9,380 research outputs found

    Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease.

    Get PDF
    There is much interest in the use of mesenchymal stem cells/marrow stromal cells (MSC) to treat neurodegenerative disorders, in particular those that are fatal and difficult to treat, such as Huntington's disease. MSC present a promising tool for cell therapy and are currently being tested in FDA-approved phase I-III clinical trials for many disorders. In preclinical studies of neurodegenerative disorders, MSC have demonstrated efficacy, when used as delivery vehicles for neural growth factors. A number of investigators have examined the potential benefits of innate MSC-secreted trophic support and augmented growth factors to support injured neurons. These include overexpression of brain-derived neurotrophic factor and glial-derived neurotrophic factor, using genetically engineered MSC as a vehicle to deliver the cytokines directly into the microenvironment. Proposed regenerative approaches to neurological diseases using MSC include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation, MSC in the brain promote endogenous neuronal growth, encourage synaptic connection from damaged neurons, decrease apoptosis, reduce levels of free radicals, and regulate inflammation. These abilities are primarily modulated through paracrine actions. Clinical trials for MSC injection into the central nervous system to treat amyotrophic lateral sclerosis, traumatic brain injury, and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of Huntington's disease is discussed

    Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients.

    Get PDF
    Quantification of disease-associated proteins in the cerebrospinal fluid (CSF) has been critical for the study and treatment of several neurodegenerative disorders; however, mutant huntingtin protein (mHTT), the cause of Huntington's disease (HD), is at very low levels in CSF and, to our knowledge, has never been measured previously

    Mammalian Brain As a Network of Networks

    Get PDF
    Acknowledgements AZ, SG and AL acknowledge support from the Russian Science Foundation (16-12-00077). Authors thank T. Kuznetsova for Fig. 6.Peer reviewedPublisher PD

    “Bridging the Gap” Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era

    Get PDF
    Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/genderspecific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward

    New Frontiers in Translational Research: Touchscreens, Open Science, and the Mouse Translational Research Accelerator Platform (MouseTRAP)

    Get PDF
    Many neurodegenerative and neuropsychiatric diseases and other brain disorders are accompanied by impairments in high-level cognitive functions including memory, attention, motivation, and decision-making. Despite several decades of extensive research, neuroscience is little closer to discovering new treatments. Key impediments include the absence of validated and robust cognitive assessment tools for facilitating translation from animal models to humans. In this review, we describe a state-of-the-art platform poised to overcome these impediments and improve the success of translational research, the Mouse Translational Research Accelerator Platform (MouseTRAP), which is centered on the touchscreen cognitive testing system for rodents. It integrates touchscreen-based tests of high-level cognitive assessment with state-of-the art neurotechnology to record and manipulate molecular and circuit level activity in vivo in animal models during human-relevant cognitive performance. The platform also is integrated with two Open Science platforms designed to facilitate knowledge and data-sharing practices within the rodent touchscreen community, touchscreencognition and mousebytes. Touchscreencognition includes the Wall, showcasing touchscreen news and publications, the Forum, for community discussion, and Training, which includes courses, videos, SOPs, and symposia. To get started, interested researchers simply create user accounts. We describe the origins of the touchscreen testing system, the novel lines of research it has facilitated, and its increasingly widespread use in translational research, which is attributable in part to knowledge-sharing efforts over the past decade. We then identify the unique features of MouseTRAP that stand to potentially revolutionize translational research, and describe new initiatives to partner with similar platforms such as McGill’s M3 platform

    Interleukin-6, age, and corpus callosum integrity.

    Get PDF
    The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories

    The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders

    Get PDF
    Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognised in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition – glutamate and acetylcholine. Since this pathway – the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress it also stands in an unique position to mediate the effects of environmental factors on cognition and behaviour. Targetting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures
    corecore