
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 
for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research
The version in the Kent Academic Repository may differ from the final published version. 
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: 
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Shafiee, M and Sørensen, J.D  (2019) Maintenance Optimization and Inspection Planning of Wind
Energy Assets: Models, Methods and Strategies.   Reliability Engineering & System Safety, 192
.   pp. 1-19.  ISSN 0951-8320.

DOI

https://doi.org/10.1016/j.ress.2017.10.025

Link to record in KAR

https://kar.kent.ac.uk/79677/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/286359901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Accepted Manuscript

Maintenance Optimization and Inspection Planning of Wind Energy
Assets: Models, Methods and Strategies

Mahmood Shafiee , John Dalsgaard Sørensen

PII: S0951-8320(16)30789-X
DOI: 10.1016/j.ress.2017.10.025
Reference: RESS 5993

To appear in: Reliability Engineering and System Safety

Received date: 13 November 2016
Revised date: 21 May 2017
Accepted date: 27 October 2017

Please cite this article as: Mahmood Shafiee , John Dalsgaard Sørensen , Maintenance Optimization
and Inspection Planning of Wind Energy Assets: Models, Methods and Strategies, Reliability Engineer-
ing and System Safety (2017), doi: 10.1016/j.ress.2017.10.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ress.2017.10.025
https://doi.org/10.1016/j.ress.2017.10.025


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 

 

Highlights 

 A classification framework for the study of maintenance policy optimization and 

inspection planning in wind energy industry; 

 To identify models, methods and strategies used to optimize maintenance decisions 

and inspection procedures for various wind energy assets (turbines, foundations, 

cables, electrical substations, etc.); 

 A systematic review of the literature over the past two decades (1997–2016); 

 Identify critical observations on each category of classification; 

 Suggest directions of potential interest to operational researchers. 
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Abstract 

Designing cost-effective inspection and maintenance programmes for wind energy farms is 

a complex task involving a high degree of uncertainty due to diversity of assets and their 

corresponding failure modes, weather-dependent transport conditions, unpredictable spare 

parts demand, insufficient space or poor accessibility for maintenance and repair, limited 

availability of resources in terms of equipment and skilled manpower, etc. In recent years, 

maintenance optimization has attracted the attention of many researchers and practitioners 

from various sectors of the wind energy industry, including manufacturers, component 

suppliers, maintenance contractors and others. In this paper, we propose a conceptual 

classification framework for the available literature on maintenance policy optimization and 

inspection planning of wind energy systems and structures (turbines, foundations, power 

cables and electrical substations). The developed framework addresses a wide range of 

theoretical and practical issues, including the models, methods, and the strategies employed 

to optimise maintenance decisions and inspection procedures in wind farms. The literature 

published to date on the subject of this article is critically reviewed and several research 

gaps are identified. Moreover, the available studies are systematically classified using 

different criteria and some research directions of potential interest to operational 

researchers are highlighted. 
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1. Introduction 

Global warming, binding targets on greenhouse gas emissions and high costs of fossil fuels 

have created an urgent need to shift from traditional sources of energy to renewable ones. 

This shift to renewable sources of energy has accelerated at a very rapid pace after the 

Fukushima Daiichi nuclear disaster in Japan in March 2011 [1]. Wind power is recognized 

as one of the most attractive renewable energy sources which supplies an affordable, 

inexhaustible and clean energy to the economy. Over the last decade, wind power 

generation has experienced an extensive and worldwide growth. For instance, the 

cumulative installed capacity of wind power in the European Union (EU) has increased 

from 47.8 gigawatts (GW) in the year 2006 to 153.7 GW in the end of 2016, representing 

an annual growth of over 12% (see Figure 1). The share of wind power in EU‘s electricity 

supply was 10.4% in 2016, while it is forecasted to reach up to 20% by 2030 [2]. 

“Fig. (No. 1)” 

Figure 1. Cumulative installed wind power capacity in the EU during 2006–2016 [2]. 

Along with the growth of the market for wind energy, a great deal of attention has been 

focused recently on minimising operation and maintenance (O&M) costs of the installed 

wind turbines while ensuring high levels of reliability and safety. Currently, the O&M costs 

(including all expenditures associated with planned and unplanned repair tasks) constitute a 

substantial part of the total life-cycle cost of wind turbines. According to existing statistics, 

the O&M costs of a wind project with twenty-year life span account for about 15–30% of 

the overall energy generation cost or equivalently 75–90% of the initial investment [3].  
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Wind farm owners and operators have been under increasing pressure recently to 

reduce O&M costs. It will become even more critical in the near future as the wind turbine 

capacity ratings continue to rise and the wind farm siting moves towards offshore locations. 

O&M cost reduction can mainly be achieved by developing and implementing ‗cost-

effective‘ and ‗well-planned‘ inspection and maintenance programmes for wind farms. 

Nowadays, the planned maintenance tasks are undertaken during periods when demand for 

electricity is low (i.e., low-load seasons) or while service vessels (ships, helicopters, lifting 

cranes) are available to provide logistics support. It has been reported in some large wind 

projects (e.g. Opti-OWECS
1
) that a significant portion of annual budget is wasted as the 

result of unnecessary or improperly carried out maintenance activities. A cost-effective 

maintenance strategy aims to reduce the frequency of service interruptions as well as 

avoiding undesirable consequences of such interruptions. The maintenance tasks affect 

system reliability in a way that if too little maintenance is performed, it may result in an 

excessive number of costly failures and high production losses. However, if maintenance 

activities are performed too often, the reliability will improve but the cost of maintenance 

may potentially increase to unsatisfactory levels [4]. For this reason, finding ―cost-optimal‖ 

solutions for inspection and maintenance operations at wind farms requires an appropriate 

balance between reliability targets and the cost to achieve those targets. 

Maintenance optimization is defined as a method aimed at determining the most 

effective and efficient maintenance plan (i.e., inspection time and frequency, work 

preparation, required maintenance resources) so that the best possible balance between 

direct maintenance costs (e.g. manpower cost, logistics and transportation costs) and the 

consequences of not performing maintenance (e.g. loss of power production and assets) is 

achieved. Designing an optimal maintenance plan during the relatively long life span of 

wind farms is a complex task involving a high degree of uncertainty due to diversity of 

assets and their corresponding failure modes, existence of various dependencies among 

components of assets, weather-dependent transport conditions, unpredictable spare parts 

demand, insufficient space for replacement or poor accessibility for maintenance and 

repair, limited resources in terms of supply vessels, specialized equipment, trained 

workforce, etc. Thus, it is crucial to develop effective models and efficient techniques 

capable of incorporating all the factors and uncertainties associated with wind farm 

inspection and maintenance.  

In recent years, many researchers and practitioners have shown their interest in the 

study of maintenance policy optimization and inspection planning for wind energy systems 

[57]. However, the literature on classification of the associated models, methods and 

strategies has been very limited and there remains a big gap between academic research and 

application in practice. In this paper, we propose a conceptual classification framework for 

optimizing maintenance decisions and inspection procedures in the wind energy industry. 

The academic studies as well as industrial applications reported on the topic are identified, 

reviewed and classified systematically. The relevant issues in each category are discussed 

in details and several gaps are identified subsequently. Some research directions of 
                                                           
1 Structural and Economic Optimization of Bottom-Mounted Offshore Wind Energy Converters 
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potential interest to operational researchers are also highlighted. To the best of the authors‘ 

knowledge, this paper is the first study to review a large number of research works and 

industrial case studies carried out over the past two decades (19972016) on the inspection 

planning and maintenance optimization of wind energy assets, including: wind turbines, 

support foundations, power cables and electrical substations. The findings of this research 

can provide valuable insights to researchers about the procedures and methodologies used 

for inspection and maintenance decision-making of wind energy farms.   

The rest of this paper is organized as follows. First, the classification framework 

applied to this study is proposed; then, for each category of classification the available 

literature is reviewed and the relevant issues are discussed; and last, we outline our 

conclusions and give a brief discussion of future research topics. 

2. The framework 

In this section, we introduce a classification framework to identify various theoretical and 

practical issues including the models, methods, and the strategies employed by wind farm 

operators for inspection planning and maintenance optimization of wind turbine 

components and structures. According to the framework shown in Figure 2, the available 

studies on the subject can be categorized using the following criteria: 

(a) System configuration (type of wind power asset and the level of system modeling); 

(b) Decision-making attribute (planning horizon, the decision-maker and the availability of 

field data); 

(c) System failure modelling (type of failure and the failure modeling approach); 

(d) Optimization model (optimality criterion and the solution technique); 

(e) Maintenance strategy (maintenance policy and the repair effectiveness). 

“Fig. (No. 2)” 

Figure 2. The classification framework proposed for the study 

The above five classification criteria are then decomposed into various categories. For 

the purpose of this categorization, the academic studies and industrial best practices 

reported to date in the literature were identified, reviewed, and analyzed. The selected 

studies include contributions from both scholars and practitioners in scientific journals, 

master‘s and doctoral theses, textbooks and case study reports. Conference papers and 

unpublished dissertations were excluded from this study because of their wide variety of 

contexts and the difficulties in obtaining manuscripts, particularly those dating back more 

than a decade. As the literature was scattered across numerous journals and government 

reports, the following online sources were searched by text mining techniques and the use 

of citation indexes: 
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ABI/INFORM Global – ProQuest; Academic Search Premier; Blackwell Synergy; 

Business Source Premier – EBSCOhost; Compendex (Engineering Village) – Elsevier 

Engineering Information; Emerald Fulltext; IEEE Transaction; ISI Web of Knowledge; 

NTIS - Ovid (SilverPlatter); Scopus – Elsevier; Springer Link; and Wiley InterScience. 

For the searching criteria, two primary keywords of ―wind energy‖ and ―maintenance‖ 

were first used. Next, other search terms such as ―wind turbine‖, ―wind farm‖, ―inspection‖, 

―model‖, ―method‖, ―technique‖, etc. were combined with the primary keywords for wider 

search results. Then, the full text of each work was carefully reviewed to eliminate those 

that were not related to the field of ―optimization‖ or ―scheduling‖. Finally, two hundred 

and forty-six publications including one hundred and seventy-nine journal articles [8–186], 

thirty-seven master and doctoral dissertations [187–223], twelve textbooks [224–235], and 

eighteen industrial reports [236–253] were selected for their relevance to the topic. Figure 3 

represents a bar chart of number of publications concerning maintenance policy 

optimization and inspection planning of wind turbine systems in five-year periods, from 

1997 to 2001, 2002 to 2006, 2007 to 2011, and 2012 to 2016. 

“Fig. (No. 3)” 

Figure 3. Distribution of the studies by year of publication (1997-2016). 

As can be seen, over 72% of the publications have appeared during last five years 

which indicates the increasing importance of the maintenance optimization in wind energy 

industry. In following five sections, a detailed distribution of the publications classified 

according to the proposed framework is given. Since a large number of studies have been 

published in each category, only a brief description of some featured publications is 

provided. 

3. System configuration 

3.1. Type of wind power asset 

A wind farm system includes different groups of mechanical, electrical and structural 

assets including wind turbines, foundations (e.g. gravity based, suction-bucket and pile), 

support structures (e.g. monopile, tripod and jacket), transition pieces, connection cables, 

electrical substations, etc. Wind turbines convert energy from the wind into electrical 

energy. The foundations provide support for the wind turbine structures that are installed 

above sea level. Support structures are used to connect the transition piece or tower to the 

foundation. Electrical substations connect the wind turbines to the national electricity grid. 

Connection cables transmit the power from the individual turbines to the substation. 

In general, there are two alternatives of wind power generation, namely, onshore and 

offshore. The technologies involved in both the onshore and offshore wind turbines are 

almost similar. One of the main differences between onshore and offshore wind turbine 

designs is their foundation structures. Onshore wind turbines are fixed to the ground with a 
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concrete foundation, whereas offshore wind turbines have their foundations on the sea bed 

(fixed-bottom) or in the water (floating). In recent years, a large number of wind farms 

have been built in offshore locations due to high wind resources and the availability of 

large areas for installation. According to existing statistics, the O&M cost of offshore wind 

turbines accounts for larger portion of the cost of power generation than that of onshore 

wind turbines. The O&M costs for onshore wind farms comprise 5 to 10% of the cost of 

energy (COE) while it is estimated to be between 20 to 35% in offshore wind projects. This 

big difference might be due to negative impacts of offshore environment on performance of 

the wind turbines. Offshore wind turbines have to withstand harsh maritime conditions and 

their accessibility for maintenance and repair is generally poor in periods of strong wind 

and high waves. Moreover, the maintenance expenditures will be much higher for wind 

projects constructed in ultra deep waters at long distances from the shore. Therefore, in 

order to make offshore wind power generation more cost-competitive with onshore 

production as well as with the other sources of offshore renewable energy (wave and tidal), 

the associated O&M costs must be significantly reduced. 

While building an optimal maintenance and replacement model for wind farms, the 

following key factors must be taken into consideration: 

 size and orientation (micro-sitting) of the wind farm; 

 power rating, and capacity factor of the wind turbines;  

 reliability of the wind turbines; 

 accessibility and availability of support vessels and transportation means;  

 distance to shore and water depth; and 

 meteorological surrounding conditions (wind, waves, and visibility). 

A brief review of the literature shows that a lot of research has been done on 

optimization of the maintenance decisions for onshore wind farms (see, e.g. [23, 72, 189]). 

But, the existing models need to be extended to address the unique characteristics of the 

offshore wind farms. Utne [35] proposed a framework to make the maintenance activities 

more efficient for offshore wind turbines located in remote deep water areas. The two PhD 

dissertations of Karyotakis [203] and Sinha [223] studied the optimization of maintenance 

strategies for offshore wind farms. Tavner [226] in his recent book addressed the reliability, 

availability, and maintainability (RAM) challenges of offshore wind farms. The readers can 

also refer to [11, 29, 44, 53, 55, 56, 61, 70, 89, 104, 106, 111, 123, 128, 129, 133, 136, 144, 

145, 146, 147, 157, 161, 163, 164, 167, 168, 171, 179, 180, 202–205, 214, 219, 222, 230, 

248, 251] for further reading on optimal inspection and maintenance of the offshore wind 

turbines. Also, the studies [24, 60, 199, 206] and [247] are concerned with the inspection 

planning of foundation structures, power cables and substations, respectively.  

Since the maintenance optimization process is considered as a typical complex 

decision-making problem, the need for software-based solutions has also greatly increased. 

In this line, Sinha et al. [90] recently developed an offshore-centric software package for 

optimization of the maintenance decisions in wind farms. 
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3.2. Level of system modelling (component, wind turbine, wind farm) 

The optimization of maintenance decisions in the wind energy sector can be done regarding 

a hierarchical scheme including the three levels of component, wind turbine, and wind farm 

(grid). These modelling levels are described as following: 

- Component level 

At the component-level analysis, an optimum maintenance decision model is 

developed for individual critical components of system, such as gearbox, rotor blade, and 

generator. In this analysis approach, each component is considered as an isolated unit and 

the possible dependency among components is neglected. Over the past two decades, a vast 

majority of the literature focuses on optimization of the maintenance for individual 

components (or being possibly assimilated to single-unit systems). Besnard and Bertling 

[30] presented an approach for optimization of the inspection interval and condition 

monitoring strategies for a blade whose deterioration is classified according to the severity 

of damages. In another work, Deng et al. [50] proposed a maintenance optimization model 

to determine the inspection interval for wind turbine gearbox such that the mean profit per 

unit time was maximized. Igba et al. [154] developed an approach for evaluating the effect 

of preventive maintenance (PM) interval on reliability and O&M costs of wind turbine 

gearbox. The readers can also refer to these references for further: [9, 10, 46, 48, 64, 68, 89, 

94, 97, 107, 110, 116, 134, 152, 159, 164, 165, 174, 228, 250]. 

- Wind turbine level 

Even though the single-unit maintenance models are generally considered as a basis 

for building more complex models, they cannot be applied to real-world systems. The 

component-level models assume that the components are independent, and thus are 

replaced individually (one-by-one). However, a single component failure in the system may 

affect the performance of other components which are structurally dependent, and it may 

cause a multiple component replacement. The related factor leading to multiple item 

replacements is called common cause failure (CCF) (for more see [198]). 

It is very often observed that some critical components in wind turbine are 

stochastically dependent on each other. Stochastic dependence implies that failure or 

degradation of one component can influence the lifetime distribution of other components 

(e.g. construction error). Neglecting component dependencies while optimizing the 

maintenance and repair decisions may lead to sub-optimal or even wrong solution to the 

problem and thereby increased cost of maintenance and system downtime. When 

considering the key components, a wind turbine can be treated as a series reliability system. 

In these types of systems, the components are connected together in series and any failure 

in one of the components causes the failure of entire system. A repair policy for a series 

wind turbine system was studied in [15, 16, 21]. For more references on system-level 

maintenance optimization approach, the readers can refer to [20, 22, 27, 29, 31, 32, 36, 38, 

53, 55, 56, 59, 62, 71, 73, 78, 80, 82, 99, 178, 113, 118, 121, 131, 132, 148, 150, 158, 161, 

162, 163, 170, 182, 185, 190, 192, 197, 208, 218, 220, 221, 225]. 
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- Wind farm (grid) level 

An increasing interest has been recently devoted to the development and optimization 

of maintenance strategies for large-scale wind farms which consist of hundreds of wind 

turbines. The development of maintenance optimization models for a large-scale wind farm 

is much more complex than that for an individual wind turbine. The maintenance decisions 

for a group of wind turbines in a wind farm must be made in conjunction with what 

happens to the other wind turbines. Generally, two kinds of dependencies are considered 

between wind turbines in a farm: failure dependence (or correlation) and economic 

dependence. Failure dependence means that once a wind turbine is shut down for 

maintenance, all the posterior wind turbines in farm may also have to be stopped. Economic 

dependence is, when a support vessel is hired to carry out the repair actions on a failed 

item, it might be economical to take this opportunity and perform some preventive 

maintenance (PM) tasks on non-failed (but soon-to-fail) wind turbines. 

Failure and economic dependencies among the wind turbines have received very 

limited attention to date. Tian et al. [45] identified two types of dependencies among wind 

turbines in a wind farm. The first type of dependence is to share maintenance set-up costs 

between different wind turbines, and the second type is the dependence exists between 

wind turbines with high risk of failure. Pérez et al. [160] proposed algorithms for 

scheduling maintenance processes in wind farms with multiple turbines comprising 

multiple components, including the gearbox, power generator, blades and control system. 

Amayri [200] investigated the optimal condition-based maintenance policy for a wind farm 

consisting of various types of wind turbines with different lead times. For more references 

on this category, the readers can refer to [11–13, 26, 34, 37, 41, 51, 61, 65, 66, 69, 70, 72, 

77, 79, 83, 86, 98, 101, 103, 106, 111, 114, 128, 129, 137–139, 144–147, 149, 153, 157, 

167, 168, 172, 173, 175, 179, 184, 201, 205, 219, 239]. 

4. Decision-making attributes 

4.1. Planning horizon (length, time-state) 

The planning time horizon in maintenance optimization can be studied from two different 

views: the length of time horizon, and the type of time states. These aspects are described 

as following: 

- Length of time horizon (infinite/finite/random) 

The length of planning period for optimal maintenance decision-making problem is 

normally defined as either infinite, finite, or random. Infinite time horizon models deal with 

decisions that have long-lasting effect (e.g. for twenty-five years) on system O&M. This 

kind of models often uses the net present value (NPV) technique to recalculate all costs of 

maintenance to the present value (for more see [81, 136, 158, 196]). In finite-time planning 

models, the horizon can represent, for example, the period of a repair contract set by the 

manufacturer or an independent service provider (see, e.g. [155]). The random time horizon 

models assume that the system terminates at a random point of time, e.g. the system is 
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replaced by a new one either at random failures or at a given operational age, whichever 

comes first (see, e.g., [162, 163]). 

- Time states (discrete, continuous) 

Maintenance scheduling models, depending on the considered time state, can be 

divided into two classes: discrete and continuous. Discrete-time models assume that the 

maintenance tasks are scheduled at discrete points in time, whereas continuous-time models 

relax this restriction. In practice, the duration of maintenance activities and transportation 

times are expressed as integer multiples of time periods whose length may vary from one 

hour to one week. Besnard et al. [194] proposed an opportunistic maintenance optimization 

model using a discrete-time scale representation for offshore wind farms. The scheduling 

horizon was divided into a series of short and long time intervals, depending on the 

availability of forecasting information. Kovács et al. [41] developed an optimal wind farm 

maintenance schedule over a short-term rolling horizon (e.g. three to seven days). In a 

rolling horizon, the maintenance schedule is updated frequently to react to changes in 

meteorological surrounding conditions (wind, waves, and visibility). For more references 

on discrete-time maintenance models, see [118]. 

4.2. Decision-maker 

The maintenance optimization problem in the wind energy industry can be considered from 

three competing points of view—wind turbine manufacturer, wind farm owner and 

operators, and the independent service providers. 

- Wind turbine manufacturer 

Nowadays, wind turbines are sold with a 2- to 5-year full-service contract from the 

manufacturers. Under this contractual agreement, the manufacturer is obliged to rectify any 

system failures caused by design, manufacturing, and quality assurance problems as well as 

provide technicians over a specified period of time. Offering a full-service contract for 

wind turbines may result in significant servicing costs to the manufacturer. This servicing 

cost typically involves the costs of repairing failures through corrective maintenance (CM) 

during the early years of operation, called ‗infant mortality‘ [34]. Therefore, finding an 

effective way to reduce the servicing costs over this period has become an issue of great 

importance to wind turbine manufacturers. 

One possible way to reduce servicing costs is to make sound decisions on design of 

wind turbines which is known as ‗design for reliability (DFR)‘ in the context. The main 

purpose of implementing DFR techniques in the wind turbine manufacturing industry is to 

minimise the number of failures experienced over the lifetime, which results in enormous 

savings in maintenance and energy production costs. The DFR methodology has received 

an increasing importance in recent years, especially for some critical components like rotor 

blades, gearbox, and generator (see [8–10, 17, 187]). The readers can also refer to [243] as 

an industrial report on optimising the design processes for wind turbines in order to reduce 

the associated O&M costs within the RELIAWIND project. 

- Wind farm owner and operators 
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The system owners‘ point of view on maintenance optimization might be totally 

different from wind turbine manufacturers‘. After the expiration of service contract, the 

maintenance expenditures are borne completely by the wind farm owners until wind 

turbines reach the end of their service life. The O&M costs of a wind turbine over its 

operational life can be controlled through conducting preventive maintenance actions. To 

this aim, scheduled PM actions are carried out during the constant failure rate period 

(between fifth year and fifteenth year of operation) to prolong the useful lifetime as well as 

over the wear-out period (usually after the fifteenth year of operation) to reduce the 

degradation rate. Ortegon et al. [113] presented a system dynamics (SD) approach to model 

the interactions between maintenance, reliability, and technological obsolescence on the 

remanufacturing of a wind turbine at the end-of-use (EOU). The study suggested that 

regular preventive maintenance (PM) avoid/slow functional obsolescence, and as a result, 

the remanufacturing cost is reduced. Recently, a number of wind turbine manufacturers (see 

[246, 252]) launched a program to extend the twenty-year lifetimes of the 850 kW wind 

turbines to an expected life of thirty years or even more. 

- Independent service providers 

Currently, many of the wind farm owners employ an independent service provider to 

carry out the maintenance tasks under properly drafted contracts. Maintenance contracts 

usually specify a target for the ‗availability‘ of wind turbines  (i.e., the proportion of time 

that system is functional and working). Hence, the service provider—sometimes, the 

service department of the manufacturer—aims to maximize the availability whilst 

minimizing the production losses. Jin et al. [155] proposed a game-theoretical optimization 

model to minimize the O&M costs of wind turbines under a performance-based contract 

(PBC). According to this type of agreement, the wind farm owner defines an availability 

target and signs a contract with a service provider. Then, the service provider will be 

committed to reliable performance of the wind turbines.  

4.3. Availability of field data 

The data availability is seen as the biggest challenge in RAM studies of the wind energy 

industry [39, 242, 250]. Effective management of maintenance activities in a wind farm 

requires a database of failure data to model the system failures as well as some 

supplementary data to evaluate the different maintenance strategies. Failure data (e.g. times 

to failure) are collected and stored during the operation as well as servicing of the wind 

turbines. They can usually be collected from Supervisory Control And Data Acquisition 

(SCADA) or some other sources like WMEP in Germany (www.wmep.org), WindStats in 

Denmark (www.windustry.org/resources/wind-stats-newsletter), VTT in Finland 

(http://www.vtt.fi), or Elforsk in Sweden (http://www.elforsk.se). The failure databases 

usually contain valuable information about the performance and failure history of wind 

turbines which can be effectively utilized to detect the potential future failures. 

Supplementary data (e.g. cost parameters, production levels) are collected from other 

internal or external sources. 
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Currently, much of the data available in wind farm databases suffers from inaccuracy, 

inconsistency, and incompleteness. However, a brief review of the literature shows that 

very few research has been conducted on the optimization of maintenance decisions under 

data limitations. Coolen et al. [22] applied non-homogeneous Poisson process (NHPP) 

models, in particular the power law process, to derive the reliability of wind turbines and 

some critical subsystems from grouped data with little information on individual turbines or 

maintenance activities. Guo et al. [28] proposed a three-parameter Weibull failure rate 

function for wind turbines when the field failure data is incomplete. Nguyen et al. [84] and 

Nguyen [217] presented a data integration framework for optimization of the O&M 

decisions within offshore wind farms. 

5. System failure modelling 

5.1. Type of failure (minor, major) 

It is important to distinguish between the different types of failures that may occur in a 

wind farm because the required resources to perform the associated repair tasks will be 

different. Basically, the wind turbine failures can be classified into two types of minor and 

major (catastrophic) [164]. Minor failures (e.g. microscopic cracks) are often detected 

remotely and are rectified through a minor inspection, whereas major failures (e.g. a metre-

long fracture) can only be removed by a major repair or replacement. The resources 

required to carry out maintenance tasks will vary according to whether the action is a major 

overhaul or just a minor repair. For instance, a minor repair task on the yaw brake pads can 

be executed by a team of two technicians and it normally takes about 30 minutes. In 

contrast, a major repair task on a rotor blade (e.g. de-icing) needs two teams of two 

technicians and it takes almost four hours. Moreover, in order to conduct a minor inspection 

the maintenance crew can be transported by either a workboat or a helicopter, while for a 

major repair they must be sent only by a workboat. 

5.2. Failure model 

The method used for modelling of the failure process of components is a very important 

input for the maintenance optimization analysts. These methods can be classified into 

different types as follows: 

- Black–box /Grey–box/White–box 

In the black–box modeling approach, a wind turbine system is considered as a single 

module and its reliability is estimated using the available failure data (e.g. the recorded 

times-to-failure). Since this model does not consider the relationships between components, 

it is often used for optimization of the maintenance decisions at component level. In the 

grey–box modeling approach, the degradation process underlying a failure is modeled. This 

implies that the deterioration can be observed (classified or measured) directly or indirectly 

by relevant deterioration indicators. Besnard [210] used a grey–box approach for 

deterioration and maintenance modeling of wind turbines. The approach consists of a life 

cycle cost (LCC) model for the whole lifetime of wind turbines which takes into account 
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the cost consequences of random failures (e.g. lightning strike). In the white–box modeling 

approach, the system is considered as a collection of components, subsystems and 

assemblies arranged together in a specific structure to achieve the desired functionality. 

Thus, the technique can be useful in deriving the reliability of a system based on the 

reliability of its constituent components using classical reliability theory. Andrawus et al. 

[15] applied the white–box approach to assess the failure characteristics of a horizontal axis 

wind turbine system. An optimal maintenance strategy was also proposed to minimize the 

total LCC of wind farm. 

- Delay-time model 

The concept of delay-time model is very similar to the Potential-to-Functional Failure 

(P-F) curve in reliability-centred maintenance (RCM). The P-F curve illustrates the point 

where a failure starts occurring but not detectable (P), and the point where the system fails 

(i.e., the functional failure point) (F). The time taken from potential failure to decay into 

functional failure is called ‗P-F interval‘. In delay-time models, the criterion for declaring 

points P and F is very important. In the RCM analysis, the point P is determined on the 

basis of experts‘ judgments. When the experts agree that a potential failure is present, the 

maintenance technicians immediately decides on replacing the component. If this is not the 

case, then the periodic inspections have to be conducted at intervals of length x aiming to 

estimate the severity level of failures (x is shorter than the average PF interval). The delay-

time model has been well addressed in reliability analysis of wind turbine systems (see 

[16]). This model can be used for deriving the reliability of wind turbine structural 

components by the means of structural reliability theory, limit state modeling, first-order 

reliability method (FORM) or second-order reliability method (SORM). In a study carried 

out by Andrawus et al. [21], a delay time maintenance model was proposed to determine an 

optimum inspection interval for major components of wind turbines. 

- Multi-state model 

Most of the existing failure models assume that a system consists of binary-state 

components whose behavior is described only by two possible states: perfect functionality 

and complete failure. However, many real-world systems are composed of multi-state 

components having different performance levels and several failure modes with various 

effects on the entire system‘s performance. Such systems are called multi-state systems. 

Multi-state reliability methods are found to be very useful for modelling the failures and 

repair activities of wind turbines as they can include the dynamic characteristics of the 

system. For instance, since wind speed does not maintain a specified stable level, using a 

multi-state model would result in a more accurate estimation of the system‘s reliability. 

- Degradation model 

Many of the wind turbine components such as gearbox and generator or wind farm 

structures such as foundations are exposed to degradation processes such as fatigue 

cracking, corrosion, corrosion fatigue, scour, etc. Wind asset degradation is a very complex 

process as it depends on numerous physical and environmental factors (such as material, 
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stress loads, temperature) and usually manifests itself in different forms of wear, fatigue, and 

crack generation. The prediction of degradation level (e.g. crack size) is very important for 

reliability analysis as well as scheduling of inspection and maintenance tasks for wind 

turbines. The degradation behavior of a component is usually modeled by a stochastic 

process, namely {X(t), t≥0: X(0) = 0} which represents the level of deterioration (e.g. 

accumulated wear) at time t. If no maintenance action is taken, X(t) will be continuous-time 

and monotonically increasing function.  

The degradation process of wind turbines has been extensively analyzed in the last 

decade and some models have been developed to assess the risks associated with 

degradation failures (for more see [227]). Among the stochastic processes considered in 

this context, the gamma process has been satisfactorily fitted to data of different 

degradation phenomena in wind turbines. Shafiee and Finkelstein [162] applied the gamma 

process to degradation analysis and maintenance planning of a group of wind turbine 

bearings. Le and Andrews [170] presented a reliability assessment model for offshore wind 

turbines subject to degradation in order to plan inspection and maintenance processes. The 

model captured the stochastic nature of the dynamic processes through the use of 

appropriate statistical distributions. 

- Shock models 

It is widely reported that the wind turbine failures are not solely caused by 

components‘ degradation. Besides degradation failures, wind turbines may also be subject 

to external (environmental) shocks such as destructive waves and icing damages. 

According to IEC 61400-3 (www.iec.ch), the external conditions of a wind farm (e.g. wind 

speed, wind direction, turbulence intensity) should be continually monitored and the 

essential design requirements must be specified to ensure the engineering integrity of wind 

turbines. The existing shock models are concerned with a multi-unit wind turbine system 

whose components are subject to different external shocks at random times and are 

damaged by a shock impact. In the literature, there are four groups of shock models: (i) 

extreme shock models in which a failure occurs when the magnitude of a shock exceeds a 

pre-specified threshold, (ii) cumulative shock models in which a failure occurs when the 

cumulative damage from shocks exceeds a critical value, (iii) run shock models in which a 

failure occurs when there is a run of k shocks exceeding a critical magnitude, and (iv) δ-

shock models in which a failure occurs when the time lag between two successive shocks is 

shorter than a threshold δ. The readers can refer to these references for further: [164, 186]. 

6. Optimization framework 

6.1. Optimality criterion 

The objectives taken into account in the literature for optimization of the maintenance 

decisions are divided into the following three general categories: 

- Minimum cost 
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The criterion of minimum ‘long-run average cost’ is widely used in the maintenance 

optimization area. Let D(t) denote the expected cost of operating a system over the time 

interval (0,t). Let Li be the length of the i
th

 replacement cycle and OCi be the operational 

cost over the cycle. A replacement cycle is defined as a time interval between two 

consecutive replacements. Then, from the renewal reward theorem, the long-run average 

cost is equal to the expected operational cost over a cycle divided by the expected length of 

the cycle, i.e., 

 

      Long-run average cost =                                                               
][
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.        (1) 

For each replacement cycle, five cost drivers are often considered in model 

formulation, namely, replacement cost (of a failed item by a new one); logistics costs (of 

equipping the maintenance crew, hiring the service vessels, and ordering the spare parts); 

transportation cost (for sending the maintenance crew to wind farm); manpower cost (for 

the inspections and CM tasks on failed components); and production loss cost (due to wind 

farm breakdown). All the above costs are included in life support cost (LSC) which usually 

accounts for a significant part of the wind turbine lifecycle cost and should be minimized. 

To this aim, various routine inspections are carried out to improve the operating conditions 

of wind turbines as well as reducing cost of energy produced by wind farms. The cost of 

energy (COE) produced from wind farms is given by [254]: 

IC FCR AOM
COE

AEP

 
  ,                                                (2) 

where IC (£) is the initial capital cost of the wind farm; FCR (%/year) is the fixed charge 

rate; AOM (£/year) is the annual O&M cost; and AEP (kWh/year) is the annual energy 

production. For further reading on maintenance optimization models with minimum cost 

criterion, the readers can refer to [32, 44, 45, 51, 55, 68-70, 81, 103, 162–164, 185, 194, 

197, 200, 208, 210, 225, 238]. 

- Minimum production loss (maximum power output) 

There are several categories of energy production losses in a wind power plant, 

including wake losses, availability losses, turbine performance losses, electrical losses, 

environmental losses, etc. Wake losses are one of the most important factors leading not 

only to reduction of power output, but also an increase of structural loading on wind 

turbines. The wake losses are often caused by the momentum deficit and increased level of 

turbulence created by wind turbines in the wind farm. To date, the effects of energy 

production losses due to wake effects have been seldom considered for the scheduling of 

wind farm maintenance (e.g. see [97]). Availability losses are another type of production 

loss in wind farms. When an unexpected failure occurs in a wind turbine, the whole system 

stops operating until the required repair is completed. An unexpected failure results in 

considerable production losses in wind farms. Besides random failures, power loss may be 

caused by scheduled PM tasks where the wind turbines are normally shut down during the 

Expected length of a replacement cycle 

Expected cost incured in a replacement cycle 
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maintenance actions. The  optimization of maintenance strategies with the aim of 

minimizing total production losses (or maximizing total power output) has been of 

considerable interest to wind farm operators. Kovács et al. [41] developed a mixed-integer 

programming model to optimize the maintenance schedule of an onshore wind farm. In the 

proposed model, the objective function includes both production losses due to random 

failures and PM actions, that is, 

 
 


J

j

N

i

ii

T

t

tj yz
1 11

,min  ,                                                   (3) 

where zj,t (≥0) denotes the production loss of turbine j over period t; the indices J and T 

represent respectively, the number of wind turbines in wind farm and the number of time 

periods in planning horizon. The binary variable yi indicates whether PM task i (among N 

tasks) is postponed or not. This means that it may be worth postponing PM tasks, e.g. from 

a period with high winds to a later period with low winds, even if all resources are 

available. If the PM task is performed exactly after the failure, then yi =0; otherwise if it is 

postponed, yi =1 and a penalty cost δi (≥0) incurs to the decision-maker. The readers can 

refer to [12, 57, 95, 181] for further. 

- Maximum availability/reliability 

The analysis of failure data collected from various databases shows that the availability of 

existing wind farms is less than the target levels [95–99]% (for more see [18, 19, 42]). 

Generally, the following ways can be considered to achieve a higher level of availability in 

wind farms: 

 Using faster transportation means; 

 Coordinating the spare parts supply and distribution;  

 Shortening lead times for ordering the spare parts and hiring support vessels; and 

 Improving the reliability of wind turbines. 

In order to improve the reliability level of wind turbines, a redundant structure for 

some critical components has been suggested in the literature (e.g., see [141]). Recently, 

wind turbine assembly manufacturers (such as SIEMENS, REpower, and Gamesa) have 

proposed a prototype design of six parallel-connected converter system to use in the harsh 

offshore environments. The benefits of applying this prototype design (i.e. improving the 

reliability, efficiency, and power output) have been discussed in [165]. The readers can also 

refer to [20, 43, 50, 59, 86, 87, 132, 148, 151, 173, 186, 209, 216, 221] for further studies 

on reliability/availability analysis of wind farms. 

6.2. Solution technique 

When the objectives are set and all necessary information is available, an optimization 

technique must be used to find out the optimal solution. In a broad classification, the 

maintenance optimization solution techniques are categorized into two types of qualitative 

and quantitative [190]. The qualitative techniques are subjective or judgmental and are 

based on estimates and opinions, while the quantitative techniques incorporate various 

mathematical models and statistical analysis. In this section, a generic list of all possible 
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maintenance optimization solution techniques is developed, taking into account the 

techniques found in literature and adding the ones are missing. 

- Operations research models (IP, MIP, NLP, DP) 

Integer programming (IP) assumes that the decision variables take only integer values. 

Problem contexts that involve both integer and continuous decision variables are termed 

mixed-integer programming (MIP). Non-linear programming (NLP) is the method of 

solving problems involving a nonlinear objective function subject to linear or nonlinear 

constraints. Dynamic programming (DP) is a method for solving multi-stage decision 

problems by breaking them down into simpler sub-problems. Nilsson [195] proposed an 

MIP model to optimize the maintenance management of wind farms based on a linear cost 

function including the maintenance expenses and production losses. For further studies on 

operations research models, see [41, 47, 50, 55, 69, 71, 77, 100, 168, 197, 200]. 

- Stochastic models 

The O&M optimization of wind turbines greatly depends on some stochastic factors 

such as wind speed and wave height. A stochastic model has the capability to incorporate 

key random factors to predict the system condition. Veldkamp [25] proposed a stochastic 

model to identify the important parameters affecting fatigue loads in wind turbines. Then, a 

cost minimization model was presented to determine the optimal failure probabilities and 

partial factors in the system. Recently, various stochastic models have been proposed to 

determine the optimal maintenance policy for wind turbines. The readers can refer to these 

references for further: [72, 81, 120, 127, 153, 158]. 

- Markov models (discrete/continuous Markov model, semi Markov, hidden Markov) 

Markov model is a stochastic process with the property of being memoryless. In other 

words, a Markov model is a sequence of realized states that the transition probability to a 

state only depends on the current state and not on the history of states. Markov models are 

widely used for modeling the deterioration of a system with several degradation states, e.g. 

five states including ‗good (0)‘, ‗minor degradation (1)‘, ‗advanced degradation (2)‘, ‗major 

degradation (3)‘ and ‗failure (4)‘. At each state, the next time for inspection is updated 

based on the maintenance decisions for the current state. If a minimal repair is performed, 

the system will stay in ―as-bad-as-old‖ condition, while an imperfect maintenance leads the 

system to a less degradation state. At the event of a failure (state ‗4‘), the system has to be 

replaced by a new one. 

The deterioration process in wind turbine components can be modeled using a discrete 

or continuous Markov model. In discrete models, the component is observed at discrete 

time points, while in continuous models there is continuous observation. Byon and Ding 

[31] formulated an optimal maintenance model for multi-state deteriorating wind turbines 

using a partially observed Markov decision process with heterogeneous parameters. Ossai 

et al. [182] developed a six state Markov model to evaluate the impacts of wind turbine 

components maintenance on downtime and failure risks. The transition and maintenance 

rates at different lifecycle phases were determined using a calibrated survivability index. 
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Abeygunawardane [209] in his PhD thesis proposed a Markov model for condition 

monitoring of wind turbine systems. In this study, a two-state model was presented for 

binary-state components (with two ‗up‘ and ‗down‘ states) and a three-state model was 

developed to include an intermediate state at which faults are detected. 

In semi-Markov models, the transition rates to other states may change over the 

duration of a state and therefore, the inter-arrival times between subsequent states are not 

exponentially distributed. Su and Zhou [62] proposed a condition-based maintenance 

optimization model based on a semi Markov decision process in order to minimise the 

long-term discounted maintenance costs. 

Hidden Markov model (HMM) is also being used to monitor the online SCADA data 

for fault detection purposes, especially when there is a lack of field failure data. The main 

feature of HMM is that, in a regular Markov model the states are directly visible to the 

observer but in an HMM only the sensor output is visible and the states are not directly 

visible.  

For more references on Markov models, see [5, 32, 49, 70, 82, 133, 210, 212]. 

- Petri net model 

Petri net (PN) model is a graphical and mathematical tool which was originally 

developed for the modeling and analysis of distributed systems with concurrency and 

resource sharing. As a graphical modeling tool, PN is composed of a set of places (P), a set 

of transitions (T), and a set of directed arcs (A). The places represent conditions and are 

drawn as circles, the transitions represent events and are drawn as bars, and the arcs 

connect transitions to places and places to transitions. In the wind energy industry, PN 

model has been mainly applied to fault diagnosis and reliability evaluation of wind 

turbines. Yang et al. [46] proposed a novel PN model and reliability evaluation method for 

the hydraulic variable pitch system of a wind turbine. The proposed PN model not only 

described the structure, function and operation of the hydraulic pitch system with a graphic 

language, but also it could clearly express the logical relations among faults. Leigh and 

Dunnett [178] applied the PN approach to optimise maintenance processes of a wind 

turbine with three types of maintenance actions, namely periodic, conditional and 

corrective as well as the weather condition in order to determine the accessibility of the 

turbine. For further references on PN models, see [128, 161]. 

- Analytical models 

Analytical model is a mathematical tool with a closed form solution, i.e., the solution 

to the equations describing any changes in the system is expressed as a mathematical 

analytic function. Feuchtwang and Infield [53] developed a closed form probabilistic model 

for estimating the expected delays caused by sea state during the maintenance process of 

offshore wind turbines. They applied the model to explore the impact of different 

parameters such as components‘ reliability, time to repair, and access constraints on two 

specific offshore sites. In another work, Mensah and Dueñas-Osorio [59] proposed an 

analytic model to evaluate the wind turbine system reliability as well as failure 

consequences. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19 

 

- Simulation models 

Simulation model is one of the most flexible quantitative techniques that can be used 

for analyzing the reliability of complex systems. A simulation model has the capability to 

take into account all uncertainties exist in the field of wind farm O&M as well as explore 

the feasibility of novel maintenance strategies. The principle of a simulation model is to 

generate various maintenance scenarios according to the stochastic variables of model and 

then to evaluate the quantities of interest (e.g. cost, availability, breakdowns) for each 

scenario. Byon et al. [37] developed a discrete-event system specification (DEVS) model 

for simulation of the wind farm O&M. The authors implemented the simulation model 

under two main maintenance strategies, namely scheduled maintenance and condition-

based maintenance. The results showed that the condition-based maintenance policy 

enables operators to reduce the failure rate of wind turbines and increase the availability of 

wind farm. Benmessaoud et al. [69] used a simulation model to optimize the schedule and 

the type of maintenance actions applied to a wind farm. Their model was based on a cost 

minimization criterion aiming to determine the optimal maintenance strategy such that a 

greater availability and an increased power output were achieved in wind farm. Santos et al. 

[161] used a stochastic PN model coupled with Monte Carlo simulation (MCS) for 

modelling and optimization of an operation and maintenance strategy based on corrective 

maintenance replacements and imperfect age-based preventive maintenance repairs. 

For more references on simulation models, see [82, 108, 146, 149, 160, 192]. 

- Bayesian networks 

Bayesian network (BN) is a probabilistic graphical model representing the conditional 

dependencies between failure root causes and symptoms, i.e. given symptoms, the model is 

able to estimate the probabilities of the presence of various faults. BN model is recognized 

as an efficient tool for fault diagnosis and maintenance optimization of the wind turbines. 

Nielsen and Sørensen [44, 112] applied the BN model to optimize the risk-based 

maintenance decisions of offshore wind farms such that the cost of PM effort was balanced 

against the costs of corrective maintenance actions. For more references on BN model, see 

[24, 29, 60, 214]. 

- Fuzzy models 

Fuzzy models are often used when the system dynamics are not precisely known, and 

the information is mainly based on experts‘ knowledge and expertise. Dinmohammadi and 

Shafiee [74] developed a fuzzy-FMEA failure mode and effects analysis (FMEA) approach 

for risk and failure mode analysis of offshore wind turbine systems. The information 

obtained from the experts was expressed using fuzzy linguistics terms and a grey theory 

analysis was proposed to incorporate the relative importance of the risk factors. 

Schlechtingen et al. [88] proposed a condition monitoring system for wind turbines using 

adaptive neuro-fuzzy interference systems (ANFIS). Cross and Ma [143] proposed a fuzzy 

logic-based inference system for condition monitoring and fault diagnosis of wind turbines. 

- Data mining techniques 
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The SCADA system usually dumps large amounts of data from different sources being 

updated periodically. Very often, it is observed that the data collected from sensors is not 

all relevant or meaningful. In this case, data mining (DM) techniques can help wind farm 

operators to extract meaningful data and build models to find out how the changes in one or 

set of variables may affect the system performance. Thus, DM techniques can act as a key 

enabler in the design of a condition monitoring system for wind turbines. Kusiak and 

Verma [58] conducted a comparative analysis of various data-mining algorithms using the 

data collected at a large wind farm consisting seventeen wind turbines. Recently, in two 

PhD dissertations, Verma [207] and Zhang [208] used the data-mining techniques to 

monitor and optimize the performance of wind turbine systems based on the collected 

operational data and the fault logs from SCADA system. Depending upon the nature of 

wind turbine faults, the O&M decisions were optimized. To read further on the applications 

of DM techniques in wind turbine O&M, see [42, 64]. 

- Intelligent-based models 

The dynamic nature of the environments in which wind turbines operate has led to the 

development of intelligent-based (IB) models. IB models play an important role in 

prediction of the system‘s residual life and currently are one of the key success factors in 

the implementation of condition monitoring systems for wind farms. IB models generally 

involve the development of powerful reasoning algorithms and prediction techniques such 

as machine learning (ML), Neural Network (NN), Artificial Intelligence (AI), and Expert 

Systems (ESs). Brandão et al. [48] introduced some applications of NNs to analyse the 

wind turbine condition and identify possible future failures. Zhao et al. [66] proposed an 

intelligent agent control approach to optimize the fatigue distribution of wind turbines in a 

large-scale offshore wind farm. 

To read more on the applications of IB models in wind turbine O&M, see [56, 78, 88, 

108, 122, 130, 183, 225]. 

- Multiple-objective models 

Even though single-objective maintenance optimization is attractive from the modeling 

point of view, it does not capture all important aspects of the wind energy industry. For 

example, maximizing the availability of a wind farm may not imply minimizing the O&M 

costs. Sometimes when system reliability is maximized, the maintenance costs are still so 

high that they are not acceptable in practice. Multi-objective maintenance optimization is 

an underexplored area in wind energy. Jin et al. [81] proposed a multiple-objective 

optimization model to determine the equipment sizing, siting, and maintenance schedules 

of a wind-based distributed generation system such that the system cost was minimized and 

its reliability was maximized. Abdollahzadeh et al. [172] proposed a multi-objective based 

model to optimize the maintenance processes of a wind farm involved several different 

types of wind turbines. The proposed model attempts to maximize the expected rate of 

energy and minimize the total expected costs related to maintenance efforts. 

For more references in this area, the readers can refer to [85, 114, 156, 173, 191]. 
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A detailed distribution of the journal papers by operations research techniques used to 

find out the optimal solution is shown in Table 1. 

“Table (No. 1)” 

Table 1– Distribution of the journal papers by solution technique and maintenance strategy considered 

for optimization. 

7. Maintenance strategy 

A maintenance strategy includes a set of policies and actions that are used to ―retain‖ or 

―restore‖ an equipment as well as the decision support system in which maintenance 

activities are planned. This section aims to review the O&M strategies which are employed 

by wind farm operators and find out the possible gaps between current practices and 

benchmark goals. A detailed distribution of the journal papers by maintenance strategy is 

shown in Table 1. 

7.1. Maintenance policies 

One important research area in maintenance optimization is the study of various 

maintenance policies used to improve system availability. There are many possible ways to 

classify the current practices of maintenance in wind energy. In the reference [52], the 

authors studied the existing maintenance strategies in wind farms and then discussed the 

major challenges (e.g. site and seasonal asset disturbances, dependability and asset 

deterioration, diagnostic and prognostic) for an effective management of O&M. From 

classical point of view, maintenance policies for wind farms can be categorized into two 

major classes: failure-based (reactive response) and proactive maintenance. The former is 

carried out when a failure occurs in one of the components and the wind turbine shuts 

down. But, the latter is to either repair or replace the critical components according to a 

prescribed criterion (e.g. at pre-determined time intervals) in order to control the rate of 

degradation. From lifecycle point of view (i.e. from the design stage to end-of-life), EI-

Thalji [198] divided the wind farm maintenance policies into six categories: design and 

development, production and construction, diagnostic, autonomous, proactive, and 

prognostics (predictive) maintenance. 

In a broader classification, in this paper we categorize the maintenance policies applied 

to wind power systems into the following groups: 

- Overhauling 

Under this policy, a major overhaul (including re-design and/or replacement of critical 

equipment) is carried out after a long period of time (e.g. five years). Even though 

overhauling may be a possible solution for highly reliable wind turbines, it cannot be 

considered as a long-term approach for maintaining the wind farms with high rate of 

failure. Bell [237] reports that a wind turbine overhaul costs almost 20% of the initial 

investment. Moreover, it requires some special service vessels (e.g. heavy lift cranes) which 

makes the process technically unfeasible. 
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- Corrective (breakdown or reactive response) maintenance 

Under this policy, a repair action is carried out after a wind turbine failure or upon a 

severe decline in power production. The corrective maintenance (CM) policy may be 

practical for small onshore wind farms with a few number of wind turbines, or for those 

offshore wind turbines located close to the shore in shallow waters. However, when 

considering future wind farms which are likely to be built in remote areas, this policy 

cannot be cost-effective [11]. In Opti-OWECS project, Kühn et al. [8, 236] showed that 

unplanned repair and maintenance of the failed wind turbines account for a significant 

portion of the annual O&M costs. Kooijman et al. [14] studied the current state of 

maintenance for offshore wind turbines in the North Sea. The authors suggest that utilizing 

an optimum PM policy can potentially minimize the maintenance expenditures. 

- Routine inspections 

Most of the wind farms undergo a daily routine inspection during the operation, and 

afterwards, one major inspection every two to three weeks. Some defects such as leakage 

and corrosion can be detected through visual inspections. However, detection of many of 

faults like surface cracks on the blades, electric short circuits in generator, and overheating 

of the gearbox require using more sophisticated inspection methods such as non-destructive 

testing (NDT). NDT techniques such as acoustic emission, ultrasonic, radiography, 

thermographic, electromagnetic, and eddy current can provide quantitative information 

about the deteriorated condition of wind turbine components and structures. 

- Performance based PM (calendar or time based, age based, use based) 

This broad group of maintenance policies is described as the repair activities 

undertaken at specified dates (i.e., calendar or time based), or after a fix period of time 

depending on the age of components (i.e., age-based), or according to the total amount of 

electricity produced (i.e., operational-based) in order to reduce the likelihood of failure or 

the degradation rate of system. Karyotakis [203] identified two types of calendar based 

maintenance which are commonly applied to offshore wind farms: PM1 with one scheduled 

visit per operational year (typically during July), and PM2 with two scheduled visits (often 

during May and October). As an example, Horns Rev (also known as Horns Reef) offshore 

wind farm in the east coast of the North Sea undergoes PM2 program 

(http://www.dongenergy.com). First, a minor PM task is carried out during January and 

then a major PM is performed during the summer. The minor PM task usually takes two 

days and it costs about 1000€ for each wind turbine, whereas the major PM takes three days 

and it costs roughly around 1500€ per wind turbine. A main issue encountered in the age- 

or operational-based maintenance policies is to find out an optimum time interval or 

operation level for preventive replacement of critical assets so that system 

availability/reliability is maximized under given constraints. Su and Zhou [63] presented an 

optimum age-replacement maintenance policy for a wind turbine system with taking into 

account the economic dependence among components. A cost minimization model 

(including all costs related to repair, maintenance, replacement, and system breakdown) 
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was developed and a branch and bound algorithm was utilized to find out the optimal 

solution. The readers can refer to these references for further: [21, 50, 154]. 

- Failure-limit policy 

Failure-limit maintenance policy for wind farms is classified into various types. The 

most commonly used one is a number-dependent policy in which the maintenance decisions 

are made based on the number of system failures. For instance, the maintenance crew is 

sent to wind farm to carry out repairs or replacements when the number of failed wind 

turbines reaches a pre-specified number m, where m = 1, 2, …, N, and N denotes the total 

number of wind turbines in wind farm (for more see [89, 197]). The failure-limit 

maintenance policy can also be based on cost or failure likelihood criterion, i.e., a 

component undergoes PM action if the associated cost [failure likelihood] is less than a 

predetermined threshold; otherwise it is replaced by a new one [45].  

- Reliability-centered, condition based, and predictive maintenance 

Reliability centered maintenance (RCM) has been widely recognized and implemented 

in the wind energy industry [27, 115, 166, 229, 245]. RCM is used to optimize the 

maintenance decisions of a system while preventing its reliability level from dropping 

below a certain specified value. It involves maintaining the system functions, identifying 

the failure modes, prioritizing the potential risks, identifying PM requirements, and 

selecting the most appropriate maintenance tasks. RCM is usually applied to critical 

components/subsystems whose failures could result in catastrophic system failure or high 

loss of power production. To this aim, many different tools including the failure mode and 

effects analysis (FMEA), failure mode, effects and criticality analysis (FMECA), and fault 

tree analysis (FTA) are utilized (e.g., see [74, 204]). Fischer et al. [54] applied the RCM 

methodology to two types of Vestas wind turbines: V44-600kW and V90-2MW. A 

criticality analysis on the basis of failure frequency and incurred consequences was done 

for four critical subsystems, namely gearbox, generator, electrical system, and hydraulic 

system.  

Condition based maintenance (CBM) is now the most extensively used policy in the 

wind energy industry and its related literature is vast. CBM employs continuous monitoring 

and inspection techniques to detect incipient faults early in their evolution and to determine 

any necessary maintenance tasks. On the other hand, CBM works on the current condition 

of each component and before it drops below a certain threshold, a preventive repair or 

replacement action is carried out. 

The benefits of using CBM for wind turbines have been studied in some publications. 

Nilsson and Bertling [19] quantified the benefits of implementing CBM in onshore and 

offshore wind energy sectors using an LCC analysis. McMillan and Ault [18, 23] and 

McMillan [192] used the simulation techniques to evaluate the cost effectiveness of CBM 

in onshore wind farms. Wiggelinkhuizen et al. [26] evaluated the added value of applying 

CBM policy to offshore wind farms within a European project called CONMOW 

(CONdition Monitoring for Offshore Wind farms). Van Horenbeek et al. [94] proposed a 

stochastic simulation model to quantify the economic added value of applying an imperfect 
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CBM policy to wind turbines. A case study on a wind turbine gearbox was used to illustrate 

the approach. Haddad et al. [103] proposed a model to evaluate the individualized 

maintenance policies for different system instances and then quantified the value of CBM 

at all points in time from prognostic indication to the end of the remaining useful life 

(RUL). The readers can also refer to [36, 62, 193] for further reading on CBM of wind 

turbines. 

Predictive maintenance (PdM) includes ‗the use of modern measurement and signal 

processing methods to accurately predict and diagnose system condition during operation‘. 

PdM is often referred to as CBM in the wind energy industry, however, PdM uses current 

and prognostic information of components to optimally schedule maintenance actions, 

while CBM only uses current component state information. Recently, many articles have 

addressed the optimization of PdM decisions for wind farms. For some references on PdM 

optimization, the readers can refer to [42, 93, 215, 225]. 

- Risk based maintenance 

Risk based maintenance (RBM) aims to reduce the overall risks associated with unexpected 

failures of wind turbines. The inspection and maintenance schedule is optimized on the 

basis of quantified risks caused by failure of components. The high-risk components (e.g. 

rotor blades, gearbox, and generator) are inspected and maintained with greater frequency, 

whereas for low-risk components (e.g. brake) the effort is minimized to reduce the total 

scope of work and cost of maintenance program. In three PhD thesis of Bharadwaj [196], 

Ramírez [199] and Nielsen [214], several optimum risk-based inspection methodologies 

have been proposed for offshore wind turbines. Sørensen [29] proposed a risk-based life 

cycle approach to optimize planning of maintenance in offshore wind farms. The developed 

approach is based on a pre-posterior Bayesian decision theory which takes into account 

various deterioration mechanisms such as fatigue, corrosion, wear and erosion. Nielsen and 

Sørensen [44] proposed an optimal RBM policy for an offshore wind turbine consisting of 

a single critical component. In their study, the costs related to inspection, repair and lost 

production under a periodic imperfect inspection policy were evaluated. For more 

references on RBM models, see [24, 47, 60, 73, 112, 135, 151, 167, 171, 182, 220]. 

- Group maintenance, opportunistic replacement 

Under group maintenance policy, the components with similar operating conditions 

(such as electrical components) are identified and undergo an inspection and maintenance 

task together. In other words, a group maintenance policy provides a basis to combine 

maintenance activities and share the set-up costs with a number of components in the 

system. Such sharing strategy can reduce costs or may result in lower costs compared to the 

case when maintenance tasks are conducted separately for each component [163]. In 

opportunistic maintenance policy, an unplanned failure of a critical sub-system is 

considered as an opportunity to perform PM on other sub-systems. One prevalent type of 

this policy is an opportunistic block replacement policy in which upon a component failure, 

the whole system is preventively replaced by a new one. For some references on 
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opportunistic maintenance optimization models, see [38, 51, 55, 118, 131, 132, 162, 164, 

172, 173, 185]. 

7.2. Maintenance effectiveness 

Maintenance actions according to degree of restorability of the system are classified into 

three main categories. The first type of maintenance actions is minimal or as bad as old 

(ABAO), the second class is complete (perfect) or as good as new (AGAN), and the third 

class is known as imperfect maintenance. Let δ∈[0,1] denote the effectiveness of a 

maintenance action. In the ABAO case (δ=0), each repair action restores the system to the 

level it was just before the failure while in the AGAN case (δ=1), each repair action 

restores the system to the brand new state. The case 0<δ<1 corresponds to imperfect 

maintenance action in which operating condition of the system is restored to somewhere 

between AGAN and ABAO. The main advantage of using imperfect maintenance is that 

the degree of item restoration can be considered a decision variable. Several methods (e.g. 

the Brown and Proschan, improvement factor, virtual age models) have so far been 

developed in the literature to model imperfect maintenance. However, the application of 

these models in O&M planning of wind turbines has been very limited (see [38, 51, 94, 

134, 152]). 

8. Future research and concluding comments 

Even though the maintenance optimization is a relatively young discipline in the wind 

energy sector, a lot of research has already been done in this field. In the current paper, we 

proposed a classification framework for the study of inspection planning and maintenance 

optimization in wind energy industry. The proposed framework identifies various 

theoretical and practical issues, including the associated models, methods, and the strategies 

employed by maintenance operators to optimize inspection and replacement decisions in 

wind energy farms. Moreover, all the academic studies as well as industrial applications 

reported on the topic over the last two decades were identified, reviewed and analyzed. This 

classification scheme not only assists researchers in developing novel maintenance 

optimization methods, but also helps wind energy decision makers (owners/stakeholders) to 

find the models that fit their specific needs. Based on our findings, the following remarks 

can be concluded: 

(a) Although many good maintenance optimization methods have been developed in 

literature, there still remains a big gap between academic models and application in 

practice. Many of the works have been published for mathematical purposes, whereas 

only very few number of industrial cases (~6% of the total publications) have been 

presented. A shift from theoretical research to applied research is required. In order to 

achieve this shift, the availability of real data plays a significant role. Without accurate 

and precise information, maintenance decisions will be based on wrong or incomplete 

data which may lead to sub-optimal or even completely wrong solutions. The 

introduction of computerized maintenance management system (CMMS) such as e-
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maintenance technologies can provide a solution to this limitation. E-maintenance has 

the capability to provide high quality data at the right time in order to make the best 

decisions for O&M of wind turbines. 

(b) Despite the multitude of models available, there is little knowledge on what 

maintenance strategy is best suited to large-scale wind farms. In order to determine the 

most cost-effective maintenance strategy, a maintenance optimization model 

incorporating all information regarding system reliability, failure mechanisms, 

methods of failure detection, and inspection and maintenance costs is required. This 

can be achieved using a risk-based maintenance (RBM) approach. However, this 

approach is very computationally demanding compared to the classical replacement 

policies. So, there is a need to develop a methodology by integrating the classical 

approaches and structural reliability analysis that can be used in practice. 

(c) Most of the optimization models take into account only one system criterion, either 

maximizing the reliability or minimizing the maintenance costs. However, in order to 

achieve the best performance, the reliability/availability measures and maintenance 

costs should be considered simultaneously. For this reason, the economic added value 

of optimal maintenance decision on overall performance of the wind farms (in terms of 

reduction in O&M costs and enhancement in reliability) must be quantified.  

(d) Failure modelling and maintenance planning of multi-unit wind turbine systems and 

structures are quite complicated. Initial (manufacturing-related) defects can occur in 

any of constituent components and depending on the loading conditions, they can grow 

to critical size resulting in collapse of the entire system. In many of the existing 

maintenance optimization models, it is assumed that the failure modes are connected to 

statistically independent components. However, many failure modes are correlated 

together due to, e.g. common (uncertain) loading. In many cases, it is imporatant to 

take this correlation into account. Moreover, some components are exposed to 

deterioration processes, e.g. fatigue and wear that propagate in time. This time 

dependency should be modelled, in particular when coupling to condition-based 

maintenance (CBM). 

(e) ‗Accessibility‘ is a very important factor for the ability to perform maintenance tasks 

on wind turbines. Uncertainty in weather conditions and sea state is a major factor 

which can affect the accessibility in a wind farm. Meteorological conditions have so 

far seldom been considered as a stochastic input (see [31, 32]). To improve the existing 

models, more accurate forecasting tools for wind/wave conditions are required to help 

the operators in making sound maintenance decisions. 
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Figure 1. Cumulative installations of wind power in the EU during 2006–2016 [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The classification framework proposed for the study. 
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Figure 3. Distribution of the studies by year of publication (1997–2016). 
 

 

 

 

 

Table 1– Distribution of the journal papers by solution technique and maintenance strategy considered for 
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