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Abstract

In this paper, we start from relaxing assumptions of traditional hidden Markov model then

develop a novel framework for decoding the latent states, from which the dynamics of multi-

variable financial data is generated. To construct the framework, we model the observed vari-

ables as a p-order vector autoregressive process, allow the latent state to evolve through a

semi-Markov chain, and shrink the auto-regression and covariance matrices via a penalized

maximization likelihood method. Using the 50-dimensional simulated data, the 12-dimensional

5-minute order book data of the Chinese CSI 300 index component stocks, the 49-dimensional

daily data of U.S. industry portfolio, and 1-dimensional hourly data of four primary foreign ex-

change rates, our empirical analyses show that the proposed model outperforms the alternative

model in accurately recognizing anomalous events and achieves better sharp ratio in a pseudo

trading strategy via the latent states. The superior performance is across the data frequency

of minute, hour and daily, the dimension of one, 12, and 50, the data type of stock, foreign

exchange rate, and industry portfolio.
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1 Introduction

The boom and crash of financial markets have intense inference on the economical and social

aspects of our daily life. Such changes are usually associated with events such as great inflation,

dot-com bubble, financial crisis, and even the market manipulation Hamilton (2010); Tsang and

Chen (2018). However, those events are usually not directly observable from the market variables.

One may attempt to identify those events by certain changes of the statistical properties of selected

market variables. This is usually termed as ‘regime change detection’, or ‘latent state detection’

Piger (2009). Regime change is significant to investors as well as the regulators and policy makers.

Incorporating regime change forecasting and latent state identification is helpful for investors avoid

losses and policy makers in releasing required policy changes Kritzman et al. (2012). Being able

to recognising the latent states also help regulators in monitoring the market for maintaining the

stability.

1.1 Econometrics background

Most of the studies on regime change detection or latent state recognition are based on the time

series econometric models. This study follows this trend and extends existing work to construct

a more generic framework of multivariable time series. It is well known that the return of the

stock price is close to but not fully following the white noise process. A large number of studies

prove that two strong characteristics are associated with the price return series: the correlation

and clustering. Akgiray (1989) shows the evidence of a significant level of statistical dependence

among the stock returns. Andersen et al. (2001) find that the realized volatility and correlation

show strong temporal dependences and can be well modelled by long-memory processes. Brown and

Warner (1985) also recognize the auto-correlation in daily returns and further indicate the change

of the covariance due to the market event. Consequently, modelling the stock price return by an

autoregressive process has been confirmed by theoretical and empirical studies such as the work

of Engle (1982); Nelson (1991) and the vector autoregressive model for the multi-variable financial

return in recent studies as Cubadda et al. (2017); Kalli and Griffin (2018); Billio et al. (2019).

However, the autoregressive models fail to capture the clustering of the price return, which is

usually called “volatility clustering” as the study of Granger and Machina (2006). This failure is

mainly due to that the intrinsic state generating the observed variables often switches among two

or more mechanisms, which are essentially determined by the market conditions. For example, the

1



trading behaviours during an anomalous market condition are expected to follow a different au-

toregressive process from that of a peaceful market. The portfolio performance in a stable economy

shall follow a separated autoregressive process from the one in a recession period. Despite the fact

the intrinsic state being not observable on the market, it can be estimated by statistical modelling,

i.e., the Markov-switching model as the work of Cai (1994); Rydén et al. (1998); Kim et al. (1999);

Maheu and McCurdy (2000); Diebold and Inoue (2001); Kim et al. (2008). An extended Markov-

switching model with data clusters is proposed and applied in identifying energy price states Dias

and Ramos (2014). Zhou and Mamon (2012) examine and show that the performance of interest

rate model with Markov regime switching is better than the models without the regime charac-

teristics. Lin et al. (2017) further show the consideration of Markovian regime switching enhances

the performances of industry time series prediction. Markov-switching model holds two basic as-

sumptions: 1) the existence of latent states that generate the observed variables. The latent state

evolves following a Markovian process: the current state at time t is only dependent on the most

recent state at time t-1; 2) The observed variables are conditional independent random variables

generated according to different latent states.

The assumptions are unreasonably strong in real world, hence many studies extend the Markov-

switching model by relaxing either of the two restrictive assumptions. A Gaussian hidden Markov

model (G-HMM) is proposed by Bilmes et al. (1998) with the mixture Gaussian distribution that

describes the observed sequence so that the volatility clustering is incorporated in the model.

An autoregressive hidden Markov model (AR-HMM) equips the traditional HMM with stochastic

dependence between observations in the study of Ephraim et al. (1989). The AR-HMM is widely

applied in single dimension signal processing areas, i.e., speech recognition Hu and Wang (2004);

Gannot et al. (1998) and clinical data Stanculescu et al. (2013); Dang et al. (2017). A vector

autoregressive hidden Markov model (VAR-HMM) is proposed in Hamilton (1989, 1990) where the

observed multi-variables are described as a vector autoregressive process with selected orders. The

VAR-HMM is proved to be valuable in identifying the regime switching, which, if ignored, provides

a significant impact on the cost of portfolio allocation when a risk-free asset is available to hold as

the studies of Ang and Bekaert (2002); Luo et al. (2015).

The three extensions of HMM, G-HMM, AR-HMM, and VAR-HMM contribute to an identical

strand: explicitly modelling the correlations in observed sequence such that the assumption 2) can

be released. Another strand is to drop the Markovian constraint of assumption 1) on the latent

state to demonstrate a sensible and practical idea of modelling the data in real world. In many
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applications, the latent state more likely sticks in one or two conditions than switches to some others.

To comply with this, Bulla and Bulla (2006) propose a hidden semi-Markov model (HsMM) to

consider the temporal high order dependence through explicitly modelling the probability of staying

at a latent state for n time units instead of a presumed geometric distribution of state transition

in HMM. The HsMM model has been successfully applied in more than thirty scientific areas and

has been proved outperforming in change-point recognition, regime-switching identification and

anomalous state detection as the review study in Yu (2010). There is an additional strand of the

HMM extension for achieving a more stable estimates of the covariance matrices as the work of

Fiecas et al. (2017). The HMM suffers from the instability of estimated covariance matrices, which

is even not assured to be invertible when the data to be modelled is high-dimensional with respect to

the length of the data available (see also the work of Johnson et al. (2002)). A shrinkage estimation

of HMM (abbreviated as sh-HMM) via a penalized maximization likelihood method for providing

an invertible, positive-definite, and smaller covariance matrices is initialized in Ledoit and Wolf

(2004), further discussed in Sancetta (2008), and completely proposed in Fiecas et al. (2017). The

sh-HMM has been proved to be particularly useful in analyzing multi-variable financial data, i.e.,

adaptive portfolio selection as the work of Nystrup et al. (2018).

1.2 Proposed contribution

This study builds upon and embraces all three strands of HMM extensions. By 1) considering

the observed variables following a vector autoregressive process of selected orders; 2) allowing the

latent state to evolve through a semi-Markov chain; and 3) finally shrinking the autoregressive

and covariance matrices via a penalized maximization likelihood method, we provide a general

framework for modelling multi-variable financial time series and recognizing the underlying latent

state behind the observed variables. Our main contribution is the formulation of a regularized

framework with the abandonment of two primary assumptions in traditional HMM. As far as we

aware, this is the first work that adopts primary extensions of the HMM together as one single

model to overcome the unnecessary constraint and unrealistic assumption, and generate a stable

regularized estimation of the auto-correlation and covariance matrices of the practical financial

data.

We also contribute to the literature by offering comprehensive empirical evidence with four types

of data. Following the Fiecas et al. (2017), we firstly evaluate the model by simulated time series

with dimension of 50, sample size of 1000 and two latent states. Our proposed model achieves higher
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precision and recall than the alternative model. We further evaluate the model by three practical

dataset: the high frequency order book of selected stocks, the U.S. industry portfolio, and selected

popular foreign exchange rates. For the order book data, the well-known events of “circuit-breaker”

on 4 and 7 Jan 2016 are tested for the latent state recognition evaluation. The empirical studies

show that our proposed model accurately identifies the chaos but latent states of the markets at

around 13:12 and 13:33 on 4 Jan 2016, and 9:42 and 9:58 on 7 Jan 2016. The accuracy can be

observed at minute-level. However, the benchmark model recognizes relatively messy latent states.

For the U.S. industry portfolio data from 1 Jul 1926 to 28 Jun 2019, the empirical results show

that the proposed model accurately identifies all big events from 1926 to 2019 including the great

recession in 1930s, the great inflation in 1970s, 2000’s dot-com bubble, and financial crisis in 2007-

2008. To have a closer look, we re-run the models focusing on the data from 3 Jan 2007 to 28 Jun

2019. Our proposed model can have a more detailed recognition of the financial crisis from 2008

to 2009, the double-dip recession at 2011, the shocks at 2016 (Chinese stock market crash, OPEC

cut, and Brexit), and the uncertainty at 2019. We select four popular foreign exchange rates from

Jan 2009 to Aug 2015 with hourly interval as the last empirical study data. Due to high sensitivity

of the FX rate to the economic and social events, we carry out a trading strategy based on the

latent state following the work of Nystrup et al. (2020) for a clear comparison. Our proposed model

achieves the highest sharp-ratio among all benchmark models. Therefore, the accurate recognition

of our proposed model is regardless of data dimension, frequency, event type or duration.

This paper is organized as follows. In Section 2, we give the details of the structure of the pro-

posed model, then discuss the regularization method, and finally show the revised EM method for

the parameter estimations. In Section 3, we discuss the model performance evaluated by simulated

data. In Section 4, we provide a thorough empirical study on 5-second frequency micro-structure

order book data of the stocks listed in Shanghai Stock Exchange from 2005 to 2016, and the U.S.

49 industry portfolio return data from 1926 to 2019. The Section 5 gives a brief conclusion and

discussion.

2 The proposed model: Lasso-VHsMM

In this study, we propose a vector autoregressive (VAR) hidden semi-Markov model with Lasso

regularization to model the dynamics of multi-variable financial data. We call the proposed model

as Lasso-VHsMM. The design of Lasso-VHsMM follows the vector autoregressive hidden Markov
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model framework in Hamilton (1989); Francq and Zakoıan (2001); Monbet and Ailliot (2017), and

extends the Markov process to be a semi-Markov chain by allowing the duration for each state to be

a random variable, and further applies the Lasso regularization on both the hidden state covariance

matrix following Fiecas et al. (2017) and the vector autoregressive coefficients following Tibshirani

(1996).

2.1 Model structure

To develop the Lasso-VHsMM, it is convenient to follow the standard process in empirical

finance. First, we are interested in observing multiple financial time series simultaneously as a

vector. We represent the multivariable vector at time t as yt ∈ Rd, where d is the vector dimension,

as well as the number of financial data we observe, and t is the time t=1, ..., T .

Second, we assume the variables yt are determined by fewer unobserved latent variables. The

latent variables are denoted by St ∈ {1, ...,M}, where M is the number of latent variables and is

less than d. We usually call the latent variables as latent states or hidden states in the hidden

Markov model. The assumption of observed variables being influenced by fewer hidden states is

usually made in many financial applications, for example the order book modelling Jiang et al.

(2019), trading behaviour detection Cao et al. (2014), and financial regime estimation Chopin and

Pelgrin (2004). We allow the hidden states to be a semi-Markov process by explicitly defining the

state duration as a random variable following the work in Yu (2010); Van der Hoek and Elliott

(2019). According to the semi-Markov process, a state i may stay for n times with a probability

ri(n)=P(stay n times at latent state i), where n ∈ D, D = {1, ..., D}, and D is a pre-defined

maximum duration for a state. Therefore we have the duration density of the latent state as r =

[r1, ..., rM ]. An important improvement of the hidden semi-Markov model (hsMM) to traditional

hidden Markov model (hMM) is that the latter allows only one observation per state while the

former allows each state emitting a sequence of observation vectors Yu (2010); Van der Hoek and

Elliott (2019). The length of the sequence at state i is determined by the length of time remaining

in state i, which is the duration or sojourn time ri(n). The ri(n) is defined as a random variable

and assumes an integer value. After defining the hidden states St, we can define the transition

probability. After defining the hidden state St, we represent the transition probability from state

i at time t to j at time t+1 as qij , for i, j=1,...,M . Considering the state duration, the transition

probability from state i with duration n to state j can be represented by q(i,n)(j). Consequently,

the prior state i starts at t − n + 1 and ends at t, with the duration n, and then transits to
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state j at the time t + 1 according to the transition probability q(i,n)(j). It can be defined as

q(i,n)(j) = P [St+1 = j|St−n+1:t = i] = qijri(n), i 6= j. Thus, the self-transition probability, q(i,n)(i)

is zero. The state transition probability is subject to
∑

j∈S,j 6=i
∑

n∈D q(i,n)(j)=1. Consequently, the

state is dependent on both the previous state and its duration. We represent the Q={q(i,n)(j), i, j =

1, ...,M} as the hidden state transition matrix. When the state is at i, n observations are emitted

with the probability of bi,n(yt−n+1:t) = P [yt−n+1:t|St−n+1:t = i]. We assume that the latent states

are associated with different prior probabilities, denoted as δ = [δ1,n, ..., δ1,n], where the δi,n =

P [St−n+1:t = i]. The δ represents the probability of the initial latent state with its duration before

the first observation y1 is obtained. In most applications, the distribution of the state duration ri(n)

can be modelled by exponential familiy distributions, such as the Gaussian Ariki and Jack (1989),

Poisson Russell and Moore (1985), and Gamma distribution Levinson (1986). Following the study of

Mitchell and Jamieson (1993), the probability mass function for duration of state i can be expressed

as ri(n) = 1
B(θi)

ξ(n) exp(−
∑P

p=1 θi,pSp(n)), where P is the number of natural parameters, θi,p is

the p-th natural parameter for state i and Θi = [θi,1, ..., θi,p], Sp(n) and ξ(n) are sufficient statistic,

and B(θi) is a normalizing term and can be obtained by B(θi) =
∑D

n=1 ξ(n) exp(−
∑P

p=1 θi,pSp(n)).

In this study, we follow the method in Freguson (1980) to find the new duration parameters for

state i by maximizing
∑D

n=1 r̂i(n) log ri(n) subject to the constraint
∑D

n=1 ri(n) = 1.

Third, we assume a p order autoregressive dependence among the observation vector yt as

yt = µi +

p∑
k=1

Akiyt−k + εti (1)

where εti follows Gaussian process N (0,Σi); i=1,...,M , and t=1,...,n; µi ∈ Rd and Σi ∈ Rd×d

are conditional mean and covariance matrix of yt given the previously observed data yt−1,...,yt−p

and the current state Si; the Aki is the k-order matrix of autocorrelation on the condition of

St = i. Introducing the Vector auto-regression (VAR) model to HsMM is to capture the linear

interdependences among the observed multiple time series. As the VAR model has been successfully

applied in numerous financial modelling examples, i.e., market impact estimation Hautsch and

Huang (2012); Jiang et al. (2019), the vector auto-regression has been proved as a generic feature

in multi-variable time-series modelling. Adding VAR to HsMM makes the samples drawn from the

model more reflecting the natural features of multi-variable financial data. We abbreviate the VAR

plus HsMM as the VHsMM model.

Consequently, the data generation mechanism of VHsMM model can be represented as following
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steps. Step 1, the model generates an initial state S1 = i, i ∈ 1, ...,M according to the initial state

distribution δi; Step 2, a duration time n is generated with the probability ri(n) drawn from state

duration density r; Step 3, a sequence of observations y1, ...,yn ∈ Rd are selected according to the

p order autoregressive model in equation 1; Step 4, the next hidden state, Sn+1 = j, is selected

corresponding to the probability qij from the state transition matrix Q. As the state i lasts for n

time units, we also represent the initial state S1 as S1:n. Then the data generation process iterates

until the last observation.

After the construction of the basic structure of VHsMM model, we represent all parameters

as a tuple θ = {δ, r,Q,µ,Σ,A}, where δ is the prior probability of latent state with M − 1 free

parameters; r is the duration density of the latent state with M(D − 1) free parameters; Q is the

latent state transition matrix with M(M − 2) free parameters; µ is the conditional mean with Md

free parameters; Σ is the covariance matrix with Md(d+1)
2 free parameters; and A is the k order

auto-regression matrix with Mpd2 free parameters.

2.2 Model regularization

We intend to apply our proposed model as a general framework in modelling different financial

data, for example the order book data, which may have second or minute-level frequency, the U.S.

industry portfolio data, which are usually daily or monthly data. To enhance the feasibility of our

model to cope with financial data with large frequency range, we use the LASSO regularization

to penalize the observed variables and the latent states. Our motivation lies in the following two

aspects.

Model Applicability. If we model the N -level order book as the work in Hautsch and Huang

(2012), we use the price and depth of both bid and ask sides at each level with buy or sell indicator

to combine a vector of 4N + 2 dimensions. If we choose N = 5 and use five-second order book data

1, the number of parameters (4N + 2 = 22) is close to the one of observations (8 × 60/5 = 96) in

a trading day, which makes the covariance matrix Σi not invertible and the VHsMM not be well

estimated. If we are interested in 10-level order book, the number of parameters increases to 42.

Thus we have to either narrow down the variables or extend the window to cover 4 to 5 trading days

for a reliable estimation of the model, as the work of Hautsch and Huang (2012). Conversely, if

using high-frequency data with five-second interval (as the work of Jiang et al. (2019)), we may face

1To alleviate the high-frequency noise on the market, order book data is usually downsampled to five-minute
interval to reflect a robust and true market dynamics Gençay et al. (2001); Aldridge (2013)

7



a problem of a sparse matrix of auto-correlation or covariance, which we consider in the following

section. Similarly, U.S. industry portfolio data contains average return in more than 40 industry

sections. If using monthly data, we need at least the data over ten years (12×10=120) for a reliable

model estimation. It is acceptable to intuit or group the variables and model them separately as the

work in Hautsch and Huang (2012). However, if equipped with a steady statistical method rather

than a heuristic search to select the effective and high-quality variables and shrink the negligible

ones, the model’s reliability and applicability can be reasonably enhanced across many financial

scenarios.

Matrix Sparsity. One popular idea is to assume that only a limited number of effective and

meaningful variables at any time that are worth investigating Hastie et al. (2005); John Lu (2010);

Chinco et al. (2019). For example, if modelling the cross-sectional stock return as Chinco et al.

(2019) or the order book changes as Hautsch and Huang (2012), the auto-regression matrix A is

sparse as many observations of the stock return and bid/ask price/depth change are close to zero.

Hence there is a requirement to remove the unnecessary correlations in A and only keep the most

relevant details in the model. To achieve this, people either intuit the candidate variables or rely on

the Akaike or Bayesian information criterion (AIC or BIC) of Akaike (1974); Schwarz et al. (1978).

In the former case, intuition may lead to arbitrarily selected unexpected candidates. In the latter

case, those criteria are useful in selecting the best subsets. However, when the number of variable

grows, selecting by AIC or BIC becomes a non-convex NP hard problem Natarajan (1995), and is

therefore “highly impractical” as indicated by Candès et al. (2009). For example, selecting from 22

variables requires a search from subsets of 222 combinations.

After defining all components and parameters, we represent the overall structure of the proposed

Lasso-VHsMM model in the Figure 2.1.

2.2.1 Implementation

To regularize the estimation for covariance matrix Σ, we follow the work proposed by Yuan

and Huang (2009); Sancetta (2008); Ledoit and Wolf (2004). The regularized covariance matrix,

represented as Σr is generated by a combination of a weighted sample covariance matrix, Σ̂,

estimated by the original maximum likelihood and the target matrix αIp,

Σr = (1−W )Σ̂ +WαIp (2)
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Figure 1: Illustration of the proposed Lasso-VHsMM. This figure shows how the working mechanism of Lasso-
VHsMM model. The first hidden state S1 and duration probability r1 are selected according to the transition
probability q. S1 lasts for n=3 time units at the probability r1 and emits three observations y1, y2, y3. The hidden
state transits to S2 according to the transition probability and stays for n=4 time units with five emitted observations
(y4, y5, y6, y7, y8) according to the emission probability. The hidden states then transit to S3,...,Sn until the final
observation yn.
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with regard to the constraint of trace of Σr equal to the trace of Σ̂, where W = λ
1+λ ∈ [0, 1]. This

shrinkage estimation is proposed by Ledoit and Wolf (2004) to obtain an optimized parameter by

argmin0≤W≤1Eθ0 ||Σr−Σ0||2. The regularization penalty parameter λ is then selected adaptable to

the underlying distribution, particularly λ0 = W0
1−W0

. Following the work of Ledoit and Wolf (2004),

the covariance matrix shrinkage is formulated as a penalized maximum likelihood estimation with

regularization penalty λ selected iteratively based on the observations to achieve a minimized

optimization error for the covariance matrix Σ in terms of the Frobenius norm. Note that, when

we have W = 0, the case of no shrinkage, we have the Σr = Σ̂. The scaling factor α is selected to

satisfy the constraint of the equal trace: tr(Σr)=tr(Σ̂). Overall, the regularization guarantees the

positive definiteness of the matrix Σr, maintains the size of Σr the same as the sample covariance

matrix Σ̂, and enhances the regularity of the matrix Σr. For example, when we increase the value

of λ, the condition number of the regularized covariance matrix is usually close to one, which shows

less dispersion between the largest and the smallest eigenvalues of the matrix.

The penalty for the auto-regression coefficients A follows the traditional Least Absolute Shrink-

age and Selection Operator (LASSO) Tibshirani (1996) to identify the most relevant coefficients.

The LASSO coefficients can be estimated by minimizing the objective function with a roughness
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penalty λa placed on the sum of the absolute value of the auto-regression coefficients as the “l1

penalty”. The penalty tuning parameter λ is used to control the strength of the regularization. A

small value of λ usually leads to a more strict selection.

ar = arg min
a
||yp+1:T − µ+

k=1∑
p

aTk yp+1−k:T−k||22 + λa||a||1 (3)

where the || · ||1 is the Manhattan norm, the || · ||2 is the Euclidean norm; and the penalty λa ≥ 0

controls the strength of the regularization. The constraint of the penalty combines the model esti-

mation and the variable selection as a single process. The LASSO regularization select coefficients

by zeroing negligible coefficients and shrinking other relevant ones.

2.2.2 Penalty value selection

In this study, we select the regularization penalty λ by minimizing one step ahead mean square

forecast error (MSFE) following the work of Bańbura et al. (2010); Nicholson et al. (2017); Baek

et al. (2017). We divide all data observations into three time periods: the initialization period

[1:T1], the validation period (T1 : T2], and the testing period (T2 : T3], as illustrated in Figure 2.

At the first step, we estimate our model by using the data in the initialization period, from 1 up to

time t=T1 and forecast the ŷλiT1+1 for i=1,...,N , which denotes all possible penalty values. At the

second step, we add one more observation at the time t=T1 + 1 to estimate the model and forecast

the ŷλiT1+2 for i=1,...,N . We then repeat this process until the time t=T2 − 1. The penalty value

can be selected by minimizing the MSFE with respective to the λ:

MSFE(λi) =
1

T2 − T1

T2−1∑
t=T1

||ŷλit+1 − yt+1||2F (4)

where the || · ||F is the Frobenius norm defined as ||A||F =
√
tr(ATA). We follow the work in

Friedman et al. (2010); Nicholson et al. (2017) to select the penalty parameter λ and λa from a

grid of potential values, which start from the smallest value for which every coefficient is forced to

zero, then increase in log-linear steps. We follow the “rule of thumb” in Nicholson et al. (2017)

that a grid depth of 25λmin and 10 grid points to search an appropriate performance.
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Figure 2: Illustration of the dataset partition for penalty parameter validation. This figure shows the mechanism
for penalty parameter λ estimation.
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2.3 Model parameter estimation

To estimate the parameters in the proposed Lasso-VHsMM model, we follow the general meth-

ods of penalized likelihood estimation by the work of Green (1990); De Pierro (1995) under

Expectation-Maximization (EM) framework in traditional hidden Markov model in Baum et al.

(1970) and Dempster et al. (1977).

For the Expectation step (E-step), we follow the work of Yu (2010) to estimate the standard

forward-backward variables. We define the multivariable autoregressive density as fj,n(yt+1:t+n) =

P (yt+1:t+n|St+1:t+n = j), under the condition of the hidden state j continuing for n time units

duration. Based on this, we can define the forward variable as αt(j, n) = P (St−n+1:t = j,y1:t|θ),

where the j=1,...,M , t=1,...,T , and n=1,...,min(D, t) (D is the maximum duration for a state

defined in Section 2.1). The forward variable αt(j, n) denotes the probability density generated by

the model parameters θ under the condition of the hidden state staying at j for n time units until t

with the observations from time 1 to t. With the initialization of the forward variable α0(j, n) = δj ,

j=1,...,M , we can further define the recursion formula as

αt(j, n) =
M∑
i=1

min(D,t)∑
n′=1

αt−n(i, n′)qi,jri(n)fj,n(yt−n+1:t) (5)

where t=1,...,T ; q is the latent state transition probability. The backward variable can be defined

similarly as well by βt(j, n) = P (yt+1:T |St−n+1:t,θ), where j=1,...,M ; t=1,...,T ; and n={1, ...,min(D, t)}.

The backward variable βt(j, n) denotes the probability of seeing the observation yt+1:T when the

latent state S lasts for n time units from t−n+ 1 to t with the model parameters θ. Following the

traditional setting in the work of De Pierro (1995) and Yu (2010), we start with the initialization

of βT (j, n)=1, we can therefore calculate the recursion formula as

βt(j, n) =

M∑
i=1

min(D,T−t)∑
n′=1

qjirj(n)fi,n′(yt+1:t+n′βt+n′(i, n
′)) (6)
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To calculate the expected parameters at the E-step, we define three supplementary variables, ξt(i, j)

as the probability of the state transition from i at t to j at t+ 1 given the model parameters with

the observation from t = 1 to T ; ηt(j, n) as the probability of the state staying at j for n given the

model parameters with the observation from t = 1 to T ; and γt(j) as the state staying at j at time

t given the model parameters with the observation from t = 1 to T . Therefore, we can derive

ξt(i, j) = P (St = i, St+1 = j,y1:T |θ) (7)

=

min(D,t)∑
n′=1

min(D,T−t)∑
n=1

αt(i, n
′)qijfj,n(yt+1:t+n)βt+n(j, n)

ηt(j, n) = P (St−n+1:t = j,y1:T |θ) = αt(j, n)βt(j, n) (8)

γt(j) = P (St = j,y1:T |θ) =

min(D,t,T−t)∑
n=1

ηt(j, n) (9)

Based on those defined variables, we can then calculate the expected model parameters after each

iteration as

Q(θ|θ(l)) = Eθ(l){log [Pθ(y1, ...,yT , S1, . . . , ST )] |y1, ...,yT }

= Eθ(l){log [Pθ(S1, . . . , ST )] |y1, ...,yT }+ Eθ(l){log [Pθ(y1, ...,yT |S1, . . . , ST )] |y1, ...,yT }

=

 T∑
t=1

M∑
i=1

∑
j 6=i

ξt(i, j)

γt(j) log qij

 +

[
M∑
i=1

γ0(i) log δi

]
+

 T∑
t=1

M∑
j=1

D∑
n=1

ηt(j, n)

γt(j) log rj(n)


+

 T∑
t=1

M∑
j=1

γt(j) logP (yt|yt−1:max(1,t−p),µj ,Σj ,Aj)

 , (10)

where the θ(l) represents the model parameters at the l-th iteration, the P (yt|yt−1:max(1,t−p),µj ,Σj ,Aj)

denotes the probability density of the p-th order autoregressive process, which is dependent on the

latent states.

After the derivation of the model parameters at the E-step, we can easily calculate the maxi-

mized value of parameters by separating each one in Q(θ|θ(l)). Therefore we can have,

δj =
γ0(j)∑
j γ0(j)

(11)

qij =

∑
t ξt(i, j)∑

j 6=i
∑

t ξt(i, j)
(12)

rj(n) =

∑
t ηt(j, n)∑

n

∑
t ηt(j, n)

(13)
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We can update µj as the traditional unpenalized conditional mean, and matrix of autoregressive

process Aj as well by the least square regression in LASSO regularized VAR model, in which the

weight γt(j) has been combined with the probability density of the observation P (yt|yt−1:t−p). We

follow the pathwise coordinate descent optimization method as the work of Friedman et al. (2007)

for updating the values of µj , and Aj . The Σj can be updated as the discussion of equation 2,

in which as a combination of weighted variance of the error of VAR model with a constrained

identity matrix WαIp. Following the proof of the asymptotic properties of the EM method in

the work of Bickel et al. (1998); Barbu and Limnios (2009); Trevezas and Limnios (2011), the

estimated parameters of the model θ̂T is strongly consistent when the time T achieves to infinity.

Particularly, the Trevezas and Limnios (2011) shows the consistency and asymptotic normality for

the estimated parameters for hidden semi-Markov model with finite latent states. It indicates a

positive probability of state transition as P (St+τ = j|St = i) > 0, and a finite conditional density

of the state duration ri(n), when states i, j ∈ {1, ...,M}, and τ is a positive integer.

3 Simulations

To evaluate the performance of the proposed Lasso-VHsMM model, we firstly use the simulated

data to measure the accuracy of the parameters that are retrieved from the model. The simulated

data is a multivariable time series of dimension d=50, generated from M=2 latent states with the

sample size T=1000. The parameter for simulation is summarized in the Table 1.

Table 1: Simulation parameters. This table contains the parameter values for simulating the multivariable time
series data to evaluate the performance of Lasso-VHsMM

Parameters Values

Data dimension d=50
Sample size T=500
Number of states M=2
Mean of states µ=050×1
Max state duration D=30

We construct the transition probability matrix as

Q =

0 1

1 0

 , (14)

which indicates a self-transition is not allowed. It is due to the explicitly defined state duration

density ri(n), that assigns a certain likelihood of staying at a state i for n time units. Accordingly,
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we simulate the time series considering the dense and sparse matrices of the covariance Σ and

auto-regression A following the work of Fiecas et al. (2017). For the sparse matrix, we define the

sparse covariance matrices for state 1 and 2 as

ΣSparse
1,ij =


e−|i−j|, if |i− j| < 2

0, otherwise

(15)

ΣSparse
2,ij =


e−2|i−j|, if |i− j| < 2

0, otherwise

(16)

ASparse
1 =



0.1 0.05 0 . . . . . . 0

0.05 0.1 0.05 0 . . . 0

0 0.05 0.1 0.05 . . . 0
...

...
...

...
...

...

0 . . . 0 0.05 0.1 0.05

0 . . . . . . 0 0.05 0.1


, (17)

ASparse
2 =


0 . . . 0
...

...
...

0 . . . 0

 . (18)

For the dense matrices, we have

ΣDense
1,ij = e−|i−j|, (19)

ΣDense
2,ij = e−2|i−j|, (20)

ADense
1,ij =

1

10
e−|i−j|, (21)

ADense
2,ij =

1

10
e−2|i−j|. (22)

We estimate two models under the proposed framework: one is Lasso-VHsMM model (with

regularization) and another is VHsMM model (without regularization) using the simulated data.

We choose the first order autoregressive dependence p=1. For the Lasso-VHsMM model, we select

the regularization penalty λ and λa for the covariance matrix Σ and auto-regression matrix A

respectively by the method discussed in Section 2.2.2: minimizing one step ahead mean square

forecast error (MSFE). To select the appropriate values for λa, we choose a range of λa ∈ [0.1, 100]
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and 20 grid points with equal log-scale to search an appropriate penalty. Similarly, we choose a

range of λ ∈ [0.0001, 1] with 100 grid points for an appropriate search.

Following the work of Bańbura et al. (2010); Nicholson et al. (2017); Baek et al. (2017), we divide

the simulated data points to two time periods by T1=800. Therefore the data in the initialization

period [1:T1=800] is to estimate the models, while the remained data in the period (T1=800:1000] is

for model validation. The simulation process is as: 1) simulation of a time series by the parameter

in Table 1 and equation 14-22; 2) estimate and validate the Lasso-VHsMM and VHsMM model by

the simulated data; 3) calculate the Frobenius Norm (or Euclidean norm) of the differences between

the estimated parameters and the real parameters for the simulated the time series. We repeat this

process for 1000 times and calculate average values of the Frobenius Norm.

Table 2: The error of estimated parameters under Frobenius Norm. This table contains the Frobenius
Norm (the averaged value with standard deviation in the parentheses) of the difference between the estimated and
real parameters by 1000 simulated data.

Sparse Dense

Parameter VHsMM Lasso-VHsMM VHsMM Lasso-VHsMM

‖Â1 −A1‖F 3.1242 (0.2447) 0.3089 (0.0004) 3.5463 (0.2326) 0.3217 (0.0009)

‖Â2 −A2‖F 3.3935 (0.2156) 0.1088 (0.0006) 3.3719 (0.2778) 0.1277 (0.0006)

‖Σ̂1 −Σ1‖F 3.0332 (0.1446) 1.0027 (0.0028) 3.1183 (0.1015) 2.0196 (0.0837)

‖Σ̂2 −Σ2‖F 3.0851 (0.1199) 1.1083 (0.0041) 3.0098 (0.1180) 1.9472 (0.0200)
‖µ̂1 − µ1‖F 0.4190 (0.0544) 0.3228 (0.0022) 0.4276 (0.0506) 0.3133 (0.0020)
‖µ̂2 − µ2‖F 0.4057 (0.0505) 0.3027 (0.0016) 0.4024 (0.0513) 0.3068 (0.0012)
‖r̂1 − r1‖F 0.1547 (0.0303) 0.1284 (0.0047) 0.2233 (0.0324) 0.1789 (0.0027)
‖r̂2 − r2‖F 0.1615 (0.0286) 0.1298 (0.0018) 0.1732 (0.0240) 0.1129 (0.0011)

Table 3: An example of latent state identification confusion matrix. The Lasso-VHsMM and VHsMM
model are estimated by the simulated time series (observations) for identifying the latent states that generate the
observations.

Sparse

Real

Lasso-VHsMM State 1 State 2 Precision

Estimated
State 1 177 6 96.7213%
State 2 10 125
Recall 94.6524%

VHsMM State 1 State 2 Precision

Estimated
State 1 176 10 94.6237%
State 2 11 121
Recall 94.1176%

Dense

Real

Lasso-VHsMM State 1 State 2 Precision

Estimated
State 1 171 14 92.4324%
State 2 16 117
Recall 91.4439%

VHsMM State 1 State 2 Precision

Estimated
State 1 168 16 91.3043%
State 2 19 115
Recall 89.8396%

15



Table 4: Average precision, recall, and accuracy of latent state identification. This table contains the
state identification by the estimated Lasso-VHsMM and VHsMM model. The identifications are on 1000 simulated
time series. The precision and recall for each time series has been calculated as the Table 3 and the average precision,
recall, and state classification accuracy across all 1000 time series are illustrated.

Precision Recall Accuracy

Sparse
Lasso-VHsMM 97.27% 95.19% 94.97%

VHsMM 95.63% 94.09% 93.08%

Dense
Lasso-VHsMM 93.99% 91.49% 90.88%

VHsMM 91.26% 88.36% 89.62%

The results are illustrated in tables 2 and 3. In Table 2 we can clearly observe that the errors

of covariance and autoregression matrices generated by Lasso-VHsMM model are highly reduced

compared to the ones by VHsMM model. This is especially obvious in estimations of sparse matrices

(the columns under “Sparse”), which follows our expectation of the “matrix sparsity” discussed in

Section 2.2. For the dense matrices, the Lasso-VHsMM model also outperforms the VHsMM model

in estimating Σ and A with relatively less significance. For the estimation of the conditional mean

µ of the VAR component, and the state duration density r, Lasso-VHsMM model achieves slightly

better average results than the VHsMM model with much lower standard deviations. From the last

four rows in Table 2, we can observe that the standard deviations of the estimated parameters by the

Lasso-VHsMM model are consistently one-tenth of the ones by VHsMM model. This shows a stable

better performance of the Lasso-VHsMM model in tracking the time series. In Table 3, we show

an example of the confusion matrices of the identification of the latent states by two models. For

both the dense and sparse matrices, the Lasso-VHsMM model achieves better state identification

performance in precision and recall. We repeat this identification on 1000 simulated time series and

generate the average precision, recall, and the accuracy of state classification as shown in Table 4.

It’s clear that the Lasso-VHsMM model consistently outperforms the VHsMM model in recognising

the latent states in multivariable time series. Note that the “Accuracy” column in Table 4 show

an averaged accuracy of correctly identifying both the state 1 and 2.

4 Financial Data Analysis

We apply the Lasso-VHsMM model to detect anomalous trading behaviour and identify market

regime switching. The financial datasets we use in the empirical analysis include three types: 1)

5-second order book data of component stocks of Chinese CSI 300 index that are listed in Shanghai

Stock Exchange with the time period from August 2005 to August 2016; 2) daily U.S. industry

portfolio data from 1 Jul 1926 to 28 Jun 2019; 3) 1-hour foreign exchange rates from Jan 2009
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to Aug 2015. Those three applications cover a broad spectrum of financial scenarios with data

frequencies of 5-second, one-hour and daily respectively. We choose the three applications due to

their similar underlying task: to decode the latent incentives behind the observed phenomenon.

4.1 Benchmark Models

To evaluate the result of the proposed Lasso-VHsMM model, we compare its financial data

analysis result with two well-established models: Shrink Hidden Markov Model (shrink-HMM)

following the study of Fiecas et al. (2017), and Markov Chain Monte Carlo (MCMC) for continuous-

time asset pricing models following the study of Johannes and Polson (2010); Verhofen (2005).

Following the configurations in Section 5 of Fiecas et al. (2017), we calculate the Akaike information

criterion (AIC) to determine the states and yield the lowest AIC with two states. We estimate the

shrinkage weights for state 1 and 2 and use the estimated model to capture the stability and high-

risk states of U.S. industry. Following the regime switching configuration in Section 5.3 of Johannes

and Polson (2010) and Section 4 of Verhofen (2005), we consider the time series follows a stochastic

differential equation and the drift and diffusion are driven by a continuous, discrete state Markov

Chain. We impose the vector of mean return and the variance-covariance matrix. The Markov

Chain is generated by the Gibbs sampler with 110,000 iterations.

4.2 Pseudo trading strategy

As the previous study points out Fiecas et al. (2017), the latent state identification is merely an

unsupervised coarse classification and “will not allow us to detect the precise” changes in the data.

To obtain a clearer comparison among different models, we follow the idea of the trading strategy

in Nystrup et al. (2020). As the data in the empirical studies is financial data, we implement a

long-short pseudo trading strategy according to the identified latent states of the financial markets.

In the stable state (the normal state), we long the underlying financial asset; while in the volatile

state (the anomalous state), we short the underlying financial asset. We assume the transaction

cost is 1% of a trade. The final total value of the asset position is calculated after the final date.

The return of the trading strategy is then computed based on the initial asset, transaction cost and

the final value of the asset. In the pseudo trading strategy, we run each model for 1000 times and

calculate the standard deviation of the 1000 return and then find the sharp ratio for each model.

We assume we can long and short the U.S. industry portfolio index and the FX in the trading

strategy although those assets might not be purchased at the same time with no additional cost.
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However, the assumption of the purchasability is to compare the results of the Lasso-VHsMM,

shrink-HMM, and MCMC models rather than a study of the profitability of a trading strategy.

4.3 Trading Behaviour

The concept of “disruptive trading behaviour” has been defined by the US Commodity Futures

Trading Commission (CFTC) in 2013 CFTC (May 20 2013) as the buy or sell orders with intention

of cancellation prior to the execution with “reckless disregard” for the market integration and

regulation. The disruptive trading activities have been discussed in Cao et al. (2014, 2015); Zhai

et al. (2017); Wang et al. (2019) as the market manipulation activities, undertaken through carefully

designed purchasing and selling order sequences as a means of inducing market price movements

to follow their expectations, thus resulting in an anomalous market fluctuation. A common way to

detect the anomalous trading behaviours is modelling the market price as the work of Cao et al.

(2014); Zhai et al. (2017, 2018) with the known manipulative cases. Unfortunately, on one hand,

real disruptive trading examples are rarely publicly disclosed due to the prohibition from regulatory

rules; on the other hand, the market price is the expected convergence of all aggregated market

activities Choi et al. (2019) and inspecting the market price only can not reflect the true incentive

of the trading behaviour. For example, several jumps of price may not lead to an anomalous trading

action, but a sequence of such jumps with certain patterns may be.

Consequently, to identify whether the intention behind certain trading behaviours is anomalous,

we analyze both the prices and depths on both bid and ask sides of the three-level order book

following the work of Hautsch and Huang (2012); Jiang et al. (2019). We obtain the order book data

with five-second interval from China Security Market Trade & Quote of the China Stock Market

& Accounting Research (CSMAR) database. We select all component stocks of the Chinese CSI

300 index that are listed in Shanghai Stock Exchange with the exclusion of the finance sector and

the companies listed less than three years. There are 148 stocks from August 2005 to August 2016

selected as the final dataset. We randomly select 30 stocks and summarize the descriptive statistics

in the Table Appendix-1.

The market price pt and depth vt in bid and ask sides of a 3-level order book are combined as a

multi-variable time series. Therefore we have a d = 4×3 = 12 dimension order book vector (OBV)

defined as

OBVt =
[
pa,1t , pb,1t , va,1t , vb,1t , pa,2t , pb,2t , va,2t , vb,2t , pa,3t , pb,3t , va,3t , vb,3t ,

]
(23)
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where t denotes the time; p
a/b,k
t represents the market ask (a) or bid (b) price at the k-th level order

book; and v
a/b,k
t represents the market ask or bid depth (indicated by total outstanding volume)

at the k-th level order book.

We then define the observation of the Lasso-VHsMM model yt as the log return of each dimen-

sion of OBVt.

yt =

[
log

pa,1t

pa,1t−1
, log

pb,1t

pb,1t−1
, log

va,1t

va,1t−1
, log

vb,1t

vb,1t−1
, . . . . . . , log

va,3t

va,3t−1
, log

vb,3t

vb,3t−1

]
(24)

We show four examples of the correlation among the log returns in equation 24 by heatmap in

Figure Appendix-1. The heatmaps show that in the lag 0 heatmap (first row in Figure Appendix-

1), half of the dimensions have moderately strong, positive correlations and the other half, in the

contrast, have weak correlations. The lag 1 heapmap, however, shows weak correlations across

most dimensions. The sparse correlation supports the motivation of matrix sparsity in Section 2.2

on the regularized auto-regression matrix of the Lasso-VHsMM model.

Evaluating the Lasso-VHsMM model on real data is not easy because the latent states are

usually not observable. As stated in Fiecas et al. (2017), the model does “not allow us to detect

the precise date that specific companies are affected”. Therefore, we test our proposed model by

the order book data on a specific day in Shanghai Stock Exchange: the circuit break days of 4 and

7 Jan 2016 Wei (2017). The stock market circuit breaker has been employed in Shanghai Stock

Exchange for four days 4-7 Jan 2016. On 4 and 7 Jan 2019, the breaker has melted due to the

turbulence on the market. As the turbulence event has been publicly discovered, we clearly know

that the trading behaviours at around 13:33 on 4 Jan 2016, and 9:40 and 9:58 on 7 Jan 2016 are

extremely anomalous. We use the order book data of 4 and 7 Jan 2019 as the testing data to

evaluate our proposed model. The order book data from Jun to Dec 2015 is used to estimate the

model.

Similarly as the simulation experiments in Section 3, we estimate the Lasso-VHsMM and

VHsMM model with first order autoregressive dependence p=1, and then test them by the same

data respectively. The regularization penalties are selected by the method discussed in Section

2.2.2: minimizing one step ahead mean square forecast error (MSFE). The penalty λa is selected

by a 20 points grid from a range of λa ∈ [0.1, 100]; while the penalty λ is selected by a 100 points

grid from a range of [0.0001, 1].

We show the 12 order book variables in equation 24 and the decoded latent states of four
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Figure 3: The examples of order book data and latent states decoded by Lasso-VHsMM and VHsMM models.
Four stocks are selected as examples with ID 600005, 600008, 600009, 600010. The figure shows the 12 order book
variables in equation 24 with 5-second interval. Panel A shows the data from 13:00 to 13: 40 on Jan 4, 2016. The
colour lines are the 12 dimensions of the order book variables in equation 23. The grey area are the identified latent
states by the Lasso-VHsMM model (left column) and VHsMM model (right column). The X and Y-axis represent
the physical time t, and the log return of order book price and volume yt, defined in equation 24, respectively.

Panel A:
stock ID: 600005 by Lasso-VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10
stock ID: 600005 by VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10

stock ID: 600008 by Lasso-VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10
stock ID: 600008 by VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10

stock ID: 600009 by Lasso-VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10
stock ID: 600009 by VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10

stock ID: 600010 by Lasso-VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10
stock ID: 600010 by VHsMM

13:00:00 13:10:00 13:20:00 13:30:00 13:40:00
Jan 04, 2016 

-10

-5

0

5

10

example stocks in Figure 3. The Panel A of Figure 3 shows the data from 13:00 to 13:40 on Jan 4,

2016, on which the circuit breaker has been melt for the first time. The Panel B of Figure 3 shows

the data from 9:20 to 10:00 on Jan 7, 2015, when the circuit breaker has been melt for the second

time. The figures on the left column contains the latent states decoded by the Lasso-VHsMM

model and the ones on the right column is by the VHsMM model.

The first circuit breaker melt at 13:33 on Jan 4, 2016 due to the anomalous trading behaviours

several minutes before the time. It is clear that on the left column at Panel A, the Lasso-VHsMM

model accurately recognizes the anomalous latent states (grey area) lasting from approximate 13:30

to 13:33, which is immediately leading to the melt of the circuit breaker. On the right column of
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Panel B: The examples of order book data and latent states decoded by Lasso-VHsMM and VHsMM models.

Four stocks are selected as examples with ID 600005, 600008, 600009, 600010. The figure shows the 12 order book

variables in equation 24 with 5-second interval. Panel B shows the data from 9:20 to 10:00 on Jan 7, 2016. The

colour lines are the 12 dimensions of the order book variables in equation 23. The grey area are the identified latent

states by the Lasso-VHsMM model (left column) and VHsMM model (right column). The X and Y-axis represent

the physical time t, and the log return of order book price and volume yt, defined in equation 24, respectively.
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Panel A, the VHsMM model, however, identifies much more anomalous latent states that generate

volatile behaviours. A turbulent market on Jan 4, 2016 makes the VHsMM model identifying the

anomalous latent states more aggressively than the Lasso-VHsMM model, which results in a more

chaotic latent state recognition.

Panel B shows the data from 9:20 to 10:00 on Jan 7, 2016, on which a more turbulent market can

be observed as the record in Wikipedia (2019). On the right column, the VHsMM model identifies

almost all market behaviours as anomalous state; while on the left column, the Lasso-VHsMM

model detects the anomalous states at around 9:40, 9:58 and a few other time points. We see that,

though the results in two columns have some similar chaotic latent states as the stock 600008, the

Lasso-VHsMM model yields a more stable recognition of underlying anomalous latent states than

that of the VHsMM model. More examples in Figure Appendix-2 show the similar results.

We point out that the reconstruction of the latent states from the observed variables is a “coarse

classification” as the statement in work of Fiecas et al. (2017). This classification unable to provide

us an exactly accurate detection with dates and times that specific events occur and affect the

market. However, this recognition by the Lasso-VHsMM model enables us mostly accurately to

capture the transition in the financial market between the states of normal and anomalous.

4.4 US Portfolio

Following the work of Fiecas et al. (2017); Nystrup et al. (2018), we apply the Lasso-VHsMM

and VHsMM model to the U.S. industry portfolio data, which is publicly available at Kenneth R.

French (2019). The data consists of daily return of 49 different industry sections taken from NYSE,

NASDAQ, and AMEX. The data covers a considerable long time period from 1 Jul 1926 to 28 Jun

2019 and has 49,030 records with d = 49 dimensions.

We apply the Lasso-VHsMM, VHsMM, shrink-HMM, and MCMC models on the data to recon-

struct the latent states behind the observed daily returns. We optimize the Lasso-VHsMM model

by the method in Section 2.2.2: minimizing one step ahead mean square forecast error (MSFE)

with the same penalty configurations for λ and λa as Section 4.3: 20 points grid from a range of

λa ∈ [0.1, 100] for penalty λa and 100 points grid from a range of [0.0001, 1] for the penalty λ.

We show the recognized anomalous latent states in Figure 6. In the Panel A, we show the

recognized anomalous states by the Lasso-VHsMM model (left column) on the data across 93 years

from 1926 to 2019. We see that the anomalous state occurred during the big events including the

great recession in 1930s Wikipedia (2019), the great inflation in 1970s, dot-com bubble in 2000,
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Figure 4: The examples of U.S. industry portfolio data and latent states decoded by Lasso-VHsMM, VHsMM,
Shrink-HMM, and MCMC models. The figure shows the daily return of 49 different industry sections. The colour
lines are the 49-dimensional U.S. industry portfolio data. The grey area are the identified latent states by models.
Panel A shows the data from 1 Jul 1926 to 28 Jun 2019 by the Lasso-VHsMM and VHsMM models; Panel B shows
the data from 3 Jan 2007 to 28 Jun 2019 by the Lasso-VHsMM model, VHsMM model, Shrink-HMM, and MCMC
models. The X and Y-axis represent the year, and the log return of the U.S. industry index, respectively.

Panel A:

Panel B:
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as well as the global financial crisis of 2008. To have a closer look, we run the Lasso-VHsMM,

shrink-HMM, and MCMC models again on the data from 3 Jan 2007 to 28 Jun 2019 and show the

results in Panel B. From the results of Lasso-VHsMM model on the left column, we have a more

detailed recognition of many important events, which include the financial crisis from 2008 to 2009,

the double-dip recession at 2011, the shocks at 2016 (Chinese stock market crash, OPEC cut, and

Brexit), and the uncertainty at 2019. We compare the states on the left and right columns in Panel

A and B. We see that, although the latent states have some similarities, the Lasso-VHsMM model

achieves more interpretable and stable recognition of the underlying states. We argue that, such

a recognition is not an accurate classification but an unsupervised learning. The Lasso-VHsMM

model does not allow us precisely forecast the events through the latent events, but provides a

powerful method to capture the transition in the U.S. industry between the stable position and the

anomalous status, which is highly risky to the market as the work of Fiecas et al. (2017). In Panel

B, we also show the results of VHsMM, shrink-HMM, and MCMC models. We can clearly observe

that the shrink-HMM achieves quite similar latent state identification as Lasso-VHsMM except

some more tiny events around late 2009 and early 2010. However, the MCMC model identifies

most of the tiny rather than the primary states.

In addition to the state identification, Table 5 shows the results of the long-short pseudo trading

strategy using different models. The purpose of the strategy is to compare the different latent state

identification rather than a study of the profitability. The results clearly show that the Lasso-

VHsMM achieves the best sharp-ratio and is favorable to all other models in identifying the stable

and volatile financial states.

Table 5: This table shows the results of the long-short pseudo trading strategy based on the U.S.
industry portfolio index with Lasso-VHsMM, VHsMM, shrink-HMM, and MCMC models.

Return Risk Sharpe Ratio Turnover

Lasso-VHsMM 0.1775 0.0985 1.8025 1.2499
VHsMM 0.1235 0.1448 0.8530 5.5133
shrink-HMM 0.1519 0.1096 1.3864 6.2483
MCMC 0.0972 0.2055 0.4732 6.4059

4.5 Foreign exchange rate

In addition to the empirical study of the multivariate data, we consider an application to four

primary foreign exchange rates: EUR/USD, GBP/USD, GBP/EUR and GBP/JPY from 2009 to

2015. The choice of the FX rates is mainly due to that the FX rate is highly liquid, volatile and
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sensitive to most economic events. The choice of FX rate also supplements the empirical study by

one-dimensional financial data in addition to the 12-dimensional data of stocks and 49-dimensional

data of U.S. portfolio. The Figure 5 shows the identified states of the rate of EUR/USD and

GBP/USD using the Lasso-VHsMM, shrink-HMM, and MCMC models. The results show that

the Lasso-VHsMM model effectively identifies the primary latent states and is not over-sensitive

to insignificant changes. The shrink-HMM model identifies the most primary states and some

tiny changes as well. However, the MCMC model is very sensitive to the one-dimensional FX

data and identifies most volatile events. For a further comparison, we once again carry out the

pseudo trading strategy on the FX rates. The results are reported in the Table 6. The Lasso-

VHsMM model achieves the best sharp-ratio by identifying the primary latent states, while the

shrink-HMM achieves the second best performance with more identified latent states. However,

the MCMC model identifies most volatile states and therefore worsens the performance with over-

sensitive trading activities. The latent state identification results for the rates of GBP/EUR and

GBP/JPY are illustrated in Figure Appendix-3 in the appendix for saving the space. The similar

results can be observed

Table 6: This table shows the results of the long-short pseudo trading strategy based on the FX
rates of EUR/USD and GBP/USD with Lasso-VHsMM, shrink-HMM, and MCMC models.

EUR/USD Return Risk Sharpe Ratio Turnover

Lasso-VHsMM 0.1585 0.1318 1.2025 1.2499
shrink-HMM 0.1525 0.1369 1.1139 4.2483
MCMC 0.0991 0.1752 0.5653 6.4059

GBP/USD Return Risk Sharpe Ratio Turnover

Lasso-VHsMM 0.1869 0.1054 1.7729 1.2499
shrink-HMM 0.1451 0.1087 1.3348 4.2483
MCMC 0.1009 0.2178 0.4632 6.4059

5 Conclusion

The traditional hidden Markov model has previously been substantially extended to relax ei-

ther the Markovian assumption of the latent states or the conditional independent randomness

assumption of the observed variables. However, a general framework seeking to release all of those

assumptions has not yet to be developed. Thus, this study represents a novel approach in address-

ing this issue. We extend the traditional hidden Markov model framework and develop a vector

autoregressive (VAR) hidden semi-Markov model with Lasso regularization (Lasso-VHsMM). Our

25



Figure 5: The examples of FX data and latent states decoded by Lasso-VHsMM, shrink-HMM, and MCMC models.
The figure shows the daily return of two FX rate: EUR/USD and GBP/USD. The left column shows the data of
EUR/USD from 1 Jan 2009 to 31 Aug 2015; The right column shows the data of GBP/USD from 1 Jan 2009 to 31
Aug 2015. The grey area are the identified latent states by the models. The X and Y-axis represent the physical
time, and the log return of the hourly FX rate, respectively.
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theoretical contribution includes three strands of extensions. In the proposed Lasso-VHsMM model,

we consider the observed variables following a p-order vector autoregressive process, allow the latent

states evolving via a semi-Markov chain, and shrink the auto-regression and covariance matrices by

a penalized maximization likelihood method. This design particularly suits the practical financial

data, which is usually multi-dimensional, auto-correlative, tends to be generated by certain one

or two latent states, and more importantly, contains sparse (or close to sparse) autoregressive and

covariance matrices. The empirical study of the model include four parts: the 50-dimensional simu-

lated data; the 5-second interval, 12-dimensional order book data of stocks; the 49-dimensional daily

data of U.S. industry portfolio; and the 1-hour interval, 1-dimensional data of four popular foreign

exchange rates. We show empirically that the Lasso-VHsMM model consistently outperforms the

alternative models in recognizing the latent states of the anomalous events. The latent states of

the simulated data are identified by the Lasso-VHsMM model by 94.65% and 91.44% on sparse and

dense autoregression matrix respectively. The primary events on the financial market microstruc-

ture, FX markets, and the U.S. industry portfolio can be identified accurately by Lasso-VHsMM

model. The long-short trading strategy based on the latent states identified by the Lasso-VHsMM

shows significantly better sharp-ratio than the one by shrink-HMM and MCMC models. These

empirical findings substantiate the novelty of our model as a step towards formulating a general

framework for modelling multi-variable financial data.
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Figure Appendix-1 The four examples of the correlation heatmap of the log return (lag 0 and 1) of 12

dimensions of OBS in equation 24. Four stocks are selected as examples of the strength of the correlation. The first

row shows the lag 0 log-return correlation of stock ID 600005, 600008, 600009, 600010 respectively. The second row

shows the lag 1 log-return of those stocks correspondingly.
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Table Appendix-2 This table shows the results of the long-short pseudo trading strategy based on the FX rates

of GBP/EUR and GBP/JPY with Lasso-VHsMM, shrink-HMM, and MCMC models.

GBP/EUR Return Risk Sharpe Ratio Turnover

Lasso-VHsMM 0.2045 0.1414 1.44622 1.2499
shrink-HMM 0.1602 0.1362 1.17641 4.2483
MCMC 0.0968 0.1911 0.50671 6.4059

GBP/JPY Return Risk Sharpe Ratio Turnover

Lasso-VHsMM 0.1618 0.1088 1.48736 1.2499
shrink-HMM 0.1603 0.1279 1.25303 4.2483
MCMC 0.1021 0.1861 0.54858 6.4059
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Figure Appendix-2 Panel A The examples of order book data and latent states decoded by Lasso-VHsMM and

VHsMM models. Five stocks are ID 600011, 600018, 600019, 600021, 600022. Panel A shows the data from 13:00 to

13: 40 on Jan 4, 2016; The grey area are the identified latent states by the Lasso-VHsMM model (left column) and

VHsMM model (right column). The X and Y-axis represent the physical time t, and the log return of order book

price and volume yt, defined in equation 24, respectively.
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Panel B shows the data from 9:20 to 10:00 on Jan 7, 2016. The grey area are the identified latent states by the

Lasso-VHsMM model (left column) and VHsMM model (right column). The X and Y-axis represent the physical

time t, and the log return of order book price and volume yt, defined in equation 24, respectively.
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Figure Appendix-3 The examples of FX data and latent states decoded by Lasso-VHsMM, shrink-HMM, and

MCMC models. The figure shows the daily return of two FX rate: GBP/EUR and GBP/JPY. The left column

shows the data of GBP/EUR from 1 Jan 2009 to 31 Aug 2015; The right column shows the data of GBP/JPY from

1 Jan 2009 to 31 Aug 2015. The grey area are the identified latent states by the models. The X and Y-axis

represent the physical time, and the log return of hourly FX rate, respectively.
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