1,879 research outputs found

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    FARS: Fuzzy Ant based Recommender System for Web Users

    Get PDF
    Recommender systems are useful tools which provide an adaptive web environment for web users. Nowadays, having a user friendly website is a big challenge in e-commerce technology. In this paper, applying the benefits of both collaborative and content based filtering techniques is proposed by presenting a fuzzy recommender system based on collaborative behavior of ants (FARS). FARS works in two phases: modeling and recommendation. First, user’s behaviors are modeled offline and the results are used in second phase for online recommendation. Fuzzy techniques provide the possibility of capturing uncertainty among user interests and ant based algorithms provides us with optimal solutions. The performance of FARS is evaluated using log files of “Information and Communication Technology Center” of Isfahan municipality in Iran and compared with ant based recommender system (ARS). The results shown are promising and proved that integrating fuzzy Ant approach provides us with more functional and robust recommendations

    A Hybrid Recommender Strategy on an Expanded Content Manager in Formal Learning

    Get PDF
    The main topic of this paper is to find ways to improve learning in a formal Higher Education Area. In this environment, the teacher publishes or suggests contents that support learners in a given course, as supplement of classroom training. Generally, these materials are pre-stored and not changeable. These contents are typically published in learning management systems (the Moodle platform emerges as one of the main choices) or in sites created and maintained on the web by teachers themselves. These scenarios typically include a specific group of students (class) and a given period of time (semester or school year). Contents reutilization often needs replication and its update requires new edition and new submission by teachers. Normally, these systems do not allow learners to add new materials, or to edit existing ones. The paper presents our motivations, and some related concepts and works. We describe the concepts of sequencing and navigation in adaptive learning systems, followed by a short presentation of some of these systems. We then discuss the effects of social interaction on the learners’ choices. Finally, we refer some more related recommender systems and their applicability in supporting learning. One central idea from our proposal is that we believe that students with the same goals and with similar formal study time can benefit from contents' assessments made by learners that already have completed the same courses and have studied the same contents. We present a model for personalized recommendation of learning activities to learners in a formal learning context that considers two systems. In the extended content management system, learners can add new materials, select materials from teachers and from other learners, evaluate and define the time spent studying them. Based on learner profiles and a hybrid recommendation strategy, combining conditional and collaborative filtering, our second system will predict learning activities scores and offers adaptive and suitable sequencing learning contents to learners. We propose that similarities between learners can be based on their evaluation interests and their recent learning history. The recommender support subsystem aims to assist learners at each step suggesting one suitable ordered list of LOs, by decreasing order of relevance. The proposed model has been implemented in the Moodle Learning Management System (LMS), and we present the system’s architecture and design. We will evaluate it in a real higher education formal course and we intend to present experimental results in the near future

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    A Survey of e-Commerce Recommender Systems

    Get PDF
    Due to their powerful personalization and efficiency features, recommendation systems are being used extensively in many online environments. Recommender systems provide great opportunities to businesses, therefore research on developing new recommender system techniques and methods have been receiving increasing attention. This paper reviews recent developments in recommender systems in the domain of ecommerce. The main purpose of the paper is to summarize and compare the latest improvements of e-commerce recommender systems from the perspective of e-vendors. By examining the recent publications in the field, our research provides thorough analysis of current advancements and attempts to identify the existing issues in recommender systems. Final outcomes give practitioners and researchers the necessary insights and directions on recommender systems

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports
    • …
    corecore