
Comparison between the machinability of different titanium alloys (Ti-6Al-4V 

and Ti-6Al-7Nb) employing the multi-objective optimization 

Amanda Oliveira Mello1, Robson Bruno Dutra Pereira1, Carlos Henrique Lauro1,2, Lincoln 

Cardoso Brandão1, J. Paulo Davim2 

1 Federal University of São João del-Rei, Department of Mechanical Engineering, Centre for Innovation in Sustainable 

Manufacturing, Praça Frei Orlando, 170, Centro, 36.307-352, São João del Rei – Brazil 

2 University of Aveiro, Department of Mechanical Engineering, Campus Santiago, 3810-193 Aveiro, Portugal 

amandamello@live.com; robsondutra@ufsj.edu.br; carlos.lauro@ua.pt; lincoln@ufsj.edu.br 

Abstract: Titanium and its alloys are amongst the most important metallic materials used by many 

industries, such as those pertaining to the aerospace, automotive, and biomedical sectors. This is due 

to the reliability and functionality of titanium components, in addition to their high strength-to-weight 

ratio and corrosion resistance. Thus, titanium and its alloys are of great importance to the challenging 

operations of these sectors. The manufacturing of titanium requires great accuracy to ensure that 

resulting products meet quality requirements, due to its difficult machinability. In this study, the cutting 

forces and surface roughness of the turning were analysed to compare different titanium alloys, Ti-

6Al-4V and Ti-6Al-7Nb, with CVD-coated and uncoated inserts. The effect of control factors on the 

response variables was measured using ANOVA. Response surface methodology was applied to the 

creation of a model of responses and to a bi-objective optimization process via the normalized normal 

constraint method. The Pareto-optimal sets of both alloys were achieved, which may be applied to 

practical situations to achieve optimal results for these responses. The models and optimization results 

confirmed the similarity of machinability values between the Ti-6Al-4V and Ti-6Al-7Nb alloys. The 

uncoated inserts yielded the best surface roughness and cutting force results when used with both 

titanium alloys. 
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1. Introduction 

Over the last years, improvements in materials and manufacturing processes have promoted the 

perception of titanium and its alloys as some of the main metallic materials used in several industries, 

especially in the biomedical sector. Their high strength-to-weight ratio, corrosion resistance and great 

endurance in high-temperature environments are very useful to the aerospace industry [1]. According 

to Hashmi et al. [2], titanium alloys are used due to the reliability and functionality of parts created 



using them and are thus of great importance to the challenging operations of these sectors. However, 

titanium alloys are commonly known as difficult-to-cut materials [3] because of the high temperature 

generated during their machining process, which increases tool wear rates and reduces surface finish 

quality [4]. 

Different chemical compositions of titanium alloys are available to meet the demands of 

important industrial sectors. The Ti-6Al-4V alloy is the most commonly used titanium alloy, and it is 

employed in the production of aerospace and biomedical components. It is composed of 6% 

aluminium, which stabilizes the α phase, and 4% vanadium, which stabilizes the β phase [2]. Its 

integration of biomedical components, however, has been widely criticized due to the presence of 

vanadium, which is a potentially toxic metal.  

Still, according to Gallego et al. [5], an alloy with similar properties, containing niobium instead 

of vanadium as stabilizing element of the β phase, was developed. Niobium has excellent 

biocompatibility and, when associated with aluminium, accounts for most of the solid strengthening 

of the alloy [6]. Moreover, the microstructure of both alloys consists of a α-Ti phase and a β-Ti phase, 

which are a good compromise and justify their employment in several biomechanical applications. 

Still, in order to use titanium alloys correctly, especially as biomedical components, a previously 

setup of the manufacturing cell is necessary. Machine tools, tooling settings, cutting conditions and 

cooling systems are the main factors responsible for keeping product quality during machining 

processes. Furthermore, the optimization of machining processes represents a bottleneck to production 

lines, not only due to the high-level manufacturing requirements of these components, but also because 

of the high price of raw materials. These factors require minimal losses in waste, which in machining 

is generally formed by chips. 

Surface roughness is the main response variable used to measure the surface quality of the 

machined surface of a workpiece. According to Dietzsch et al. [7], there are many different surface 

roughness profiles in use nowadays in modern industry, with Ra being by far the most commonly 

applied in shop-floor activities. In terms of tribology, surfaces with high Ra values generally wear more 

quickly and have lower corrosion resistance and higher friction coefficients than surfaces with lower 

Ra values. 

Several investigations have analysed the role of surface roughness as a reference and main 

response of  turning processes [8]. Khan et al. [9] obtained Ra values of 0.51 to 3.91 μm during turning 

processes. Moreover, when the feed rate was 0.14 mm/rev, surface roughness was less than 0.80 μm, 

regardless of the tool condition. These authors tested chamfered tools and demonstrated that this kind 

of tool not only outperformed conventional tool geometries, but also yielded results similar to those 

obtained using polycrystalline diamond-coated tooling under the same conditions. 



Sun et al. [10] used polycrystalline cubic boron nitride (PCBN) and polycrystalline diamond 

(PCD) cutting tools in the dry machining of Ti-6Al-4V alloys. The authors demonstrated that surface 

roughness increased gradually, but after the feed rate of 0.1 mm/rev, there was a reduction of the 

adhered workpiece material and the thermal softening of the alloy. This situation provided a special 

condition to the machining process studied by the authors, where surface roughness maintained a 

constant value. 

Ribeiro Filho et al. [11] demonstrated that the Ra and Rz surface roughness parameters were 

influenced mainly by the feed rate, which accounted for 98.98% and 96.55% of Ra and Rz, 

respectively. The authors analysed the surface roughness parameters of Ti-6Al-4V alloys to find the 

best range for the input parameters of their machining process and to define the desired corrosion 

performance of their machined surfaces in a simulated body fluid environment. Considering the 

surface roughness of biomedical components, the difference between rough or smooth surface values 

can result in good or poor osseointegration in the human body, which depends on specific applications. 

In the machining of titanium alloys, diffusion is the main wear mechanism, since it is worsened 

by the high temperature generated during the cutting process. Therefore, oil-based flood coolants have 

been used to dissipate the temperature of the cutting region. However, the oil in them causes several 

environmental damages and increases machining costs [12]. Several researchers have proposed dry 

turning as a feasible alternative to achieve a more sustainable production chain of titanium alloy 

components [4, 9, 12].  

To achieve the cutting conditions necessary to guarantee low roughness levels, optimization 

should be applied. The optimization of manufacturing processes can vary according to the response 

chosen to be improved, via e.g. cost reduction, production time reduction, reduction of cutting forces, 

improvement of surface roughness, reduction of tool wear, or improvement of special aspects for 

biomedical components. The optimization process may also combine two or more of these objectives; 

in this case, it is called multi-objective optimization. In the literature can be found several studies that 

employed the multi-objective optimization in different machining processes, like turning [13], milling 

[14], electrical discharge machining [15], abrasive water jet [16], and other processes. 

Several industrial problems are multi-objective involving the optimization of distinct criteria 

simultaneously. In these cases, the researcher does not look for a single optimal solution, but a set of 

non-dominated solutions, also known as a Pareto-optimal set [17, 18]. Several popular multi-objective 

techniques are based on scalarization. Some multi-objective scalarization approaches, such as 

Normalized Normal Constraint (NNC), convert the multi-objective problem into a single objective 

problem, setting one function as objective and allocating the remaining ones in the constraints [19]. 



Response surface methodology (RSM) was developed as a statistical and mathematical 

collection of tools for modelling and optimization. RSM has been used to study several manufacturing 

processes. To optimize surface roughness when turning Ti-6Al-4V alloys at high speeds, Hashmi et 

al. [2] employed a model based on RSM. According to the authors, in practical situations where a 

specific surface roughness value is specified, machine operators can use the proposed model to set the 

optimum values of machining parameters. However, it is known that statistical models are conservative 

regarding tool, machine, fixture and other conditions used in tests. 

Mia et al. [20] obtained statistical models through RSM that are recommended for predicting 

surface roughness and cutting forces in the turning of Ti-6Al-4V alloys. These models had very 

promising coefficient of determination values above 96%, which indicated the optimum results to be: 

Ra surface roughness of 1.05 μm, feed force of 208 N, and cutting force of 315 N. Furthermore, 

according to the results obtained by the authors, with regard to analyses of cutting forces and surface 

roughness, RSM was more accurate when using untrained data, in comparison to artificial neural 

network models. 

Sangwan et al. [21] used artificial neural networks and genetic algorithms to predict the surface 

roughness in Ti-6Al-4V machining. According to the authors, feed rate was the main input parameter, 

but considering depth of cut and cutting speed, surface roughness was at its lowest value only when 

these input parameters were increased. However, the authors concluded that more studies need to be 

carried out using a wide range of machining parameters to generalize these results. 

Satyanarayana et al. [22] employed the Grey-Taguchi method to optimize the Ti-6Al-4V 

machining process. The authors defined that the order of importance of controllable factors to achieve 

minimum surface roughness is, from the most important to the least important factor, rake angle, feed 

rate, depth of cut, and cutting speed. Other studies were performed modelling the surface roughness 

resulting from the turning of Ti-6Al-4V alloys [23, 24].  

The preliminary studies demonstrated important results obtained by the machining of Ti-6Al-4V 

alloys. This work analyses the optimization of the turning process of two main titanium alloys, Ti-6Al-

4V and Ti-6Al-7Nb. Precision manufacturing of titanium alloy is indispensable to ensure that the 

quality requirements of products – such as biomedical components – are met, and thus to obtain a great 

surface quality that is essential to improve corrosion resistance. The optimization of this process also 

provides a social benefit due to its reduction of cutting forces, which saves energy and/or tools. To 

achieve these goals, RSM was used for the creation of models, and the normalized normal constraint 

multi-objective optimization method was applied. 

 



2. Experimental procedure and methods 

A CNC lathe from Romi, GL 240M model, with maximum spindle speed of 6,000 rpm and 

power of 22.5 kW was used to carry out the cutting tests. The workpieces were made of Ti-6Al-4V 

and Ti-6Al-7Nb alloys with approximately 32 HRC. The cutting tests were performed using two 

different inserts, TCMT 110304-H13A (uncoated) and TCMW 110304-3215 (CVD-coated - 

TICN+AL2O3+TIN), on a STGCL 1616H 11-B1 holder. Both inserts and the holder were configured 

using the same cutting parameters: cutting speed (vc), depth of cut (ap), and feed rate (f) based on 

catalogue of the tool manufacturer. The workpiece was set up with an overhang length of 15 mm 

without tailstock to avoid the influence of vibrations on surface roughness, with a cutting length of 14 

mm for each test. The cutting parameter values were fixed in accordance with the tool manufacturer 

catalogue. The turning tests were carried out under dry condition. Figure 1 shows the experimental 

setup for studying the turning of different titanium alloys.  

 

Figure 1 - Experimental setup 

2.1. Treatment of Responses 

A Kistler 9129AB30 piezoelectric dynamometer was used to monitor cutting forces, using an 

acquisition rate of 500 Hz to observe the components of the machining force (FM), cutting force (Fc), 

feed force (Ff), and passive force (Fp). The signal processing method employed was based on Lauro et 

al. [25], applying the wavelet transform to denoise the signal. The mathematical model for the FM 

force, Eq. 1, takes into account the Fc, Ff, and Fp forces, point-to-point, of each experimental test and 

defines the influence of input parameters on FM. A SJ-401 Mitutoyo surftest was used to measure 



surface roughness. The Ra surface roughness was measured with a cut-off of 0.8 mm near the middle 

of the cutting length in three radially equidistant points of 120° for each test. 

 

𝐹𝑀𝑎𝑣
=

∑ √𝐹𝑐𝑖
2 + 𝐹𝑓𝑖

2 + 𝐹𝑝𝑖
2𝑖

0

𝑛
           (1) 

Where FMav is the machining force average [N]; Fc is the cutting force [N]; Ff is the feed force 

[N]; Fp is the passive force [N]; i is the time increment; and n is the number of increments. 

 

 

2.2. Statistical analysis, modelling and multi-objective optimization 

The significance of the continuous and categorical factors to the two responses, Ra and FM, was 

tested using Analysis of variance (ANOVA). However, for both Ra and FM, response surface models 

were created considering each insert type in each titanium alloy. For all statistical tests, the significance 

level was α = 0.05.  

Response surface methodology (RSM) is a conventional statistical tool to formulate an 

approximate mathematical relationship, mainly for optimization, of dependent variables – such as FM 

force, and Ra surface roughness – based on independent variables, such as cutting speed (vc), feed rate 

(f), depth of cut (ap), and insert type. The use of a second-order approximate function in the form of 

Eq. 2 is useful to understand the effects of the control variables on the response and, especially, to 

achieve the optimal levels of the parameters in the response. The study of surface roughness combined 

with cutting forces in the turning process has been performed previously using statistical and 

optimization tools [26].  

𝑦̂ =  𝛽0 + ∑ 𝛽𝑖
𝑘
𝑖=1 𝑥𝑖 + ∑ 𝛽𝑖𝑖

𝑘
𝑖=1 𝑥𝑖

2 + ∑∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑖<𝑗        (2) 

 

In the response model represented by Eq. 2, y is the dependent variable; β0 is the constant term; 

βi, βii, βij are the coefficients of linear, quadratic, and cross product terms, respectively; and xi, i = 1, 

…, k, are the input or control variables. To achieve a response surface in the form of Eq. 2, the 

experimental planning used was a central composite design (CCD) with k = 3 continuous factors. The 

same design was applied to design the turning tests of both Ti-6Al-4V and Ti-6Al-7Nb. Considering 

the three continuous variables – vc, f and ap –, nF = 2³ = 8 factorial points, nC = 6 centre points, and nA 

= 2×3 = 6 axial points were performed for each one of the 2 inserts. Therefore, the CCD accounted for 

40 turning tests for each titanium alloy. Table 1 shows the parameter levels of the experimental tests. 

 



Table 1 - Input parameters used in experimental tests. 

Input parameters 
Levels 

-1.63 -1 0 1 +1.63 

vc [m/min] 50 55.07 62.50 69.93 75 

f [mm/rev] 0.05 0.09 0.15 0.21 0.25 

ap [mm] 0.20 0.36 0.60 0.84 1.00 

Insert TCMT 110304-H13A  TCMW 110304-3215 

 

A multi-objective optimization task with m multi-objective functions may be defined as follows, 

with 𝑓𝑖(𝒙) as the i-th objective function, i = 1, …, m, and 𝒙 = [𝑥1, … , 𝑥𝐾]𝑇 as the design vector, subject 

to the inequality constraints, 𝒈(𝒙) ≥ 𝟎, the equality constraints, 𝒉(𝒙) = 𝟎, and limited to the lower 

and upper bounds, L and U. 

 

𝑀𝑖𝑛 𝒇(𝒙) = [𝑓1(𝒙) ⋯ 𝑓𝑖(𝒙) ⋯ 𝑓𝑚(𝒙)]𝑇       

Subject to: 𝒈(𝒙) ≥ 𝟎  

  𝒉(𝒙) = 𝟎 

  𝑳 ≤ 𝒙 ≤ 𝑼        (3) 

 

An important concept in multi-objective optimization, is to evaluate the trade-off between the 

objective functions, is the pay-off matrix. A general pay-off matrix 𝚽 is exposed as follows. Each 

individual minimum is denoted as 𝑓𝑖
∗(𝒙𝑖

∗), i = 1, …, m, and stored in the main diagonal. The columns 

of the pay-off matrix are the anchor points, i.e., 𝒇𝑖
∗ = [𝑓1(𝒙𝑖

∗) ⋯ 𝑓𝑖
∗(𝒙𝑖

∗) ⋯ 𝑓𝑚(𝒙𝑖
∗)]𝑇, i = 1, …, 

m. In each row of the pay-off matrix, it is possible to identify the individual minima and aggregate 

these values defining a utopia vector as 𝒇𝑈 = [𝑓1
∗(𝒙1

∗) ⋯ 𝑓𝑖
∗(𝒙𝑖

∗) ⋯ 𝑓𝑚
∗(𝒙𝑚

∗ ) ]𝑇. In the same 

way, it is also possible to define a vector of worst results for each function, taking the worst result of 

each row, and aggregating them in the commonly called pseudo-nadir vector, 𝒇𝑃𝑁 =

[𝑓1
𝑃𝑁 ⋯ 𝑓𝑖

𝑃𝑁 ⋯ 𝑓𝑚
𝑃𝑁]𝑇, with 𝑓𝑖

𝑃𝑁 = 𝑀𝑎𝑥 {𝑓𝑖(𝒙1
∗) ⋯ 𝑓𝑖

∗(𝒙𝑖
∗) ⋯ 𝑓𝑖(𝒙𝑚

∗ )}, i = 1, …, m. 

The nadir point is obtained through the maximization of each objective function subject to the 

constraints of the problem. 
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To avoid scale and unit effects, the multi-objective optimization should be performed in the 

normalized space. The i-th normalized objective function denoted according to the Eq. 5, where 𝚽̅ is 

the normalized pay-off matrix and 𝒇̅𝑖
∗ are the normalized anchor points, i = 1, …, m. The normalized 

utopia and pseudo-nadir vectors are denoted as 𝒇̅𝑈 = [0 ⋯ 0 ⋯ 0]𝑇 and 𝒇̅𝑃𝑁 =

[1 ⋯ 1 ⋯ 1]𝑇, respectively. Therefore, in the normalized solution space, 𝑓𝑖̅ ∈ [0,1], i = 1, …, 

m.  

 

𝑓𝑖̅ =
𝑓𝑖−𝑓𝑖

∗

𝑓𝑖
𝑃𝑁−𝑓𝑖

∗          (5) 

 

The simultaneous optimization of multiple objectives results in a set of optimal solutions rather 

than a single optimal solution [27]. Therefore, after the response surface models were obtained, bi-

objective optimization for Ra and FM was performed using the Normalized Normal Constraint (NNC) 

method [28]. Kosaraju and Anne [29] carried out a similar investigation on Ti-6Al-4V turning. The 

authors used the desirability approach, setting the desired weight for each outcome and calculating an 

agglomerating metric, to obtain only one optimal solution to the responses. The present study proposes 

the application of a multi-objective method to achieve a set of Pareto solutions in the turning of 

titanium alloys, allowing a trade evaluation of Ra and FM and providing the experimenter the possibility 

of choosing the most appropriate solution for each scheduling situation. 

The sequential quadratic programming method was used to achieve Pareto-optimal solutions, 

which are stochastic solutions, with goodness-of-fit measure values determining its predictability in 

relation to the response surface models. Some multi-objective optimization tasks suggest the 

application of mathematical criteria agglomerating all the responses to achieve a general optimal 

solution through the optimization of the selected criteria [30]. In some cases, it can be useful for 

experimenters to formulate distinct scenarios, thus allowing the choice of a solution for each planning 

requirement. This possibility is only possible using procedures that will return a set of solutions within 

the set of trade-off choices among the responses commonly called Pareto frontier. The NNC is an 

interesting method of accomplishing this, since it allows a good filling of the Pareto frontier.  

For the bi-objective case the NNC method can be formulated as shown in Eq. 6, with 𝑓1̅ and 𝑓2̅ 

as the normalized objective functions of interest; and w1j and w2j, j = 1, …, nsub, as the weights 

associated with 𝑓1̅ and 𝑓2̅, where nsub is the desired number of Pareto optimal solutions. The w1j and 

w2j weights should respect w1 + w2 = 1 and 0 << w1,w2 << 1. To achieve a set of solutions that are well 

distributed throughout the Pareto frontier, w1 and w2 should be varied considering a constant spacing, 



i.e. δ =  1 𝑚1 − 1⁄ . This study employed nsub = 51 and, consequently, δ = 0.02. For more details about 

NNC formulation and procedures, see [31]. 

 

𝑀𝑖𝑛 𝑓2̅             (6) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑓1̅ − 𝑓2̅ + 𝑤1𝑗 − 𝑤2𝑗 ≤ 0  

 

The NNC method is formulated through the Eq. 7. 𝑓𝑚̅(𝒙) is the m-th objective function; 𝒏̅𝑟 are 

the utopia line vectors, calculated as 𝒏̅𝑟 = 𝑓𝑚̅
∗ − 𝑓𝑟̅

∗, r = 1, …, m – 1; 𝒇̅ is the vector of objective 

functions under optimization; and 𝒒𝑗,𝑚×1, j = 1, …, nsub are the points in the utopia plane. These points 

are defined considering the weights wij as 𝒒𝑗,𝑚×1 = ∑ 𝑤𝑖𝑗 ×𝑚
𝑖=1 𝒇̅𝑖

∗, with ∑ 𝑤𝑖𝑗 = 1𝑚
𝑖=1  and 0 ≤ 𝑤𝑖𝑗 ≤ 1, 

i = 1, …, m. These points are indexed with j = 1, …, nsub, where nsub is the number of sub-problems to 

be solved to achieve the desired Pareto set. The utopia plane is the triangular region defined through 

the anchor points. The product between the utopia line vector 𝒏̅𝑟
𝑇 and the vector (𝒇̅ − 𝒒) are set to be 

less or equal to zero, resulting in a quasi-orthogonality between these two vectors. Through this 

inequality, a constrained optimal solution 𝒇̅ is achieved in the Pareto frontier. The procedure is repeated 

into a loop considering the weights, 𝑤𝑖𝑗, variation which will change 𝒒, j = 1, …, nsub. 

 

𝑀𝑖𝑛 𝑓𝑚̅(𝒙) 

Subject to: 𝒏̅𝑟
𝑇(𝒇̅ − 𝒒) ≤ 0, 𝑟 = 1,… ,𝑚 − 1 

      𝒈(𝒙) ≥ 𝟎  

       𝒉(𝒙) = 𝟎 

       𝑳 ≤ 𝒙 ≤ 𝑼         (7) 

 

To achieve the desired number of solutions nsub, it is required to define the spacing between 

weights, δr, and the number of subproblems, nsub, to be solved. The number of subproblems is 

calculated according to Eq. 8, where 𝜂𝑟 = 1 + 1/𝛿𝑟. For, instance, for m = 2 objective functions, the 

NNC method can be solved considering Algorithm 1. 

 

𝑛𝑠𝑢𝑏 = (
𝑚 + 𝜂𝑟 − 2

𝜂𝑟 − 1
)         (8) 

 



3. Analysis of the results  

As the same design was used for both titanium alloys, initially a t-paired test was performed to 

gauge the differences in the Ra surface roughness and FM force resulting from the turning of Ti-6Al-

4V and Ti-6Al-7Nb alloys. To apply the t-paired test, the assumption of normality of these differences 

must be confirmed. To acquire the difference in Ra between both alloys, the Anderson-Darling (AD) 

normality test resulted in a p-value < 0.005, rejecting the null hypothesis of normality. Consequently, 

instead of the parametric t-paired test, the non-parametric sign test was applied to the Ra differences 

obtained, resulting in a p-value = 0.1996, concluding that the hypothesis of the difference equal to zero 

should not be rejected. For FM, the normality test to determine its differences resulted in a p-value = 

0.652, guaranteeing that there is no evidence to reject the null hypothesis of normality of the 

differences. Then, the t-paired test was performed, resulting in a p-value = 0.861. Consequently, the 

null hypothesis of the difference in FM between the two alloys was not rejected. Therefore, the results 

of Ra surface roughness and FM force differences amongst both alloys were similar in general. 

Table 2 shows the ANOVA of Ra and FM with respect to both alloys. The effects of the control 

factors on the Ti-6Al-4V alloy can be observed in Figure 2, and Figure 3Erro! Fonte de referência 

não encontrada. shows the effects of FM and Ra on Ti-6Al-7Nb. Regarding FM, only the cutting speed 

(vc) did not produce a statistically significant linear effect on it. The linear effect of both significant 

factors – feed rate (f ) and depth of cut (ap) – on FM was positive, and the Uncoated inserts demonstrated 

a lower average, as confirmed in Figure 2a. Safari et al. [32] observed plastic deformation on the 

surface of the coated carbide tool. In addition, surface roughness for uncoated inserts did not improve 

when the cutting speed increased and the uncoated inserts provided surface roughness, mainly at lower 

cutting speed, than the coated inserts. The linear effects were similar in relation to both alloys. 

Regarding the square effects, the square feed rate was statistically significant only in the turning of Ti-

6Al-7Nb, with a downward, almost imperceptible convexity, as illustrated in Figure 3a. In the analysis 

of interactions, only the ap*f interaction was statistically significant for the FM of both alloys. 

Analysing Figure 2a and Figure 3a, it can be noted that, when the depth of cut is raised, the effect of 

the feed rate on FM grows proportionally. This is due to the increase in the cross-section area of the 

uncut chip. 

 



  

a) FM force  b) Ra surface roughness 

Figure 2 - Interaction plot of the Ti-6Al-4V alloy 

 

  

a) FM force b) Ra surface roughness 

Figure 3 - Interaction plot of the Ti-6Al-7Nb alloy 

 

Table 2 - Analysis of variance of surface roughness (Ra) and machining force (FM) 

Source 

Ti-6Al-4V   Ti-6Al-7Nb 

FM Ra  FM Ra 

F-value P-Value F-value P-Value   F-value P-Value F-value P-Value 

vc 0.24 0.626 2.06 0.163  0.53 0.471 0.65 0.426 

ap 650.21 0.000 0.27 0.605  648.13 0.000 0.08 0.783 

f 389.86 0.000 313.36 0.000  501.55 0.000 172.48 0.000 

insert 25.09 0.000 6.88 0.014  38.00 0.000 3.68 0.066 

vc * vc 1.28 0.269 0.83 0.371  0.01 0.917 0.51 0.480 

ap * ap 1.17 0.290 0.01 0.926  0.36 0.555 1.21 0.281 

f * f 2.64 0.116 11.61 0.002  1.35 0.000 13.56 0.001 

vc * ap 1.41 0.246 3.37 0.078  0.02 0.885 2.03 0.166 

vc * f 1.74 0.199 1.24 0.276  0.78 0.385 6.62 0.016 

vc * insert 0.11 0.743 2.39 0.134  0.00 0.950 0.01 0.913 

ap * f 38.88 0.000 1.53 0.228  47.23 0.000 1.69 0.205 



ap * insert 0.42 0.525 0.50 0.487  1.85 0.185 0.38 0.541 

f * insert 0.17 0.682 1.34 0.258  0.12 0.733 0.00 0.945 

Lack-of-Fit 2.78 0.053 2.43 0.078  1.47 0.271 0.78 0.684 

For factors test: F(α=0.05;df1=1;df2=26)=4.225; For lack-of-fit test: F(α=0.05;df1=16;df2=10)=2.828;  

Normality test 

AD (p-value) 0.312 (0.537) 0.395 (0.356)  0.647 (0.085) 0.636 (0.091) 

Goodness of fit 

S 17.36 N 0.43 μm   16.60 N 0.60 μm 

R2
adj 0.9658 0.8949  0.9692 0.829 

R2
pred 0.9293 0.7937   0.9453 0.7158 

 

On the other hand, the input parameters that showed a linear effect with statistical significance, 

p-value < α = 0.05, on Ra were f, for both alloys, with positive effect, and the tool, for the Ti-6Al-4V 

alloy, with the Uncoated insert having lower Ra than 3215, as confirmed in Figure 2b. The feed rate 

generally produces a significant effect on the surface roughness of parts obtained by turning, due to 

the periodic geometric feature of the tool left on the generated surface. Only the square feed rate (f ) 

was significant to both alloys. Observing Figure 2b and Figure 3b, the curvature had upward convexity. 

As to the interactions, the vc×f interaction was statistically significant to the Ra of the Ti-6Al-7Nb alloy. 

With the increase of the cutting speed, the effect of the feed rate on surface roughness was higher; 

furthermore, with lower feed rate, the cutting speed had a negative effect on Ra. Conversely, when the 

feed rate was higher, cutting speed had a positive effect on Ra during the turning of Ti-6Al-7Nb, as 

observed in Figure 3b.  

As summarized in Table 2, lack-of-fit tests were performed to analyse all responses, and they 

found no evidence to reject the null hypothesis of no lack of fit. The AD normality test was also carried 

out to analyse all responses, guaranteeing no evidence to reject the hypothesis of normality of the 

residuals. As to the goodness-of-fit statistics, considering R2
adj, all models demonstrated at least 92% 

experimental data variability, and, with regard to R2
pred, all models showed at least 79% predictability, 

except for the Ra response of the Ti-6Al-7Nb alloy, which had 71.58%. 

The experiments acquired a surface roughness range of 0.24 to 5.61 µm when using the Ti-6Al-

4V alloy, while with the Ti-6Al-7Nb alloy the surface roughness results of the experiments were in 

the range of 0.42 to 6.09 µm. The best surface roughness value found during the experimental tests 

was 0.24 µm, and this value is close to that of the parts finished using grinding. According to Mello et 

al. [33], the range of Ra values in the patterns of titanium workpieces was 0.5 to 0.9 µm. Thus, the dry 

turning of titanium alloy parts with a quality approximate to that of grinding processes can be achieved, 

as was obtained in the present study. 

Carou et al. [34] carried out experimental turning tests using Ti-6Al-4V alloys, and found surface 

roughness values of 0.7 µm for a feed rate of 0.1 mm/rev. The authors highlight that the influence of 



the feed rate was noticeable, as well as that of cutting speed. High feed rate levels generated high 

surface roughness values. High surface roughness values represent not only poor surface quality – 

which can increase the friction between parts –, but also poor corrosion resistance. According to 

Ribeiro Filho et al. [11], the passivation rate of Ti-6Al-4V alloys is related to minimum surface errors 

attained using low surface roughness. Surface roughness can define the workpiece quality and is very 

important to the determination of its corrosion behaviour, which is of great importance when 

manufacturing biomedical components. 

Despite the higher Ra following the increasing of the feed rate, the use of different tools also 

influenced surface roughness, as can be seen in Figure 2b and Figure 3b. The TCMW 110304-H13A 

inserts yielded better surface roughness values than the TCMT 110304-3215 inserts. Thus, comparing 

the geometries of both, it should be taken into consideration that the CVD-coated inserts does not have 

a uncoated inserts, unlike the uncoated inserts, which has one, and consequently has a positive 

secondary rake angle. Based on this, it can be stated that the use of uncoated inserts can provide better 

surface roughness due to the shear mechanism allowed by the chip-curling mode, with restricted 

contact length, which reduces friction, temperature, and forces, as confirmed experimentally by this 

study. 

Mia et al. [20] demonstrated that the use of tools with positive rake angle provides a free chip 

flow during Ti-6Al-4V turning. According to the results obtained by authors, regardless of the feed 

rate used in the turning, the three feed values showed the same behaviour. 

With regard to machining force, its range was of 101.69 N to 422.23 N and 98.88 N to 478.29 N 

for the Ti-6Al-4V and Ti-6Al-7Nb alloys, respectively. The depth of cut and feed rate are the main 

responsible factors for the directly proportional variation of the cutting force in the cutting cross-

section during turning, as well as for the product of the feed rate and depth of cut, as seen in Table 2, 

Figure 2a and Figure 3a. Thus, with a constant specific cutting pressure, the increase of only feed rate 

and depth of cut or both of them creates a proportional increase in cutting force. Since the depth of cut 

is of a greater order of magnitude, its linear effect on FM was prominent. Furthermore, the f*ap 

interaction, which is statistically significant to both alloys, demonstrates this relation, since the linear 

effect of depth of cut grows proportionally to the increase of feed rate.  

The use of high feed rate and depth of cut values can reduce production time, but it will also 

increase tool wear, and plastic deformation of the tool can occur. Therefore, extreme turning conditions 

may guarantee a reduction of cutting time, but they may also cause the acceleration of tool wear 

mechanisms. Considering the effect of the inserts type on FM, the uncoated insert had better results 

than the CVD-coated insert with regard to both Ti-6Al-4V and Ti-6Al-7Nb due to the influence of the 



rake angle on chip formation and temperature generated during the turning process, as previously 

explained. 

The study carried out by Khan et al. [9] showed the same behaviour in the turning of a Ti-6Al-

4V alloy. According to the authors, lower levels of feed rate were responsible for lower cutting forces 

and temperature, but, on the other hand, higher levels of feed rate accounted for a lower chip reduction 

coefficient. However, optimal levels of cutting parameters (feed rate, cutting speed, and depth of cut) 

need to be achieved to ensure the desired level of the response chosen.  

By performing the statistical analysis, it can be noted that the two titanium alloys behaved 

similarly during the turning tests, and the Uncoated inserts had the best results for both responses. 

Therefore, the response surface models for the Ra and FM of both titanium alloys with the use of the 

Uncoated inserts have been chosen for optimization. 

In Figure 4 and Figure 5 are shown the response surface plots for the FM and Ra of Ti-6Al-4V 

and Ti-6Al-7Nb turning processes, respectively. Table 3 summarizes the uncoded response surface 

models of responses using both inserts and alloys. All models had good data variability account, with 

R2
adj ≥ 79%, and good predictability, with R2

pred ≥ 72%. 

 

  

a) FM force b) Ra surface roughness  

Hold values: cutting speed of 62.5 m/min; depth of cut of 0.6 mm; feed rate of 0.15 mm/rev  

Figure 4 - Response surfaces of Ti-6Al-4V alloy and uncoated inserts 

 



  

a) FM force b) Ra surface roughness  

Hold values: cutting speed of 62.5 m/min; depth of cut of 0.6 mm; feed rate of 0.15 mm/rev  

Figure 5 - Response surfaces of Ti-6Al-7Nb alloy and uncoated inserts 

 

Table 3 - Uncoded response surface models 

 Ti-6Al-4V Goodness of fit 

H13A 

𝑅𝑎 = 10.76 − 0.251 × 𝑣𝑐 − 9.02 × 𝑎𝑝 − 3.3 × 𝑓 + 0.00141 × 𝑣𝑐2 +
0.50 × 𝑎𝑝

2 + 93.8 × 𝑓2 + 0.1265 × 𝑣𝑐 × 𝑎𝑝 − 0.013 × 𝑣𝑐 × 𝑓 + 3.03 × 𝑎𝑝 × 𝑓  
R2

adj = 94.69%; 

R2
pred = 79.05% 

 𝐹𝑡 = −36 − 0.37 × 𝑣𝑐 + 255.2 × 𝑎𝑝 + 569 × 𝑓 + 0.0091 × 𝑣𝑐2 − 65 × 𝑎𝑝2 −
1736 × 𝑓2 − 1.41 × 𝑣𝑐 × 𝑎𝑝 + 0.07 × 𝑣𝑐 × 𝑓 + 1682 × 𝑎𝑝 × 𝑓 

R2
adj = 99.39%; 

R2
pred = 98.40% 

3215 

𝑅𝑎 = −0.9 − 0.095 × 𝑣𝑐 − 0.88 × 𝑎𝑝 + 48.6 × 𝑓 + 0.00121 × 𝑣𝑐2 −
0.76 × 𝑎𝑝2 + 59.2 × 𝑓2 + 0.085 × 𝑣𝑐 × 𝑎𝑝 − 0.500 × 𝑣𝑐 × 𝑓 − 20.9 × 𝑎𝑝 × 𝑓  

R2
adj = 82.26%; 

R2
pred = 44.58% 

𝐹𝑡 = 131 − 9.4 × 𝑣𝑐 + 393 × 𝑎𝑝 + 1840 × 𝑓 + 0.121 × 𝑣𝑐2 − 57 × 𝑎𝑝2 −
1193 × 𝑓2 − 4.08 × 𝑣𝑐 × 𝑎𝑝 − 24.5 × 𝑣𝑐 × 𝑓 + 1926 × 𝑎𝑝 × 𝑓  

R2
adj = 93.30%; 

R2
pred = 72.80% 

  Ti-6Al-7Nb Goodness-of-fit 

H13A 
𝑅𝑎 = 1.25 − 0.0140 × 𝑣𝑐 + 0.428 × 𝑎𝑝 − 7.2 × 𝑓 + 107.0 × 𝑓2  

R2
adj = 86.80%; 

R2
pred = 77.08% 

 𝐹𝑡 = −146 + 3.97 × 𝑣𝑐 + 200 × 𝑎𝑝 + 390 × 𝑓 − 0.0217 × 𝑣𝑐2 −
77.1 × 𝑎𝑝2 − 999 × 𝑓2 − 0.62 × 𝑣𝑐 × 𝑎𝑝 − 7.8 × 𝑣𝑐 × 𝑓 + 1652 × 𝑎𝑝 × 𝑓 

R2
adj = 97.44%; 

R2
pred = 92.21% 

3215 

𝑅𝑎 = 28.7 − 0.501 × 𝑣𝑐 − 15.73 × 𝑎𝑝 − 102.8 × 𝑓 + 0.00200 × 𝑣𝑐2 +
2.87 × 𝑎𝑝2 + 120.7 × 𝑓2 + 0.114 × 𝑣𝑐 × 𝑎𝑝 + 1.149 × 𝑣𝑐 × 𝑓 − 33.2 × 𝑎𝑝 × 𝑓  

R2
adj = 79.90%; 

R2
pred = 74.08% 

 𝐹𝑡 = 102 − 3.3 × 𝑣𝑐 + 16 × 𝑎𝑝 + 1257 × 𝑓 + 0.0333 × 𝑣𝑐2 + 12.8 × 𝑎𝑝2 −
3000 × 𝑓2 − 0.02 × 𝑣𝑐 × 𝑎𝑝 − 7.8 × 𝑣𝑐 × 𝑓 + 2151 × 𝑎𝑝 × 𝑓 

R2
adj = 96.90%; 

R2
pred = 91.40% 

 

The Pareto frontier of Ra and FM is shown in Figure 6. Regarding the Ti-6Al-4v alloy, the best 

result of Ra under multi-objective optimization was Ra
* = 0.46 μm, with the adjustments to the levels 

of control variables to minimize Ra, as represented by x[Ra*] = [vc = 66.4 m/min, ap = 0.48 mm, f = 0.06 

mm/rev]T. By applying x[Ra*] to FM, FM = 114.5 N was obtained. In contrast, the optimal FM value, 92.8 

N, was acquired using control factor levels x[Ft*] = [vc = 62 m/min, ap = 0.24 mm, f = 0.11 mm/rev]T. 

When these optimal levels of control factors are applied to Ra, Ra = 0.94 μm is obtained. Consequently, 



the Pareto frontier explores different scenarios under these limits called anchor points, which define 

the trade-off limits between Ra and FM. 

For Ti-6Al-7Nb, the best Ra result was Ra
* = 0.46 μm, when using the levels of control variables 

that minimize Ra: x[Ra*] = [vc = 66.4 m/min, ap = 0.48, f = 0.06 mm/rev]T. By applying x[Ra*] to FM, FM 

= 121.35 N was acquired. A minimization of FM, FM
* = 91.05 N, was reached using x[FM*] = [vc = 62 

m/min, ap = 0.23 mm, f = 0.11 mm/rev]T. When applying these optimal levels to Ra, Ra = 1.02 μm is 

obtained. As can be noted, the turning of both alloys resulted in similar optimal levels of control 

factors. 

 

Figure 6 - Pareto frontier of Ra surface roughness and FM force using the uncoated inserts 

 

The Pareto frontiers in Figure 6 contain some possibilities for planning the turning process of 

titanium alloys. Each Pareto optimal solution has distinct Ra and FM values and related optimal levels 

of design variables. There is no dominated Pareto solution in both fronts, which gives the experimenter 

the reliability of selecting the most interesting solutions to each planning situation. To better explore 

these solutions, Table 4 demonstrates 11 of the 51 solutions plotted for each titanium alloy, with w1 as 

the weight that defines the Ra preference, 1  ̶  w1 as the weight associated with FM, and all the Pareto-

optimal levels of Ra and FM.  

 

Table 4 - Pareto optimal solutions for Ra and FM, Ti-6Al-4V and Ti-6Al-7Nb, Uncoated inserts 

w1 

Ti-6Al-4V Ti-6Al-7Nb 

Control factors’ levels Pareto solutions Control factors’ levels Pareto solutions 

vc ap f Ra FM vc ap f Ra FM 

m/min mm mm/rev μm N m/min mm mm/rev μm N 

0 62 0.24 0.11 0.94 92.8 62 0.23 0.11 1.02 91.1 



0.1 62 0.25 0.10 0.85 93.0 62 0.24 0.11 0.91 91.3 

0.2 62 0.26 0.10 0.76 93.4 62 0.25 0.10 0.81 92.1 

0.3 62 0.28 0.09 0.68 94.1 62 0.27 0.09 0.73 93.5 

0.4 62 0.31 0.08 0.61 95.3 63 0.29 0.09 0.65 95.5 

0.5 63 0.34 0.07 0.55 97.0 63 0.31 0.08 0.59 98.0 

0.6 63 0.37 0.07 0.51 99.4 63 0.34 0.07 0.54 101.3 

0.7 64 0.41 0.06 0.48 102.5 64 0.38 0.07 0.50 105.3 

0.8 65 0.43 0.06 0.47 106.2 65 0.41 0.06 0.47 110.1 

0.9 66 0.46 0.06 0.46 110.3 66 0.44 0.06 0.46 115.5 

1 66 0.48 0.06 0.46 114.5 66 0.48 0.06 0.46 121.4 

 

The distance between the Pareto-optimal solutions and the experimental solutions are shown in 

Figure 7. As can be observed in Figure 7a, with regard to Ti-6Al-4V, there is no experimental solution 

with better results than the Pareto-optimal solutions obtained through the NNC multi-objective 

optimization method. However, there is an experimental result, with Ra = 0.38 μm and FM = 132.3 N, 

that is not dominated by the Pareto solutions. implying that this solution may be comparable to such 

Pareto solutions, since it has little roughness, albeit with the trade-off of losing turning force. Since 

the optimized models of Ra and FM force are approximations, the Pareto solutions have confidence 

limits. When comparing the experimental values with the Pareto-optimal solutions, it is clear that the 

Pareto frontier brings better results with regard to these two variables that should be minimized. 

Regarding Ti-6Al-7Nb, in Figure 7b, it is notable that an experimental point dominates some 

Pareto-optimal solutions, i.e. the result with Ra = 0.42 μm and FM = 115.8 N. This can also be explained 

due to the statistical fluctuation expected for each solution, with respect to the Ra and FM models. 

However, the difference between this experimental result and the Pareto solutions is negligible. In 

general, the Pareto optimal solutions offered boundary possibilities to achieve optimal response results. 

In practice, the engineer may select the appropriate solution in Table 4 to each scheduling situation, to 

achieve desired Ra and FM levels by programming the associated levels of vc, ap and f. For both titanium 

alloys, the experimental results demonstrated a larger amplitude than the Pareto solutions. The Pareto 

solutions compose boundaries to explore the trade-off between roughness and turning force in the 

turning of titanium alloys. 

 



  

a) Ti-6Al-4V alloy b) Ti-6Al-7Nb alloy 

Figure 7 - Pareto frontier with experimental results for the uncoated inserts 

Figure 8 shows the overlaid contour plot for Ra and FM, with the correspondent design space 

values for each Pareto frontier when using the Ti-6Al-7Nb alloy. All contour plots were obtained with 

vc fixed in its individual optima, since vc was generally the cutting parameter that had the lowest effect 

on the responses, and in the Pareto-optimal solutions the variation in vc was inferior in percentage 

when compared to the variation in f and ap, as presumed through Table 4. Consequently, it can be 

observed in Figure 8 that, in the case of both alloys, the possible levels of ap and f provide interesting 

Ra and FM scenarios. It can also be noted, in the legend of the following figures, that the Pareto 

solutions in the design space denoted by “*” for Ti-6Al-4V (Figure 8a) and by “+” for Ti-6Al-7Nb 

(Figure 8b) are delimitated by the experimental constraint, which is a sphere since the central 

composite design was employed as the statistical experimental planning paradigm. Therefore, despite 

the fact that results with lower Ra and FM can be found inside the frontier observed in the design space, 

these solutions are not feasible, since the regression models of both responses keep their prediction 

properties only in the experimental region. 

 



  

a) Ti-6Al-4V alloy b) Ti-6Al-7Nb alloy 

Figure 8 - Overlaid contour plot of Ra and FM  

As illustrated in Figure 7 and Figure 8, the turning processes Ti-6Al-V and Ti-6Al-7Nb had 

similar experimental results, models and Pareto-optimal results. Therefore, it can be concluded that 

both alloys have similar machinability during the turning process. The models and optimal results 

obtained may be useful as a reference for engineers and other workers dealing with the dry turning of 

these important materials in several industrial sectors, such as the automotive and medical industries. 

For a conclusive visualization, Figure 9 is presented to corroborate the machinability correspondence 

of both alloys. The percentage of contribution of the most important effects to Ft is shown in Figure 

10(a), with ap followed by f as the most important effects to both titanium alloys. Figure 10(b) shows 

the most important effects to Ra, which were f – responsible for a large part of the contribution –, 

followed by the quadratic effect f2, in the case of both titanium alloys. 

 

  

a) FM force b) Ra surface roughness 

Figure 9 - Contribution of effects to Ti-6Al-4V and Ti-6Al-7Nb turning 

 



4. Conclusions 

This study assessed the turning processes of two important titanium alloys under dry condition. 

Cutting forces and surface roughness were investigated in experimental tests, and the results were 

discussed. They can be summarized as follows: 

✓ The experimental range of values of Ra surface roughness for the Ti-6Al-4V alloy was lower 

than Ti-6Al-7Nb alloy. However, the range of FM force for Ti-6Al-4V alloy was higher than Ti-6Al-

7Nb alloy. Statistically supported, uncoated insert had lower Ra and FM because it was used uncoated 

insets, ensuring a low contact area on the rake face, in addition to low cutting forces and roughness. 

✓ The statistical significance of the Analysis of Variance (ANOVA) method was supported by 

a good fit. Considering the control factors, with regard to both alloys, ap and f were statistically 

significant to FM, with a positive effect, while only f was significant to Ra, also with a positive effect. 

The quadratic effects were statistically significant only to f in the case of both the Ra and FM of Ti-

6Al-7Nb. 

✓ Response surface models were obtained for each insert in each titanium alloy. For both Ra 

and FM responses, the models demonstrated a good fit and can be employed to predict practical values 

of Ra and FM when varying turning conditions. 

✓ For the Ti-6Al-4V inserts, the multi-objective optimization through the Normalized Normal 

Constraint (NNC) method located the anchor point for Ra surface roughness with optimal control 

factors levels: x[Ra*] = [vc = 66.4 m/min, ap = 0.48 mm, f = 0.06 mm/rev]T, with Ra
* = 0.46 μm and 

FM = 114.5 N. In the other extreme, the anchor point of FM force was obtained: x[FM*] = [vc = 62 m/min, 

ap = 0.24 mm, f = 0.11 mm/rev]T, with FM
* = 92.8 N and μm Ra = 0.94 μm. Intermediate results were 

achieved, populating the Pareto frontier, allowing the experimenter to define the preferred results for 

each outcome by using weights. 

✓ The multi-objective optimization of the Ti-6Al-7Nb alloy acquired the following anchor 

point for Ra: x[Ra*] = [vc = 66.4 m/min,  ap = 0.48, f = 0.06 mm/rev]T, Ra
* =  0.46 μm and FM = 

121.35 N. With respect to the turning force, the anchor point was: x[FM*] = [vc = 62 m/min, ap = 0.23 

mm, f = 0.11 mm/rev]T, with FM
* = 91.05 N and Ra = 1.02 μm. The Pareto frontier stores options to 

attain intermediate scenarios considering this trade-off. For both titanium alloys the results in terms of 

Ra, FM and control factor levels’ vc, ap and f were very similar, ensuring similar machinability of both 

Ti-6Al-4V and Ti-6Al-7Nb. 
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