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A B S T R A C T

A railway system plays a significant role in countries with large territorial dimensions. The
Brazilian rail cargo system (BRCS), however, is focused on solid bulk for export. This paper
investigates the extreme performances of BRCS through a new hybrid model that combines
TOPSIS with a genetic algorithm for estimating the weights in optimized scenarios. In a second
stage, the significance of selected variables was assessed. The transport of any type of cargo, a
centralized control of the operation, and sharing the railway track pushing competition, and the
diversification of services are significant for high performance. Public strategies are discussed.

1. Introduction

The Brazilian rail cargo system (BRCS) has an extension of about 29,000 km deployed since the second half of the 19th century in
a dispersed and isolated way (Munhoz, n.d.) where modern and obsolete infrastructure of the railway track and rolling stock can be
found side by side. It is operated by private capital railway concessionaires broken down into subsystems that were granted by the
federal government between 1996 and 1999. The concession model included, cumulatively, the granting of the right to use the
railway along with the lease of the operational assets and the support facilities required for the operation. The concession term was
for 30 years in most cases. The BRCS subsystem is translated into a regional sector and verticalized monopoly (Marchetti and Ferreira,
2012) with low inter-modal competition, even though there are operational regulations that seek to promote the increase of supply
and competition on the network by means of the trackage right regime, where the access to the infrastructure of another con-
cessionaire with its own trains is done in exchange for a fee, or the haulage right regime, where the owner of the railroad operates
trains for another concessionaire in exchange for a fee (ANTT, 2011; Laurino et al., 2015).

The BRCS is heterogeneous, presenting different standards of efficiency among the operators and distinct physical and operational
characteristics (Marchetti and Wanke, 2017). The main cargo on the tracks are mineral and agricultural commodities for export with
a low diversification of scope, reaching up to 95% of its offer (EPL, 2016). It also includes different track gauges: metric (1.0 m),
broad (1.6 m), and mixed. The subsystems are installed in all regions of the country, but with low connectivity and integration among
them. There are railway sections with high daily circulation of trains and low idleness, but many stretches are little used or not used
at all due to the sinuous, extended, and inefficient geometry of the track or even shortage of supply or demand. The technology of the
operation comprises elements such as computers embedded in the locomotives, centralized control of the operation, auxiliary power
along critical stretches, and the ability to transport hazardous materials. Its average speed is low (ANTT, 2013; Marchetti and
Ferreira, 2012), which inhibits access to cargo of higher added value.
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Brazil has a cargo transportation modal network that is unbalanced when compared with countries of large territorial dimensions
(EPL, 2016). The insertion of rail transport is low (15%) while road transport is the highest with a 65% market share, including for
long distances trips. This is where the greatest economic, transportation, and environmental costs are concentrated. Public policies
should attempt to change this reality in the long term in order to rebalance the Brazilian transportation network, reducing trans-
portation and logistics costs, and the emission of pollutants produced from burning fuels in the transport sector in Brazil, which is
twice the transport average emission registered in the world (Ferreira et al., 2016).

As the BRCS has a heterogeneous performance focused on bulk for export presenting low average efficiency and an economic
impact lower than expected, the questions of this research are as follows: How can a high performance scenario be achieved in the
BRCS? What are the significant characteristics of the high performance scenario in the BRCS?

The performance of the railway sections, which are the stretches between rail yards, was analysed to answer these research
questions. The availability of a database with information of the physical and operational characteristics, transportation capacity,
idleness, and the type of regulation of the railway sections of each concessionaire network enabled innovative conclusions about the
entire BRCS’s performance, which would not have been found with the traditional analysis of aggregate data. There were 7,351
railway sections selected from 2013 to 2016. The database comes from the Network Statement drawn up every year by the con-
cessionaires and disclosed by the National Land Transportation Agency (ANTT, 2018).

This paper evaluates the efficiency of rail sections by using the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) that combined with a Differential Evolution optimization genetic algorithm simulates the optimized behaviour of the scores
in BRCS’s low and high performance scenarios.

The methodology proposed differs from studies already done in the literature. Several articles have already used a hybrid
methodology for analysing alternatives by using some genetic algorithm for a multi-objective optimization followed by TOPSIS for
ranking solutions in different areas of application, as indicated in Section 2. However, using a genetic algorithm of Differential
Evolution for identifying the weights to be assigned to the criteria selected in the TOPSIS model for building optimized scenarios was
an innovation. As to the best of our knowledge, a simulation of the extreme scenarios in a (railway) system based on the char-
acteristics of its network subparts (the rail sections) using a genetic algorithm to optimize the performance of the entire system
according to the TOPSIS scores of the subparts is an innovative contribution of this research.

The determinants of BRCS’s performance are revealed in the second stage and are additional contributions from the research. By
using a Tobit model, the significance of the contextual variables selected in each scenario was analysed such as the technologies
employed in the railroad operation, the type of cargo transported, the type of regulations regarding the use of the railway track
(restrictive or open), among others. The significant attributes of low and high performance scenarios were highlighted. By analysing
the score percentiles, the railway profile of each concessionaire was identified in the extreme deciles. The less efficient and most
efficient railway sections of each scenario can be identified, offering an important contribution of an administrative and managerial
nature.

The methodology proposed can be applied to different economic sectors treated as a network such as passenger and cargo railway
systems and energy or telecommunication transmission lines.

The remainder of this paper is organized as follows. Section 2 presents the literature review and indicates the gap found. Section 3
describes the methodology used to analyse the data. The data are presented and the results are discussed in Section 4. Public policies
to achieve high performance are discussed, as well as management insights due to the availability of the ranking of the con-
cessionaires’ railway sections per scenario. Section 5 concludes the discussion and shows the limitations of the research while giving
suggestions for new studies for going deeper into BRCS’s efficiency frontier.

2. Literature review

The objectives of the literature review were twofold. The first objective was to uncover the applications where there had been a
selection of multi-criteria alternatives using TOPSIS in the infrastructure and transport sectors, and more specifically in the railway
sector. The second more comprehensive objective was to identify the articles that used some genetic algorithm to solve multi-
optimization problems together with the TOPSIS methodology, including different areas of interest. The strategy was to investigate
how these methods, widely employed in studies that transcend the infrastructure, transport, and the railway sectors, were combined
in the literature, concluding whether there is an innovative application in the present study. A comprehensive survey of the literature
involved articles in English reviewed by peers on widely recognized databases.

2.1. TOPSIS in infrastructure, transport, and the railway sector

Several authors have used the TOPSIS methodology as a multi-criteria method for making decisions on ranking infrastructure
alternatives in their studies, whether alone or in combination with other methods. The uncertainty as to the weights of the criteria
was treated in different ways. The main methods to determine the criteria weights include Shannon Entropy, Analytic Hierarchy
Process (AHP), Fuzzy AHP, and Delphi Survey. Other authors have used the Fuzzy-TOPSIS method for judging the relevance of the
criteria, treating the uncertainty, and ranking the alternatives.

Askarifar et al. (2018) ranked the necessary public infrastructure requirements along the Mokran coast in Iran with Best Worst
Method and TOPSIS to determine the priorities. The results show that ports and private terminals are the best choices for investment
while security infrastructure, transport, and energy should be the public administration’s priorities. Keshavarz-Ghorabaee et al.
(2018) proposed a conceptual bridge design process under uncertainty by applying a modified Fuzzy TOPSIS method and compared
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the results with other multiple criteria decision making (MCDM) methods, concluding that the results were valid. Kannan et al.
(2009) interpreted the 15 alternatives for choosing a third-party reverse logistics provider (3PRLP) in India using Interpretive
Structural Modelling (ISM) and Fuzzy TOPSIS arriving at a decision-making tool for choosing a 3PRLP. Afful-Dadzie et al. (2015)
applied Fuzzy TOPSIS to create a framework for selecting states for aid facilities. Farajpour and Yousefli (2018) identified the
parameters that influence the supply chain information flow prioritized towards three criteria (measurability, being illustrative, and
parameters relevancy) and applied a Fuzzy TOPSIS method to rank the parameters. They concluded that supply chain hardware
capabilities and infrastructure; information software capabilities, sharing timeliness, and recency; and organizational rewards are the
highest priorities while internal and interpersonal communications, and users’ trust and tendency stand at the bottom of the ranking.
Liu and Wei (2018) explored risk factors through a survey and calculated the overall risk levels of public–private partnership (PPP)
projects for electric vehicle (EV) charging infrastructure with an integrated Fuzzy TOPSIS, then, ranked the alternatives. Rahdar and
Khalily-Dermany (2017) proposed an optimization model for time-resource allocation in wireless ad-hoc networks applying Fuzzy
TOPSIS to assign more appropriate time-slot to nodes, reaching the conclusion that the algorithm proposed is more efficient than the
available ones. Onat et al. (2016) used a Fuzzy MCDM and TOPSIS method to rank the life cycle sustainability performance of
alternative passenger vehicles. The results indicate that hybrid and plug-in hybrid EVs are the best alternatives for both Scenario 1
(existing electric power infrastructure in the US) and Scenario 2 (the electricity to power EVs is generated exclusively via solar
stations). Celik et al. (2013) applied an interval type-2 Fuzzy MCDM method based on TOPSIS and Grey Relation Analysis (GRA) to
estimate satisfaction and suggest improvements for public transport in Istanbul. Tian et al. (2018) proposed a hybrid method using
Fuzzy TOPSIS to manage MCDM problems and applied BWM (Best-Worst Method) to determine the weights with respect to different
criteria for solving a green supplier selection problem. Li et al. (2018) applied an improved entropy TOPSIS to evaluate the dis-
tribution capacity of 23 imported grain distribution nodes (IGDNs) of freight railways, waterways, and highways networks IGDNs,
using four measures of centrality - the relative importance of a city based on its connections with other cities. They selected
Guangzhou, Lianyungang, Shanghai, Tianjin, Chongqing, and Xi’an as the final imported grain distribution centres considering
government policies and the Belt and Road routes that transport grain into China. Yan et al. (2017) analysed the inland waterway
transportation congestion problem on the Yangtze River (China) using a hybrid cost-benefit ratio (CBR) and Fuzzy-TOPSIS to deal
with different congestion risk conditions and ambiguity. They found out that channel dredging and maintenance; and prohibition of
navigation are more cost-effective in high level congestion risk situation, while loading restriction; and crew management and
training are more significant in low level congestion risk condition. The results were compared with those obtained with other MCDM
methods, such as VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje), ELECTRE (ELimination Et Choice Translating
REality) and PROMETHEE (Preference Ranking Organization METHods for Enrichment Evaluation).

Applying a hybrid of the Fuzzy Delphi and TOPSIS methods, Pham et al. (2017) developed a methodology to choose the locations
of logistics centres. According to the authors, the most important factors are demand, closeness to market, production area, custo-
mers, and transportation costs, and the provinces of Ho Chi Minh City were the best location for logistics centres in Vietnam.
Jayasooriaya et al. (2018) applied a Delphi survey and TOPSIS to optimize green infrastructure treatment train configuration and the
sizing combinations for stormwater management in industrial areas. The authors used a Delphi survey to identify the environmental,
economic, and social performance measurements and to obtain the weights. The TOPSIS method was used to identify the optimum
from 10 alternatives.

Huang et al. (2018), with a focus on identifying the level of third-party logistics service sites based on the Chinese railway
stations, applied a two-stage model combining Entropy Weight Method (EWM) based on Shannon entropy and TOPSIS and concluded
that the eight first-class railway logistic bases are Beijing, Harbin, Xi’an, Wuhan, Nanjing, Guangzhou, Chongqing, and Taiyuan.
Another 28 cities were selected as the second-class railway logistic centres. Zhang et al. (2018) applied the structural Entropy-TOPSIS
model to evaluate the performance of a public transport priority implementation in the city of Wuhan from 2006 to 2015, reaching
the conclusion that the performance improved from poor to excellent. The weights were determined according to EWM. Bagheri et al.
(2018) investigated the conditions of the tourism infrastructure from different provinces of Iran and used the VIKOR and TOPSIS
methods to rank the cities according to the indicators selected. They used the Shannon Entropy method to determine the weights of
the indicators. The authors reached the conclusion that the Province of Tehran is under the best conditions and that the province of
Ilam is under the worst conditions.

Some authors used AHP to determine the weights of the selection criteria and combined with TOPSIS to rank the alternatives.
Zhao et al. (2018) applied complex network theory combined with entropy based TOPSIS to identify which cities are the optimal
consolidation centres of the China Railway Express operation according to a complex network (OBOR) aimed to open up new markets
to Chinese goods, and they selected the cities of Taiyuan, Xi’an, Zhengzhou, Wuhan, and Suzhou. They used AHP to weigh the
criteria. Moosivand and Farahani (2013) combined AHP and TOPSIS models to determine the factors attracting tourist in the Isfahan
province (Iran) and to rank the cities, reaching the conclusion that Isfahan and Kashan are the top two tourist destinations in the
province. Singh et al. (2018) used a Fuzzy AHP to determine the relative weights of the different criteria shortlisted and Fuzzy TOPSIS
to rank the third-party logistics (3PL) for a cold chain and to select the best 3PL based on performance. The major reasons behind the
top ranking are an emphasis on automation, innovation, tracking & tracing, and flexibility. Fabianowski and Jakiel (2018) used an
innovative integrated calculation algorithm that uses the modified extent analysis method on the Fuzzy AHP (EA FAHP) method to
obtain the weight vector of the criteria and Fuzzy TOPSIS to reflect the actual assessment processes of the technical condition of
railway culverts. Zhang and Xu (2009) used AHP to evaluate weight criteria and an extension TOPSIS with triangle fuzzy numbers to
determine the optimal choice in building or rebuilding projects of urban railway passenger stations.

Behzadian et al. (2012) identified that TOPSIS works satisfactorily across different application areas and then they conducted a
literature survey on TOPSIS applications and methodologies containing 266 papers from 103 journals since 2000 separated into
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diverse areas including Supply Chain Management and Logistics. Finally, applying a different approach, Liu et al. (2017) used an
Improved Analytic Hierarchy Process (IAHP) and EWM to calculate the weights and a cloud model to overcome the problem of
fuzziness and randomness in emergency railway decision-making.

2.2. The applications of a genetic algorithm together with TOPSIS

Other studies used genetic algorithms for solving multi-objective optimization problems especially together with TOPSIS for
ranking the alternatives. The interest of the research was to recognize the way that these methods were combined in the literature in
different areas of interest, concluding for an innovative application in the present study.

Cheng et al. (2009) applied the non-dominated sorting genetic algorithm (NSGA-II) to solve optimization functions and the TOPSIS
approach to identify the best solution from a Pareto optimal solution set. They reached the conclusion that the NSGA-II outperforms the
other genetic algorithms to help manufacturers find an appropriate collaborative manufacturing chain for manufacturing complex
products. Azadeh et al. (2011) created a hybrid genetic algorithm and TOPSIS simulation (HGTS) for determining the most efficient
number of operators and labour assignment in cellular manufacturing systems. The entropy method was used to estimate the weight of
the attributes. The authors concluded for the superiority and advantages of the HGTS proposed over TOPSIS, Data Envelopment
Analysis (DEA), and Principal Component Analysis (PCA). Azzam and Mousa (2007) applied a combination of a genetic algorithm and
the ∊ -dominance concept to solve the multi-objective reactive power compensation problem and used TOPSIS to assess the best solution
from a set of alternatives. The results demonstrate the capabilities of the technique proposed in a single run. Cheng et al. (2006)
presented a general framework for the multiple criteria parameter calibration problem by combining a genetic algorithm with TOPSIS
for a rainfall-runoff model for flood forecasting in China. TOPSIS gave the ranking order of alternatives (chromosomes) and the at-
tributes of multiple criteria are the flood characteristics. They concluded that the hybrid method is easier when compared with previous
studies and feasible and robust to be applied in practice. Huang and Tang (2005) adopted the Taguchi method, neural networks,
TOPSIS, and the genetic algorithm to develop an optimization system that evaluates simultaneously four qualities of as-spun poly-
propylene yarn rather than using engineering experience. The performance of the parameters was assessed with TOPSIS while the
parameter measurements and the parameter combination were optimized with the genetic algorithm. The authors showed that the
algorithm could obtain the smallest denier and breaking elongation, the second smallest denier variance, and the largest tenacity.
Taleizadeh et al. (2009) used a hybrid method of Pareto, TOPSIS, and genetic algorithm to solve multi-periodic inventory control
problems. Olçer (2008) employed a two-stage hybrid approach for solving a multi-objective combinatorial optimisation (MOCO)
problem in ship design. In the first stage, through an evolutionary process, a genetic algorithm was used (Frontier) to determine the set
of pareto-optimal solutions. TOPSIS was adopted to rank these solutions in the second stage. The author concluded that the model can
be applied in various MOCO problems in ship design and shipping. Goyal et al. (2012) applied a NSGA-II to identify the pareto frontiers
for machine selection based on machine reconfigurability and operational capability along with cost. Shannon entropy weighted the
attributes and TOPSIS was employed to rank the pareto frontiers. The study reveals that the hybrid approach has a great potential in
handling the reconfigurable manufacturing system optimisation. Li et al. (2008) presents an integrated methodology for designing and
optimizing a chemical process based on the green chemical principles. They performed a multi-objective mixed integer non-linear
mathematical model considering environmental and economic factors solved by NSGA-II. TOPSIS was used for identifying the set of
optimal parameters. Dhanalakshmi et al. (2011) applied a modified NSGA-II (MNSGA-II) to solve the combined economic and emission
dispatch problem with conflicting objectives such as fuel cost and emission. TOPSIS was used to identify the best solution. Jeyadevi
et al. (2011) compared the performance of MNSGA-II, NSGA-II, and multi-objective particle swarm optimization (MOPSO) with respect
to multi-objective performance measures optimal reactive power dispatch. TOPSIS was applied to determine a best compromise so-
lution. The authors reached the conclusion that MNSGA-II performs better than NSGA-II.

The application of a genetic algorithm based on NSGA-II to simultaneously solve multi-objective functions and of decision making
methods, including TOPSIS, LINMAP, and Fuzzy Bellman-Zadeh models, to acquire the ultimate optimum solution have been done in
literature in several areas. Ahmadi et al. used NSGA-II and TOPSIS and LINMAP to solve the optimum solution in refrigeration
systems (Ahmadi et al., 2016a, 2016b). More recently, Ahmadi et al. used NSGA-II and TOPSIS, LINMAP, and Fuzzy Bellman-Zadeh
models to solve the optimum solution in hydrogen production system, and Diesel cycle (Ahmadi et al., 2018a, 2018b). Beyond the
application of genetic algorithms together with TOPSIS, Chen et al. (2019) developed a hybrid atmospheric pollutant concentration
forecasting model based on a particle swarm optimization (PSO) algorithm, the support vector machine (SVM) method, and a K-
means clustering algorithm, conducting a case study in Beijing. Mohammadi et al. (2018) applied a multi-objective optimization with
a genetic algorithm (NSGA-II) to satisfy the exergy efficiency and product cost rate at the same time of a combined gas turbine, steam,
and organic Rankine cycle. The minimum distance method was applied to choose the optimal point. Wang et al. (2018) proposed two
distance methods to deal with the problem of linguistics preference information under multi-criteria group decision making and
applied the TOPSIS-VIKOR method (Baccour, 2018) and TODIM (an acronym in Portuguese for interactive and multiple attribute
decision making) to weight and order the probabilistic alternatives.

The gap in the literature was found, after identifying the articles that used TOPSIS in the infrastructure, transport, and in the
railway sectors, whether alone or in combination with other methods, and the studies that especially applied TOPSIS together with
genetic algorithms in diverse areas. To the best of our knowledge, no study has been developed using a genetic algorithm for
determining the weights of the criteria selected in the TOPSIS model in order to build optimized scenarios, which constitutes the gap
that this article seeks to fill. The use of railway sections is also an innovation that makes it possible to associate efficiency with the
physical and operational characteristics, the transportation capacity, idleness, and the type of regulation of each railway section.

Table 1 summarises the references.
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3. Methodology

The methodology proposed uses a genetic algorithm of a differential evolution to change the weights of the criteria (mutation)
and to optimize the objective function, the median of the TOPSIS scores of the railway sections, simulating virtual optimized

Table 1
References summary.

authors year sector methodology weighting/ranking method

TOPSIS in infrastructure, transport, and railways
Askarifar et al. 2018 public infrastructure BWM TOPSIS
Keshavarz-Ghorabaee et al. 2018 bridge design (infrastructure) Fuzzy-TOPSIS Fuzzy-TOPSIS
Kannan et al. 2009 third-party logistics ISM and Fuzzy-TOPSIS Fuzzy-TOPSIS
Afful-Dadzie et al. 2015 aid facilities (infrastructure) Fuzzy-TOPSIS Fuzzy-TOPSIS
Farajpour and Yousefli 2018 supply chain Fuzzy-TOPSIS Fuzzy-TOPSIS
Liu and Wei 2018 electric vehicle infrastructure Fuzzy-TOPSIS Fuzzy-TOPSIS
Rahdar and Khalily-Dermany 2017 wireless network (infrastructure) Fuzzy-TOPSIS Fuzzy-TOPSIS
Onat et al. 2016 electric vehicle infrastructure Fuzzy MCDM Fuzzy-TOPSIS
Celik et al. 2013 public transport Fuzzy MCDM based on TOPSIS and

GRA
Fuzzy-TOPSIS and Fuzzy GRA

Tian et al. 2018 green supplier Fuzzy TOPSIS BWM
Li et al. 2018 grain distribution centre TOPSIS EWM
Yan et al. 2017 inland waterway transportation Fuzzy-TOPSIS CBR/Fuzzy-TOPSIS, VIKOR, ELECTRE

and PROMETHEE (I and II)
Pham et al. 2017 logistic centre hybrid Fuzzy method Fuzzy Delphi/TOPSIS
Jayasooriaya et al. 2018 green infrastructure TOPSIS Delphi survey/TOPSIS
Huang et al. 2018 third party logistics TOPSIS EWM
Zhang et al. 2018 public transport TOPSIS EWM
Baghery et al. 2018 tourism infrastructure VIKOR and TOPSIS EWM
Zhao et al. 2018 Railways TOPSIS AHP (two-phased method)
Moosivand and Farahani 2013 tourism infrastructure TOPSIS AHP
Singh et al. 2018 third-party logistics Fuzzy-TOPSIS Fuzzy AHP
Fabianowsky and Jakiel 2018 Railways Fuzzy-TOPSIS Fuzzy AHP
Zhang and Xu 2009 Railways Fuzzy-TOPSIS AHP
Behzadian et al. 2012 diverse (including supply chain

management and logistics)
TOPSIS –

other reference
Liu et al. 2017 Railways cloud model improved AHP and EWM
genetic algorithm together with TOPSIS
Cheng et al. 2009 Manufacturing NSGA-II TOPSIS
Azadeh et al. 2011 Manufacturing HGTS EWM/TOPSIS
Azzam and Mousa 2007 Manufacturing genetic algorithm and ∊ -dominance

concept
TOPSIS

Cheng et al. 2006 flood forecasting genetic algorithm TOPSIS
Huang and Tang 2005 Manufacturing Taguchi method, neural networks,

TOPSIS, genetic algorithm
TOPSIS

Taleizadeh et al. 2009 inventory control hybrid Pareto, TOPSIS, genetic
algorithm

TOPSIS

Ölçer 2008 ship design MOCO and Frontier (genetic
algorithm)

TOPSIS

Goyal et al. 2012 machine selection NSGA-II EWM/TOPSIS
Li et al. 2008 chemical process NSGA-II TOPSIS
Dhanalakshimi et al. 2011 emission dispatch (power system) MNSGA-II TOPSIS
Jeyadevi et al. 2011 power dispatch MNSGA-II, NSGA-II, MOPSO TOPSIS
Ahmadi et al. 2016a refrigeration system NSGA-II TOPSIS, LINMAP
Ahmadi et al. 2016b refrigeration system NSGA-II TOPSIS, LINMAP
Ahmadi et al. 2018a hydrogen production system NSGA-II TOPSIS, LINMAP, Fuzzy
Ahmadi et al. 2018b Diesel cycle NSGA-II TOPSIS, LINMAP, Fuzzy Bellman-Zadeh
other references
Chen et al. 2019 pollutant concentration forecasting hybrid PSO algorithm-SVM method K-means clustering algorithm
Mohammadi et al. 2018 gas turbine NSGA-II minimum distance method
Wang et al. 2018 – two distance methods TOPSIS-VIKOR and TODIM

TOPSIS = Technique for Order Preference by Similarity to Ideal Solution; BWM = Best-Worst Method; ISM = Interpretive Structural Modelling;
MCDM = Multiple Criteria Decision Making; GRA = Grey Relation Analysis; NSGA-II = Non-dominated Sorting Genetic Algorithm;
HGTS = Hybrid Genectic algorithm and TOPSIS Simulation; MOCO = Multi-Objective Combinatorial Optimisation; MNSGA-II = Modified NSGA-
II; MOPSO = Multi-Objective Particle Swarm Optimization; PSO = Particle Swarm Optimisation; SVM = Support Vector Machine
EWM = Entropy Weight Method; CBR = cost-benefit ratio; AHP = Analytic Hierarchy Process; VIKOR = VIseKriterijumska Optimizacija I
Kompromisno Resenje a Serbian name; ELCTRE = ELimination Et Choice Translating REality; PROMETHEE = Preference Ranking Organization
METHods for Enrichment Evaluation; LINMAP = Linear Programming Technique for Multidimensional Analysis of Preference;
TODIM = interactive and multiple attribute decision making (Portuguese acronym)
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scenarios of low and high performance whose characteristics will be evidenced by a Tobit model. The methods are presented below.

3.1. Topsis

The Technique for Order Preference by Similarity to Ideal Solution developed by Hwang and Yoon (1981) is a multi-criteria
decision making (MCDM) technique based upon the concept that the alternative chosen should have simultaneously the shortest
distance to a (positive) ideal solution (A+) and the farthest distance from a negative ideal solution (A-). The ideal solution maximizes
the benefit and also minimizes the total cost while the negative-ideal solution minimizes the benefit and also maximizes the total cost
(Azadeh et al., 2011). The TOPSIS method measures the weighted Euclidian distances, as showed in Fig. 1.

The TOPSIS analysis starts with normalizing the decision matrix that can reduce the computational problems that may occur due to
different units and measurements of the criteria selected (Jayasooriya et al. 2018). The successive steps present the TOPSIS method.

Step 1 is to construct the normalized decision matrix (NDM) whose element rij is calculated by:

=
=

r
x

x
ij

ij

i
m

ij1
2

(1)

where xij = outcome of ith alternative with respect to the jth criterion.
Step 2 is to multiply the columns of the NDM by the associated weights (wj), finding the weighted NDM with (vij) components.

=v w r( ) ( . )ij mxn j ij mxn (2)

Step 3 is to determine the ideal solution [A+], which is the best performance in each positive and negative criteria (the perfect
alternative), and negative ideal solution [A-].

= = =+ + + + +A v j J v j J i m v v v v{(max | ), (min | ')| 1, 2, , } { , , , , , }i ij i ij j n1 2 (3)

= = =A v j J v j J i m v v v v{(min | ), (max | Â)| 1, 2, , } { , , , , , }i ij i ij j n1 2 (4)

where J = {j = 1, 2, …, n | j, associated with benefit criteria} and
J́ = {j = 1, 2, …, n | j, associated with cost criteria}.
Step 4 is to calculate the Euclidean distance for vectors [A + ] and [A-] for each component of the sample from the ideal

alternative ( +vj ) and from the non-ideal alternative (vj ), saving [ +di ] and [di ], where:

= = < <+
=

+ +d v v d( ) , i 1, 2, , m; 0 1i j

n
ij j i1

2
(5)

= = < <
=

d v v d( ) , i 1, 2, ,m; 0 1i j

n
ij j i1

2
(6)

Step 5 is to calculate the relative closeness of a particular alternative (Ai) to an ideal solution [ξ], where:

=
+

< <+
d

d d( )
; 0 1i

i i (7)

Step 6 is to rank the alternatives by the highest scores [ ξ ].
In the TOPSIS method, the relative importance of each criteria is exogenously defined, which is different from other non-

Fig. 1. Euclidean distances to the ideal and negative-ideal solutions. Source: Hwang, C. L. and Yoon, K. (Hwang and Yoon 1981).
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parametric MCDM models that determine performance levels of units. Although computationally simple and with no constraints as to
the number of criteria, determining the weights can be an issue for the researcher (Aye et al., 2017). Besides, the TOPSIS method does
not offer details about the determinants of the scores. To solve these issues, a genetic algorithm was applied to determine the weights
considering the optimized objective function, thus building two extreme scenarios. In a second stage approach, the Tobit regression
revealed the determinants of the scores according to the different optimal scenarios found.

3.2. Genetic algorithm

The genetic algorithm (GA) is one of the optimization algorithms, usually called evolutionary algorithms (EA), which was created
by Holland (1975) in the 1960 s inspired by the process of natural selection. It is commonly used to generate high quality solutions for
global and combinatorial optimization by bio-inspired logical operators. The solution (chromosome) is repeatedly evolved until the
best solution is attained. The GA creates a population of solutions and applies genetic operators (mutation and crossover) to evolve
the solutions in order to find the best one(s) (Azadeh et al., 2011).

In the 1990s, Storn and Price (1977) developed the evolution strategy named differential evolution (DE). The DE algorithm is parti-
cularly well-suited to find the global optimum of a real-valued function in a wide variety of fields, including operation research. The
members of successive generations are more likely to represent the global minimum of the objective function, the optimization process
(Ardia et al., 2011a). The DE algorithm performs well with variables with distinct distributions and demands a considerable but manageable
processing time. The implementation of DE using R uses the DEoptim package, first published by Ardia in 20051 (Ardia et al., 2016).

Each generation transforms the initial population. DE disturbs the current population members x g1, with a mutant, a trial para-
meter vector vi g, , by choosing randomly three members of the population x x x, andr g r g r g0, 1, 2, , which are the ones more likely to
minimize the given objective function.

= +v x F x x·( )i g r g r g r g, 0, 1, 2, (8)

where

i indexes the vectors that make up the population and g indexes the generation
F is a scale factor, typically less than 1.

Mutations continue until all population members have been mutated or rand > CR, where rand is the random number from μ
(0,1) and CR is a crossover probability CR ∊ [0,1], the fraction of the parameter values that are copied from the mutant. The objective
function value associated with v (children) is calculated. If a trial vector vi g, has equal or lower objective function value than vector
xi g, , vi g, replaces xi g, in the population, otherwise xi g, remains. The algorithm stops after a set number of generations or after the
objective function value has been reduced below some threshold (Ardia et al., 2011a).

The use of a genetic algorithm to determine the weights of the TOPSIS model, simulating optimized scenarios of a production
system based on the performance of its subparts, is an innovative approach of this research. Subsection 4.3 presents the pseudo-code
with the application of the genetic algorithm.

3.3. Tobit model

The stochastic model proposed by Tobin (1958) describes the relationship between a non-negative latent variable and the in-
dependent variable (vector). The latent variable yt is linearly dependent on xt via a parameter β. The error term utcaptures the random
influences from the relationship.

= + + >y x u x u, if 0t t t t t (9)

= +y x u0, if 0t t t (10)

= ut 1, 2, ,N N(0, )t
2

where N is the number of observations, yt is the dependent variable, xt is the vector of independent variables, is the vector of
unknown coefficients, and ut is the error term with normal distribution N (0, 2).

Because of its left censored characteristic, the Tobit model is well adequate for TOPSIS scores as the dependent variable of the
regression. In the second stage, the censored regression is applied to evaluate the sign and significance of the contextual variables on
the performance scores and is an additional contribution of this research.

4. Database, results, and discussion

4.1. Exploratory analysis

There were 7,351 railway sections selected from 2013 to 2016. The database comes from the Network Statement drawn up every

1 The results presented were obtained with the R software version 3.3.4 available at cran (https://cran.r-project.org/).

D. Marchetti and P. Wanke Transportation Research Part E 135 (2020) 101858

7



year by BRCS’ concessionaires and disclosed by ANTT (ANTT, 2018). The errors (railway sections with a length or installed capacity
equal to zero) and the missing data that disqualify the railway section for the purposes of the study (installed capacity, minimum
curve radius, ramp, dangerous cargo, embedded equipment, type of traffic control, number of operational days per year, or linked
capacity not informed) were excluded. Railway sections with a linked capacity equal to zero were considered to be one hundred
percent idle. Table 2 presents the descriptive statistics of the quantitative variables that characterize BRCS’s railway sections. The
positive and negative variables used in the TOPSIS model are highlighted.

Figs. 2 and 3 show the behaviour of the idleness of the railway sections for each BRCS operator. Fig. 2 presents the idleness
boxplot while Fig. 3, in a complementary way, represents the profile of the railway network’s idleness for each concessionaire,
whether small, medium, or high. Railway sections with idleness less than or equal to 10% are considered low idleness, idleness above
10% and less than or equal to 50% are considered medium idleness, and idleness above 50% are considered high idleness. It is easy to
observe that the average idleness of the BRCS is high and greater than 60% (Fig. 2) and that the railway sections used the most (low
idleness) do not exceed 10% of the length of the network of each concessionaire, except for the concessionaires EFC and MRS (Fig. 3).
The concessionaires with their railway network less than 50% idle are EFC, MN, EFVM, and MRS, which not surprisingly are the most
efficient ones (Marchetti and Wanke, 2017) (Fig. 3).

Table 2
Data statistics.

variable unit type min Median mean Max sd

rail section length [km] – 0.11 12.37 15.49 225.00 13.88
predominant gauge [m] p 1.00 1.00 – 1.60 0.26
minimum curve radius [m] p 0.00 225.00 326.80 5,292.00 350.85
# operational days per year [days] p 0.00 365.00 360.70 365.00 26.24
installed capacity [trains/day] p 0.70 9.10 15.81 223.20 19.63
linked capacity [trains/day] p 0.00 2.50 6.96 72.50 11.36
idleness [trains/day] n −2.00 5.30 8.85 176.50 11.93
bottleneck [trains/day] p 0.00 34.90 39.32 200.00 30.58
linked capacity.rail section length [trains.km/day] p 0.00 36.29 87.01 4,650.75 230.86
increasing ramp tax [%] n 0.00 1.00 0.97 10.00 0.81
auxiliary power [hp] n 0.00 0.00 525.40 12,202.00 1,944.03
percentage of idleness [%] n −100.00 65.10 60.68 100.00 30.58

p = positive; n = negative; idleness = [installed capacity - linked capacity]; bottleneck = [linked capacity/installed capacity*100]; percentage of
idleness = [(1- linked capacity/installed capacity)*100]; # rail sections = 7,351 (2013–2016); negative values for idleness means over utilization
of the rail section.

Fig. 2. Boxplot of rail section idleness by concessionaire.
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4.2. TOPSIS scores

Positive and negative variables of the TOPSIS model are presented in Table 1. When the value of the positive variables increases, it
is approaching the ideal solution, and the inverse occurs with the value of the negative variables. Fig. 4 shows the histogram of the
scores of the railway sections obtained from the TOPSIS model considering the positive and negative variables with equivalent
weights and equal to 1 (medium scenario). The median of the scores is low (0.38) due to the high idleness of the BRCS.

The TOPSIS scores of the railway sections in the medium performance scenario were separated by deciles, making it possible to
interpret the frequency distribution profile of the sections by concessionaire according to the scores. The first decile is the set of the
10% least efficient railway sections (medium scenario qt 10) and the last decile is the set of the 10% most efficient railway sections
(medium scenario qt 90).

Fig. 5 shows the boxplot and histogram of the TOPSIS scores of the railway sections per concessionaire considering three different
situations in the medium performance scenario. On the left, the graph represents the first decile (medium scenario qt 10), the low

Fig. 3. Relative extension of the railway network according to idleness profile by concessionaire.

Fig. 4. Histogram of the TOPSIS scores of the railway sections in the medium performance scenario.
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performers, while on the right the graph represents the last decile (medium scenario qt 90), the high performers, and the integral
medium scenario is in the centre. The highest histograms on the left show the largest amount of railway sections with the lowest
scores, which are located in concessionaires MO, MP, MRS, and MS. To the right, the concessionaire MRS also holds the highest
amount of sections with the best scores, showing heterogeneity. The railway sections of concessionaires EFC and EFVM, the most
efficient ones, present the best scores and are concentrated in the last decile, as shown in the medium scenario qt 90 boxplot in the
centre.

4.3. Optimization scenarios

As commented in Section 3, a genetic algorithm was used to modify in an evolutionary way the weights applied to each one of the
positive and negative variables of the TOPSIS model, creating new generations of values for the scores, and finally, after a limited
interaction number, obtaining optimized scenarios (low and high performance). The objective function was the median of the scores.
The reason for using the Differential Evolution Optimization (DEOptim) algorithm (Ardia et al., 2011a, 2011b) is due to the fact that
it works well with variables of different distributions and because its processing time is manageable.

The optimization process took place in accordance with the pseudo code from Table 3. First, a random drawing was done without
replacement of eight railway sections from each concessionaire in order to represent the heterogeneous profile of the BRCS. The sample
size was defined considering a population of 7,351 railway sections, a confidence interval of 95%, and an error lower than 10%. Next,
the highest and lowest median value of the TOPSIS scores from the sample was determined through a maximization (high performance)
and minimization (low performance) process by applying the differential evolution algorithm, saving the vector of weights assigned to
the sample’s variables. A bootstrapping was implemented, generating 100 new samples. At the end of the processing, the average
weights of each scenario were determined. Finally, the TOPSIS scores of the railway section population was calculated considering the
optimized weights in the high and low performance scenarios. The objective of building extreme scenarios was to gather evidences that
characterize these scenarios, making feasible this way to point out the planning guidelines needed to increase BRCS’ efficiency.

Fig. 5. Boxplot and histogram of the TOPSIS scores of the railway sections in three different conditions in the medium performance scenario.
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Table 4 summarises the optimized weights in the low and high performance scenarios resulting from the optimal solutions found.

Fig. 6 illustrates the density plot showing the distribution of the TOPSIS scores according to the low, medium, and high per-
formance scenarios. The x-axis shows the score values and the y-axis presents the probability density function (kernel density esti-
mation). One can note that the frequency distribution behaviour of the optimized scores is consistent with the pseudo-code’s strategy
(Table 3).

4.4. Tobit model results

The Tobit model shows the effect of the contextual variables selected on the scores in different scenarios (dependent variable).
The independent variables selected were the relative performance of the operators in relation to benchmarking (EFC), the tech-
nologies employed in the railroad operation (hazardous cargo, embedded equipment, and track control), the type of cargo trans-
ported (agricultural and general cargo), and the type of regulation regarding the use of the railway track (restrictive or open). Table 5
presents the results, including coefficient estimates and the significance of the variables according to low, medium, and high per-
formance scenarios. It is worth noting that the transport of all type of cargo, the centralized control of the operation, and the sharing
of the rail track are significant for high performance.

Table 4
Weights applied to the TOPSIS variables in the optimized scenarios.

variable high performance scenario low performance scenario

predominant gauge 0.20824 0.22204
minimum curve radius 0.02875 0.07779
# operational days per year 1.01578 0.20191
installed capacity 0.01852 0.15048
linked capacity 0.02165 0.24341
idleness 0.16800 0.01491
bottleneck 0.05880 0.06297
linked capacity.rail section extension 0.01114 1.82255
increasing ramp tax 0.08802 0.03055
auxiliary power 1.83682 0.01126
percentage of idleness 0.06463 0.08182

Fig. 6. TOPSIS score density according to low, medium, and high performance scenarios.

Table 3
Pseudo code.

1. Random sort of 8 railway sections per operator without replacement (s = 112, N = 7,351; CI = 95%; error = 10%)
2. Optimize the objective function value with the DE algorithm considering the high (maximization) and the low (minimization) scenarios for each sort, saving
the results (weights)

3. Execute bootstrapping (n = 100)
4. Determine the mean of the weights applied to each positive and negative variable for the high and low scenarios (n = 100)
5. Calculate the TOPSIS scores with the optimized weights for the high and low scenarios considering all railway sections. End of process.

s = sample size; N = number of railway sections; CI = confidence interval; n = number of bootstrapping repetitions.
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Fig. 7 illustrates the evolution of the behaviour of the coefficients of the Brazilian railway operators, the diverse characteristics
employed, the main cargo type transported, and the legislation type according to the low, medium, and high performance scenarios,
facilitating the interpretation of the results.

Table 5
Tobit regression results.

type of variable variable Scenarios

low performance medium performance high performance

Estimate Signif estimate Signif estimate signif

(Intercept) 0.29584 *** 0.46931 *** 0.99672 ***
Brazilian railway operators EFPO −0.33434 *** −0.09776 *** 0.01007

EFVM −0.23545 *** −0.07398 *** 0.02904
FCA −0.33585 *** −0.10265 *** −0.01549
FNSTC −0.33604 *** −0.10588 *** −0.02864
FNSTN −0.32834 *** −0.09727 *** 0.00025
FTC −0.32816 *** −0.10291 *** 0.01366
FTL_TLSA −0.33214 *** −0.10271 *** −0.06615 **
MN −0.30021 *** −0.09137 *** −0.01819
MO −0.33380 *** −0.11197 *** −0.11573 ***
MP −0.32328 *** −0.10242 *** −0.08669 ***
MRS −0.29884 *** −0.09276 *** −0.09912 ***
MS −0.33384 *** −0.10741 *** −0.02187

diverse characteristics hazardous_cargo (y = 1/n = 0) 0.00472 ** 0.00243 ** −0.03032 ***
embedded_equipment (y = 1/n = 0) 0.03971 *** 0.00786 *** −0.07184 ***
track_control (CCO = 1/local = 0) 0.01065 *** 0.00614 *** 0.01544 *

cargo type agricultural 0.00138 0.00320 . 0.05397 ***
general_cargo −0.00382 −0.00172 0.08217 ***

legislation type restricted 0.00155 −0.00032 −0.03781 ***

Signif codes: 0 |***|; 0.001 |**|; 0.01 | * | ; 0.5 | . |; 1 | |
EFC = Estrada de Ferro Carajás S.A; EFPO = Estrada de Ferro Paraná Oeste S.A; EFVM = Estrada de Ferro Vitória a Minas S.A; FCA = Estrada de
Ferro Centro-Atlântica S.A.; FNSTC = Ferrovia Norte Sul Tramo Central; FNSTN = Ferrovia Norte Sul Tramo Norte; FTC = Ferrovia Tereza Cristina
S.A.; FTL = Ferrovia Transnordestina Logística S.A.; MN = Rumo Malha Norte S.A.; MO = Rumo Malha Oeste S.A.; MP = Rumo Malha Paulista
S.A.; MRS = MRS Logística S.A.; MS = Rumo Malha Sul S.A.; TLSA = Transnordestina Logística S.A.; TLSA (2013–2014), FTL (2015–2016).
CCO = centralized control of the operation

Fig. 7. Coefficients behaviour of contextual variables according to the scenario.
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Considering the upper-left graph of Fig. 7, one can note that the performance of the concessionaires in low and medium performance
scenarios is heterogeneous and significantly distant from the benchmark (negative coefficients). In the high performance scenario,
however, there is evolution and convergence in the values of the coefficients showing much less dispersion, indicating improvement in
BRCS’s overall performance. The concessionaires that transport general and agricultural cargo (EFPO and FNSTN) showed a reversal in
their coefficients signal (negative to positive). Considering the upper-right graph of Fig. 7, one can observe that the use of control centre of
operations (CCO), thus bringing more safety to the railway's operation, remained significant in all scenarios, making it the most significant
technology to be employed to increase BRCS’s efficiency. Considering the lower-left graph of Fig. 7, one can note that, differently from the
low and medium performance scenarios, the transportation of agricultural cargo and general cargo is significant in a high performance
scenario. The transport of all types of cargo is significant for high performance. The reversal of the signal found in the coefficients of the
concessionaires transporting agricultural and general cargo (EFPO and FNSTN) brings robustness to the evidence. Finally, considering the
lower-right graph of Fig. 7, one can observe that the restrictive regulation presents significantly negative coefficients in the high per-
formance scenario, meaning that the regulations that encourage competition between operators through sharing the use of railway sections
(open access) contributes significantly to the scores.

4.5. Analysis of the percentiles of the optimized scenarios

The TOPSIS scores of the railway sections in the low and high performance scenarios were separated by deciles, making it possible
to interpret the frequency distribution profile of the sections by concessionaire according to the scores. The first decile is the set of the
10% least efficient railway sections (low scenario qt 10 and high scenario qt 10), the low performers, and the last decile is the set of
the 10% most efficient railway sections (low scenario qt 90 and high scenario qt 90), the high performers. They assist in under-
standing the extremes, where the critical railway sections are found, requiring greater attention from administrators for purposes of
efficiency gains and possible references.

Fig. 8 shows the boxplot and the histogram of TOPSIS scores of the railway sections from three different situations considering the
low performance scenario.

Fig. 8. Boxplot and histogram of the TOPSIS scores of the railway sections in three different conditions in the low performance scenario.
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Some aspects should catch the attention of administrators and those responsible for public policies. On the left, the higher
histograms of concessionaires FCA and MS represent the largest quantity of low performing railway sections. To the right, the high
histogram of concessionaire MRS represents the largest amount of high performing railway sections. In the centre, considering all the
sections, the boxplots of the benchmark concessionaires EFC and EFVM show that they have the railway sections with the highest
scores and best operational conditions.

Fig. 9 plots the same graphs of Fig. 8, now considering the high performance scenario.

To the left, the boxplots of concessionaires MO, MRS, MP, and MS show that they hold the lowest performing critical railway
sections. On the right, the boxplots of concessionaire EFC and the outlier sections of concessionaires MRS and FCA point out the best
railway condition. At the centre, considering all the railway sections, the boxplot of concessionaire FTL shows the worst profile
among all operators.

Fig. 10 shows the scatterplot of the cumulative extension of the railway sections (x-axis) by the number of sections (y-axis) per
concessionaire. The heterogeneity (higher dispersion) of the low performance scenario in the first decile (low scenario qt 10) and in
the last decile (low scenario qt 90) is replaced by the greater homogeneity (lower dispersion) of the high performance scenario in the
first decile (high scenario qt 10) and in the last decile (high scenario qt 90). In the high performance scenario, the performance of the
operators is much more homogeneous between the percentiles, confirming the results of the regression.

Fig. 9. Boxplot and histogram of the TOPSIS scores of the railway sections in three different conditions in the high performance scenario.
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4.6. Statistical tests between scenarios

Table 6 provides the results of two statistical tests applied into the variables used in the TOPSIS model (upper part) and one
statistical test applied into contextual variables used in the Tobit model (lower part). It shows the statistical results found between the
low and high performance scenarios according to low performers (left part) and high performers (right part) quartiles.

The Komolgorov-Smirnov test was used (two sample K-S test) to compare the distribution found in the median of the (positive and
negative) variables used in the TOPSIS model between the low and high performance scenarios according to the low and high
performers quartiles. The distributions are significantly different between the scenarios except for the variables ‘predominant gauge'
and 'number of operational days per year' for the high performers, whose basic hypothesis (same distribution) was not rejected. The
results of the Willcox Test, the difference between the medians, follow the results found in the K-S test except with the significance of
the 'predominant gauge' for the high performers.

The proportion test (prop test) compared the proportion of existing railway sections between the low and high performance
scenarios according to the low and high performers quartiles. It suggests that there is a significant difference between the scenarios,
but mostly with the low performers. Considering the railway sections part of quartile 10, the basic hypothesis (same proportion) was
not rejected for two concessionaires (FTL-TLSA, MO), the Mid-West region (MW), and all the technologies tested (transportation of
hazardous material, embedded equipment, and CCO). As for the quartile 90, the basic hypothesis was not rejected for five con-
cessionaires (EFC, FNSTN, FTC, MN, and MO), the North and Mid-West regions (N and MW), the CCO technology, and the restrictive
regulation. Table 6 presents the results.

Fig. 10. Plot of the number of railway sections × cumulative extension (km) per concessionaire, according to the extreme scenarios.
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4.7. Public and management policies

Evidences for public and management policies were obtained in two ways. First from the significance of the variables selected in
the railway section scores from each performance scenario. The results suggest that, in view of the common objective of increased
efficiency, the regulator authority should pursue a competitive regulatory structure by removing restrictions or barriers to enter and
exit and should encourage sharing the railway section among operators. In the high performance scenario, concessionaires transport
any kind of cargo and have a homogeneous operating performance, reducing the differences among the operators as observed today
(evidence from the low and medium performance scenarios). The use of CCO technology for increasing the railway operation safety
also contributes to high performance.

The second set of evidences is the availability for identifying the efficiency of the railway sections of each concessionaire. They
can be classified in an ascending/descending order according to the score in each scenario and identify which sections are part of
quartile 10 (low performers) and quartile 90 (high performers), facilitating the managerial actions for improvement. This is useful for
both managing the railway track as well as for the regulating and inspecting bodies. It highlights what each operator should em-
phasize or reference to increase efficiency. Greater homogeneity on the network should be pursued. Tables 7 and 8 in the supplement
present a list of high (low) performing railway sections of each concessionaire in the high (low) performance scenario, indicating
length, region, idleness, predominant type of cargo, and TOPSIS score.

5. Conclusions

This paper analyses the efficiency of BRCS’s railway sections in the period 2013–2016 using a hybrid method and the significance
of the variables selected in the optimized scenarios. The hybrid methodology used applied a differential evolution genetic algorithm
to obtain the weights of the variables selected in the TOPSIS model, building optimized extreme scenarios. The methodology pro-
posed differs from studies already done in the literature with the application of hybrid models with a genetic algorithm for a multi-
objective optimization and TOPSIS to rank the optimal solutions.

The database of railway sections made it possible to link performance to physical and operational characteristics, transportation
capacity, idleness, and type of regulation of the sections of each concessionaire, allowing findings that contribute significantly to
answering the research question.

The contributions of this paper are twofold. As to the best of our knowledge, a simulation of the extreme scenarios in a (railway)
system based on the characteristics of its network subparts (the rail sections) using a genetic algorithm to optimize the performance of
the entire system according to the TOPSIS scores of the subparts is an innovative contribution of the research. The methodology
proposed can be applied to different economic sectors treated as a network such as passenger and cargo railway systems and energy
or telecommunication transmission lines.

In the second stage, the significant determinants to achieve high performance of BRCS were revealed. In the high performance
scenario, the performance of the concessionaires is more homogeneous, different from the low and medium performance scenarios
where there is dispersion in the operating performance. The transportation of general cargo is significant for the results, different
from the low and medium performance scenarios whose transport is concentrated in bulk mineral and agricultural products for
export. The market structure in a monopoly format is inefficient because it can inhibit the rise of new services that contribute to
reducing the idleness of the assets. CCO technology is significant for high performance because it allows for a dense railway operation
with trains coming from different regions and destinations operated by several concessionaire in an environment of greater in-
tegration and complementarity. The high performance scenario suggests a market structure where there is neither restriction of
access to the railway track nor barriers to the entry and exit of new operators and services.

The implication of the paper is to determine new guidelines for BRCS’s long-term strategic planning in order to increase the system’s
average performance. Public managers should push the companies toward transporting any type of cargo, service diversification, a cen-
tralized control of the operation, and sharing the railway track. Competition and diversification are key elements for high performance.

The secondary data from the railway sections was a limiting factor in the research. Obtaining data of total and linked capacity of
BRCS’s railroad segments with selected origin and destination may allow new findings and be the object of future research to expand
the knowledge of the Brazilian rail cargo system’s efficiency frontier.
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