475 research outputs found

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    A Review of Predictive and Prescriptive Offshore Wind Farm Operation and Maintenance

    Get PDF
    Offshore wind farms are a rapidly developing source of clean, low-carbon energy and as they continue to grow in scale and capacity, so does the requirement for their efficient and optimised operation and maintenance. Historically, approaches to maintenance have been purely reactive. However, there is a movement in offshore wind, and wider industry in general, towards more proactive, condition-based maintenance approaches which rely on operational data-driven decision making. This paper reviews the current efforts in proactive maintenance strategies, both predictive and prescriptive, of which the latter is an evolution of the former. Both use operational data to determine whether a turbine component will fail in order to provide sufficient warning to carry out necessary maintenance. Prescriptive strategies also provide optimised maintenance actions, incorporating predictions into a wider maintenance plan to address predicted failure modes. Beginning with a summary of common techniques used across both strategies, this review moves on to discuss their respective applications in offshore wind operation and maintenance. This review concludes with suggested areas for future work, underlining the need for models which can be simply incorporated by site operators and integrate live data whilst handling uncertainties. A need for further focus on medium-term planning strategies is also highlighted along with consideration of the question of how to quantify the impact of a proactive maintenance strategy

    Continuous Maintenance System for optimal scheduling based on real-time machine monitoring

    Get PDF
    Nowadays, the maintenance activities are the ones that most draw the attention of companies due to the increased costs of sudden machines stop, and consequently, stop the production processes. These stops are mostly caused by wear-out of its components that lead to machine breakdown and a close monitoring of the manufacturing processes need to be made. Based on this, and to increase the production line efficiency, there's a need to continuously monitor the machines' performance, and together with all the historical maintenance data, create strategies to minimize the maintenance phases and costs. These strategies may lie in the prediction of a suitable time periods to perform maintenance operations, a based on that, group a set of machines together to perform maintenance activities between day-off and day-on shifts. This represents a difficulty mainly because the increased complexity of scheduling and planning activities of a production line, being necessary to minimize the impact of maintenance activities based on failure prediction in all the already existing plan

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    Model-free non-invasive health assessment for battery energy storage assets

    Get PDF
    Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health.Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health

    Maintenance Optimization and Inspection Planning of Wind Energy Assets: Models, Methods and Strategies

    Get PDF
    Designing cost-effective inspection and maintenance programmes for wind energy farms is a complex task involving a high degree of uncertainty due to diversity of assets and their corresponding damage mechanisms and failure modes, weather-dependent transport conditions, unpredictable spare parts demand, insufficient space or poor accessibility for maintenance and repair, limited availability of resources in terms of equipment and skilled manpower, etc. In recent years, maintenance optimization has attracted the attention of many researchers and practitioners from various sectors of the wind energy industry, including manufacturers, component suppliers, maintenance contractors and others. In this paper, we propose a conceptual classification framework for the available literature on maintenance policy optimization and inspection planning of wind energy systems and structures (turbines, foundations, power cables and electrical substations). The developed framework addresses a wide range of theoretical and practical issues, including the models, methods, and the strategies employed to optimise maintenance decisions and inspection procedures in wind farms. The literature published to date on the subject of this article is critically reviewed and several research gaps are identified. Moreover, the available studies are systematically classified using different criteria and some research directions of potential interest to operational researchers are highlighted

    A framework development to predict remaining useful life of a gas turbine mechanical component

    Get PDF
    Power-by-the-hour is a performance based offering for delivering outstanding service to operators of civil aviation aircraft. Operators need to guarantee to minimise downtime, reduce service cost and ensure value for money which requires an innovative advanced technology for predictive maintenance. Predictability, availability and reliability of the engine offers better service for operators, and the need to estimate the expected component failure prior to failure occurrence requires a proactive approach to predict the remaining useful life of components within an assembly. This research offers a framework for component remaining useful life prediction using assembly level data. The thesis presents a critical analysis on literature identifying the Weibull method, statistical technique and data-driven methodology relating to remaining useful life prediction, which are used in this research. The AS-IS practice captures relevant information based on the investigation conducted in the aerospace industry. The analysis of maintenance cycles relates to the examination of high-level events for engine availability, whereby more communications with industry showcase a through-life performance timeline visualisation. Overhaul sequence and activities are presented to gain insights of the timeline visualisation. The thesis covers the framework development and application to gas turbine single stage assembly, repair and replacement of components in single stage assembly, and multiple stage assembly. The framework is demonstrated in aerospace engines and power generation engines. The framework developed enables and supports domain experts to quickly respond to, and prepare for maintenance and on-time delivery of spare parts. The results of the framework show the probability of failure based on a pair of error values using the corresponding Scale and Shape parameters. The probability of failure is transformed into the remaining useful life depicting a typical Weibull distribution. The resulting Weibull curves developed with three scenarios of the case shows there are components renewals, therefore, the remaining useful life of the components are established. The framework is validated and verified through a case study with three scenarios and also through expert judgement

    Optimising maintenance operations in photovoltaic solar plants using data analysis for predictive maintenance

    Get PDF
    In PV (photovoltaic) solar power plants, high reliability of critical assets must be ensured— these include inverters, which combine the power from multiple solar cell modules. While avoiding unexpected failures and downtime, maintenance schedules aim to take advantage of the full equipment lifetime. Predictive maintenance schedules trigger maintenance actions by modelling the current equipment condition and the time until a particular failure type occurs, known as residual useful lifetime (RUL). However, predicting the RUL of an equipment is complex in this case since the equipment condition is not directly measurable; it is affected by numerous error types with corresponding influencing factors. This work compares statistical and machine learning models using sensor and weather data for the purpose of optimising maintenance decisions. Our methods allow the user to perform maintenance before failure occurs and hence, contribute to maximising reliability. We present two distinct data handling and analysis pipelines for predictive maintenance: The first method is based on a Hidden Markov Model, which estimates the degree of degradation on a discrete scale of latent states. The multivariate input time series is transformed using PCA to reduce dimensionality. This approach delivers a profound statistical model providing insight into the temporal dynamics of the degradation process. The second method pursues a machine learning approach by using a Random Forest Regression algorithm, on top of a feature selection step from time series data. Both methods are assessed by their abilities to predict the RUL from a random point in time prior to failure. The machine learning approach is able to exploit its favourable properties in high-dimensional input data and delivers high predictive performance. Further, we discuss qualitative aspects, such as the interpretability of model parameters and results. Both approaches are benchmarked and compared to one another. We conclude that both approaches have practical merits and may contribute to more favourable decisions and optimised maintenance operations.submittedVersionM-D

    Failure analysis informing intelligent asset management

    Get PDF
    With increasing demands on the UK’s power grid it has become increasingly important to reform the methods of asset management used to maintain it. The science of Prognostics and Health Management (PHM) presents interesting possibilities by allowing the online diagnosis of faults in a component and the dynamic trending of its remaining useful life (RUL). Before a PHM system can be developed an extensive failure analysis must be conducted on the asset in question to determine the mechanisms of failure and their associated data precursors that precede them. In order to gain experience in the development of prognostic systems we have conducted a study of commercial power relays, using a data capture regime that revealed precursors to relay failure. We were able to determine important failure precursors for both stuck open failures caused by contact erosion and stuck closed failures caused by material transfer and are in a position to develop a more detailed prognostic system from this base. This research when expanded and applied to a system such as the power grid, presents an opportunity for more efficient asset management when compared to maintenance based upon time to replacement or purely on condition
    corecore