j i ij ij ijk
j J s S j J j J i I j P i P
f X c W v hY d Z

      

                     

subject to: 1                    ijk
k K j P

Z i I
 

         

                      i ijk k
i I j P
h Z k K

 

                     

                    ij ijk k
j P i P

d Z k K
 

                    

                    ij ijk k
j P i P

d Z k K
 

         

   1                ;ijk
i V k Kj V

Z V P J K
 

                    

   0             ;ijk ijk
j P j P
Z Z i P k K

 

                                 

    1                     ijk
j J i I

Z k K
 

                                

0             sj i ij
s S i I
W hY j J

 

                                     

0                sj j j
s S
W t X j J



         

1     ; ;imk ihk ij
m P h P
Z Z Y j J i I k K

 

                

{0, 1}                        jX j J                       
{0,  1}                         ;ijY i I j J           

  {0,  1}                       ; ;ijkZ i P j P k K           

The objective function minimised the total fixed facility location costs, the transpor-

tation costs from supply points (plants) to the facilities, the variable facility through-



 
Appendix A 
 

Ax 
 

put costs and the routing costs to customers. First constraint requires each customer 

to be on one route. Second constraint sets a capacity restriction for each vehicle and 

the third constraint limits the length of each route. The fourth constraint requires 

each route to be connected to a facility. The fifth constraint imposes any route enter-

ing node i P must exit that same node. The sixth constraint states that each route 

can operate out of only one facility. The seventh constraint represents the flow into a 

facility from the supply point(s) in terms of demand. The eighth constraint limits the 

throughput at each facility to the maximum allowed at that facility and links the flow 

variables and the facility location variables. If a facility is not opened, the ninth con-

straint prevents customers from being assigned to that facility. The tenth constraint 

indicates that if route k K leaves customer node i I and also leaves facility j J , 

then customer i I must be assigned to facility j J . Vehicle routing variable ( ijkZ ) 

wand assignment variable ( ijY ) are linked by the tenth constraint. The eleventh, 

twelfth and thirteenth constraints are integer and non-negativity constraints of the 

model.   
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A.4. modeFRONTIER®: A multi-disciplinary design environment 

modeFRONTIER® is a multi-disciplinary and multi-objective optimisation and de-

sign environment developed by ESTECO SpA (ESTECO 2013). It is a multi-

disciplinary and multi-objective software capable of handling complex optimisation 

problems. The complex algorithms within modeFRONTIER® can spot the optimal 

results, even conflicting with each other or belonging to different fields. mode-

FRONTIER® consists of Design of Experiments (DoE), optimisation algorithms, and 

robust design tools, capable of blending to create an efficient strategy to solve com-

plicated multi-disciplinary problems. It is offering a wide range of evolutionary op-

timisers to manage continuous, discrete, and mixed variable problems.  

The concept behind modeFRONTIER® is schematically presented in Figure 2.8. 

 

Figure 2.8  The concept behind modeFRONTIER® (ESTECO 2013)  

 

The optimisation technology within modeFRONTIER® starts a workflow to input 

the data, connect the components of the models and provide the usage of its solution 

capabilities. This workflow transfers data from one simulation to the next, updating 

all parameter values according to the optimization algorithms, thus extracting rele-
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outline the appropriate robust optimisation strategy according to the design space 

boundaries.  

 
Figure 2.9        An example of a workflow in modeFRONTIER® (ESTECO 

2013)  

 

A very strong capability of modeFRONTIER® is its DoE guided solution approach. 

DoE connects the optimiser to the optimisation model. It generates the initial popula-

tion for the optimiser(s) using a variety of distributions and designs. The details of 

the distributions and designs forming the initial population using DoE are as follows 

(source: modeFRONTIER® 4.4.3, 2013).  

Strong non-linearity, high or low constrained problems, sizable problem dimensions 

can be addressed by modeFRONTIER®. Optimisation algorithms cover 

deterministic, stochastic and heuristic methods for both single and multi-objective 

problems. Figure 2.10 illustrates optimisation algorithms families offered by 

modeFRONTIER®.  
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Figure 2.10       Optimisation algorithms families (ESTECO 2013) 
 

The heuristics/meta-heuristics evolutionary algorithms offered by modeFRON-

TIER® with different natures are as followed: 

MOGA-II: Scheduler based on a multi-objective genetic algorithm (MOGA) de-

signed for fast Pareto convergence. This GA-based algorithm: (i) supports geograph-

ical selection and directional cross-over, (ii) implements Elitism for multi-objective 

search, (iii) enforces user defined constraints by objective function penalization, (iv) 

allows Generational or Steady State evolution, (v) allows concurrent evaluation of 

independent individuals. The n (num. of individuals) entries in the DOE table are 

used as the problem's initial population 

NSGA-II: Non-dominated Sorting Genetic Algorithm II of prof. K. Deb et al. (2000, 

KanGAL Report No. 200001). This GA-based algorithm: (i) allows both continuous 

("real-coded") and discrete ("binary-coded") variables, (ii) allows user defined dis-

cretization (base), (iii) the constraint handling method does not make use of penalty 

parameters, (iv) implements different elitism strategies for multi-objective search, 

(v) diversity and spread of solutions is guaranteed without use of sharing parameters, 

(vi) allows concurrent evaluation of the n independent individuals. The n (number of 

individuals per generation) entries in the DOE table are used as the problem's initial 

population.  

MOSA: Algorithm based on a single and multi-objective simulated annealing (MO-

SA). This algorithm: (i) obeys boundary constraints on continuous variables, (ii) 

allows user defined discretization (base), (iii) enforces user defined constraints by 

objective function penalization, (iv) allows concurrent evaluation of the n independ-

ent points, (v) after a 'hot phase' (T>0) a 'cold phase' (T=0) follows, (vi) the evolu-
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tion is governed by the Temperature Scheduler and by the Spatial Perturbation 

Length Scheduler.  The entries in the DOE table are used as initial points. 

MOGT: Multi-objective scheduler based on Game theory (J.F.Nash) coupled with a 

Simplex algorithm. This Game theory-based algorithm: (i) obeys boundary con-

straints on continuous variables, (ii) allows user defined discretization (base), (iii) 

enforces user defined constraints by objective function penalization, (iv) decomposes 

automatically the variables space among the players (in charge of each objective), 

(v) allows concurrent evaluation of configurations proposed by each player, (vi) best 

suited for highly constrained, highly non-linear and competitive objectives, finds a 

compromise solution (Nash equilibrium) by a low number of evaluation points. The 

number of objectives has not to be greater than the number of variables. Only the 

first entry of the DOE table is used. 

MOPSO: Scheduler based on multi-objective Particle Swarm. Particle Swarm Op-

timization is motivated from the simulation of social behaviour of bird flocking. 

Each single solution is a "bird" in the search space with a velocity which directs the 

flying of all the particles through the problem space. This PS-based algorithm: (i) 

allows both continuous and discrete variables, (ii) the constraint handling method 

does not make use of penalty parameters, (iii) a clustering method is used to prune 

non-dominated set.  

HYBRID: HYBRID is an algorithm which combines the global exploration capabil-

ities of Genetic Algorithms with the accurate local exploitation guaranteed by SQP 

implementations. In this algorithm: (i) the scheduler works following a steady-state 

scheme, (ii) SQP runs are launched as particular operators for the GA, (iii) the user 

can choose to approximate derivatives with finite differences method or through 

RSM predictions, (iv) the algorithm produces repeatable sequences (if the number of 

concurrent design evaluations is 1). HYBRID can be used for single and multi-

objective problems, constrained or unconstrained. The SQP solver is AFilterSQP 

which works on a scalarized version of the original problem obtained through an 

improved epsilon-constrained technique. 

SAnGeA: Multi-Objective scheduler based on Screening method and genetic algo-

rithm. This algorithm: (i) allows both continuous and discrete variables, (ii) manages 

problems with many variables, (iii) writes in the log which variables are important 
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for the model according to screening method. SAnGeA is designed for unconstrained 

problems. The screening method inside SAnGeA needs at least 10 points in DOE 

table. If the DOE table is empty or has less than 10 rows, the missing initial designs 

are randomly generated. 

After initial evaluation of available software solution platforms, it was concluded 

that modeFRONTIER® was the most suitable platform for solving complex NP-hard 

multi-objective LRPs as are being developed in this study based on its extended ca-

pabilities and multi optimiser availability. modeFRONTIER® is  a commercial solv-

er, which can be described as a design environment in contrast to  a final stage soft-

ware package. As such a development platform it allows significant scope and flexi-

bility to the designer. 

In modeFRONTIER®, MOGA-II, NSGA-II, MOSPOS, MOSA and HYBRID are 

selected to solve the two and three-layer MO-LRPs. MOGT works using a combina-

tion of Game Theory and a Simplex algorithm and uses only the first entry of DoE 

table, therefore this optimiser is not selected to solve the models in this study. 

SAnGeA is developed for unconstrained models. As the MO-LRPs are both con-

strainted in this study, it is deemed not suitable for these models.  
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B.1. Questionnaire 

Green Location-Routing Decisions in Dairy Processing Supply Chain  
 
Location Decisions  

1. Processing Plants:  
 

a. How many dairy processing plant(s) does your company own?  
b. Where are the processing plants located geographically?  
c. How do you make decision on the geographical location of your dairy processing 

plants? What criteria are considered? (i.e. costs, distance f rom market, etc.) 
 

2. Distribution Centres (DCs):  
 

a. If DCs are owned by your company:  
- How many DC(s) does your company own?  
- Where are these DC(s) located geographically?  
- What criteria are considered in making a decision on the location of the DCs?  
- Do you use any decision support tool/technique to make decisions about the l o-

cation of DC(s)? If yes please explain.  
- What is the capacity of these DC(s)?  
- How do you make a decision about the capacity of DC(s)?  
- Do you rent any DC(s) in Ireland?  

If yes; how do you decide what DC to rent?  
 

b. In case a third party is renting the DC(s) to you:  
- Do you rent the entire or a part of the DC(s)?  
- How do you decide on the capacity you require from each DC?  
- How many DC(s) have you rented?  
- How do you decide about the geographical location of DCs?  

 
 

3. Customers (Wholesalers/Retailers):  
 

a. How do you make a decision about what part of the dairy market in Ireland (ge o-
graphically) you want to cover? (or do you cover the whole Ireland dairy market?)   

b. How many counties in Ireland do you consider as your customers? Do you know 
how much is the total demand for each dairy product in these counties? How much 
of the dairy demand (unit of each dairy product) in these counties do you cover?  

c. How do you decide on the part of demand for dairy products in these counties to 
cover?  
 
 

Routing and Transportation Decisions  
a. What criteria are taken into account to select the best route to connect the processing 

plants to DC(s), and DC(s) to retailers?  
b. Do you use any decision support tool/technique to make routing decisions?  
c. Have you ever considered serving retailers directly from your dairy processing 

plants?  
d. Have you ever considered serving one retailer through another retailer and not from 

the DC(s)?  
e. Does your company own the transportation system?  

If the answer to the above question is ‘Yes’;  
- What types of vehicles (in terms of: capacity of the vehicles; refrigerated veh i-

cles or not; etc.) are used to transport your dairy products from dairy processing 
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plants to DCs and from DCs to retailers?  
- How do you make a decision on the type of vehicles you require for transporting 

your products? 
- What criteria do you consider when choosing the type of vehicle for transporting 

your products?   
- Do you consider a speed limit for vehicles in different types of roads while 

transporting the dairy products through your dairy supply chain? If yes, please 
explain.  
 

f. Does your company outsource the transportation?  
If the answer to the above question is ‘Yes’;  
- How do you decide on what transportation company to choose? What criteria 

are considered?  
 
Environmentally Friendly Policies  

a. Does your company have green (environmentally friendly) supply chain consider a-
tions?  
If the answer to the above question is ‘Yes’;  
- What are the green (environmentally friendly) supply chain considerations?  
- How these green policies are implemented?  
- What parts of your business these green policies focus on?  

b. If your company own the transportation system; have you conducted a study to 
measure the transportation impact on the environment?  

c. If transportation is sourced out; does your company ask the transportation company 
to measure the carbon footprint?   

d. Do you know how much is your annual supply chain carbon footprint contribution 
is?  
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B.2. TableA.2.Detailed Distances between Plants and Retailers  

TableA.2. Total Distance and the Type of the Road in each Defined Route  
Between Plants and Customers  

Plant 
( j J ) 

 
Customer  
( i I ) 

I
 Drogheda 

II
  Ballitore 

Total 
Distance 

(km) 

 Distance in each Type of Road  
(km) 

 
Distance 

(km) 

 Distance in each Type of Road  
(km) 

Motorway National 
Route 

Regional 
and Local 

Roads 

Built 
Up 

Areas 

Motorway National 
Route 

Regional 
and Local 

Roads 

Built 
Up 

Areas 

1.Drogheda 2.0   2.0  117.0 61.7 55.3   
2.Dundalk 36.4 36.4    146.0 89.7 56.3   
3.Navan 25.8   25.8  105.0 105.0    
4.Tullamore 110.0  110.0   62.5   62.5  
5.Naas 75.4   75.4  29.1   29.1  
6.Newbridge  103.0 103.0    24.5   24.5  
7.Leixlip 47.5   47.5  61.1 61.1    
8.Port Laoise 143.0 143.0    37.1  11.8 25.3  
9.Bray 74.6 74.6    71.4  71.4   
10.Arklow 128.0 128.0    57.6   57.6  
11.Wicklow 121.0 121.0    48.0   48.0  
12.Greystones 83.6 83.6    70.4   70.4  
13.Clonmel 239.0 239.0    111.0 61.3 49.7   
14.Waterford 219.0 219.0    105.00 105.0    
15.Tramore 232.0 232.0    117.0 117.0    
16.Kilkenny 178.0 178.0    63.4 63.4    
17.Wexford 197.0 197.0    94.8  94.8   
18.Enniscorthy 184.0  184.0   72.4 24.2  48.2  
19.Dublin City 52.4 52.4    59.8  59.8   
20.Dun Laogha-
rire/Rathdawn 

62.9 62.9    66.7  66.7   

21.Fingal 29.2   29.2  85.5  85.5   
22.South  
Dublin 

61.5   61.5  45.1  45.1   
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B.3. History Plots, Box Whiskers, and Density Plots on total result designs for MOGAII and 
NSGAII, respectively  

 

                  a. CO2 emission                                                                    b. Costs  

Figure A.3.1-a. History plots; MOGAII  

 

 

                  a. CO2 emission                                                                    b. Costs  

Figure A.3.1-b. Box Whiskers; MOGAGAII  

 

 

 

                  a. CO2 emission                                                                    b. Costs  

Figure A.3.1-c. Probability density function; MOGAGAII  
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                  a. CO2 emission                                                                    b. Costs  

Figure A.3.2-a. History plots; NSGAII  

 

 

                  a. CO2 emission                                                                    b. Costs  

Figure A.3.2-b. Box Whiskers; NSGAII  

 

 

 

                  a. CO2 emission                                                                    b. Costs  

Figure A.3.2-c. Probability density function; NSGAII  
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B.4. History Plots, Box Whiskers, and Density Plots on total result designs for MOPSO  

 

                  a. CO2 emission                                                                    b. Costs  

A.4-a. History plots; NSGAII  

 

 

                  a. CO2 emission                                                                    b. Costs  

A.4-b. Box Whiskers; NSGAII  

 

 

 

                  a. CO2 emission                                                                    b. Costs  

A.4-c. Probability density function; NSGAII  
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C.1. Total distances between DCs and retailers in types of roads 

 
Table C.1.  Total distance and the type of the road in each defined route between 
DCs and customers 
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C.2. Total distances between retailers by the type of the roads 

C.2.  Total distance and the type of the road in each defined route between retailers 
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C.3. CO2 emission and cost estimations from transporting products between 
retailers  

TableC.3  CO2 emission estimations and costs of serving routes by HGVs 
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