1,188 research outputs found

    A Fully Progressive Approach to Single-Image Super-Resolution

    Full text link
    Recent deep learning approaches to single image super-resolution have achieved impressive results in terms of traditional error measures and perceptual quality. However, in each case it remains challenging to achieve high quality results for large upsampling factors. To this end, we propose a method (ProSR) that is progressive both in architecture and training: the network upsamples an image in intermediate steps, while the learning process is organized from easy to hard, as is done in curriculum learning. To obtain more photorealistic results, we design a generative adversarial network (GAN), named ProGanSR, that follows the same progressive multi-scale design principle. This not only allows to scale well to high upsampling factors (e.g., 8x) but constitutes a principled multi-scale approach that increases the reconstruction quality for all upsampling factors simultaneously. In particular ProSR ranks 2nd in terms of SSIM and 4th in terms of PSNR in the NTIRE2018 SISR challenge [34]. Compared to the top-ranking team, our model is marginally lower, but runs 5 times faster

    Optical Image Blending for Underwater Mosaics

    Get PDF
    Typical problems for creation of consistent underwater mosaic are misalignment and inhomogeneous illumination of the image frames, which causes visible seams and consequently complicates post-processing of the mosaics such as object recognition and shape extraction. Two recently developed image blending methods were explored in the literature: gradient domain stitching and graph-cut method, and they allow for improvement of illumination inconsistency and ghosting effects, respectively. However, due to the specifics of underwater imagery, these two methods cannot be used within a straightforward manner. In this paper, a new improved blending algorithm is proposed based on these two methods. By comparing with the previous methods from a perceptual point of view and as a potential input for pattern recognition algorithms, our results show an improvement in decreasing the mosaic degradation due to feature doubling and rapid illumination change

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Reliable and Efficient coding Technique for Compression of Medical Images based on Region of Interest using Directional Filter Banks

    Get PDF
    Medical images carry huge and vital information. It is necessary to compress the medical images without losing its vital-ness. The proposed algorithm presents a new coding technique based on  image compression using contourlet transform used in different modalities of medical imaging. Recent reports on natural image compression have shown superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. As far as medical images are concerned the diagnosis part (ROI) is of much important compared to other regions. Therefore those portions are segmented from the whole image using  fuzzy C-means(FCM) clustering technique. Contourlet transform is then applied to ROI portion which performs Laplacian Pyramid(LP) and Directional Filter Banks. The region of less significance are compressed using Discrete Wavelet Transform and finally modified embedded zerotree wavelet algorithm is applied which uses six symbols instead of four symbols used in Shapiro’s EZW to the resultant image which shows better PSNR and high compression ratio.Â

    A New Approach For Image Hiding Based On Contourlet Transform

    Get PDF
    A new image hiding method based on the contourlet transform is proposed inthis paper. This strategy is based on storing information in high frequency subbands of contourlet transform. The embedding approach is in direction that the contourlet sub-bands have the least statistical disorder. As a result, the proposed algorithm has a higher robustness against to common steganalysis approaches. In addition, the quality of stegano image has considerably improved in comparison with related state of the art methods, with the extracted secret image having an acceptable quality. Furthermore, theexperimental results show robustness respect to Gaussian noise and otherattacks such as JPEG compression.DOI:http://dx.doi.org/10.11591/ijece.v2i5.143

    Speckle Noise Reduction in Medical Ultrasound Images

    Get PDF
    Ultrasound imaging is an incontestable vital tool for diagnosis, it provides in non-invasive manner the internal structure of the body to detect eventually diseases or abnormalities tissues. Unfortunately, the presence of speckle noise in these images affects edges and fine details which limit the contrast resolution and make diagnostic more difficult. In this paper, we propose a denoising approach which combines logarithmic transformation and a non linear diffusion tensor. Since speckle noise is multiplicative and nonwhite process, the logarithmic transformation is a reasonable choice to convert signaldependent or pure multiplicative noise to an additive one. The key idea from using diffusion tensor is to adapt the flow diffusion towards the local orientation by applying anisotropic diffusion along the coherent structure direction of interesting features in the image. To illustrate the effective performance of our algorithm, we present some experimental results on synthetically and real echographic images
    • …
    corecore