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Abstract 

Increasing penetration of renewable energy generation in the modern power network introduces 

uncertainty about the energy available to maintain a balance between generation and demand due 

to its time-fluctuating output that is strongly dependent on the weather. With the development of 

energy storage technology, there is the potential for this technology to become a key element to 

help overcome this intermittency in a generation. However, the increasing penetration of battery 

energy storage within the power network introduces an additional challenge to asset owners on 

how to monitor and manage battery health. The accurate estimation of the health of this device is 

crucial in determining its reliability, power-delivering capability and ability to contribute to the 

operation of the whole power system. Generally, doing this requires invasive measurements or 

computationally expensive physics-based models, which do not scale up cost-effectively to a fleet 

of assets.  

As storage aggregation becomes more commonplace, there is a need for a health metric that will 

be able to predict battery health based only on the limited information available, eliminating the 

necessity of installation of extensive telemetry in the system. This work develops a solution to 

battery health prognostics by providing an alternative, a non-invasive approach to the estimation 

of battery health that estimates the extent to which a battery asset has been maloperated based only 

on the battery-operating regime imposed on the device. The model introduced in this work is based 

on the Hidden Markov Model, which stochastically models the battery limitations imposed by its 

chemistry as a combination of present and previous sequential charging actions, and articulates 

the preferred operating regime as a measure of health consequence.  

The resulting methodology is demonstrated on distribution network level electrical demand and 

generation data, accurately predicting maloperation under a number of battery technology 

scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual 

battery degradation for lithium-ion technology was also tested against lab tested battery 

degradation data, showing that the proposed health measure in terms of maloperation level 

reflected that measured in terms of capacity fade. The developed model can support condition 

monitoring and remaining useful life estimates, but in the wider context could also be used as the 

policy function in an automated scheduler to utilise assets while optimising their health. 
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CHAPTER 1 

 

1. Introduction 

This thesis contributes to the design of a battery model that automatically recognizes 

the violation of battery health due to the action set by a Battery Energy Storage (BES) 

scheduler, which in a practical context can be used as the cost function when optimising 

the operation of a system comprising this device. Additionally, it investigates the influence 

of electrical demand forecasting performances on the battery schedules generated based 

on such forecasts, the battery state of health and the ability of this device to perform its 

dedicated function.   

 Research Background and Motivations   

In the past, the power system in the UK was characterized by centralised 

infrastructure where large conventional, coal, nuclear, gas and oil-fired power plants 

provided continuous and reliable electricity that then was transported over a distance to 

the consumers through an electric power grid. Operation of such a system was planned 

centrally by scheduling the power plant outputs according to a forecast of aggregated 

demand, additionally incorporating a sufficient level of security margin in transmission 

and generation to ensure that system could withstand a single contingency (loss of a 

generator, a transmission line or a transformer).  Recently, the power network of Great 

Britain has been undergoing an intensive transformation toward smart grid infrastructure 

that is characterized by generation distributed within the network and a greater share of 

renewable energy generation. Unfortunately, renewable energy generation provides time 

fluctuating power availability against time, dictated by weather, time of day, season and 

climate, introducing uncertainty about the availability of energy to maintain a balance 
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between generations and demand [1]. Electrical load disaggregation, from the national 

level to the Low Voltage (LV) feeder level, due to a decentralization of the power network 

introduces a higher level of uncertainty to the system when planning to balance load and 

generation. This is dictated by a much lower accuracy of load prediction on the local and 

disaggregated levels compared with the national level.  As we are moving closer to the 

end-user, short-term, day-ahead forecasting of demand becomes more challenging due to 

its more volatile and noisy character on the disaggregated level [2]. With the decrease in 

load aggregation, the Mean Absolute Percentage Error (MAPE) in the load prediction 

increases significantly from around 3% at the national level, through 10% for the 

secondary substation, 15 – 20% for the LV feeder to 25 - 30% for end-user [2][3]. The 

significantly lower effectiveness of demand prediction and the uncertainty originating 

from unknown generation outputs become an important challenge that needs to be 

addressed to ensure the continuity of energy provision efficiently and reliably and that the 

security1 of the system is maintained [4]. The reliability of the small power systems with 

high penetration of embedded renewable generation can be enhanced by accurate and 

timely forecasting with resulting demand-side response [5][6]. Rapid technology 

development in the area of energy storage places this device as a promising element of the 

future power network, which is capable of not only playing a prominent role in 

overcoming the problems of generation intermittency by providing the ability to shift 

demand to times when generation is available, but can also provide the ability to shift the 

power from off-peak hours to meet demand during peak hours by storing excess of energy 

and releasing it when required [7][8][9].  

The increasing penetration of battery energy storage within the power network 

introduces an additional challenge to the asset owners on how to monitor and manage 

battery health to ensure the safe and reliable operation of this device despite its ageing 

(i.e. a gradual performance deterioration over time). Proper estimation of the battery 

health is of vital importance, as consequences of unexpected battery failures can result in 

                                                 
1 Power system security refers to the ability of power network to withstand system contingencies without 

loss of supply to the customers. 
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economic losses and can lead to hazards for people and other equipment in the power 

network. Appropriate health management can help to prevent premature battery failures 

or catastrophic hazards, thus improving battery durability.  To facilitate effective health 

management, the battery management system (BMS) should accurately monitor the health 

of the device [10] by observing health indicators (HI) such as capacity, internal resistance 

[11][12], State-of-Health (SoH), which is the measure of the general condition of the 

battery cell compared to the condition of the brand new device [13]. Accurate estimation 

of battery health is crucial in estimating the battery’s reliability, its power-delivering 

capability and proper operation of the whole system comprising this device [14][15]. 

As  the batteries age, they experience gradual degradation of performance, which results 

in a decline in capacity and an increase in resistance over time, due to an operating regime 

resulting from the user requirements and battery application, power availability for 

recharging, ambient conditions and battery design [16][17]. Additionally, the degradation 

of this device and its ageing can be accelerated if it is subject to the stress factors such as; 

temperature, a high or low state of charge, high depth of discharge, cycling under a partial 

state of charge and long intervals between recharging to fully charged state [18][19]. The 

processes behind the deterioration of the battery performance are very complex and 

depend on both the external factors mentioned above and battery chemistry, and 

consequently are strictly battery type dependent. They are also very difficult to measure 

and quantify and have an important influence on the changes observed in the HI.  

A battery as an electrochemical device is subject to a different chemical reaction 

when operated/cycled and stored, depending on its technology, design and chemistry. 

Those electrochemical processes are physically difficult to observe by direct 

measurements introducing requirements to apply other techniques to monitor or predict 

a  battery state. A common choice of battery state and health estimation is modelling based 

on the critical battery variables such as voltage, internal battery resistance, current, battery 

and ambient temperature and operating time and other variables collected or measured 

from experiments. An important drawback of this approach is that it cannot be done online 

during normal battery operation. Moreover, some variables are very difficult to measure, 
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such as internal battery temperature or internal resistance. It is impossible to measure 

internal battery temperature directly. This is possible only by using the sensor mounted to 

the surface of the battery cell with the assumption that the measured value approximates 

the mean cell temperature, or by using the measured value in conjunction with the thermal 

model [20]. The research on the possibility of measuring internal battery temperature 

using internally embedded thermocouples (temperature sensors) was carried out by Li et 

al.  [21],  Mutyala et al. [22] and Mörtel et al. [23]. However, this approach introduces 

additional manufacturing challenges and can result in increased costs for the battery 

systems. Proper modelling of battery health often requires a substantial amount of training 

data that needs to be available; additionally resulting model often requires multiple inputs 

for predicting battery health, such as current, voltage, temperature and others, depending 

on how the model was structured. This introduces the need for the installation of additional 

telemetry for gathering the required input data for the model to allow its application. 

Another option for battery state and health monitoring is a direct (online) observation of 

the voltage, current and temperature of this device. This introduces the need for the 

installation of numerous sensors to measure indicative variables. In a  situation when we 

deal with the rising number of BES incorporated within the system, this can introduce 

significant costs, increase the level of maintenance required to ensure the proper operation 

of such sensors, and will introduce a substantial amount of data to be processed. Moreover, 

online measurements suffer from signal noise and quality that can result from sensor 

degradation due to harsh working environments [24]. This in turn, reduces the efficiency 

of estimation of battery health leading often to inaccurate results.  The accuracy of the 

sensor can also affect the estimation of the battery's health. For example, the measuring 

of the voltage with sensors of a low accuracy cannot capture small changes in voltages 

leading to inaccurate impedance calculation [25] and internal resistance estimation leading 

to a wrong assessment of battery health.    

As storage aggregation becomes more commonplace, the management of the 

constituent battery assets will require health metrics in order to ensure ongoing contractual 

turn-up and turn-down commitments are fulfilled to their agreed capacity and that the 
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system operates safely and in a reliable manner. As the current battery health monitoring 

solutions are not ideal, they often add extra telemetry installation costs, require impractical 

volumes of data, or are burdened with high computational costs; there is a need for a new 

health metric for batteries that will:  

- Minimise input data requirements eliminating the necessity of installation of 

extensive telemetry,  

- Be able to provide information if the battery is operated in a way that can 

prolong its life instead leading to the premature replacement of this device 

based only on the limited information available, for example, simple 

knowledge of the battery charging regime. 

This work aims to provide a solution to the battery health prognostics by providing 

an alternative way of assessing battery health by capturing cumulative maloperation level 

as a proxy for cell health, articulated via the strong influence misuse has on the internal 

chemical state. 

 Research Objective 

Primary objective: This work aims to develop an alternative, non-invasive approach to 

the estimation of battery health that estimate the extent to which a battery asset has been 

maloperated based only on the battery operating regime: the charge/discharge/hold actions 

set by a BES scheduler. This approach is proposed to address the common problems of 

lack of asset monitoring data, eliminate the requirement of installing telemetry, avoid 

potential problems due to missed reading in measurements, and reduce requirements for 

maintenance of the system comprising battery energy storage with extensive telemetry. 

Secondary objective: To study and understand the effect of demand forecast errors on 

the battery energy storage schedule effectiveness and provision of functions (self-

consumption increase in the system and reduction in the export energy to the grid) and the 

health of the storage asset. 
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 The Original Contribution of the Thesis 

This thesis provides the following contribution to knowledge: 

 Cross-cutting research into battery chemistries, covered in Chapter 2, has led to 

the heuristic rule formulation that allowed the generation of the novel health 

indexes of the battery device that is based on the battery chemical preference in 

the context of charging action and state of charge.  

 The health of battery energy storage is usually expressed and assessed in terms of 

capacity fading and internal resistance increase. In this work, an alternative way 

of measuring the battery's state of health was proposed in Chapter 4. This work 

alternatively proposes capturing cumulative maloperation as a proxy for cell 

health, motivated by the strong influence misuse has on the internal state of the 

battery.  

 The Input-Output Hidden Markov Model (IOHMM) framework was not 

previously applied in the area of battery health prediction. It has wide usage in the 

processing of grammatical inference problems [26], synthesis of facial animation 

from audio [27], hand gesture recognition [28], modelling of financial returns 

series [29], modelling of forecasting of electricity prices [30] and fault diagnosis 

and prognosis of diesel generators [31]. This work proposes, designs and validates 

the IOHMM battery model that automatically recognizes the violation of battery 

health due to the action sets by a BES scheduler, the subject of Chapter  4. The 

model automatically recognizes violations of chemistry-specific usage preferences 

from observed charging actions and can constitute the metric to the cost function 

for charge schedule optimization. 

 Increasing understanding of the effect of demand forecasting error on the 

effectiveness of battery energy storage schedule and battery health with the 

application of developed IOHMM battery maloperation model in conjunction with 
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designed generic parametrized forecasting and energy storage scheduling tool for 

small power parks and microgrid applications, the subject of Chapter 5.  

 Publications 

The following peer reviewed works have been published during the course of this PhD: 

 J. Sobon and B. Stephen, “Model-Free Non-Invasive Health Assessment for 

Battery Energy Storage Assets”,  IEEE Access, Apr. 2021. This publication 

is  based on the work discussed in chapters two, three and four and covers the first 

three contributions of work presented in this thesis. 

 J. Sobon, A. Roscoe, and B. Stephen, “Energy storage day-ahead scheduling to 

reduce grid energy export and increase self-consumption for micro-grid and small 

power park applications,” in 2017 52nd International Universities Power 

Engineering Conference, UPEC 2017, 2017. This conference paper partially 

covers the last contribution of the work presented in this thesis. The expanded 

version of this publication is presented in Chapter 5. 

 Thesis Overview 

This thesis is structured as follows: 

Chapter 2: In this chapter, an extensive technical review of contemporary battery 

technologies often used in energy storage applications in the power sector is carried out, 

followed by the derivation of heuristic rules that were used to generate novel health 

indexes required for model training and testing.  

Chapter 3: In this chapter, the state-of-art in battery health modelling is discussed. The 

shortcomings of currently used methods in battery health prognostics as well as the overall 

problem of the lack of suitable datasets are discussed here. The gaps in the battery health 

monitoring are identified, and an alternative solution is proposed, which is then 

implemented in consecutive chapter. 



 

 

8 

 

Chapter 4: This chapter consists of the development of the IOHMM of BES based on the 

rules formulated in Chapter 2. It describes the full procedure of model development, 

starting from data generation through model training and ending with the validation of the 

developed battery maloperation model against a publicly available data set. This chapter 

contributed to the design of a novel machine-learning model employing the IOHMM, 

which captures battery degradation mechanisms without considering the detailed 

chemistry and physics of the asset. 

Chapter 5: This chapter comprises the development of parametrized availability-based 

battery energy storage scheduling tool, which employs different demand forecasting 

models, and produces a charge/discharge schedule that reduces export to the grid and 

increases self-consumption energy in the microgrid or small power park applications. In 

this chapter, the influence of the forecast error on the effectiveness of the BES schedule 

and the fulfilment of the main functions by this device is investigated. Additionally, the 

influence of the BES schedule based on different demand forecast models and associated 

errors in demand prediction on the battery maloperation level is examined. This chapter 

demonstrated the operational practicality of the battery maloperation model developed in 

the preceding chapter. It contributed to an increasing understanding of how the error in 

forecasted demand influenced the effectiveness of the battery schedules generated based 

on this forecast and how it is reflected in the battery maloperation level.   

Chapter 6: The subsequent chapter concludes the work presented in this thesis. Finally, 

further work is discussed, followed by appendixes and references to work cited in this 

thesis. 
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CHAPTER 2 

This chapter and the next two consecutive chapters constitute an extended version of 

a journal paper published in IEEE Access Journal in 2021 by Joanna Sobon and Bruce 

Stephen, titled: “Model-Free Non-Invasive Health Assessment for Battery Energy Storage 

Assets” [32]. 

 

2. Battery Technology Review and Heuristics Rules 

Formulation for Battery Model Training.   

A rechargeable battery, also known as a secondary battery, is an electrochemical 

device that is capable of storing energy and releasing it when required. It comprises 

electrochemical cells that are connected in series and/or parallel to achieve the required 

capacity and voltage. In the battery cell, electrical energy is converted into chemical 

energy through the electrochemical reactions during the charging processes and converted 

back to electrical energy when discharged. The simplified schematic of the battery cell 

with reactions that takes place at electrodes during the charge and discharge processes is 

shown in Fig. 1. The k electrons are released from the reductant (R1) at the anode (1). The 

electrons, which are excess in the anode, now flow to the cathode through the external 

load connected to the battery cell. At the same time, at the cathode, j  electrons are 

accepted by an oxidant (O2) (2).  

 𝑅1 → 𝑂1 + 𝑘𝑒−    (Reactions at the anode during discharge)          (1) 

   𝑂2 + 𝑗𝑒− → 𝑅2   (Reactions at the cathode during discharge)          (2) 

The product of the oxidation of the anode, cations (positive ions) flow to the cathode 

through the electrolyte. Simultaneously the anions (negative ions), the product of 

reduction at the cathode, flow through the electrolyte to the anode, Fig. 1.   
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Figure 1 Simplified schematics of the rechargeable battery cell showing a flow of ions, 

electrons and reactions during the charging and discharging processes. The O in the 

equation means oxidant, R stands for reductant, j and k are the numbers of electrons, and 

e means electron.   

 

During the charging process, the reactions are reversed. When the direct current (DC) 

source is connected to the battery, the negative terminal of the DC source to the cathode 

and the positive to the anode, the electrons are injected into the cathode. The reduction 

reaction takes place at the cathode (3) and the oxidation at the anode (4). 

𝑂1 + 𝑘𝑒− → 𝑅1    (Reactions at the cathode during charge)               (3) 

𝑅2 → 𝑂2 + 𝑗𝑒−   (Reactions at the anode during charge)                   (4) 

Due to reduction processes, cathode material regains its previous state. Similarly, the 

anode material regains electrons due to the oxidation of the anode and comes back to its 

state before discharge [33]. 
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    To understand the following sections, where the review of different technologies of 

rechargeable batteries will be discussed, a battery vocabulary needs to be introduced first. 

The glossary terms with their explanations, that are used to describe battery design, 

characteristics and operation are presented in Table 1 and Table 2, respectively.   

 Table 1   General glossary terms used to describe the battery. 

 

General Terms Definition  

Anode The negative electrode of the electrochemical cell (in discharging 

mode). 

Charging The process of conversion of the electrical energy supplied to the 

battery into the chemical energy that is stored and then reused.   

Cathode The positive electrode of the electrochemical cell (in discharging 

mode). 

Discharging The process of converting chemical energy stored in the battery 

into electrical energy that is used by the load connected to the 

battery. 

Electrolyte A non-metallic conductor of electricity placed between the anode 

and cathode of the battery cell: can be liquid, solid, molten mass, gas 

or vacuum. 

Gassing The evolution of the gas from one or both electrodes of the cell 

resulted due to the electrolysis of water during over-discharge.   

Oxidation A chemical reaction that involves electron release by the active 

material of battery cell electrode, anode during discharge and 

cathode during charge processes. 

Reduction A chemical reaction that results in the acceptance of electrons by an 

active material of battery cell electrode, cathode during discharge 

and anode during charge processes. 

Separator The permeable membrane that is placed between electrodes, anode 

and cathode, to prevent electrical contact between them and 

simultaneously allow the passage of ions. 

Thermal runaway A condition in the battery that leads to damage to the device. It 

occurs when the rate of heat production inside the battery due to 

operation is much higher than the rate of heat dissipation through 

the case of the battery. 
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Table 2 Battery characteristics glossary terms. 

 

Terms Definition  

Capacity The measure of the amount of energy that can be delivered during 

one discharge episode, usually given in amp-hour or watt-hour 

units, where watt-hour is equivalent to amp-hour multiplied by the 

battery voltage. 

C rate The measure of the rate at which the battery is discharged in 

relation to its maximum capacity.  For example, a discharge rate 

equal to 1C for a 1Ah (ampere-hour) battery means that the 

discharge current of 1A will discharge the battery fully for 1 hour. 

Similarly, with the C rate of 0.5C, we will be able to provide 0.5A 

through 2 hours. 

High-rate discharge Drawing a large current for a short interval of time. 

Low-rate discharge Drawing a small current for a long interval of time. 

Cycle One sequence of charge and discharge. 

Cycle Life  The total number of charge/discharge cycles the cell can sustain 

before it fails to meet specific performance criteria.  The end of life 

of the battery is typically considered to be reached when the cell or 

battery delivers only 80% of its rated capacity. 

Depth of discharge The amount of energy taken from the battery cell is usually 

expressed as a percentage of the total battery capacity. 

Deep cycle A cycle in which the discharge of the battery is continued until its 

cut-off voltage is reached. 

Shallow cycle A cycle in which the discharge does not allow the battery to 

approach its cut-off voltage. 

State of Charge  Describes the remaining capacity of the battery as a percentage of 

the initial capacity.  

State of health  This term describes the remaining lifetime of the battery as a 

percentage of the lifetime of the new device. 

Internal resistance Describes the level of resistance to the flow of the electric current 

inside the battery.  

Energy density Measures how much energy a battery can store in a given size of 

the battery in watt-hours per litre (Wh/L). 

Self -Discharge  The type of discharge that takes place while the battery is in an open-

circuit condition. 

Memory Effect  Reversible process of temporary loss of remaining capacity due to 

not operating in successive cycles to the full depth of discharge. 

Occurs in Nickel-cadmium (NiCd) cells. 

Cut-off voltage The voltage at which the battery is considered to be fully 

discharged. At this voltage, the load should be disconnected from 

the battery to prevent over-discharging. 
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 Overview of Contemporary Rechargeable Battery Technology  

Electrochemical cells can be divided into three groups: primary batteries, 

secondary batteries and fuel cells, Fig. 2. All electrochemical cells and batteries (multiple 

cells connected in parallel, series or series-and-parallel configuration) are capable of 

converting chemical energy into electrical energy through electrochemical reactions. The 

fundamental difference between batteries and fuel cells is that the fuel cell, to provide 

electrical energy through an electrochemical reaction, requires a continuous supply of fuel 

(hydrogen) and oxygen (usually from the air). In the case of batteries, the chemical energy 

comes from chemical materials already present in this device.  Fuel cells were excluded 

from the scope of this work as the focus is on the devices that can store energy and provide 

electricity to the system without the need for supplying external fuel. For fuel cells to 

provide electricity first require external fuel to be available (supplied or generated), which 

introduces the need for additional infrastructure for hydrogen production that adds 

additional complexity to the modelled system.  The primary batteries cannot be recharged 

after discharging and need to be discarded after use as the electrochemical reactions taking 

place inside this device are not reversible. Primary batteries are used as the power source 

for portable electronic devices, toys, lighting and other applications, but because they have 

no applications for grid-scale storage, they are out of the scope of this thesis. The 

secondary batteries, also called rechargeable batteries, in contrary to the primary type, can 

be alternately discharged and charged electrically by passing the current in the opposite 

direction during these processes. The taxonomy of secondary batteries is summarised in 

Fig.2. The red entries indicate the battery technologies that found application in the 

grid- scale battery energy storage systems and are the subject of this chapter.  The 

remaining secondary battery types, black entries in Fig.2, due to the lack of application in 

grid-scale BES, are out of the scope of this work. The secondary batteries are also called 

storage batteries or accumulators. They are used as energy storage devices in power 

systems, vehicles, and electrical equipment such as mobile phones, laptops and other 

applications.  
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Figure 2 Battery technologies. (Red entries indicate the battery technologies that are considered in this thesis) [34]–[38]
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Among secondary batteries, we have conventional and flow batteries. A 

fundamental difference between those two types of batteries is in the component that 

provides rechargeability. The energy is stored in the solid electrode in conventional 

batteries compared with flow battery technology in which the energy is stored in the 

electrolyte liquids. The construction of a classical flow battery differs from the 

conventional rechargeable batteries, as can be seen in Fig. 3(b)(c) and Fig.3(a), 

respectively. The conventional battery, Fig. 3(a), consists of electrodes (anode-negative 

and cathode-positive) and the medium that enables the ions to flow between electrodes, 

called an electrolyte. The electrolyte is usually in the form of liquid composed of water or 

other solvents with dissolved salts, alkalis or acids that provide ionic conduction. Some 

batteries have a solid-state electrolyte. This type of battery is called a solid-state battery. 

Contrary to conventional batteries, Figure 3(a), flow batteries, Fig. 3(b) and 3(c), consist 

of two external tanks with active material in liquid form that is pumped through the cell 

with the ion exchange membrane. The reduction/oxidation takes place on both sides of 

this membrane resulting in electrical potential in this type of battery [35][39].   

 

Figure 3 Difference in the construction of the conventional battery (a), classical flow 

battery - VRFB (b) and hybrid flow battery – Zn/Br2 (c). (+) indicates a positive electrode 

(cathode), and (-) indicates a negative electrode (anode). 
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Flow batteries further can be divided into two groups: classical and hybrid flow batteries, 

Fig. 3(b) and 3(c), respectively, depending on if all reactants and products are in solution 

or active material is deposited on one of the electrodes. In classical flow battery such as 

Vanadium Redox Flow Battery (VRFB), the active material in the form of redox flow 

solutions are stored in separate tanks and are pumped through a stack of electrochemical 

cells where the solutions are separated by an ion-exchange membrane that prevents 

mixing of the two solutions [40]. The hybrid flow battery system, such as zinc-bromine 

(Zn/Br2) also consists of two electrolyte solutions, but contrary to classical flow batteries, 

it involves the deposition of metal at the negative electrode during charging, Fig. 3(c) [34]. 

The construction of the battery has an important influence on the battery energy 

capacity and power of the battery system [41]. It can also have an important influence on 

the battery cycle life and its state of health. The voltage of the battery cell is controlled by 

battery chemistry [33][35]. In conventional batteries, energy capacity is governed by the 

weight of the active material in electrodes, and system power depends on the area of 

electrodes [41]. In redox flow batteries, the system power is determined by the size of the 

cell stack [35][42]. In this type of battery, the reactants and products are in the solution 

phase during charging; therefore no metal deposition occurs. This implies that the capacity 

of such a system is mainly determined by the size of the electrolyte tanks. In hybrid flow 

batteries such as zinc-bromine, during charging layer of zinc is deposited on the negative 

electrode; thus the total energy capacity of this type of battery is limited by the available 

area of the electrode (quantity of zinc metal deposited on the negative electrode) [35]. The 

aforementioned three parameters, voltage, capacity and power along with the thermal 

properties of the battery cells, are affected by the internal impedance of the cell, which is 

dependent on the layout of the components in the current path and their resistance and on 

the electrolyte conductivity. Therefore, the performance of the battery cell is affected by 

its construction (size, shape and materials used) [35]. Additionally, battery construction 

can influence the battery cycle life and its state of health. The changes that occur in the 

electrodes materials of conventional batteries result in their degradation over time, which 

limits the cyclic lifetime of this device [39][43][44].  In the flow batteries, the active 
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material is stored in separate tanks dissolved in liquid, thus this type of battery is free of 

the processes leading to mechanical breakdown of the active material, offering longer 

cycle life under deep discharge operation than conventional secondary batteries [35]. The 

summary of cycle efficiency, self-discharge rate and life cycle for the seven battery 

chemistries considered in this work are shown in Fig. 4, and the comparison of the 

battery's energy density is listed in Table 3. 

 

Figure 4 Cell performance for the commonly used battery chemistries in contemporary 

BES [45]–[48]. 
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Table 3 Energy densities [45][46]. 

 

Battery 

Technology 

Energy density By 

Weight [Wh/kg] 

Energy density By 

Volume [Wh/ L] 

Lead-acid 30-50 70-110 

NiCd 50-75 100-150 

NiMH 60-80 200-350 

Lithium-ion 75-200 200-500 

Zn/Br2 30-50 30-60 

VRFB 10-30 16-33 

NaS 150-240 150-250 

 

Both battery chemistry and battery design have a significant impact on the battery 

performance and preferences to the way it is operated. The review of different battery 

technologies used or potentially used in energy storage applications is carried out in the 

following sections with the aim of providing knowledge-based battery preferences to the 

operating regime. The following battery technologies are considered in this work: lead-

acid, lithium-ion, sodium sulphur (NaS), Nickel Metal-Hybrid (NiMH), Nickel Cadmium, 

Zinc Bromine Flow Battery and Vanadium Redox Flow Battery.  

 

2.1.1  Lead-acid 

The lead-acid battery is one of the most mature battery types presently used. The history 

of this technology dates back to 1859 when it was invented by the French physicist Gaston 

Plante [33][49].  It was the first type of rechargeable battery ever designed [50]. Of all the 

lead-acid technologies available, only two dominant forms, valve-regulated lead-acid 

battery (VRLA-sealed lead acid) and flooded lead-acid battery, are the subject of this work 

as they are the most matured and are often used in battery energy storage applications. 

From a chemical point of view, both battery types mentioned above are alike but have 



 

 

19 

 

fundamental differences in construction, impacting the battery behaviour during cycling 

operation and the possible applications. The lead-acid batteries are sensitive not only to 

overcharging and over-discharging but also do not like to be chronically under-charged 

(i.e. not charged to the full state of charge before discharging again) [19][51]. Different 

chemical reactions take place inside the cell during the device cycling operation, 

influencing the degradation of its performance.  

Storing the lead-acid battery in a not-fully charged state, self-discharge and chronically 

undercharging of this type of battery have a negative influence on its performance due to 

the harmful build-up of the sulphate crystals on the plates in a process called sulphation 

[18][52]. The sulphate discharge products that are deposited on the electrodes during these 

events result in the rise of battery internal resistance impacting negatively device 

performance; sulphate crystals act as an insulator to the flow of electricity in the battery 

[18]. When the process of sulphation is prolonged, the sulphate crystals formed can reach 

a size that cannot be easily broken down by the charge processes [53], and as a result, the 

battery becomes unserviceable. This is the reason why the lead-acid battery should be 

stored in the fully charged state when not used, with a charge applied every six months to 

prevent battery performance deterioration due to the sulphation process occurring through 

self-discharge of the cell. Examples of the positive and negative plates covered by the 

sulphate crystals (white patches on the surface of the plates) are shown in Fig. 5. 

The over-discharging of the lead-acid battery or storing the battery in the discharged 

state for too long leads to performance deterioration due to the occurrence of the hydration 

process. In this process, the lead hydrates, formed during the dissolving of the lead and its 

compound in the water of discharged cells, are deposited on the separators leading to 

permanent damage to the battery from short circuits between negative and positive plates 

during the recharging process [33][52]. 

The consequences of the overcharging depend on the lead-acid battery technology and 

constitute the key difference between the two types of batteries considered here. In the 

case of the valve regulated and flooded lead-acid battery, when the cell is close to the full 

state of charge, the charging current is converted into electrochemical energy that is 
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responsible for the process of electrolysis of the water in the electrolyte, known as gassing. 

This process leads to the production of free oxygen and hydrogen gas that is vented from 

the battery in case of the flooded lead-acid battery or is subject to recombination process 

in VRLA type. In flooded batteries, the gassing leads to the loss of water that needs to be 

replenished to restore the original battery performance, in comparison to sealed lead-acid 

batteries, process of recombination takes place that eliminates the loss of electrolyte and 

necessitates replenishing the water [33][51].   

 

 

Figure 5 Positive and negative sulphated plates of Lead-acid battery. (Figure reproduced 

from Karami et al. [54]) 

 

The lead-acid battery prefers long charging times. High-rate charge promotes the early 

evolution of hydrogen, and this significantly reduces the charging efficiency of the plates 

[47]. 

The lead-acid battery does not like deep cycling, which reduces its cycling life [55]. The 

active material of the lead-acid battery becomes soft and less cohesive over time. This 

process is accelerated by the deep cycling of the battery and leads to capacity loss [56]. 

The depth of discharge of the lead-acid battery has an important influence on the cycle 
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life of this device, where the cycle life is a log function of the depth of discharge [57].  

Compared with lithium and nickel-based batteries, the lead-acid battery is less durable 

when deep cycled.  

Expansion and corrosion of the positive grid structure due to oxidation of the grid and 

plate materials is one of the main factors leading to performance deterioration and 

shortening of the life of this type of battery [56][58]. Those processes lead to an increase 

in the internal resistance of the cell and reduce the cell's capacity. To more severe 

consequence of the change in the volume of the material and the increase in its corrosion 

is a  distortion of the grid resulting in short circuits [56].  

Fig. 6 shows the effect of the corrosion on the positive plate of the VRLA battery. The 

elevated temperature during the overcharging process increases the positive plate 

corrosion rate and, in the case of the VRLA, increases the risk of a thermal runaway that 

can lead to permanent damage to the battery [59][60]. 

 

Figure 6 Severe corrosion on a Lead Acid positive grid. (Figure reprinted from Guo et al. 

[61]) 

 

During extensive or prolonged overcharge, the process of oxygen recombination 

significantly drops causing water loss, which in turn leads to rapid saturation of the 
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separators and a significant rise in internal resistance.  If the battery reaches the point 

when the internally generated heat will no longer be dissipated through the casing, thermal 

runaway occurs [59][62]. When the temperature of the battery reaches 90°C a plastic case 

will become soft and start to deform due to internal pressure, as seen in Fig. 7. A more 

serious effect of thermal runaway is possible ignition fire or explosion due to hydrogen 

being released through safety vents [59][60]. All the above-mentioned changes are 

damaging to this device, inevitably to a  point beyond economic repair, resulting in the 

end of the asset life.  

 

Figure 7 VRLA battery showing runaway conditions (Figure reprinted from Hoff et al.  

[60]). 

 

2.1.2  Nickel Cadmium 

Due to the excellent stability of the active material, the nickel-cadmium battery (NiCd) 

has the potential to maintain stable capacity over long cycling. It can last over 1000 cycles 

until the rise in self-discharge interferes with the performance of this device [38]. This 

battery technology is also characterised by the low internal resistance that remains almost 

constant as the function of the cycling life and state of charge [38]. Unfortunately, nickel-
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cadmium batteries experience a memory effect when repeatedly shallow cycled. This 

limits the possible applications of this battery to those that allow deep cycling operation 

or permit conditioning. The loss of capacity due to repeated charging of the battery before 

it is fully discharged can be reversed by conditioning charging (performing a couple of 

charge cycles after the full discharge of the battery) [38].  

The charging process of the NiCd battery can be divided into three stages characterised 

by different voltage, temperature and charging efficiency. The charging efficiency of the 

nickel-cadmium battery is influenced by different chemical mechanisms occurring during 

each stage of the charging. In the first stage of the charging process, the loss of energy 

occurs. It is linked with the process of transferring a significant part of the active material 

into a non-usable form that takes place during this stage. With the input charge increasing, 

the efficiency of the charging also increases until the point when it remains almost 

constant during some period of time. This takes place in the second stage of charging. 

When the cell is close to reaching the full state of charge, the last stage of charging, the 

input current starts to more contribute to the oxygen production from the charging of the 

positive active material. The first two stages of charging are strongly endothermic as the 

battery cools during the charging. During the last stage, when the cell approaches a full 

state of charge, an increase in cell temperature occurs. This is the result of the oxygen 

evolution processes taking place at the positive electrode (production of oxygen) and the 

oxygen reduction occurring at the negative electrode (consumption of oxygen) [33]. Both 

mentioned above chemical reactions contribute to the cell temperature rise during the 

overcharging process of the NiCd battery. Similarly to the lead-acid and lithium-ion 

battery technologies, NiCd batteries are also prone to thermal runaway, although this 

phenomenon for NiCd batteries is governed by different mechanisms than in lead-acid 

and lithium-ion batteries. For lead-acid and lithium-ion batteries, the runaway is triggered 

by extensive or long-term overcharging. In the case of NiCd battery, supplementary 

reactions need to occur in addition to overcharge to lead to this phenomenon  [63]. The 

thermal runaway in NiCd batteries takes place due to the acceleration of the recharging 

reaction in the battery and electrodes decomposition due to long recharge and 
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overcharging of the battery, which is connected with the drop in internal battery resistance 

due to heating up of the cell [64]. It was shown by [63][65] that in addition to the 

aforementioned mechanism, two supplementary reactions inside the battery need to occur 

to cause the thermal runaway. The first one is the powerful exothermic recombination of 

the atomic hydrogen that was accumulated in the electrodes as a result of a long operation 

of the battery [66][65].  An additional cause is an accumulation of the dendrites on the 

cadmium electrode; dendrite growth up through the separator leads to a change in the 

current density and an increase in electrode temperature due to a decrease in the distance 

between the electrodes [67].  

The NiCd cell performance can be compromised due to water loss occurring during 

battery cycling operation, thus necessitating maintenance to retain the performance of the 

battery at acceptable levels [33]. 

2.1.3  Nickel Metal Hybride 

       A nickel-metal hybride battery (NiMH) was designed to eliminate the memory effect 

that is a shortcoming of the nickel-cadmium battery by using hydrogen-absorbing metal 

as the negative electrode in exchange for cadmium that was used in NiCd cells. As 

a  result, the NiMH cell is less prone to the memory effect than the NiCd cell. Compared 

to the NiCd battery, it has a limited cycling life and a high self-discharge rate, which can 

be seen in Fig. 4, summarising the cell performance of different battery chemistries, which 

is included in Section 2.1. The cycle life of the NiMH battery is strongly influenced by 

deep discharge, overcharging and elevated temperature [68]. NiMH battery is more 

sensitive to overcharging than NiCd batteries. The temperature is an important factor 

affecting the performance and the service life of this type of battery which is related to the 

nature of heat generated during operation in the battery itself [38][69]. A large amount of 

heat is generated during fast charging and high-load discharging, which limits the 

application of this battery technology to those that allow the slower rate of charging and 

eliminates the possible high-load discharging events [69]. 
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    Both NiCd and NiMH batteries are relatively less prone to thermal runaway due to 

overcharging compared with the VRLA battery [64]. The runaway of the NiMH battery 

is associated with the intensive oxygen evolution process occurring at the positive 

electrode with a simultaneous significant reduction of hydrogen production at the negative 

electrode leading to the transfer of the excess electric energy pumped during overcharging 

into the heat, rising internal temperature of the cell [64]. 

No loss of water occurs during cycling operation in this type of battery compared to the 

NiCd. Water is consumed at the positive and then produced at the negative electrode 

during charging, and this process is reversed during the discharging of the cell [70]. Due 

to water recovery, the requirement for maintenance for this battery technology is 

minimized.   

   As a consequence of the over-discharging of NiMH cells, the process called voltage 

reversal can take place. This process involves a change in the potential of a negative 

electrode that becomes, as a result, more positively charged than the positive one. This 

can happen when the cell is discharged beyond the capacity of the positive electrode. The 

main effect of this process is hydrogen formation. The produced hydrogen then diffuses 

to what was the negative electrode and oxidizes to form water [64][68].  

  The charging rate of the NiMH battery above 0.5 C can be dangerous due to the rapid 

rise in internal battery temperature. Additionally, charging at 0.5 C is not recommended 

if the ambient temperature is above 23°C. Charging at higher rates, 1 C, is inefficient and 

causes a reduction of standard battery capacity to less than 65% before overcharging 

occurs [69]. 

2.1.4  Lithium-ion 

      The lithium-ion battery technology is characterised by the highest energy density of all 

battery technologies, see Table 3. It also has a higher cycle efficiency, reaching almost 

100%, as shown in Fig. 4. Compared to nickel-cadmium technologies, Lithium-ion battery 

does not suffer the memory effect, and unlike lead-acid and nickel-cadmium systems, it 

does not require scheduled cycling to prolong its life. 
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Lithium-ion batteries are highly sensitive to overcharge and over-discharge which is 

closely related to the nature of the lithium chemistries.  During the overcharging of the 

lithium-ion cell or charging the cell above its upper voltage limit, 4.2V, excess energy is 

produced due to the exothermic decomposition of the cathode material leading to oxygen 

production [71][72]. Additionally, combustion gases are produced during this process due 

to thermal electrolyte decomposition. The presence of both combustive gases and oxygen 

leads to a violent reaction inside the cell [73][74][75]. The excess energy produced during 

overcharging cannot be consumed by any side reaction in the cell, as there is no side 

reaction that can consume this excess of energy, leading to the rise of the temperature 

inside the device [76].  Due to high temperature, the separator can melt leading to internal 

short [75]. During overcharging the heat generated inside the cell becomes higher than 

can be dissipated by the cell leading to the thermal runaway, which introduces the fire and 

explosion hazard [76][74].  

 Overdischarging the lithium-ion cell or discharging below its low voltage threshold 

value (2.7V) compromises the battery performance due to the collapse of the lithium 

lattice [76]. Overdischarging or extremely low voltages introduce potential risks due to 

the electrolyte reduction process and the production of combustion gases during these 

events [76].  Recharging of the over-discharged cell can lead to short circuits within the 

cell due to dendrites formed on the negative electrode and consequently to irreversible 

damage to the battery [76][77]. 

The lithium-ion battery is characterised by the quick response to the change in load 

condition. This battery can be charged at relatively fast rates, 1C or 2C, only if the upper 

charge voltage limit is not reached [78]. This battery technology tolerates microcycles; 

minimal charging can actually prolong its life [78]. 

2.1.5  Sodium Sulphur  

The sodium sulphur battery (NaS) belongs to high-temperature battery technology and 

operates at temperatures in the range of 300-350 °C to maintain the molten state of the 
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positive and negative electrodes, made of sulphur and sodium respectively [79][80]. 

The  beta-alumina ceramic electrolyte, in the solid state, separates the active material of 

molten electrodes and allows sodium ions to flow from the negative to the positive 

electrode during charging processes and in the opposite direction during discharging of 

the cell [81]. The schematic construction of the NaS battery is shown in Fig. 8. When the 

battery is running, the heat that is produced during the discharging process and the cooling 

effect that takes place during the charging of the battery is enough to maintain the 

operational temperature of this device [48]. 

 

Figure 8 Schematic of the Sodium-Sulphur battery. 

 

This battery type is characterized by a very low rate of self-discharge due to the 

characteristics of the beta-alumina solid electrolyte. This chemical material has good 

conductivity for the sodium ions but plays as the insulator for the electrons, not allowing 

cross mixing of active materials from electrodes to occur [80]. NaS battery has a high 

cycling efficiency of 80-90% [82], with only a small portion of the energy used to maintain 

battery operational temperature, see Fig. 4 [81]. Sodium Sulphur battery has a long cycle 

life in a range of 3500 to 5000 cycles at 80% depth of discharge [82] due to the absence 
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of morphological changes of electrodes due to their molten state [33][83] what is the 

limiting factor for the batteries with the solid electrodes.  

Sodium Sulphur battery is averse to being either overcharged or over-discharged. 

During overcharging processes, the solid electrolyte can be damaged due to ceramic 

breakdown and the cell voltage can be reduced due to the insulating properties of the 

molten Sulphur, the final product of charging [81]. The over-discharging of NaS battery 

leads to irreversible chemical changes in the Sulphur electrode, where solid Na2S2 with 

high electric resistance is formed, leading to poor recharging processes and even structural 

damage [81][84]. 

One of the important advantages of this battery is its flexible operation. This battery can 

operate over a wide range of conditions, such as different charging/discharging rates and 

depths of discharge [33]. 

2.1.6  Vanadium Redox Flow Batteries  

The Vanadium Redox Flow battery (VRFB) belongs to the classical redox flow battery 

group in which the chemical energy required for exchange during charging and 

discharging processes comes from two chemical compounds dissolved in liquids that 

circulate in separate systems, Fig. 3(b). The energy exchange between compounds takes 

place through an ion-permeable membrane. This battery uses single metal ions, vanadium, 

in the four different oxidation states to store chemical energy. The V4+/V5+ and V2+/V3+ 

redox couples are stored in positive and negative half-cells respectively [43]. The usage 

of the same metal ions in both half-cells prevent cross-contamination, leading to a lower 

self-discharge rate in this battery technology, compared with the Zinc-bromine flow 

battery, for which mentioned process has a substantial influence on self-discharge [85]. 

An additional factor influencing the low self-discharge of VRFB is storing compounds 

dissolved in electrolytes separated from each other [86]. When the battery is not in use, 

only a small fraction of the electrolyte is present in the cell where cross-mixing between 

species through a separator takes place. The majority of the electrolyte is kept in separate 

tanks, thus limiting the degree of cross-mixing, resulting in a lower self-discharge rate of 
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this battery technology [87]. It is worth mentioning that the cross-contamination of 

compounds can accelerate the degradation of the battery [40][88], but in the case of the 

VRFB battery, it has no detrimental effect on this battery technology longevity because 

the mixed electrolytes revert to the unchanged state and then can be easily recharged 

[44][86]. 

The cycle life of the VRFB battery can reach 12000-13000 cycles [45][88], as can be 

seen in Fig. 4, and is not directly influenced by the depth of discharge as long as the battery 

is operated within its voltage limits. When the VRFB battery undergoes 

charging/discharging cycles, the electrodes do not experience any changes as it is in the 

case of the conventional battery because all changes take place in the active material that 

is dissolved in the electrolyte. The changes that occur in the electrodes materials of 

conventional batteries result in their degradation over time, which limits the cyclic lifetime 

of these devices [39][43][44]. The  VRFB does not experience life degradation due to 

repeated deep discharges and additionally can be stored completely discharged for long 

periods without a negative effect on its performance [39][44]. This type of battery can be 

over-discharged within the limits of the capacity of the electrolytes, but overcharging must 

be prevented [39]. During the overcharge of the cell, the oxygen and hydrogen evolution 

occurs at the positive and negative electrodes respectively. These processes can interrupt 

the electrolyte flow leading to the limitation in the operational state of charge and 

decreasing battery efficiency [89]. Additionally, the resistance of the cell increases due to 

gases evolution during the overcharge of the cell and the oxidation of the carbon electrode 

due to oxygen evolution can also occur [90]. 

The VRFB can be charged and discharged at any rate [91]; however, the cycle efficiency 

decreases when the charging rate is too high due to oxygen and hydrogen evolution, the 

gassing process occurring during rapid recharge. It is also claimed that vanadium redox 

battery can withstand fluctuating power demand without any signs of performance 

deterioration [39].  
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Similarly to the lithium-ion battery, the performance of VRFB is not affected by micro 

cycling. Unlike the flooded lead-acid battery, this battery requires very low maintenance 

[39][92]. 

2.1.7  Zinc Bromine Flow Battery  

Zinc Bromine Flow Battery (Zn/Br2) is a hybrid flow battery where one of the electro-

active compound, zinc, is deposited as a solid layer on the electrode during charging 

processes, the second one, bromine, is dissolved in the liquid solvent, and the ion exchange 

takes place through the ion-permeable membrane, Fig. 3(c) [35]. This battery is 

characterised by a quick response and a lower energy density compared with standard 

rechargeable batteries, see Table 3, and it has a higher self-discharge rate compared with 

conventional flow batteries like VRFB, refer to Fig. 4.  

Zn/Br2 has a cycle life in the range of 2000 cycles, which is not affected by the depth of 

discharge as it is in the case of the lead-acid battery, Fig. 4. This battery can be deep cycled 

up to 100% depth of discharge on a daily basis without negative effects on the cycle life 

and battery performances [44][93]. A deep discharge actually promotes battery health by 

removing zinc deposits from the negative electrode, deposited during charging processes, 

as well as zinc dendrites from the positive electrode [44][93]. This conditioning of the 

battery is important because when the battery is charged, metallic zinc, which is plated on 

the electrode during this process, is often deposited non-uniformly, and the dendrites can 

be formed on the anode which degrades the battery stability and its performance. 

Examples of the non-uniform dendrite formation on the anode and possible damage in the 

separator due to dendrites formation are shown in Fig. 9. The risk associated with dendrite 

formation is possible damage of the membrane by puncture and occurrence of electrical 

short circuits [35][93].  If the operating regime of the battery does not allow full discharge 

of the battery every cycle, then it needs to be fully discharged every couple of days to 

mitigate zinc dendrites produced during charging processes and to maintain battery life 

[93]. 
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Figure 9 Cylindrical dendrites deposited on the anode, lower left, and the dendrite 

attached to the separator and piercing it, lower right, in Zn/Br2. (Figure reprinted from 

Yang et al. [85]) 

 

The major problem of the zinc-bromine flow battery is its high self-discharge rate 

[39][44]. The self-discharge mechanism in this type of battery is associated with the 

diffusion of the Br2 from the bromine side electrode, across the membrane, to the zinc 

electroplated electrode and subsequent oxidization of the plated zinc leading to a decline 

of the battery charge when stored unused in the fully charged state. This battery should 

not be kept in a charged state at rest for an extended period of time due to the 

aforementioned reactions, instead, it is better to store it in the fully discharged state, 

in  contrast to the lead-acid battery whose performance can be compromised by storing it 

in an empty state [93][94]. The Zn/Br2 flow battery does not like to be overcharged as this 

process, in the extreme case, leads to electrolysis of the electrolyte and the production of 

oxygen and hydrogen, leading to irreversible damage to the battery cell [35][43].  
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The charging and discharging rate have an important impact on the performance of the 

zinc-bromine flow battery. The cycle efficiency is inversely proportional to the 

discharge/charge rate, which means that an increase in the rate of charge/discharge 

decreases the cycle efficiency of this technology [93].  

 Battery Technology, What is Needed Versus What is Available 

Ideally, the battery energy storage in power system applications should provide as 

much energy as required to meet the energy demand and be able, at any time, to 

accommodate as much energy as possible when excess energy is generated by power-

generating units in the system. The key features that should characterise such an ideal BES 

are as follows: 

 The ability to provide all required functions  (for example, peak shaving, shifting 

energy in time from when it is generated in excess to time of energy deficit in the 

system, auxiliary services and others), 

 Ability to be deep or shallow cycled when required without negative influence on 

device performance and health,  

 Being insensitive to the rate of charge and discharge,  

 Becoming unaffected by infrequent events of overcharging and over-discharging 

caused by mis-scheduled actions, 

 Being insensitive to micro-cycling if this is a battery application requirement in a 

particular application, 

 Highly efficient, preferably 100%.  

Unfortunately, battery technology that possesses all the listed above features does not exist 

yet. The review of battery technologies currently used in the grid-scale BES system 

applications carried out in the preceding part of this chapter clearly showed how battery 

chemistries differ from each other. The batteries have their preferences for the way they 

should be run to ensure the longevity of these devices is preserved, and their performances 

are not compromised. As it was shown, these preferences are different for different battery 
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technology and are battery chemistry dependent. When planning the BES installation, it 

is important to consider battery preferences and choose the technology suitable to the 

planned application/installation and its intended functions in the power network. The 

running of the battery against its preferences negatively affects the health and performance 

of this device and the system including this device. In the following section, the tabular 

summary of the battery operational preferences is included with the potential application 

for the knowledge gained in the preceding sections about seven battery technologies.    

 Rules Formulation Based on Battery Chemistries Review  

The overview of the battery preferences dictated by device chemistry carried out 

in the previous sections constitutes the base for the formulation of the rules required for 

the model training.  Table 4 summarizes the battery operating preferences and constitutes 

the base for the definition of rules dictating the favoured operation from the battery health 

point of view, which then are learned by the developed BES model. 

Table 4 Battery Operating Preferences 

                   Notation: o/c – overcharge, o/d – over-discharge, u/c – undercharge 

The preferences listed in Table 4 are dictated by battery chemistry and therefore are 

different for each battery type. They are the results of the chemical changes that take place 

inside the battery due to cycling that can either positively or negatively affect battery 

Type 
Charge 

Sensitivity 

Cycle 

Preference 

Micro-

Cycle 

Charge 

Condition 
Idle SoC 

Lead Acid o/c, o/d, u/c Shallow No Full Full 

NiCd o/c Deep No Empty - 

NiMH o/c, o/d Shallow No - - 

Li-Ion o/c, o/d - Yes - - 

VRFB o/c - Yes - - 

Zn/Br2 o/c Deep No Empty Empty 

NaS o/c, o/d - No - - 
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performance and its health. Some similarities in preferences between different battery 

technologies can be seen. For example, both Zn/Br2 and NiCd batteries prefer to be fully 

discharged before recharging again. Although this preference is the same for both 

batteries, it is dictated by completely different chemical reactions taking place inside the 

cells when running contrary to preference (specifically the memory effect for NiCd battery 

and dendrite formation in Zn/Br2). For a better understanding of the preferences included 

in Table 4, some explanation of the terms used to describe the preferences is required. 

The charge sensitivity term describes the preference of the battery to not being 

overcharged (charged above the maximum energy battery can safely accept), over-

discharged (drawing energy from the empty device), under-charged (partially charging 

the battery, not charging the battery to its full capacity before discharging again, this is 

particularly important for the Lead-acid battery as it can lead to a build-up of sulphate 

crystals). The cycle preferences describe how deep the battery can be discharged. The 

battery can either be deep cycled (‘deep’ in Table 4), shallow cycled (‘shallow’ in 

Table  4) or does not have a preference (‘-‘ in Table 4). Batteries with the preference for 

deep cycling like to be continuously discharged until the device is fully discharged, which 

is usually considered when the battery cell reaches its cut-off voltage, typically at 80% of 

the discharge. Battery with a preference for shallow cycling likes to be discharged until 

some point, for example, 50% of the state of charge. The depth of discharge is particularly 

important for lead-acid and zinc-bromine batteries. In the case of the first battery 

technology, the cell prefers to be shallow cycled as deep cycling can accelerate softening 

of active material leading to capacity loss [95]. Deep cycling is preferred by second battery 

technology as it removes the zinc dendrites from the battery cell, positively influencing 

battery health conditions [93]. Some battery technologies have a preference to reach a 

particular state of charge before charging or discharging again to ensure device's healthy 

operation: ‘empty’ in Table 4 means a preference for discharging until fully discharged, 

and ‘full’ means the preference for charging until fully charged state is achieved. This is 

described by the charge condition term in this work. The lead-acid battery is an example 

of battery chemistry that prefers to be fully charged before discharging again, as it 
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positively influences device health by preventing sulfation occurrence within the battery 

cell [18]. The Zn/Br2 battery technology, contrary to the lead-acid chemistry, prefers to be 

fully discharged following the charging process to break down the Zinc dendrites created 

during battery cycling operation [93].  Micro-cycling describes the battery's preference to 

be constantly charged and discharged without the necessity of firstly fully charging or 

fully discharging this device; in other words, the battery likes the frequent change of the 

direction of battery current. The last term, idle SoC, describes the preference of the battery 

to the state of charge in which the battery prefer to be kept when at rest. The lead-acid 

battery is a good example of a battery that prefers to be kept fully charged when at rest to 

prevent deterioration of its performance due to the sulphation process occurring because 

of the self-discharge of the cell [96].  

Before the formulation of the rules is discussed in detail, it is worth mentioning that 

the battery operational preferences summarised in Table 4 also have another potential 

practical application, namely as the supporting information for system 

designers/engineers in the battery technology selection process. With the knowledge of 

the system where BES will be added and the required function that this device will perform 

in the application, the applicability of each battery technology can be assessed. The battery 

function that this device will perform dictates the way it will be operated. The potential 

way that the battery will be operated and the battery requirements in the planned system 

can be assessed against battery operational preferences, covered in Table 4, allowing the 

choice of the best match of the battery technology to the intended application. 

2.3.1  Rules Formulation 

During the formulation of rules and defining the preference indexes, some assumptions 

were made, namely:  

1. Temperature influence on battery degradation was not considered during battery 

modelling. It was assumed that the BES operating environment was not hostile to 

this device and that the sole threat to asset life was through misuse. This is dictated 
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by the fact that in the grid storage applications, regardless if the battery is stored 

in containers, dedicated rooms in the building or if we deal with ready-to-install 

systems, the system is always equipped with a temperature management system, 

which maintains the optimum conditions for the batteries. The addition of the 

temperature into the model can help extend the application of the developed model 

into those applications where the battery is not operating in the controlled 

environment and constitute potential further work. 

2. Each battery type is assumed to be new and already formatted at the starting point 

of modelling and simulation, meaning that the device, from the beginning, reaches 

its maximum possible capacity appropriate for a new, healthy device. The 

influence of potential inappropriate formatting or lack of this activity after the first 

device installation on the degradation of performances during usage was omitted 

from this work. This is dictated by the fact that some of the battery technologies 

considered here do not require to be formatted at all after the installation, and for 

those that require, it is assumed to be done during installation or shortly after to 

ensure the device is fully ready to perform its function from the beginning of 

usage. 

3. The equalizing charges were not needed to be included in the battery scheduling. 

The battery was cycled according to the available resources and demand 

requirements only. It was assumed that the developed model automatically 

recognizes the maloperation due to the lack of application of equalizing charges 

because this functionality was covered during rule formulation.   

The operational preferences summarised in Table 4  are used to create rules which will 

label exemplar charge schedule actions according to the resulting impact on the battery 

health. Based on Table 4, the example rule consequents that are used to train the prediction 

model of the lead-acid battery are as follows: 

- “do not overcharge” 

- “do not over-discharge” 
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- “do not under-charge” 

- “charge BES to full SoC before discharging is allowed” 

-  “do not forget to apply equalizing charge”. 

The knowledge of the battery preferences and resulting rules led to the composition of the 

lookup tables with preference indexes for different battery technologies considered in this 

work, namely: Lead-acid, NiCd, NiMH, Zn/Br2, NaS, Lithium-ion and VRFB batteries. 

The lookup tables are shown in Tables 5 - 11.  
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Table 5 Lead-acid battery preference index lookup table. 

State of 

Charge  

at time t 

(SoCt) 

Scheduled 

action at 

a time (t) 

Scheduled 

action at 

previous 

time step 

(t-1) 

Preference 

index 

Rule Additional note 
D

is
ch

ar
g

ed
 

 

charge 

 

charge +1 ‘do not over-

discharge’ 

 

Preferred action when 

empty discharge +1 

no action +1 

discharge 

 

charge -1 ‘do not over-

discharge’ 

 

This battery type does 

not like over-

discharging 
discharge -1 

no action -1 

no action 

 

charge -1 ‘do not over-

discharge’ 

 

Self-discharge leads to 

over-discharging, 

leading to hydration  
discharge -1 

no action -1 

P
ar

ti
al

ly
 c

h
ar

g
ed

 

 

charge 

 

charge +1 ‘do not under-

charge’ 

 

Prefer to be charged to 

full capacity 

discharge  0   

no action +1 ‘do not under-

charge’ 

 

Prefer to be charged to 

full capacity 

discharge 

 

charge -1 ‘do not under-

charge’ 

 

Does not like to be 

discharged before being 

charged to full capacity 

discharge 0   

no action 0   

no action 

 

charge -1 ‘do not under-

charge’ 

 

Does not like to be 

discharged before being 

charged to full capacity 

discharge -1 ‘charge BES to full 

SOC before 

discharging is 

allowed’ 

When not fully charged, 

possible sulphation no action -1 

F
u

ll
y

 c
h

ar
g

ed
 

 

charge 

 

charge -1 ‘do not 

overcharge’ 

 

Does not like to be 

overcharged discharge -1 

no action -1 

discharge 

 

charge +1 ‘charge BES to full 

SOC before 

discharging is 

allowed’ 

Preferred way of 

operating when fully 

charged 
discharge +1 

no action +1 

no action 

 

charge -1 ‘do not forget to 

apply equalizing 

charge’  

Keeping the battery too 

long without topping 

charge leads to 

sulphation 

discharge -1 

no action -1 
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Table 6 Lithium-ion battery preference index lookup table.  

State of 

Charge  

at time t 

(SoCt) 

Scheduled 

action at 

a time (t) 

Scheduled 

action at 

previous time 

step (t-1) 

Preference 

index 

Rule Additional note 

D
is

ch
ar

g
ed

 

 

charge 

 

charge +1 ‘Charge when 

empty’ 

 

Preferred action 

when empty discharge +1 

no action +1 

discharge 

 

charge -1 ‘do not over-

discharge’ 

 

Dangerous - safety 

issue discharge -1 

no action -1 

no action 

 

charge -1 ‘do not over-

discharge’ 

 

Can lead to over-

discharging, which 

is dangerous 
discharge -1 

no action -1 

P
ar

ti
al

ly
 c

h
ar

g
ed

 

 

charge 

 

charge 0   

discharge +1 ‘micro cycle’ Prefer micro 

cycling as it can 

prolong battery life 

no action 0   

discharge 

 

charge +1 ‘micro cycle’ Prefer micro 

cycling as it can 

prolong battery life 

discharge 0   

no action 0   

no action 

 

charge 0   

discharge 0   

no action 0   

F
u
ll

y
 c

h
ar

g
ed

 

 

charge 

 

charge -1 ‘do not 

overcharge’ 

 

Does not like to be 

overcharged discharge -1 

no action -1 

discharge 

 

charge +1 ‘discharge 

when fully 

charged’ 

 

Preferred action 

when Fully charged discharge +1 

no action +1 

no action 

 

charge 0  No impact on the 

chemistry discharge 0 

no action 0 
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Table 7 NiMH battery preference index lookup table. 

State of 

Charge 

at time t 

(SoCt) 

Scheduled 

action at 

a time (t) 

Scheduled 

action at 

previous 

time step (t-

1) 

Preference 

index 

Rule Additional Note 

D
is

ch
ar

g
ed

 

 
charge 

 

charge +1 “charge 

when 

empty” 

Preferred action 

when empty discharge +1 

no action +1 

discharge 

 

charge -1 “do not 

over-

discharge” 

This battery type 

does not like over 

discharging 
discharge -1 

no action -1 

no action 

 

charge -1 “do not 

leave in an 

empty state 

for too 

long” 

High self-

discharging can 

quickly lead to 

over-discharge 

discharge -1 

no action -1 

P
ar

ti
al

ly
 c

h
ar

g
ed

 

 

charge 

 

charge 0   

discharge 0 

no action 0 

discharge 

 

charge 0 

discharge 0 

no action 0 

no action 

 

charge 0 

discharge 0 

no action 0 

F
u

ll
y

 c
h

ar
g

ed
 

 

charge 

 

charge -1 “do not 

overcharge” 

Does not like to be 

overcharged discharge -1 

no action -1 

discharge 

 

charge +1 “discharge 

when fully 

charged” 

Preferred way of 

operating when 

fully charged 
discharge +1 

no action +1 

no action 

 

charge 0  No impact on 

chemistry discharge 0 

no action 0 
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Table 8 NiCd battery preference index lookup table. 

State of 

Charge  at 

time t 

(SoCt) 

Scheduled 

action at a 

time (t) 

Scheduled 

action at 

previous 

time step 

(t-1) 

Preference 

index 

Rule Additional note 

D
is

ch
ar

g
ed

 

 

charge 

 

charge +1 “charge 

when 

empty” 

Preferred action 

when empty discharge +1 

no action +1 

discharge 

 

charge -1 “do not 

over-

discharge” 

This battery type 

does not like over 

discharging 
discharge -1 

no action -1 

no action 

 

charge -1 “do not 

leave in an 

empty state 

for too 

long” 

Possible over-

discharge  discharge -1 

no action -1 

P
ar

ti
al

ly
 c

h
ar

g
ed

 

 

charge 

 

charge 0   

discharge -1 “fully 

discharge 

before 

recharging 

again” 

Prefers to be 

discharged 

completely before 

recharging due to 

possible memory 

effect 

no action 0   

discharge 

 

charge 0   

discharge +1 “fully 

discharge 

when 

partially 

charged” 

Prefers to be 

discharged 

completely before 

recharging 

no action +1 

no action 

 

charge 0   

discharge 0 

no action 0 

F
u

ll
y

 c
h

ar
g

ed
 

 

charge 

 

charge -1 “do not 

overcharge” 

Does not like to be 

overcharged, 

possible thermal 

runaway 

discharge -1 

no action -1 

discharge 

 

charge +1 “discharge 

when fully 

charged” 

Preferred way of 

operating when 

fully charged 
discharge +1 

no action +1 

no action 

 

charge 0  No impact on 

chemistry discharge 0 

no action 0 
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Table 9 VRFB battery preference index lookup table. 

State of 

Charge  at 

time t 

(SoCt) 

Scheduled 

action at a 

time (t) 

Scheduled 

action at 

previous 

time step 

(t-1) 

Preference 

index 

Rule Additional note 

D
is

ch
ar

g
ed

 

 

charge 

 

charge +1 “charge 

when 

empty” 

Preferred action 

when empty discharge +1 

no action +1 

discharge 

 

charge -1 “do not 

over-

discharge” 

Prefers to be not 

over-discharged, 

but over-discharge 

is possible if within 

the limits of the 

capacity of the 

electrolytes 

discharge -1 

no action -1 

no action 

 

charge 0  Can be stored long 

time empty without 

negative influence 

on its performance 

discharge 0 

no action 0 

P
ar

ti
al

ly
 c

h
ar

g
ed

 

 

charge 

 

charge 0   

discharge +1 “charge 

even if not 

fully 

discharged 

yet” 

Can be micro-

cycled without 

negative influence 

on performances 

no action 0   

discharge 

 

charge +1 “discharge 

even if not 

fully 

charged 

yet” 

Can be micro-

cycled without 

negative influence 

on performances 

discharge 0   

no action 0  

no action 

 

charge 0   

discharge 0 

no action 0 

F
u

ll
y

 c
h

ar
g

ed
 

 

charge 

 

charge -1 “do not 

overcharge” 

Overcharging must 

be avoided discharge -1 

no action -1 

discharge 

 

charge +1 “discharge 

when fully 

charged” 

Preferred action 

when fully charged discharge +1 

no action +1 

no action 

 

charge 0  No effect on the 

chemistry discharge 0 

no action 0 
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Table 10 Zn/Br2 battery preference index lookup table. 

State of 

Charge  at 

time t 

(SoCt) 

Scheduled 

action at a 

time (t) 

Scheduled 

action at 

previous 

time step 

(t-1) 

Preference 

index 

Rule Additional note 

D
is

ch
ar

g
ed

 

 

charge 

 

charge +1 “charge 

when 

empty” 

Preferred action 

when empty discharge +1 

no action +1 

discharge 

 

charge -1 “do not 

over-

discharge” 

‘Tolerates’ over-

discharging to some 

extend 
discharge -1 

no action -1 

no action 

 

charge -1 “do not 

over-

discharge” 

High self-discharge 

discharge -1 

no action -1 

P
ar

ti
al

ly
 c

h
ar

g
ed

 

 

charge 

 

charge 0   

discharge -1 “fully 

discharge 

before 

recharging 

again” 

Prefers to be 

discharged to an 

empty state before 

recharging  

no action 0   

discharge 

 

charge 0   

discharge +1 “fully 

discharge 

before 

recharging 

again” 

Prefers to be 

discharged to an 

empty state before 

recharging 

no action +1 

no action 

 

charge 0   

discharge 0 

no action 0 

F
u

ll
y

 c
h

ar
g

ed
 

 

charge 

 

charge -1 “do not 

overcharge” 

Overcharging must 

be avoided discharge -1 

no action -1 

discharge 

 

charge +1 “discharge 

when fully 

charged” 

Preferred action 

when fully charged discharge +1 

no action +1 

no action 

 

charge 0   

discharge 0   

no action -1 “do not store 

fully 

charged” 

Self-discharge leads 

to the decline of 

battery charge when 

stored fully charged 
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Table 11 NaS battery preference index lookup table. 

State of 

Charge  at 

time t 

(SoCt) 

Scheduled 

action at a 

time (t) 

Scheduled 

action at 

previous 

time step 

(t-1) 

Preference 

index 

Rule Additional note 

D
is

ch
ar

g
ed

 

 

charge 

 

charge +1 “charge 

when 

empty” 

Preferred action 

when empty discharge +1 

no action +1 

discharge 

 

charge -1 “do not 

over-

discharge” 

Over-discharging 

leads to irreversible 

chemical changes in 

the battery cell 

discharge -1 

no action -1 

no action 

 

charge -1 “do not 

over-

discharge” 

Even with low self-

discharge, keeping 

the battery fully 

discharged without 

recharging it can 

lead to irreversible 

chemical changes in 

the battery cell 

discharge -1 

no action -1 

P
ar

ti
al

ly
 c

h
ar

g
ed

 

 

charge 

 

charge 0   

discharge 0 

no action 0 

discharge 

 

charge 0   

discharge 0 

no action 0 

no action 

 

charge 0   

discharge 0 

no action 0 

F
u

ll
y

 c
h

ar
g

ed
 

 

charge 

 

charge -1 “do not 

overcharge” 

Does not like to be 

overcharged as it 

can lead to damage 

to electrolyte 

discharge -1 

no action -1 

discharge 

 

charge +1 “discharge 

when fully 

charged” 

Preferred action 

when fully charged discharge +1 

no action +1 

no action 

 

charge 0   

discharge 0   

no action 0   
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The lookup tables describe the battery preferences for the action to be performed in 

relation to the previous actions and the state of charge of this device, which is dictated by 

the chemistry of the battery. Three preference indexes were considered in this work. 

The  battery can either:  

- prefer to perform a particular action - positive index (+1),  

- dislike action - negative index (-1) 

- be neutral to the action - zero index (0).   

The positive index describes the situation when the battery is run in a way that can actually 

prolong device life (operation in agreement with the rules); the negative index is the 

observation emitted when the battery is operated in a way contrary to preference dictated 

by its chemistry leading to the performance deterioration (operation against the rules). 

Zero index is emitted in a situation when the executed action has no negative influence on 

the battery performance but also does not prolong battery life (no rule regulating this 

action). The composed lookup tables were then used to generate preference indexes due 

to the random charging/discharging schedule of the BES that constitutes the entry data 

required for model training. As can be seen in Tables 5 to 11, preference indexes are 

unweighted and always equal ±1 or 0. Each maloperation event is treated equally. It can 

be expanded in the future to include varied weights. However, more detailed knowledge 

about battery chemistry and suitable data sets would be essential to provide these scaled 

indexes. This would constitute a possible collaboration platform with experts in battery 

chemistry. 

 In summary, this chapter provided insight into the complexity of the battery’s 

internal processes that take place inside this device during its operation and are governed 

by the battery chemistry. It indicated that there is not possible to observe those processes 

and changes directly, and this information is hidden from the observer. It also provided a 

useful summary of battery preferences for reviewed battery technologies that have 

potential applicability during the process of battery type selection for a given application. 

Based on the battery operational preferences listed in Table 4, a set of rules dictating the 
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favoured operation from the battery health point of view were formulated for each battery 

type. This in turn, led to the definition of the new health index in terms of maloperation 

level. Using maloperation level as the potential measure of the battery health is dictated 

by the strong influence misuse has on the internal chemical state of the battery. These 

rules allowed the generation of the data of maloperation level due to the random charge 

/discharge schedule of the battery, which then is used to train the proposed state-based 

BES model.    
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CHAPTER 3 

This chapter, the previous and the following chapters constitute an extended version 

of a journal paper published in IEEE Access Journal in 2021 by Joanna Sobon and Bruce 

Stephen, titled: “Model-Free Non-Invasive Health Assessment for Battery Energy Storage 

Assets” [32]. 

 

3. Battery Models Review, Shortcomings and Proposed 

Solution  

     The development of accurate models of battery conditions is important from both 

a   power systems operation and asset management point of view. The resulting model can 

allow studying in a safe way the behaviour of a modelled power network under different 

operating conditions and assessing the operating limits of the device. The model can also 

support the development of new efficient battery management systems, can help in 

assessing the application of battery technologies and help in optimizing its operation in 

the analysed application such as for example, ancillary services, peak shaving and others. 

The most important aspect of battery modelling is the ability to capture the ageing 

processes of a real device by a developed model. Ageing of the battery can be defined as 

the processes associated with the changes that occur in the electrodes, anode and cathode 

due to chemical reactions taking place during battery operation and when the battery is 

not used over an extended period of time, leading to a deterioration of battery 

performances [33][34]. There are two main types of ageing processes. The first type called 

the degradation-ageing process, is associated with the gradual deterioration of battery 

performances over time. The second type is associated with a sudden, unexpected drop in 

battery performance or device failure. This type of ageing process is called a “bursty” 

ageing process and has no impact on the performance of the battery until it suddenly leads 

to a major problem, such as device failure and even fire and explosion [16][34]. The 
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physical and chemical changes in the batteries, and the associated ageing processes, are 

significantly affected by the operating condition such as rate of charge and discharge, 

ambient temperature, length of the break in the device operation and other stress factors 

such as: how long battery remains at a low state of charge (SoC), cycling at partial-SoC 

and others [16][17]. Taking the chemistry of the battery into account is important when 

formulating operational strategies that preserve the longevity of the device. From the 

power grid perspective, where BES becomes an integral part of the system, considering 

battery health is crucial as the failure of the battery can lead to loss of operation and 

reduced capability of the power network comprising this device.  It is also important for 

the stability of the power network comprising this device to ensure that the failure of the 

battery is prevented to guarantee continuous electricity supply to consumers. The health 

of the battery has an impact on its capabilities, thus influencing the operation of the whole 

system this device is part of.  

 State of Art in Battery Modelling 

The most basics properties of the battery are its voltage, in volts (V), and capacity 

often expressed in the ampere-hour (Ah). In the ideal scenario (ideal battery), the battery 

voltage would remain constant during the discharge process until the device becomes 

completely discharged when it instantly drops to zero, Fig. 10(a).  

 

Figure 10 Voltage discharge curve of Lithium-ion cell for the ideal battery (a) and 

a  typical lithium-ion battery cell (b)   

 

a) b) 



 

 

49 

 

Due to non-linear chemical reactions, that take place inside the battery, the voltage drops 

during discharge in a non-linear manner, see Fig 10(b), this phenomenon is called the rate 

capacity effect. Another important characteristic of the battery is a process called the 

recovery process, which is the recovery of some capacity ‘lost’ during a fast discharge 

when the battery is at rest (idle). For the ideal battery, the lifetime of this device could be 

described by a simple equation (5) [97]: 

L=C/I             (5) 

Where:   L – is the lifetime [h],  

C – is the capacity [Ah], 

 I – is the load current [A].  

As we deal with the real battery, a complex electrochemical device, inside which the 

complex non-linear physical changes and the chemical reactions take place during cycling 

operation, predicting its lifetime is a more complex task, similarly to predicting its 

capacity fading with time and other phenomena taking place inside this device. This non-

linearity makes the modelling of this device a challenging task. To ensure that model will 

be useful, it needs to catch important phenomena, such as: 

- State of charge    

The ability to capture changes in the SoC of the battery during cycling is a very 

important aspect of managing this asset properly. It supports informed decisions 

about the next available action to be performed and increases understanding of 

how much energy is still available for discharge and how much energy can be 

accommodated in this device to store and use later on. 

- Self-discharge mechanisms  

These mechanisms result in a gradual reduction of stored charge when the battery 

is in an open circuit state. They are battery type-dependent and governed by the 

different chemical reactions taking place inside the battery cell, influenced by 

battery chemistry. For example, sulphation process is responsible for the self-

discharge processes of the lead-acid battery due to its storing  [18][52].  
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- Dynamic I-V characteristics  

They describe the dynamic characteristics of the battery, such as non-linear open-

circuit voltage [98] and voltage and current behaviour of the battery cell during 

the charging and discharging processes. The example of the voltage discharge 

curve for a lithium-ion battery is shown in Fig. 10(b).  

- Rate capacity effect   

This phenomenon describes the effect of the rate at which the battery is discharged 

on the device's capacity. The amount of charge (effective capacity) that is drawn 

from the battery with a low discharge current rate is higher than when a higher 

discharge rate is applied to the battery [99]. 

- Ageing effect and associated battery state of health (SoH) 

The ageing effect is an important phenomenon that needs to be captured to ensure 

the proper operation of BES. Due to the ageing effect, the internal resistance of the 

battery is rising, reducing the mobility of ions between the cathode and anode, and 

the available capacity is decreasing. The ageing effect can have a very important 

influence on battery operation when not predicted properly. It can lead to 

overcharging the battery when the battery is being charged to its nominal capacity 

(capacity of the brand new battery) that due to ageing processes was substantially 

reduced. This can result in catastrophic device failure, fire and explosion. The SoH 

denotes the battery health condition that is in use, compared to its ideal condition 

(condition of the brand new device). The SoH cannot be measured directly but can 

be computed using the capacity of the battery [100][101]. The SoH can be 

estimated using equation (6) [102]. 

                                      𝑆𝑜𝐻(𝑡) =
𝐶𝑡

𝐶𝑛𝑒𝑤_𝑏𝑎𝑡𝑡
× 100%                                                       (6) 

Where:   Ct – is the nominal capacity of the battery at time t 

                           Cnew_batt – is the nominal capacity of the brand-new device. 
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- Recovery effect  

The electroactive species are homogeneously distributed on the electrodes of the 

battery cell when it is fully charged [103]. During the discharge process, the 

particles that are closer to the electrode are consumed first then those further from 

the electrode are used. When the cell of the battery is subject to a long, continuous 

discharge process, then the species further from the electrode do not have enough 

time to travel towards the electrode. This results in the battery appearing as quickly 

depleted even actually not all species were consumed yet. When the battery is 

allowed to rest between discharges, additional ions can travel toward the electrodes 

increasing the number of species that participate in redox reactions. This idle time 

permitting this process is termed the recovery effect [103][104]. This phenomenon 

depends on the material used for the cathode and anode and thus cannot be 

generalized for all the battery chemistries [103]. It can increase the useful power 

of the battery when the battery is allowed to rest between the discharging cycles 

[105].  

- Memory effect  

This effect occurs due to the incomplete discharges in previous uses of the battery 

leading to a build-up of residual charge until the point where the battery can store 

only a small amount of useful charge. 

- Capacity fade mechanisms  

The available capacity decreases with time. For lithium-ion batteries, this is the 

result of lithium deposition during overcharging [106]. For Lead-acid batteries, 

this phenomenon is caused by electrolyte decomposition, passive film formation, 

phase change in the electrode material, and active material dissolution (sulphation 

and grid corrosion) [76].  

- Remaining useful life 

The remaining useful life (RUL) is the length of time the battery will operate 

before its performance drops to the point that this device is no longer viable for a 

given application and requires replacement. 
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There is no model developed yet that covers all of the above-mentioned phenomena. 

Usually, the developed, up-to-date models focus on one or more phenomena in the 

modelling. Including all the above-mentioned battery features would substantially 

increase model complexity and its computation time/effort, which is not optimal from the 

model application point of view. Additionally, it would require suitable data sets to be 

freely available, covering all life cycles for the battery. Currently, suitable data resources 

are very limited.  

The review of battery models carried out in this chapter is focused on those that 

provide the ability to predict the state of health, which is dictated by the fact that 

knowledge about this quantity is critical to ensure proper and safe battery operation.  

Accurate prediction of SoH is critical for battery management systems as it can prevent 

overcharging and over-discharging of this device, the processes that can lead to premature 

battery failure or even catastrophic hazards, which in turn negatively affect the power 

system encompassing this device. Numerous battery models have been developed to date 

that capture battery performance for various purposes, such as battery management 

systems [107], investigating battery design and performance, circuit analysis, electric 

vehicle applications [108] and others. They can be divided into four groups, namely 

physical (electrochemical) models [109][110], semi-empirical models comprising 

equivalent circuits models [111][112], analytical models [113][114] and self-adaptive 

models [115][116], empirical models comprising models employing probabilistic 

[117][118] and non-probabilistic [119][120] approaches, and hybrid (mixed) models 

[121] that combine two or more other modelling techniques to model battery behaviour. 

The classification of the models used in this work is similar to those used in [122][123] 

and is shown in Fig.  11. The hybrid models are not reviewed here as a separate model 

group; instead, they are reviewed under the model group they are closest to in design in 

the corresponding sections. 
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Figure 11 Taxonomy of battery models.  

 

3.1.1  Physical Battery Models 

The first group of physical models are also called electrochemical models  [44], [45], 

[59]–[61]; being of the first principles in nature, they also are one of the most accurate 

models. These models have been developed to understand the mechanisms of degradation 

that take place inside the battery cell. They are based on the highly non-linear, partial 

differential equations that model the physics of the battery and the chemical reactions 

taking place inside this device. The examples of modelled reactions and processes taking 

place in the battery during its operation are the following: 

- diffusion process in the solid material of the electrodes and transport of ions in 

the electrolyte during the charging/discharging of the lithium-ion cell modelled 

in [109] and [124], 
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- relaxation phenomena (also called recovery effect) in Lithium-ion cells that 

depend on changes in the distribution of the material on the electrodes and 

inside the solution, modelled in [110].  

The electrochemical models require detailed knowledge of the battery chemistry and 

its design. These models are accurate but also very complex and difficult to configure. 

They typically require a large number of parameters, which must be obtained from domain 

knowledge (reasonable estimates) or obtained independently from a series of laboratory 

experiments [125]. For example, the models developed in [109] and [127] require over 50 

battery parameters to be set. Moreover, the number of parameters can differ from one 

battery to another and even between the cycles of the same battery [128]. This further 

complicates the applicability of first-principles models to the SoH prediction and implies 

additional requirements to find new accurate and fast methods of parameters estimation 

[129]. Physical battery models are also characterised by long simulation times, often in 

days [130][131], which is not suitable for online model applications. Electrochemical 

models do capture nonlinear battery behaviour but do not directly address the estimation 

of the SoC or SoH [130][132], which is crucial in battery storage management systems.     

3.1.2  Semi-Empirical Battery Models 

The next group of battery models considered in this work are semi-empirical models. 

This group of models are based on experimental results as in the case of the empirical 

models, but also some of the real physical effects are implemented in this type of model 

so that these models encode also some of the underlying theoretical assumptions. The 

semi-empirical model can be further divided into analytical models, electric circuit models 

and self-adaptive models.   

Two analytical battery models are considered in this work, namely the Rakhmatov and 

Vrudhula diffusion model [113][133] and the Kinetic battery model [134][114]. These 

models describe the battery operation at a higher level of abstraction compared to physical 

models and electrical circuit models. The diffusion model is based on the diffusion of the 
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ions in the electrolyte, describing the evolution of the ion concentration in the electrolyte 

while the battery is charged or discharged. This model predicts the battery lifetime under 

a given load and is capable of modelling the recovery effect taking place inside the battery. 

Unfortunately, it does not account for the capacity fading characteristics [135]. Accurate 

prediction of capacity fading for battery energy storage during its life is important in 

battery management systems as it can prevent overcharging or over-discharging of this 

device, helping to avoid battery failures. The second battery model that belongs to the 

analytical model group, and is considered in this work, is the kinetic battery model 

(KiBaM) shown in Fig. 12.  

  

Figure 12  Kinetic battery model – KiBaM. 

 

     This model assumes that battery charge is distributed between two connected wells 

from which the first one (bound charge in Fig. 12) supplies charge to the second one 

(available charge in Fig. 12), which in turn supplies the load. The dynamic between the 

wells models the recovery effect and rate capacity effect. This model is capable of 

capturing the non-linear capacity behaviour of the battery but unfortunately cannot capture 

the dynamic of I-V battery characteristics that are crucial when considering the battery as 

an integral part of the electrical system [136].  Summarising the analytical models, while 
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easily implemented, they are unable to accurately capture the potential battery degradation 

that is important to storage asset health. 

The second group of semi-empirical models reviewed in this work are the electrical-

circuit models [111], [137]–[145] that attempt to provide the equivalent representation of 

the battery. The electrical properties of the battery cell in these models are modelled by 

using the electronic components mimicking the battery cell characteristics, ranging from 

the simple capacitor, resistor and voltage source representing battery charge storing 

capacity, internal resistance (electrolyte resistance and charge transfer resistance) and 

open-circuit voltage respectively, through more sophisticated, complex elements like 

Warburg diffusion element2 (Warburg impedance) modelling slow voltage diffusion 

process [140][146] or ZARC element [141], which is the parallel configuration of 

Warburg element with resistor and models the depression in impedance response of 

battery cell. Warburg impedance and ZARC elements are shown in Fig. 13.  

To examples of electrical-circuit models belong; the simple battery model [144], 

Thévenin-based electrical model [111][142][145], Impedance-based electrical model [28–

32] and Runtime-based electrical model [138][139][151], shown in Fig. 14. Most of these 

models are able to accurately predict the state of charge of the battery, but they do not 

account for battery degradation [152]. The simple battery model, Fig. 14 (d), consists of 

the voltage source VOC in series with an internal resistance RSeries where VOC gives the 

voltage across the ideal battery while VBatt is the terminal voltage of the battery, and RSeries 

models the electrolyte resistance. 

                                                 
2 Warburg diffusion element (Warburg impedance) is an equivalent electrical circuit composed of multiple 

resistor-capacitor networks in series, as shown in Fig. 13, which models the diffusion processes taking part 

in the battery during charging and discharging processes.  
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Figure 13 Warburg diffusion element Zw and ZARC element in the impedance-based electric 

circuit model. 

 

This model does not account for the SoC of the battery and thus is only suitable for 

simulations assuming infinite release of the energy from the device and for which the SoC 

is not important [143][153]. It makes this model unsuitable for modelling batteries for 

energy storage purposes. Moreover, this model does not take into account the changes in 

internal resistance with varying states of charge and electrolyte concentration, and also it 

does not consider the diffusion phenomena that take place in the battery. Furthermore, this 

model is only valid for steady-state load conditions [144]. 
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Figure 14 Electrical-circuit battery models: (a) Thévenin -based battery model, (b) impedance-

based model, (c) Runtime-based model, (d) Simple battery model. 
 

 

Thévenin battery model [143][145], Fig. 14 (a), consists of the ideal voltage source 

(VOC) in series with internal resistance (RSeries) and RTransientCTransient parallel circuit that 

models the voltage diffusion process (voltage diffusion is caused by ions diffusion after 
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removing the load when the ions try to reach equilibrium3). RTransient in this figure is the 

charge-transfer resistance that models voltage drop over the electrode-electrolyte interface 

due to load. CTransient is a double-layer capacitance that models the effect of charges 

building up in the electrolyte at the electrode surface (represents the charge stored in the 

battery), and RSeries is internal resistance that models the electrolyte resistance.  This model 

is capable of simulating the behaviour of the battery under dynamic load conditions [130] 

and can predict the voltage transient response of the battery due to changes in the load 

current [154].  The assumption that all model parameters are constant in the Thévenin 

battery model is a disadvantage of this type of model. In reality, all the parameters values 

are a function of the battery condition, so they depend inter alia on the rate of charge and 

discharge, the storage state of charge and temperature [143]. Due to this assumption, the 

model is not able to capture steady-state battery variations, runtime information and 

capacity fading due to thermal and degradation impacts [100][130][155]. 

The impedance-based electrical model [112][150], Fig. 14 (b), consists of the 

equivalent circuit (ZAC) that models an AC-equivalent impedance, open-circuit voltage 

(VOC) and internal resistance (RSeries) modelling the resistance of electrolyte. The 

impedance elements in this model are estimated using electrochemical impedance 

spectroscopy (EIS) measurements to achieve the alternating current (AC) response of 

a  cell at certain frequency spans [147][112][150]. Measuring the EIS spectrum of the 

battery is a time-intensive task. It requires the steady-state condition to be maintained 

during the whole time of measurement, which is challenging to achieve for the battery 

cell. Any shift in battery cell conditions, such as a build-up of the reaction products in 

solution, temperature changes and others, can lead to inaccurate cell response 

measurements resulting in an imprecise impedance-based model fitting. The modern 

battery devices are characterised by a low internal impedance. The lower the impedance, 

the more difficult it is to accurately measure the EIS response of the cell [156].  The 

                                                 
3 Chemical equilibrium is the state in the chemical system where there are no net changes in the concentration of the 

reactants and products of the chemical reactions in time.  It does not mean that there are no reactions inside the system; 

it means that the forward reaction and the reverse reaction in the system proceed at the same rate, resulting in no net 

change in the system properties. 
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impedance-based electrical model cannot predict DC response and battery runtime as it 

works only for fixed SoC and fixed temperature settings [148]; this makes it unsuitable 

for battery energy storage modelling applications, as predicting runtime is crucial for this 

application.  

The last group of the electrical circuit models presented in this work is runtime-

based models [130][138][139]. In those models, a more complicated circuit network is 

used to model battery runtime and DC voltage responses. The model proposed by Hagman 

in [138], Fig 14(c), models the battery runtime and DC voltage response for constant 

current discharge. This model is capable of predicting capacity fading due to ageing and 

thermal effect but, unfortunately, is not able to predict the runtime and voltage response 

under dynamic load conditions [100][130]; what is the limiting factor if we want to use 

the model in energy storage application characterised by load variability in time.  

The combined electric model proposed in [130], Fig. 15, is composed of the runtime 

model (Fig. 15(a)) and the RC network that is similar to the Thévenin-based model 

(Fig.  15(b)). RC part of the developed model is responsible for simulating the transient 

response of terminal battery voltage under dynamic load. In this model, the capacity is no 

longer infinite like it was in a simple battery model or constant. Instead, it is now the 

function of the cycle number and battery temperature [130]. The combined electrical 

circuit model is able to predict to acceptable accuracy battery runtime and the I-V 

performances but is not able to predict battery SoH and update parameters automatically, 

leading to a decrease in accuracy in the time of simulation as the battery degrades [100].  
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Figure 15 Combined electrical circuit model. 

 

In summary, electrical-circuit models [108][130][157] describe battery behaviour with 

simple electrical circuits where different electrical components like resistors, capacitors 

and voltage sources mimic the battery cell characteristics. Most of these models capture 

I-V characteristics; some can predict the runtime and can track the SoC [158]. The 

simplified electric-circuit models [130][157][143] are computationally fast and can be 

easily incorporated into more complex systems and simulation tools [159]. Unfortunately, 

they do not integrate non-linear capacity behaviour, which leads to inaccurate predictions 

of the remaining battery capacity and operating time [130], which is crucial for battery 

management systems. Imprecise prediction of remaining battery capacity can lead to 

battery over-discharging and over-charging, limiting its lifespan. To overcome this issue, 

Zhang et al. [121] developed an enhanced electric circuit model by combining the electric 

circuit model developed in [130] with Rachmatov’s diffusion analytical model developed 

in [113]. The resulting model is capable of capturing the battery recovery effect, but its 

applicability for performance prediction for battery management systems is limited due to 

the complexity of the analytical part of the model. Another enhanced electrical circuit 

model was developed in [136]. This model combines the electrical circuit model proposed 

by Chen et al. [130] with the kinetic analytical battery model proposed in [134], Fig.16(b) 

and Fig.16(a), respectively. The resulting model is capable of predicting battery dynamics 
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with the nonlinear capacity effect of the battery due to the application of the KiBaM 

module that is capable of capturing this nonlinearity in the capacity behaviour. 

Additionally, this model has a lower computational requirement than the enhanced model 

proposed in  [121] which makes it more feasible for real-time applications. The drawback 

of the electric circuit models and two mixed models aforementioned  [121] and [136] is 

that they do not consider the influence of uncertainty in the load profile during dynamic 

battery operation, which constitutes a limiting factor for applications of this type of models 

in real applications. From the system operator's point of view, it is important to plan BES 

operation based on the prediction characterised by high confidence.   

 

Figure 16 Electrical circuit model combined with a kinetic battery model.  

 

The next group of battery models reviewed in this work are models employing an 

adaptive approach to predict battery health such as the Kalman filter (KF) [160]–[162] 

and Particle filter (PF) [115][116][163]. Those models combine electrical circuit models 

with a data-driven framework and are focused on the prediction of SoH and the remaining 

useful life (RUL) of the battery. Kalman filter is an approach used in the estimation of the 

state of health of the battery. It belongs to the Bayesian family of filters and provides the 

method of filtering the measurements of input and outputs to produce an intelligent 
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estimation of the dynamic system’s state, used for linear systems. The main assumption 

of this method is that measured noise and process noise have Gaussian distribution with 

a  zero mean and that both types of noise are independent of each other. Depending on 

how the battery model is defined, the process (a linear function that estimates the value of 

a variable based on its previous value) can for example estimate SoH. The measurement 

is used to correct the estimated value from the process equation to converge it to its actual 

value and can be defined for example in terms of battery voltage. When the system 

considered is non-linear, the Extended Kalman filter can be used (EKF). It is implemented 

by applying the linearization process of every time step to estimate the non-linear system 

with a linear time-varying system [13][154]. Andre et al. in their work [160] used the 

electrical circuit model shown in Fig. 17 combined with EKF in battery SoH prediction. 

SoH in this work was measured in terms of ohmic resistance (internal resistance changes 

compared to resistance at the beginning of battery life). 

 

Figure 17 Equivalent Electrical Circuit battery model used in the ensemble model presented in 

[164]. The parameters shown in red are estimated using EKF.  

In this work, EKF was used in the estimation of internal model parameters (in red in 

Fig. 17). The internal states in the presented model were first estimated using EKF based 

on the available data; the current and voltage response of the battery was measured at the 

beginning, in the middle and at the end of the life of the battery. The output of the electrical 

circuit model applying estimated state parameters by EKF is then compared to the true 

measured voltage value. The EKF recursively updates the parameter states at each step.  

The model in  [164] was then compared with a structured Neural Network (SNN) approach 
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to predict the SoH of the lithium-ion battery. The results showed that although both 

methods performed well in estimating SoH, employing EKF was most promising due to 

the simpler structure, lower number of inputs required and no need to implement 

a  function that described dependencies in the system as it was required for the SNN 

model.  In [165] the EKF method was also applied to predict battery SoC simultaneously 

with SoH. Bhangu et al. proposed in [166]  the SoH and SoC prediction model for lead-

acid battery with the structure of the model originally used for modelling a Lithium-ion 

battery with modifications. In this approach, SoC has been estimated with KF and SoH 

prediction with EKF. KF can be applied to the state estimation of linear Gaussian systems; 

however, it cannot address systems with nonlinear/non-Gaussian properties [164] to 

which EKF was shown to be more suited. Both methods,  KF and EKF, have achieved 

very good performance. The SoH estimation based on KF and EKF requires modelling of 

the battery cell, which is realised in both cases by implementation of electrical equivalent 

circuit models of battery cell for which the parameters are estimated using KF or EKF. 

Moreover, EKF accumulates significant prediction error for long-term SoH prediction due 

to its recursive character [129].  

Particle filtering belongs to the Bayesian filters framework. They are used for 

dynamical systems that are nonlinear with non-Gaussian noise.  For PF, like in the case 

of KF, two models are required. First one needs to describe the changes of the states that 

take part over time, and second model that relates the measurements to the state. More 

details about this method can be found in [165]. The PF is applied to the SoH estimation 

and RUL prediction. PF combines the available information from system measurements 

and other models (usually electric circuit models) and represents uncertainty in the 

prognostics of degradation processes taking place in the battery in the form of a probability 

density function for RUL and SoH [129].  Unlike the KF, the source of uncertainty in this 

model is assumed to be non-Gaussian, which is a more appropriate assumption when 

characterising phenomena such as the recovery effect [115]. This approach was employed 

in [115][163] to predict the SoH and RUL of the energy storage device. In both works, 

the equivalent electric circuit, which models the electrochemical processes, was combined 
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with the statistical models of state transition and ageing processes for the purpose of 

probabilistic estimation of the SoH and RUL of the battery energy storage, with 

simultaneous detection of regeneration phenomena in [115]. Nevertheless, the accuracy 

of these models relies to a great extent on the quality of the model that was used to model 

the electrochemical processes (how accurate the model was, how well trained it was) in 

conjunction with PF. This SoH estimation technique is model-based, and the accuracy of 

the model used in conduction with PF has a significant impact on the accuracy of the SoH 

estimation. Similarly, it is in the case of  KF models.  

3.1.3  Empirical Battery Models 

In the remaining part of this section, the empirical models (data-driven models), 

mostly focused on predicting the SoH, will be considered.  The data-driven models are 

widely used for battery SoH estimation and prediction due to their flexibility (ability to 

approximate many kinds of functions) and their freedom from modelling assumptions. 

Among these models, numerous approaches to predict battery SoH and remaining 

operating life have been used, such as Artificial Neural Networks (ANN) [166][167], 

Support Vector Machines (SVM) [168] and Gaussian Process Regression (GPR) [169]. 

Data-driven models, mainly taking the form of regression models, are a type of model that 

uses observation data to produce the prediction of the state of the battery without the 

implementation of any physical model. The dependency between the input variable(s) and 

the output prediction is modelled by a particular mathematical model with parameters that 

are obtained based on the training data. In other words, these models are a functional 

approximation of the input/output relation and are widely applied to estimate the SoH of 

the battery. Two groups can be distinguished among the data-driven models predicting 

battery health, namely models applying non-probabilistic and probabilistic approaches. 

The difference between these two approaches is that probabilistic modelling uses 

probability theory to express the uncertainty in the SoH model (uncertainty in input and 

output), while non-probabilistic modelling (deterministic modelling) does not consider 

randomness.  Examples of non-probabilistic models that predict SoH of the battery include 
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Artificial Neural Network4 models, autoregressive models and support vector machine 

[170]. The second group constitute the models applying the probabilistic approach 

(stochastic models) to predict battery health using Gaussian process regression [171][172] 

and Markov Chain-based stochastic battery models [173][174]. 

The autoregressive-based models belong to the non-probabilistic models that are 

used to predict the battery state of health and state of charge.  In simple terms, those 

methods implicitly assume that the future resembles the past; thus, they use previous 

observations of variables to predict subsequent ones. Long et al. in [117] proposed an 

autoregressive (AR) based battery degradation model predicting capacity fade. This model 

has a simple structure and is easy to implement but unfortunately, due to the AR model 

linearity, it is not capable of fitting the non-linear characteristics of battery capacity fade 

leading to the model under-fitting. This model has poor long-term prediction and poor 

generalization ability [175]. The problem of the non-linearity of capacity fade was 

addressed by Liu et al. in [118]. In this work, the AR model was combined with a non-

linear degradation process. The acceleration factor, which is correlated with a number of 

cycles, was added to the output of the AR model to allow this non-linearity to be captured 

by the model. The resulting model, the nonlinear degradation AR approach (ND-AR), was 

able to predict remaining useful life with greater precision in comparison to the AR model 

in [117] by accommodating the non-linearity of battery degradation processes (the battery 

degradation rate accelerates with the increasing number of cycles). The problem of battery 

degradation process non-linearity was also addressed in the work of Zhou et al. [176] by 

application of an autoregressive integrated moving average (ARIMA) framework. 

The  ARIMA is a time series forecasting. This framework is based on a combination of 

two concepts, namely AR, which captures the linear trend in time series of battery data, 

and moving average (MA) represents uncertainty through the previous error regression. 

To remove the trend present in the data, the initial differentiating step is applied in this 

                                                 
4 Family of Neural Networks include also the probabilistic approach, Probabilistic Neural Network, but 

the focus in this work is only on the non-probabilistic ANN and their application in battery health 

modelling. 
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framework [177]. In [176], ARIMA model was used along with the Empirical Mode 

Decomposition (EMD)5 in the SoH prediction. The assumption of using the EMD in this 

work was based on the fact that the SoH series can be considered as a hybrid signal with 

multiple underlying processes occurring at different timescales, such as capacity 

regeneration and global deterioration [129]. In this work, the EMD was applied to raw 

SoH data to decouple the effect of global deterioration and capacity regeneration in 

observations. Then, an ARIMA model was trained for each decomposed time series. 

The predictions from the resulting models were then added and based on the resulting SoH 

the remaining useful life was predicted.  

ARIMA-based models are not capable of predicting a non-linear relationship which is an 

important aspect in predicting SoH as the degradation of the battery has a non-linear 

characteristic. The computational complexity of this type of model depends on its order6 

(the size of the training vector increases with the order increase). Additionally, ARIMA is 

a ‘sparse’ modelling method. It only takes a few parts of datasets to fit the model but the 

relevance of using the part of past data for long-time predictions is questionable [187]. It 

is because the battery's health changes dynamically over time under different stress factors 

and operational regimes that the battery is subject to. Additionally, the loss of capacity 

and other health indexes under given conditions is different for new and aged cells [178].  

The next group of data-driven models employing a non-probabilistic approach are 

Artificial Neural Networks7. The ANN are machine learning algorithms that mimic the 

operation of the neurons in human brains. These types of algorithms are very flexible and 

can fit any function, given that enough training examples are provided. The numbers of 

inputs feed each neuron of the ANN. The input is then transferred by the activation 

                                                 
5 Empirical Mode Decomposition is the tool used to decompose the signals that are non-linear and non-

stationary into the sum of oscillating components with zero mean and the composition is performed 

without leaving time domain [231].  
6 The parameters p, d and q in ARIMA model represent the order of autoregressive model (AR), 

differencing order (I) and moving average (MA) respectively.  
7 Family of Neural Networks include also the probabilistic approach, Probabilistic Neural Network, but 

the focus in this work is only on the non-probabilistic ANN and their application in battery health 

modelling.  
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function and the resulting signal is propagated to the next layers. At the end of the process, 

the output signal is generated. The ANN can be divided into deep neural networks (DNN) 

and shallow neural networks. The DNN requires substantially more data for training than 

shallow neural networks, where the model is trained on selected features. The feature 

selection increase requirements for a better understanding of the modelled system. More 

information about ANN can be found in [179]. The ANN is widely used in battery 

modelling, especially in SoH and RUL of battery estimation. Among the ANN types, two 

were successfully applied to the estimation of the SoH and RUL, namely, feed-forward 

neural network (FFNN), also called backpropagation neural network (BPNN) and 

recurrent neural network (RNN). The difference between RNN and FFNN is in the way 

the signal propagates through the network. In the FFNN network, information travels only 

in one direction from the input to the output layer. RNN  also implements feedback 

connections. More information about the differences in the architecture and 

implementation of these NN models can be found in [180]. Thanks to feedback 

connection, the RNN is able to learn the long-term dependencies in data, making it a 

promising model for battery degradation modelling [175]. The advantage of the ANN 

methods in battery modelling is, as universal approximators, they do not need an 

estimation of explicit regression parameters and coefficients. They are used in modelling 

the RUL of the battery [119], SoC [181] and in the prediction of SoH in [182][183][184].  

Eddahech et al. [182] proposed an electric circuit model based on the EIS 

measurements integrated with the RNN to estimate the RUL and SoH of the lithium-ion 

battery. In this model, the prediction is based on knowledge of the previous system 

behaviour and multiple inputs such as temperature, current and state of charge variations. 

This model is able to accurately predict variations that occur in the battery performance 

that takes place with ageing [182]. The drawback of this method is a dependency of SoH 

estimation accuracy on the accuracy of the electric circuit model used. As it is a deep 

neural network model, it also requires a substantial amount of training data; consequently, 

training this model is time-intensive. Zhang et al. proposed in [185] battery SoH and SoC 

estimation based on long-short-term memory (LSTM) recurrent neural network (RNN) 
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combined with the particle filtering (PF) to smooth the SoH estimation result from RNN. 

LSTM - RNN is used to learn long-term non-linear relations between states of the battery 

and the measured battery current, voltage, terminal voltage difference and temperature. 

Particle filtering is employed to improve the SoC estimation accuracy of the developed 

model. The model developed in [185] showed improvement in the accuracy of SoH 

prediction compared to the models based on LSTM-RNN or RNN alone. As the previously 

reviewed model [182], it also belongs to the deep neural network group of models; thus, 

it also requires a substantial amount of data for training.   

Dai et al. [184] proposed a novel model of estimating SoH based on the Prior-

Knowledge Neural Network (PKNN) combined with the Markov Chain8 that is used to 

modify the PKNN estimation. This model belonged to the shallow neural network group 

and was trained on the features selected as the most important in SoH prediction, namely 

average voltage, change in voltage and dSOC/dV (rate of change of SoC with change in 

voltage).  The FFNN architecture was employed for this model. The prior knowledge was 

transferred into constraints, and feature constraints, which were added to the loss function 

of NN to optimise FFNN training. Finally, the Markov chain, which was established on 

the prediction error, was used to improve the SoH prediction effectiveness of the 

developed PKNN model. This approach significantly improved the effectiveness of SoH 

prediction compared to PKNN alone. Improvement of SoH estimates was in the range of 

15-30% [184]. This model requires fewer data for training compared with the models 

based on deep NN reviewed earlier but in turn, requires more knowledge about modelled 

systems to ensure proper feature selection.  

In summary, the SoH modelling method based on neural networks has the ability 

to learn from experience and examples and does not require the identification of the model 

parameters and coefficients. These models are simply established by training – estimating 

of weight vector of the NN based on available training data.  However, in the case of  

DNN, the development of those models requires a substantial amount of data for training 

                                                 
8 Markov Chain is defined in the Section 3.2 of this thesis. 
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and verification of the model operation [175]. The quality of data available has a 

significant impact on the model's accuracy. The uncertainty in noise and bias in training 

data, for example caused by sensors, and calibration errors, are important issues for DNN 

[24].  Moreover, the model based on DNN is characterised by the high computational cost 

and lack of ability to quantify uncertainty in the system.  Furthermore, the DNN 

framework is prone to overfitting and being stuck in local minima [177], meaning that the 

models learn a suboptimal representation of relationships, thus leading to developed 

models not reflecting reality. In the case of the battery models predicting SoH, this can 

mean that the trained model will not be able to predict the battery health of the actual 

device that the model was based on. 

The Deep Neural Network models are able to model non-linearity, but they still 

require a substantial amount of data for modelling. The modelling method employing 

Support Vector Regression (SVR)/ Support Vector Machine (SVM) can overcome this 

issue, as it requires fewer data samples when compared to deep NN [186]. This method is 

very good in handling small training datasets [175]. SVR is a non-parametric machine 

learning technique that uses regression analysis to recognise patterns of non-linear 

systems. The basic idea behind this method is to map data in input space, and using a  non-

linear transfer function, transform them into a higher dimensional feature space. After this 

step, the linear function can be used to fit the data in the feature space. More information 

about this method can be found in [187]. The accuracy of the SVR model depends on the 

data available in the testing region [188]. Nuhic et al. proposed in [168] the SVR model 

that estimates the SoH of Lithium-ion battery followed by the same approach to predict 

remaining useful life. In this method, a very important step is pre-processing of data to 

ensure the SVR converge. Also, the scaling of features is crucial to remove the potential 

dominance of some variables that can push the SVR to converge to an unsatisfactory result 

[168]. The drawback of this method is that it cannot include likelihood prediction, which 

is an important feature in battery health prediction for the BES. As the operational 

decisions for BES in the power network are based on model prediction, the system 
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network operator would prefer to base his/her decision about the operation of this device 

based on the results characterised by high confidence.   

In the [189], Zhao et al. implemented the feature vector selection (FVS)9 with SVR 

to cut down training data size by removing redundant data and selecting points that can 

represent the whole training set [189]. Due to the applied approach, the modelling 

complexity was diminished compared to standard SVR and the computational 

performance for model training was improved. The reduced complexity of this model 

results in better scalability. This approach allowed for improving model training and SoH 

prediction efficiency and RUL estimation accuracy. The SVR is not affected by the 

problem of local minima [177] compared to the ANN framework. It has a high 

generalization ability. This method is additionally particularly suitable when limited 

training data are available [190]. However, this model lacks uncertainty management in 

the SoH prognostics, which is important for Battery management systems. Neural network 

and SVM models both require extensive offline training and a high amount of data to 

perform it.   

The next group of data-driven models that are used in estimating the battery state 

of health constitutes the models based on the probabilistic approach. In those approaches, 

the different types of uncertainties are considered during the modelling, namely 

originating from the measurement, operational environment and the model itself. This 

type of model aims to capture the stochastic behaviour of parameters that influence the 

battery SoH, and it utilises probability distribution to model uncertainty in those 

parameters and their influence on the battery [175]. The models based on the Gaussian 

Process Regression (GPR) are an example of data-driven, probabilistic battery models 

considered in this work. Additionally, the stochastic models based on the Markov chain 

framework are mentioned here, regardless of the lack of their application in SoH 

prediction in the past. This choice is dictated by the fact that this framework is applied in 

                                                 
9 Is the pre-processing step when building a machine-learning model that aims to find the best possible set 

of features based on which then the model is trained. 



 

 

72 

 

this work to model the battery maloperation level that constitutes a proxy of the SoH of 

the battery. These models were included to show how Markov Chain-based methods have 

been used in the battery modelling field so far.  

Gaussian Process Regression has wide application in the battery prognostic 

analysis due to its flexibility, being nonparametric and providing a probabilistic output 

[175]. The GPR is a machine-learning method that employs the Bayesian approach for 

prediction [171]. The GPR is in some way similar to linear regression as in both regression 

methods, we have the explanatory “signal” and the “noise” signal (error term), and both 

methods try to find the relationship between the dependent variable and the explanatory 

(independent) variable (learn the mapping from inputs to outputs given a training data set 

comprising labelled data). The difference is that in the GPR, the explanatory variable is 

assumed to be a random variable that follows a particular distribution which eliminates 

the requirements for the application of parameters that need to be estimated in the case of 

linear regression, which makes the GPR model a non-parametric regression method [171]. 

Richardson et al. [172] proposed the multi-output GPR model for the state of health and 

RUL estimation based on capacity estimation as the measure of the battery SoH. The base 

for this model constituted the assumption that when we have multiple battery cells that 

are subject to a similar charge/discharge regime, we can expect a correlation in the 

capacity trends between the battery cells. The multi-output GPR model in this work [172] 

was implemented as having a single output with the additional outputs treated as the labels 

for the associated output.  The advantage of multi-output GPR is that this method allows 

capturing of similarities between battery cells. The disadvantage of the approach applied 

in this work is the high computational cost due to handling a large number of outputs 

[172]. He et al. [129] also proposed the application of the GPR for SoH prediction. In this 

work, instead of applying the GPR to the original SoH time-series data, the global 

deterioration trend and sudden capacity recovery components were decoupled from the 
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original data using the wavelet decomposition method10. The resulting decoupled signals 

were then used as input data to the GPR, subsequently leading to separate models fitted 

for each decoupled signal that predicts SoH. Both models were then combined to achieve 

SoH prediction [129]. The proposed method outperformed the standard GPR in the SoH 

estimation (Standard GPR does not use trend extraction) [129]. In summary, the GPR 

method is used in the battery health prognostic to predict the RUL and SoH of the 

modelled devices. It provides the probabilities for the prediction that is useful when 

deciding how BES will be operated.  Additionally, the GPR is capable of capturing 

nonlinearity, but unfortunately, the prediction is done with a high computational cost 

[187]. Moreover, the GPR does not scale well due to the non-parametric nature of GPR 

[191].  

The last group of probabilistic, data-driven battery models considered in this work 

are the stochastic models of battery discharging and charging processes based on discrete-

time Markov Chains. The first battery models based on the Markov chain were proposed 

by Chiasserini et al. [120][192] for primary batteries, which are out of the scope of this 

work, followed by the models proposed for secondary batteries in [173][174]. These 

models assumed a fully observable state space where the SoC was represented as 

a Markov Chain whose state transitions captured the charging and discharging process. 

Bucciarelli proposed in [173] a stochastic model based on the Markov Chain (MC) with 

N states for a rechargeable battery., Fig. 18 (a).  In this model, the transition is only 

allowed between adjacent states with two possible energy transfer values, ∆ and -∆. This 

makes this model not suitable for most of the storage applications in the power network 

where the load has not a constant value and changes in time. This model was extended in 

[174], Fig 18 (b), by incorporating the possibility for the energy transfer values to be 

within a finite set value instead of just two which makes this more realistic for modelling 

real batteries in use.  

                                                 
10 Wavelet analysis is the method of decomposition of a nonstationary time series data into time-frequency 

space. This method is capable of determining both the dominant mode of variability and their variation in 

time. [232] 
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Figure 18 Markov chain model of a rechargeable battery. N is the number of discrete states 

describing the battery state of charge, where one represents fully discharged, and N represents the 

fully charged state of the battery. The probability of transition between states in (b) is represented 

by p, with M indicating the transition between the most outer states. In (a), p represents the 

probability of increasing the amount of energy in the storage by amount ∆, and q represents the 

probability of decreasing energy in the battery by ∆. 

 

Unfortunately, the aforementioned two stochastic models proposed in [173][174] do not 

consider capacity fading during cycling life, which is very important for the battery in use 

as it impacts the availability of charge for the load and available space for storing that 

change. The MC-based battery models discussed in this section, due to their narrow focus, 

do not provide the overall characteristics of the battery; thus their application is limited 

[159]. In the case of models in [120][192], this narrow focus is mostly dictated by the 

application of the developed model, battery for pulsed discharge condition in [192], where 

key performance that needs to be considered by the model is the recovery effect in idle 

periods. For models in [173] and [174], the limited focus is dictated by the way the MC 

model is defined and used, which reduces the possibility of incorporating more battery 

characteristics at once in device modelling. In both models, [173] and [174], the SoC is 
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represented by MC with the transitions allowed only to adjacent states in [173], extended 

in [174]  to allow transition also to other states.  

In summary, the advantage of data-driven models is that they require little or no 

knowledge of the complex electrochemical mechanisms taking place in the battery cell 

[177], and they have good performance for nonlinear problems [193]. The drawback of 

those methods is that they require a significant amount of curated exemplar data from 

extensive and often complex laboratory tests, which is time-consuming to obtain 

[177][186] and often requires high fidelity monitoring. The testing of long-term ageing 

effects in real operating conditions may span 6-11 years, depending on the battery 

technology. It can be accelerated to 1-2 years under laboratory conditions [194]; however, 

with the current development of high-performance batteries [195][196][197] 

characterised by an extended lifetime, obtaining a sufficient amount of ageing data 

becomes a more resource-intensive task. Another drawback of these models is that their 

performance heavily depends on the quality and quantity of data available for modelling 

and applying the modelling technique [193]. Moreover, it is difficult to reproduce realistic 

operating regimes in laboratory settings, thus, the resulting model can be more error-prone 

in online prediction [177]. 

 Challenges in Battery Health Monitoring and Proposed 

Solution 

The monitoring of battery health is a crucial aspect of battery asset management to 

ensure its safe, reliable operation. There are multiple indicators of battery health that 

currently are used to assess and describe battery health, with capacity and rise of internal 

resistance used the most often. The capacity is subject to ageing processes and degrades 

over time. Similarly, the increase in battery internal resistance changes over time and 

results from plating the chemical compounds, different for different battery technology, 

on the battery plates [11][198].  

The other less frequently used measures of battery health are the following:  
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 State of health (describing the state of the battery compared to the state of 

a brand-new device) [13],  

 Available power (proportionally related to capacity fading, as capacity 

decreases in time, the available power for usage also drops) [199], 

 State of function (express a battery performance during operation in a 

particular application (ex. peak shaving), how this device meets real power 

demand – in other words, it describes to which extent the battery is capable of 

providing the function it was intended for) [100].   

Health indicators (HI) can be either measured/calculated based on direct (online) 

observation of the voltage, current, and temperature of the battery or estimated with an 

application of the battery health model. With the rising number of BES incorporated 

within the power system, direct measurements of the HI introduces the need for the 

installation of numerous sensor to measure indicative variables, which can introduce a 

high cost of telemetry installation and increase the level of maintenance required to ensure 

proper operation of the system with numerous sensors.  It also introduces a substantial 

amount of data to be gathered and processed. With the BES aggregation, there can be 

problems with the synchronisation of such a substantial amount of measurements. 

Additionally, the missed reading by sensors can constitute a problem of the lack of 

information about the battery's health at a particular time. Moreover, some HI, such as the 

internal resistance of the battery, is very difficult to be measured. For example, to measure 

the capacity, the battery needs to be taken out of the normal duties to perform a reference 

cycle to enable credible measurements to be taken. Estimation of the battery health with 

the application of the developed model is also not free from its challenges and limitations. 

For this option, there are two major problems. The first one is related to the limited 

availability of suitable data from laboratory experiments or lifetime battery usage data 

required for modelling purposes. As the modelling is based mostly on the measured 

critical battery variables, such as voltage, internal battery resistance, current, battery and 

ambient temperature, operating time and others, a substantial amount of information needs 

to be gathered to allow the model to be defined and implemented. The second problem is 
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related to the way most of the models are defined with respect to the number of inputs 

required to enable health estimation. Most of the models often require multiple input 

variables for predicting battery health, such as current, voltage, temperature and others, 

depending on how the model was structured, introducing the need for the installation of 

additional telemetry for gathering the required input data for the model to allow its 

application. The potential lack of data synchronisation or missed reading can affect battery 

model operation and the ability to accurately estimate battery health based on available 

measurements. With the BES aggregation, the application of the models estimating health 

indicators that require multiple input variables for estimation introduces the need for the 

installation of numerous sensors to gather the required information. This in turn introduces 

the significant cost of necessary telemetry installation and introduces the significant 

volume of data to be gathered and processed.  

As the current battery health monitoring solutions are not ideal, they often add extra 

telemetry installation costs, require impractical volumes of data, or are burdened with high 

computational costs; there is a need for a new health metric for batteries that will:  

 Minimise input data requirements,  

 Eliminate the necessity of installation of extensive telemetry and associated with 

it maintenance of the system with additional sensors installed, 

 Reduce/minimise the amount of data to be processed that are introduced due to  

the aggregation of battery energy storage in the power system,  

 Be able to provide information if the battery is operated in a way that can prolong 

its life based only on the limited information available. 

This work aims to provide a solution to the battery health prognostics problem by 

proposing alternative health indicator in terms of maloperation level. This work proposes 

capturing cumulative maloperation as a proxy for cell health, motivated by the strong 

influence misuse has on the internal state of the battery. The necessity for extensive 

laboratory data required for modelling is eliminated when applying the proposed 

approach. The proposed model minimizes requirements for training data by simply 
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reusing available generation and demand data in conjunction with battery operating 

preferences, summarised in Table 4, to generate training data. Additionally, the 

requirement for the availability of the measurements of indicative variables, needed as 

input for the model to allow its operation, is minimized by the proposed approach. The 

estimation of the proposed HI is simply based only on the operating regime imposed on 

the device (e.g. actions set by a BES controller), which is usually available (battery 

schedule is planned in advance in the power system to support energy balance in the 

system). 

 Research Questions   

As discussed in the preceding section, many challenges in battery health monitoring 

need to be still addressed to ensure the successful expansion of the battery energy storage 

within the power network. To support the process of integration of BES with the power 

network following questions will be addressed in this work:  

 Can we propose an alternative battery health metric to the currently used metrics? 

Can we measure battery health in terms of device maloperation level, and this HI 

will be comparable with commonly used indicators, for example, capacity fading? 

 Can we reduce the data needs for suitable datasets for battery health modelling? 

 Is it possible in the battery health modelling to use only knowledge about battery 

operating preferences and reused demand and the electrical generation data to train 

a model that will be able to assess the health of this device? This approach could 

potentially eliminate the necessity of using extensive laboratory data or data from 

long-term battery operations in battery health modelling.  

 Can we minimize the requirement for increasing telemetry installation to measure 

indicative variables needed to enable the application of the models estimating 

battery health based on multiple inputs?  Can we imply the battery's state of health 

based simply on information about implemented battery charging/discharging 

schedule? 
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 Does the model trained on a limited number of data could be still representative of 

the general case?  

 Can the Hidden Markov Model framework be suitable for battery health modelling? 

This work aims to provide answers to the above questions in the consecutive chapters.  

 Proposed Model 

The graphical summary of the reviewed battery model types carried out in Section 3.1 is 

shown in Fig.19. This summary focuses on the knowledge requirement of the model, its 

computational effort, data requirements and the model complexity.  

 

Figure 19 The graphical summary of the model types used in the prediction of battery state of 

health. 

 

The model proposed in this work belongs to the data-driven, machine-learning models 

group and is a subset of the family of Hidden Markov models. It is a state space model 

with hidden discrete states and addresses the unobservability of the state space, in this 

case, the internal battery chemical reactions and the state of health. As was shown in the 
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battery technology review carried out in the preceding chapter, the chemical processes 

that take place inside this device are very complex and cannot be observed directly, as it 

is also in the case of the state of health of this device. The proposed model addresses this 

issue by application of Hidden Markov framework in the modelling. Additionally, the 

application of the modelling approach proposed in this work, namely reusing available 

demand and generation data in conjunction with battery operational preferences to prepare 

data for modelling, eliminates the need for intensive laboratory data required for testing 

and training. Moreover, the proposed model allows the prediction of the battery health 

based only on limited knowledge of the system, namely based only on information about 

the battery schedule, eliminating the need for installation of additional telemetry in the 

system that will gather all required variables required for other models to be applied. 

3.4.1  Proposed Model Versus Existing Models 

In contrast with the electrochemical models that require detailed knowledge of chemical 

processes and reactions taking place in the battery cell, the proposed model uses only an 

understanding of the battery operational preferences governed by battery chemistry, 

summarized in Table 4. It is also significantly faster in the estimation of battery health 

than physics-based models, for which running time can often be measured in days. The 

faster running time is important for the model's applicability. The introduced model is also 

characterised by significantly lower complexity. Compared to 50 or more battery 

parameters that need to be set to enable physical battery models to be implemented, the 

proposed model requires only three low dimensional probability matrices to be defined 

based on available data, namely state transition probability, emission probability and 

initial state distribution.  

The proposed model also has advantages over reviewed semi-empirical battery models. 

In comparison to the Vrudhula diffusion model and the Kinetic battery model, analytical 

models, it can capture potential battery degradation measured in terms of novel 

maloperation level, which was shown in the following chapter to be strongly correlated 

with capacity fading of the battery due to ageing processes. In contrast to most of the 
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electrical circuit models, the proposed model is able to catch the battery degradation, and 

additionally, it considers the influence of uncertainty in the load profile during dynamic 

battery operation. The lack of this ability in electrical circuit models constitutes a limiting 

factor for applications of those types of models in real applications. From the system 

operator's point of view, it is important to plan BES operation based on the prediction 

characterised by high confidence. Other semi-empirical models that were reviewed in 

Section 3.1 are models employing adaptive approaches to predict battery health, such as 

Kalman Filter, Extended Kalman filter and Particle Filtering. For PF, like in the case of 

KF and EKF, two models are required for SoH estimation. The first one needs to describe 

the changes in the states that take part over time, usually in the form of an electrical circuit 

battery model, and a second model that relates the measurements to the state. On the 

contrary, the proposed model does not require a separate model to describe a change of 

states as it is described by the state transition probability matrix, which is learned during 

the model training.  Nevertheless, the accuracy of KF and PF-based models rely to a great 

extent on the quality of the model that was used to model the electrochemical processes 

(how accurate the model was, how well trained it was), and there is no such dependency 

in the proposed approach.  

Finally, some of the limitations of data-driven models were addressed by the battery 

modelling approach proposed in this work, namely the limited availability of extensive 

suitable battery datasets needed for modelling and the requirement of installation of 

additional telemetry to allow application of data-driven models often characterised by 

multiple inputs to allow health estimation. The models employing deep neural networks 

in battery health estimation that were reviewed in the preceding section require a 

substantial number of training and testing data, meaning there is a need for extensive 

laboratory test data or data from long-time battery operation to allow proper modelling. 

The quality of available data can have an important impact on the model training. The 

model proposed in this work overcomes this issue by re-using available generation and 

demand data in conjunction with knowledge of battery operational preferences 

summarised in Section 2.3 to generate data for battery health modelling. The DNN-based 
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models are also characterised by the high computational cost, which is reduced by the 

proposed approach due to reducing amount of data required to be processed during the 

training. Contrary to DNN models that require multiple input variables to allow the 

application of the model in the battery health estimation, the proposed approach estimates 

the battery health only using the information about the battery charge schedule as the input 

to the model. This in turn, decreases the requirements for the installation of additional 

telemetry to measure multiple variables when applying the developed battery model.  

Another data-driven model group that was reviewed in this work are models based on  

SVM. These models require fewer data samples when compared to deep NN but still 

substantially more than the model proposed in this work.  The SVM modelling also does 

not include likelihood estimation, which is an important feature in battery health 

estimation for the BES, and that is addressed by the proposed modelling approach 

presented in this work. An additional drawback of models based on SVM is that they 

require pre-processing of data to ensure the SVR converge, and the scaling of features is 

also required to remove the potential dominance of some variables that can push the SVR 

to converge to unsatisfactory results.  In contrast, the proposed model does not require 

pre-processing in the modelling. 

Another group of data-driven models reviewed in this chapter constituted the probabilistic 

battery model based on Gaussian Process Regression. Both reviewed models in this work 

provided the probabilities for the prediction that is useful when deciding how BES will be 

operated, and both are capable of capturing nonlinearity. The model presented in [172], 

due to handling a large number of outputs, is characterised by a high computational cost. 

The proposed model in this work has only single input and output, making it less 

computationally expensive than the model presented in  [172]. The model presented in 

[129] as first decouples the deterioration trend and sudden capacity recovery from the 

original data and then fits the separate models for each decoupled signal, which make the 

structure of the model more complex. In contrast, the proposed model has a much simpler 
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structure and does not require data pre-processing to enable modelling as it is in the case 

of the abovementioned model. 

The last group of the probabilistic data-driven models considered in this work are models 

based on Markov Chain. The model introduced in this work belongs to the Markov Models 

family and is based on the Hidden Markov Model (HMM), which stochastically models 

the battery limitations imposed by its chemistry as a combination of present and previous 

sequential charging actions, and articulates the preferred operating regime as a measure 

of health consequence. In contrast to models based on the Markov Chain introduced in 

earlier works that assume full state-space observability, it addresses the issue of the 

partially observable state-space. The states that the battery can be in cannot be observed 

directly as they are hidden. This is a more realistic assumption in battery modelling due 

to the inability to observe the internal battery state and chemical processes taking place 

inside the cell. Additionally, the Markov Chain-based models were not used in the battery 

health modelling, and the developed model filled this niche.  

3.4.2   Model Requirements 

All of the battery models in the battery health modelling field today have demonstrated 

that they require either a great amount of knowledge and high computational effort, as it 

is in the case of physics-based models or a large amount of data that need to be captured 

in the case of data-driven models. However, from the practical perspective, there is a 

necessity for a model that does not require these levels of detail. From the asset 

management perspective, what is required is a broad general model, which will capture 

the health index of battery storage assets allowing more informed scheduling of this device 

with regard to preserving battery operational integrity. This model would need to run on 

the minimum data, repurposing existing data for the purpose of formulating those health 

indexes, and need to have the minimum computational expense. With scalability in mind, 

the approach applied in this work requires no telemetry other than would be required to 

meter the use of the battery. Unlike other data-driven methods, the model developed does 

not require extensive or invasively captured laboratory battery performance data; training 
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data is instead generated based on simplified knowledge of operating regime preference 

dictated by the battery chemistry and reused available PV generation and electrical 

demand data. Additionally, only a single input is required for the prediction of the 

maloperation level, which approximates the SoH of BES, compared to multiple inputs 

required in other data-driven models. For example, three inputs are required in the model 

based on a Bayesian network proposed in [200], which are temperature, discharge current 

and end-of-discharge voltage. In the model proposed in [167] that is based on the 

probabilistic neural network, the charging time, the instantaneous voltage drop at the start 

of discharge and the open-circuit voltage of a fully discharged battery are required to 

provide battery health estimation. It can constitute a disadvantage of the model due to the 

requirement of measuring needed variables by multiple sensors or systems, which have to 

be available simultaneously and synchronised. Additionally, requirements of measuring 

multiple variables can introduce the need to install additional telemetry when not already 

installed in the system incurring additional costs. The resulting model developed here 

makes predictions simply based only on the operating regime imposed on the device (e.g. 

actions set by a BES controller), thus minimising requirements for extensive monitoring 

of battery parameters across an asset fleet. This is achieved thanks to the ability of 

IOHMM to encapsulate all required knowledge of the time-dependent chemical processes 

taking place inside the battery during operation in the hidden states and describe it in the 

form of a state probability matrix, thus eliminating requirements of measuring the battery 

performance that may indicate the condition of the battery. 

 

 A Short Introduction to the Family of Markov Models 

Before the proposed model is defined in detail, some knowledge about Markov models 

will be introduced in this section to enable a better understanding of subsequent parts of 

this thesis.  

Markov Models are stochastic models involving a random transition from state to 

state. The probability of going from one state to another one, in these models, depends 
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only on the current state, meaning the present state of the system is independent of the 

past (Markov property) [200] and is described by state transition probabilities. Markov 

Models can be either continuous-time or discrete-time. In this work, only discrete-time 

models will be considered.  Classification of the Markov Models is based on the autonomy 

and observability of the system. Considering the observability of the state space, the 

Markov models can be divided into two groups: 

1. Models with a fully observable state space where all information is available in 

the model at any state. Markov Chain and Markov Decision Process (MDP) belong 

to this group. 

2. Models with not directly observable state space. The information about the state is 

not observable directly in these models but through observing the emission 

produced by the hidden state. The Hidden Markov Model and Partially Observable 

Markov Decision Process (POMDP) belong to this group.  

Taking into consideration the autonomy of the system, Markov models can be divided into 

two groups: 

1. Autonomous models where the system cannot be modified by the action of the 

agent11. There is no control over state transition. Markov Chain, and Hidden 

Markov Model are the members of this group.  

2. The controlled models where the agent has control by actions. In this group, we 

have Markov Decision Process and Partially Observed Markov Decision Process. 

The taxonomy of Markov Models is summarized in Table 12. The autonomous Markov 

models with full and partial observability of the states are the subject of this section and 

will be discussed here. The controlled Markov models are out of the scope of this work 

and will not be further considered. First, the MC will be introduced, followed by the 

                                                 
11 Agent (decision-maker) refers to the system that is responsible for making decision and performing 

actions based on the state of the system and the reward generated due to the actions performed by agent.  
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definition of the HMM. At the end of this section the IOHMM, an extension to the HMM, 

will be discussed in more detail as this is the main subject of this chapter. 

Table 12 Taxonomy of Markov models [200]. 

 Observability of states 

Full Partial 

A
u

to
n

o
m

y
 

 

Autonomous 

 

Markov Chain 

(MC) 

 

Hidden Markov Model 

(HMM) 

 

Controlled 

 

Markov Decision 

Process (MDP) 

 

Partially Observation Markov Decision 

Process (POMDP) 

  

A graphical representation of those models, with the required elements to fully define 

them, is presented in Fig. 20.   
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Figure 20 Graphical representation of Autonomous Markov models showing the required elements to fully define the model for (a) Markov 

Chain, (b) Hidden Markov Model and (c) Input-Output Hidden Markov Model
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3.5.1 Markov Chain 

Markov Chain, Fig 20(a), is an autonomous stochastic process, a type of Markov Process 

that has fully observed discrete state space satisfying the Markov property (7) (prediction 

of the future state can be made based only on the present state and this prediction is as 

good as it could be when based on the full history of the process).  

 𝑃(𝑆𝑛 = 𝑠𝑛|𝑆0 = 𝑠0, 𝑆1 = 𝑠1, … , 𝑆𝑛−1 = 𝑠𝑛−1) = 𝑃(𝑆𝑛 = 𝑠𝑛|𝑆𝑛−1 = 𝑠𝑛−1)                       (7) 

MC has applications as a stochastic model of many real-world processes. A full definition 

of MC requires: 

-  a finite set of N12 sates, sate space13 𝑆 = {𝑠1, 𝑠2, 𝑠3 … 𝑠𝑁},  

- transition probability matrix 𝐴 = 𝑎𝑖𝑗 where 𝑎𝑖𝑗 is the probability of going from 

state i to state j, 𝑎𝑖𝑗 = 𝑃𝑟𝑜𝑏[𝑆𝑛+1 = 𝑗 ∣ 𝑆𝑛 = 𝑖] ,  

- the initial state distribution 𝜋= 𝜋𝑖 , where the 𝜋𝑖 is the probability that the system 

starts in a state 𝑠𝑖. 

As the transition matrix is stochastic, all its elements are non-negative, and all rows sum 

to unity, ∑ 𝑎𝑖𝑗𝑗 = 1 [200]. 

3.5.2 Hidden Markov Model 

The Hidden Markov Model, Fig 20(b), also belongs to the autonomous Markov 

models like MC, but in contrast to MC, it has partial observability of state space, meaning 

that the states are not observed directly but implied through the observables emitted by 

the hidden states. The HMM assumption is that the underlying process is the MC with 

states hidden from the observer.  In other words, we can define the HMM as a doubly 

stochastic process in which the underlying dynamic process cannot be observed directly; 

                                                 
12 N is positive integer. 
13 Depending on how the problem is defined, the states can be either natural number, or for example 

simple descriptions such as cloudy, sunny, raining. 
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instead, it is observed through another stochastic process as a function of the first one. The 

full definition of the HMM requires like in the case of MC the following: 

-  the finite set of N states, state space 𝑆 = {𝑠1, 𝑠2, 𝑠3 … 𝑠𝑁}, but this time not 

observed directly,  

- transition probability matrix 𝐴 = 𝑎𝑖𝑗 where 𝑎𝑖𝑗 is the probability of going from 

state i to state j, 𝑎𝑖𝑗 = 𝑃𝑟𝑜𝑏[𝑆𝑛+1 = 𝑗 ∣ 𝑆𝑛 = 𝑖]  

- the initial state distribution 𝜋= 𝜋𝑖 , where the 𝜋𝑖 is the probability that the system 

starts in the state 𝑠𝑖. 

The additional components required to fully define HMM constitute: 

- a finite set of M14 possible observations, Ω = {𝑜1, 𝑜2, … , 𝑜𝑀}   

- observation probability distribution B= 𝑏𝑗(𝑜𝑘) where 𝑏𝑗(𝑜𝑘)  is the probability of 

emitting observable 𝑜𝑘 given the system is in state j,  𝑏𝑗(𝑜𝑘)  = 𝑃𝑟𝑜𝑏[𝑂𝑛 = 𝑜𝑘 ∣

𝑆𝑛 = 𝑗], Fig. 20(b). 

Matrices A and B are stochastic matrices, and they have to satisfy the following 

conditions: 

∑ aij
N
j=1 = 1, ∀ for each i = 1, … , N                                                (8) 

∑ bj(k) N
k=1 = 1, ∀ for each j = 1, … , N                                           (9) 

For HMM, each probability transition in the state transition matrix and probability of 

emission in the observation emission matrix is time-independent, meaning they do not 

change the structure as the system evolves in time.    

HMM can be used to solve three different types of problems, namely: 

-  evaluation problem (pattern recognition problem) 

                                                 
14 M and k are positive integers. 

https://en.wikipedia.org/wiki/Turned_a
https://en.wikipedia.org/wiki/Turned_a
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Here we want to find the probability of an observed sequence 𝑂 = {𝑂1, … 𝑂𝑇}  

given the HMM model Θ = (𝐴, 𝐵, 𝜋), meaning we want to find  𝑃(𝑂|Θ).  

- decoding problem (also originated from the area of recognition problem) 

Here the goal is to find the sequence of hidden states that most probably generates 

an observed sequence 𝑂 = {𝑂1, … 𝑂𝑇}.   

- the learning problem 

Here the aim is to determine the HMM model Θ = (𝐴, 𝐵, 𝜋) given a training 

sequence of observations 𝑂 = {𝑂1, … 𝑂𝑇}. This means finding such Θ that 

𝑃(𝑂|Θ) is maximized.  

3.5.3 Input-Output Hidden Markov Model 

The last type of autonomous Markov model (model that is not controlled by the action 

of an “agent” and all information is available from the model at any state), and the main 

subject of this chapter, is the input-output Hidden Markov Model, Fig. 20(c). As it was 

mentioned, one of the assumptions of HMM is that each probability transition in the state 

transition matrix and probability of emission in the observation emission matrix is time-

independent, meaning they do not change the structure as the system evolves in time. In 

practice, the time independence assumption is unrealistic for real-world processes.  

IOHMM is the extension of HMM to the domain of supervised learning for sequential 

data that allows the dependency on time to be incorporated into the model. Similarly to 

HMM, IOHMM is a doubly stochastic process in which the underlying dynamic process, 

state process, is hidden and thus cannot be observed directly. It is observed through 

another stochastic process, an observation process that produces the sequence of 

observations.  Like in the case of MC and HMM, the Markov Property also holds for this 

model.  Contrary to MC and HMM, the latent (hidden) variables15 and output variables of 

the IOHMM are influenced by the input variable, often called the control signal, resulting 

in a non-homogeneous (time-dependent) Markov chain [201]. In consequence, the 

                                                 
15 Latent variables are the hidden states of the model/system that cannot be observed directly.  
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dynamics of the system defined by the transition probability in IOHMM change with time 

according to the input signal, meaning state transition probabilities and emission 

probability by state differ depending on the input signal, as it is illustrated in Fig. 20. The 

difference between HMM and IOHMM is that while the HMM aims to define the 

distribution of output sequence, 𝑃(𝑦1, … , 𝑦𝑇), the IOHMM aims to define the conditional 

distribution of the output sequence given the input sequence, 𝑃(𝑦1, … , 𝑦𝑇|𝑢1, … , 𝑢𝑇). The 

main difference from the HMM is the capability of the IOHMM to learn an output 

sequence instead of just the distribution of the output sequence [202]. 

In summary, the IOHMM is used for supervised learning of time series data with 

exogenous inputs and defines the conditional distribution 𝑃(𝑦1, … , 𝑦𝑇|𝑢1, … , 𝑢𝑇) of an 

output sequence 𝑦1
𝑇 =  𝑦1, 𝑦2, … , 𝑦𝑇 given an input sequence 𝑢1

𝑇 =  𝑢1, 𝑢2, … , 𝑢𝑇 and is 

defined as a tuple: 

                          𝐻 = 〈𝑆, Ω, U, A, B, π〉                                                         (10) 

Where: 

S= {s1, s2,…,sN} is a set of N states 

Ω = {o1, o2 ,…, oM} is the observation sequence with M observables  

U = {u1, u2,…, uK} is the input signal sequence with K input signals  

A={aijk} is the transition probability matrix where aijk is the probability of transition from 

state i to j  at time t, given input signal ut=k, aijk =P(st+1 = j|st = i, ut=k) (conditional 

probability of ending in state j given the Markov process was in the previous step in state 

i and the input signal is k). 

B={blj(k)} is the observation distribution probability, also called emission probabilities of 

an observation ot = k being generated by state st=j given input ut=l, bli(k)=P(ot=k|st = j, 

ut=l) (conditional probability of observing symbol k given the Markov process is in state 

j and the input signal is l). 
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 π={π i} is the initial state distribution where πi is the probability that the system starts in 

state si. 

Matrices A and B are stochastic matrices, so they have to satisfy the following conditions: 

∑ akij
N
j=1 = 1, ∀ for each k = 1, … , M and i = 1, … , N              (11) 

∑ blj(k) N
k=1 = 1, ∀ for each l = 1, … , M and j = 1, … , N           (12) 

Note that index t is not required in the A and B matrices. The transition and emission 

probabilities vary with time as a function of an input signal. Meaning that A and B are 

defined for the input signal (different probabilities matrixes correspond to each input 

signal). The dependency on time is through the input signal occurring at time t. 

IOHMM have previously been used in a variety of applications ranging from sequence 

processing in grammatical inference problems [26], synthesis of facial animation from 

audio [27], hand gesture recognition [28], modelling of financial returns series [29], 

modelling of forecasting of electricity prices [30] and fault diagnosis and prognosis of 

diesel generators [31].  

3.5.4 Issues When Learning of HMM Parameters  

There are two major problems when attempting to learn the HMM and IOHMM 

models. Prior to the model learning, both the number of hidden states (the size of the 

model) needs to be decided, and the transition, emission probabilities and initial state 

distribution need to be initialized. The wrong choice of initial parameters may lead to the 

risk of falling into a local optimum and a low convergence speed.  An incorrectly chosen 

number of hidden states can lead to an inaccurate model when the number of states is too 

low and increases the complexity of the model, thus increasing computational time 

(affecting generalisation capability) when too many states are selected. There are three 

approaches often used that can help to overcome issues related to requirements of 

probabilities initialization prior to the learning of the model, namely: 

https://en.wikipedia.org/wiki/Turned_a
https://en.wikipedia.org/wiki/Turned_a
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1. The parameters can be initialized by using a sample of fully labelled data (The 

transition and emission probability can be calculated based on the fully labelled 

data and then used as initial parameters). 

2. The Markov dependencies can be initially ignored, and estimation of the 

parameters can be performed by using the standard mixture model estimation 

method such as EM (estimation maximization algorithm) or K-means.  

3. The parameters can be randomly initialized.  Using multiple restarts of the model 

with different randomly initialized parameters, the parameters that give the best 

solution can be found and then applied in the modelling. 

More information about those three approaches can be found in [203]. Another problem 

in IOHMM is choosing the right model size and the number of hidden states. The state-

of-art approach to tackle this problem is multiple runs with a changing number of states.  

3.5.5 Example of Input-Output Hidden Markov Model  

For a better understanding of the Hidden Markov Model framework, the simple 

example of IOHMM will be described here.  In our bodies, we have numerous different 

hormones that circulate in our bloodstream and regulate different body functions. Let's 

take as an example a hormone called leptin. Leptin is the hormone regulating our appetite. 

In this example, only the influence of the food on this hormone level will be considered 

for simplicity and the influence of the body fat and interaction with other hormones, such 

as oestrogen, on its level is excluded. Let's define two states that relate to the level of 

leptin in our blood, namely high leptin level and low leptin level. These comprise the finite 

state space of the example model.  

S = {low leptin level, high leptin level} 

Without taking a blood test, we cannot directly observe the leptin level in the blood; this 

information is hidden. We can imply what level of leptin is in our body by observing our 

feelings, namely if we feel the sensation of satiety (feel full) or if we feel hungry. These 

are our observations. We define a finite set of possible observations as follows. 
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Ω = {feel hungry, feel full} 

We can influence the leptin level by simply eating the food, and this constitutes our input. 

We define a finite set of possible inputs, namely: had a meal and did not have a meal. 

U = {had a meal, did not have a meal} 

It should be noted that normally with a high level of leptin, we feel full and do not have 

an appetite for food, and when the leptin level drops, we feel hungry. In some people, the 

leptin resistance condition develops and then, as a result, this mechanism is disturbed. For 

this reason, in the analysed example, when one has a high leptin level in the blood, one 

still can feel hungry, even should feel full in such a case. Other elements required to define 

the IOHMM for this case are the state transition probability matrix A and the observation 

distribution probability B. In the IOHMM, both A and B depend on the input signal. As 

this example has defined two input signals, there will be two sets of probability matrices, 

and they will differ for each input signal, as it was shown in Fig.21. 

As can be seen in Fig. 21, the probability of transition from state to state depends on the 

input signal, if we had or did not have the meal. In addition, the probability of observation 

generated by the state depends on the input signal.  

The remaining element for the full IOHMM definition is the initial state distribution. For 

this example, the initial state distribution is defined as follows; there is a 0.56 probability 

that the system starts in the low leptin level state and 0.44 that it will start in the high leptin 

state. 

 

Note that the probabilities used in this example do not reflect real cases and are given here 

only for illustrating purposes. 
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Figure 21 Graphical representation of elements defining the IOHMM for leptin level example 

showing state transition probability matrix A and the observation distribution probability 

B for the input: (a) had a meal and (b) did not have a meal. 
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CHAPTER 4 

This chapter and two previous chapters constitute an extended version of a journal 

paper published in IEEE Access Journal in 2021 by Joanna Sobon and Bruce Stephen, 

titled: “Model-Free Non-Invasive Health Assessment for Battery Energy Storage Assets” 

[32]. 

4. Battery Maloperation Model Development and Validation 

The growing portfolio of battery energy storage in today’s power network entails the 

need for a robust method of measuring and/or predicting the health of this device, as it is 

vital for safe battery operation and the safe operation of the energy network comprising 

this device. Unfortunately, the models and methods of predicting battery health currently 

developed require, as was discussed in the preceding chapter, extensive telemetry to be 

installed, introduce an additional volume of data that has to be processed - this can 

constitute a limiting factor for the introduction of this device into the system. In this work, 

an alternative way of measuring the battery state of health was proposed that addresses 

those issues. This chapter covers in detail the development of the proposed maloperation 

model, followed by testing and validation of its operation. A case study of a community 

low voltage distribution feeder with photovoltaic (PV) generation was also covered in this 

section.  

 Model Development Procedure and Data Preparation for the 

Modelling Stage  

The availability of battery operational data that are suitable for modelling is limited 

due to the fact that measuring the parameters of this device in long-term operation is costly 

and often difficult, for example: 
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-  accurate measurement of the changes in the internal resistance of the battery 

during operation is often impossible without introducing additional disturbances 

to the battery’s normal operation [100][204] 

- production of full lifetime operational data takes a long time (some batteries like 

VRFB has cycle life as long as 12000 cycles [45]).  

Moreover, this type of data is heavily operating regime and system dependent. The way 

the battery is operated has a key impact on battery property degradation. This work aimed 

to exclude system-dependent impact (e.g. charging regime dictated by application) on the 

performance deterioration of the battery so that the performance deterioration only due to 

misuse dictated by battery preferences could be caught by the developed model. The 

application of the knowledge of battery operating preferences dictated strictly by battery 

technology, reviewed in Chapter 2, in conjunction with re-used demand and generation 

data for generation of data required for model training and testing, namely 

maloperation/health indexes, helped to overcome the limitation of the availability of 

suitable data sets for battery health modelling.  

All model development stages will be briefly introduced in this section, with an 

in-depth description covered of each stage in the following sections of this chapter. Only 

the generation of data required for model development is discussed here in more detail. 

The flow chart showing the procedure of modelling stages starting from data generation 

(data preparation stage), training of the model (model training stage) and ending with 

model testing (testing stage), including the flow of the information between stages, is 

shown in Fig. 22. In the first step of the data preparation stage, Fig. 22, the random battery 

charge/discharge schedule was generated based on the available renewable generation 

resources, with volatile characteristics (PV generation), and uncertain demand. At this 

point, the battery itself was not considered, meaning the technical constraints of the device 

were not included in schedule production, resulting in the battery schedule being 

unbounded from the technical limitations of this device and its function in the system 

(such as for example peak shaving), and only dictated by the availability of resources and 
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energy demand. Explaining further, the charge action was chosen when there was a 

surplus of renewable energy generated in the system in relation to the energy demand, so 

potentially, this energy could be accommodated in the battery when present in the system.   

 

 

Figure 22 Flow chart of model development procedure with the flow of information in the system. 

The blue arrows indicate the external inputs required, black arrows indicate the internal flow of 

information and data. (For all battery types except lithium-ion battery in the test stage, only out-

of-sample test I was performed due to unavailability of suitable test data).    

 

+1 

 4 

Battery is not considered at 

this point  

Battery is back in the system 

with its technical limitations 
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The discharging action was chosen when there was deficit of renewable energy generated 

in relation to the energy demand. There was no limitation on how much energy the storage 

could accommodate and how much energy it could provide, as its presence in the system 

was not considered at this stage. Data used to generate data for modelling purposes has a 

30-minute resolution and comprises data of electrical demand and photovoltaic generation 

measured at a community low voltage (LV) feeder (data come from the EU FP7 ORIGIN 

project). Available data covered the period from 3rd May to 5th July. Only 63 days of data 

were used in this work (49 for training and 14 for testing) to investigate if the low number 

of data for training and testing can result in a good-performing model characterised by 

generalisation ability when applying the proposed modelling approach combined with the 

Hidden Markov framework. More information about data for modelling and testing will 

be discussed further in Section 4.5.  The example of three days of generation and demand 

data with the resulting charge schedule is shown in Fig. 23. 

In the second step of the data preparation stage, the battery maloperation/health indexes 

due to the applied random charge/discharge schedule were generated. In this step, the 

battery was considered back in the system with its technical limitations. The maloperation 

indexes were produced by applying the random schedule generated in the first stage of 

data preparation to the battery energy storage in conjunction with the lookup tables, Tables 

5 – 11, covering rules for battery dictated by battery operational preferences dependent on 

battery chemistry.  The technical description of BES used in the considered case was 

discussed in Section 4.5. The battery included back in the system did not serve any 

particular functions, such as peak shaving, apart from accommodating the energy that was 

set to be stored or releasing the energy that was set to be removed from the storage 

according to the random charge prepared in the first stage of the data preparation. This 

step aimed to produce maloperation/health index data that caught the potential level of 

misuse (maloperation) of the battery energy storage when a random charged/discharged 

schedule was applied to the device characterised by its technical limitations. 
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As the system requirements and limitations were not applied when generating a schedule, 

the resulting maloperation indexes generated with battery in the system reflected only the 

misuse level due to violation of preference battery dictated by device chemistry. 

 

Figure 23 Three days of time series of demand, PV generation with the resulting discrete schedule 

for the BES based on the forecast of demand and generation under criteria of maximization of 

self-supply (storing excess generated energy and using it to meet demand).  

 

After data was generated, it was split into training and testing sets. As was mentioned 

previously in this section, only 49 days were used to train the model, and then the model 

was tested on the remaining 14 days. The number of data applied in this work was chosen 

purposefully low to test one of the thesis questions, namely if the battery health model 

trained on the limited number of data, using the proposed in this work modelling approach, 
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can be characterised by the ability to generalise.  In Section 4.2, the model features, 

structure and how it was defined was described in detail. 

The next stage in the model development (model training stage in Fig. 22) includes the 

learning of the IOHMM model based on the generated training data using an algorithm 

similar to the Baum-Welch applied for the learning of HMM parameters [205], discussed 

in detail in Section 4.3. After model training, in the testing stage (grey dashed rectangle 

in Fig. 22), the Viterbi algorithm for IOHMM was implemented for the purpose of 

predicting the maloperation indexes due to the applied schedule of the BES, discussed in 

detail in Section 4.4. The model selection is discussed in Section 4.6. To evaluate the 

performance of the developed model, out-of-sample validation was performed using the 

testing dataset, discussed in Section 4.7. For all battery types except lithium-ion battery in 

the test stage (Fig. 22, grey dashed rectangle), only out-of-sample test one was performed 

(using test data generated in the data preparation stage) due to the unavailability of suitable 

laboratory battery data. For lithium-ion battery, the second validation of the proposed 

battery model as a proxy for actual battery degradation measure was performed on the 

publicly available lab battery test data accessible from the NASA Prognostics Centre of 

Excellence Data repository [206]. This is covered in Section 4.8.   

 IOHMM Specialization to Battery Operating State 

The model framework proposed in this work consists of the set of actions that comprise 

the input signal to the model, observables that are emitted by the unobservable states and 

hidden states that encapsulate the time-dependent chemical processes taking part inside 

the battery during operation. Among the input signal to the model (u), there are three 

possibilities, namely: ‘perform charge action’, ‘perform discharge action’ and ‘hold 

action’. The model observables (o) are the battery preference/maloperation indexes 

emitted by the unobservable chemical internal states of the battery due to the performed 

action. These observed indexes could be either positive, negative or zero.  The positive 

index indicates that the performed action had a positive influence on battery health. The 

negative index indicates that performed action was against battery preferences dictated by 
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its chemistry, leading to potential battery performance deterioration. The last preference 

index, zero index, indicates that the battery is neither positively nor negatively affected by 

performed action, meaning there was no benefit to battery health due to performed action 

but also this action did not degrade the device either. Dependencies between the states and 

transitions between states resulting from a particular action are modelled as the IOHMM 

with the information flow in the developed model shown in Fig. 24. 

The introduction of a latent variable in the model implicitly captures phenomena such as: 

- micro-cycling,  

- preferences of battery to be fully discharged before consecutive charging, 

- preferences of battery to be fully charged before discharging again, 

 and others.   

 

Figure 24 Diagram of IOHMM indicating the information flow in the developed model. 

 

Training data D, which preparation was described in Section 4.1, was then used to find 

optimal parameters of the IOHMM. D was the set of R pairs of input/output sequences, 

where the input described the action that was scheduled to perform by BES, and the output 
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of the model was the resulting preference/maloperation index describing the battery 

preference to the performed action dictated by cell chemistry:  

𝐷 ≝ {(𝑢1
𝑇𝑟(𝑟), 𝑜1

𝑇𝑟(𝑟)); 𝑟 = 1 … 𝑅}                                   (13)  

Where:                 

R - is the number of output/input pairs (2352 in this work) 

𝑢1
𝑇𝑟 - is the input sequence 

𝑜1
𝑇𝑟 - is the output sequence 

Tr – is the length of the rth input/output sequence 

The training data 𝐷 were generated based on the set of rules formulated in Section 2.3 

(Table 5 - 11) and on the available resources in the system comprising renewable 

generation. The preparation of the training data is summarized in Fig. 22.  

 Learning the Model Parameters 

As was stated in Section 3.5.2, three problems can be solved using HMM, namely 

evaluation, decoding and learning of time series data. The same applies to the IOHMM, 

the extension of HMM to the domain of supervised learning for sequential data. In this 

section, the learning of the parameters will be discussed in more detail. As it was discussed 

in Section 3.5.4, there are two issues when learning model parameters that need to be 

considered. The first problem is related to the choice of model parameters (initial 

parameters for transition, emission probability matrices and initial state distribution) and 

the second one with the choice of the model size (number of hidden states). To tackle the 

first problem, the usual practice of replications with random restarts was chosen in this 

work. Fifty restarts with randomly initialised initial parameters were performed. This 

procedure aimed to find the parameters that resulted in the best performance of the model 

after learning, where model log-likelihood and Sum Squared Errors (SSE) were applied 

as the selection criterion. To tackle the issue with the choice of the number of hidden states 
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(right model size), the state-of-art approach of multiple runs with a changing number of 

states was applied in this work. A set of IOHMM with states in the range of 2-50 were 

trained, and the selection of the most optimal number of states was based on the Bayesian 

Information Criterion (BIC).  The BIC is a penalised measure of the model likelihood. 

Here we try to find the most likely fit with the least number of parameters, where model 

parameters are regarded as equivalent to model complexity.  

Determining the IOHMM means finding optimum IOHMM parameters Θ that best reflect 

the observed data. In other words, training of IOHMM (learning problem) is estimating 

the optimal parameters Θ = (𝐴, 𝐵, 𝜋) that maximizes the conditional likelihood 

𝑃(𝑜𝑇|𝑢𝑇 , Θ); probability of observing output sequence O = (o1, o2 ,…, oT) given the input 

sequence U = (u1, u2,…, uT) and model parameters Θ. The optimal parameters of the 

IOHMM model, which are transition and observation probability matrices, were learned 

using the formulation of the Expectation-Maximization (EM) algorithm proposed in 

[26][207] for training IOHMM. The EM algorithm applied in this work is similar to the 

Baum-Welch algorithm used to train the HMM [205]. EM is a general technique that is 

used in the estimation of the distribution with hidden data.  The aim of EM here is to 

maximize the log-likelihood function (14). 

         𝑙(Θ; 𝐷) = 𝑙𝑜𝑔(𝐿(Θ; 𝐷))                                                (14) 

Where Θ are the model parameters, Tr is the length of the rth input/output sequence, 

 𝐷  are training data and 𝐿(Θ; 𝐷) is likelihood function, defined as:   

             𝐿(Θ; 𝐷) ≝ ∏ 𝑃(𝑜1
𝑇𝑟(𝑟)|(𝑢1

𝑇𝑟(𝑟); Θ))𝑅
𝑟=1                                (15) 

As the state variables st (describing the path in the state space) are not observed, (15) is 

treated as parameter estimation with missing data. Let Df be the complete data set defined 

as (16) 

             𝐷𝑓 ≝ {(𝑢1
𝑇𝑟(𝑟), 𝑜1

𝑇𝑟(𝑟), 𝑠1
𝑇𝑟(𝑟)) ; 𝑟 = 1 … 𝑅}                         (16) 

 and corresponding complete-data likelihood is  
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 𝐿𝑓(Θ; 𝐷𝑓) = ∏ 𝑃(𝑜1
𝑇𝑟(𝑟), 𝑠1

𝑇𝑟(𝑟)|(𝑢1
𝑇𝑟(𝑟); Θ))𝑅

𝑟=1                   (17)  

Due to the unobservable character of state variables S, the 𝐿𝑓(Θ; 𝐷𝑓) cannot be maximized 

directly. The solution requires the introduction of the auxiliary function  

                  𝑄(Θ; Θ̂) = 𝐸[𝑙𝑓(Θ; 𝐷𝑓)|𝐷, Θ̂]                                              (18) 

and iterating it over the distribution of S in two steps (estimation and maximization) until 

a local maximum of the likelihood is found. Where 𝑄(Θ; Θ̂) is the expected value of 

complete data log-likelihood given model parameters computed at the end of the previous 

iteration Θ̂ and observed data D.  

The EM algorithm iterates in two following steps for k=1,2,.. until the point when the 

maximum likelihood is found. 

1st step – Estimation, comprises computation of 𝑄(Θ; Θ𝑘) = 𝐸[𝑙𝑓(Θ; 𝐷𝑓)|𝐷, Θ𝑘], 

2nd step – Maximization, comprises  parameters updates as Θ𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥Θ𝑄(Θ; Θ𝑘). 

 Decoding Problem Implementation 

For a given cell chemistry, the trained model can be used to predict an observation 

sequence of preference/maloperation indices (health index) given an input sequence of 

charge actions u. The direct computation of the output sequence, which is more likely 

given the input signal, is computationally expensive as the computation time grows 

exponentially with the sequence length [208]. For this reason, the approach using the 

complete data model was applied in this work, as in the Viterbi algorithm, to calculate the 

joint values of the states and outputs that are the most likely. The algorithm (19) for 

asynchronous IOHMM proposed by [208] was used.   

    𝑉(𝑖, 𝑡) = max
𝑛

(𝑏(𝑖, 𝑛, 𝑡) max
𝑗

𝑎(𝑖, 𝑗, 𝑡)𝑉(𝑗, 𝑡 − 1))                      (19) 

Where: 
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 𝑉(𝑖, 𝑡) is the probability of the best state and output subsequence ending up in state i at 

time t, 

 𝑎(𝑖, 𝑗, 𝑡) = 𝑃(𝑠𝑡=1 = 𝑖|𝑠𝑡−1 = 𝑗, 𝑢𝑡) - is the probability of transition from state j to state 

i  at time t and given input ut   

𝑏(𝑖, 𝑛, 𝑡) =  𝑃(𝑜𝑛|𝑠𝑡 = 𝑖, 𝑢𝑡)  - is the probability of observation on being generated by 

state st= i at time t, given input ut. (n is the length of the output sequence 𝑜1
𝑛 ) 

 Case Study: Community Low Voltage Distribution Feeder with 

Photovoltaic Generation 

The developed model was trained and tested on 63 consecutive days of historical data 

of electrical demand and photovoltaic generation measured at a community low voltage 

(LV) feeder (data come from the EU FP7 ORIGIN project). The available data has a 30-

minute resolution and covers the period from the 3rd of May to the 5th of July 2015. Only 

63 days of data were used in this work (49 for training and 14 for testing) to show that the 

applied battery health modelling framework proposed in this work is able to deal with the 

low number of data for training, thus addressing the limited availability of suitable battery 

data for battery health modelling. As an illustration of data used in this study case, a 

sample of seven consecutive days of demand and PV generation is shown in Fig. 25. 

Demand data (Fig. 25(a)) has a noisy and volatile character due to the low level of load 

aggregation typical at the LV level. This exhibits a peak value of 6.9 kW within a 

considered period of 63 days. The generation data available (Fig. 25(b)) has an 

intermittent nature across its daily pattern, consistent with small PV installations. These 

characteristics of demand and generation data make the forecasting task challenging. To 

capture and demonstrate the identification of maloperation level, a BES of 10 kWh was 

assumed with a naïve persistence generation forecast and a day ahead Gradient Boost 

Machine forecast for the demand [209][210]. The naïve persistence forecasting of the PV 

generation assumes that the energy generated today at a given time t is the same as it was 

on a preceding day at the corresponding time. Gradient Boost Machines (GBM) is an 

ensemble method which has applications in regression and classification problems [211]. 
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Figure 25 Seven consecutive days of electrical demand at LV level and PV generation data 

starting from the 2nd of May until the 9th of May.  

 

GBM gives the model that is in the form of an ensemble of multiple ‘weak’ models. The 

‘weak’ models are learned and added in stages to produce a strong model. The ‘weak’ 

learners are fitted into the residuals of the model developed in the previous step to improve 

the resulting model. The loss function used during training was a mean square error, and 

the shortcomings in the accuracy of the simple model used in this work were identified 

based on the gradient descent learning procedure16 [210]. More information about gradient 

descent learning can be found in [203].  The scenario described above has been designed 

to capture frequent opportunities for maloperation due to the excess of generation with 

respect to demand.  

                                                 
16 In simple terms gradient decent is an optimization algorithm that is used to find the parameters of the 

function that minimizes a cost function in the case when parameters cannot be calculated analytically by 

for example using the linear algebra, and they must be searched with application of the optimization 

algorithm. 

(a) 

(b) 
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 Model Selection 

The Bayesian Information Criterion (BIC) approach was used to select the optimal 

number of hidden states for the IOHMM-based battery model. The BIC was developed by 

Gideon E. Schwarz in 1978 [212], and it constitutes a penalised measure of the model 

likelihood that allows a tradeoff between the model likelihood and its computational 

complexity [213]. The BIC can be evaluated using equation (20) [203].  

𝐵𝐼𝐶 =  − log (𝐿𝑓(Θ; 𝐷𝑓)) +  
𝑘

2
∗ log(𝑇)                                     (20) 

Where: 𝐿𝑓 denotes a model likelihood (17), k is the degree of freedom or number of 

parameters in the model, and the length of the training data is T. The first term of the 

equation (20) is a measure of a fit of the model, and it decreases with the number of 

parameters (number of states in this model). The second term is a “penalty term” that 

penalizes the model for the increasing number of parameters. This term depends on the 

sample size and is an increasing function of the number of estimated parameters (it rises 

with the increasing number of parameters). The second term in equation (20) discourages 

overfitting by penalizing model complexity. In short, the BIC is the form of penalized log-

likelihood that allows a tradeoff between the model likelihood and its computational 

complexity [213]. When fitting IOHMMs, the increase in the number of states, leads to 

an increase in model likelihood, the goodness of fit, but also increases the chance of model 

overfitting when too many parameters are used (limiting the model's ability to generalize) 

[214]. The Bayesian Information Criterion is minimized to decide the optimal number of 

hidden states for the IOHMM-based battery models. 

Some further explanation of the terms in the BIC equation (20) is required for a full 

understanding of the application of this criterion in the selection of an optimal number of 

hidden states in the IOHMM. As the complexity of the model or degree of freedom, k, in 

BIC is model specific, its choice depends strictly on the model that is investigated, 

IOHMM in this work, to ensure the appropriate application of the penalty term in BIC. 

The  degree of freedom for HMM has been used previously [214][215] as follows: 
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𝑘 = (𝑁 − 1)𝑁 + 𝑁𝑚                                                     (21) 

Where k is called the degree of freedom or complexity term, N and m are free parameters 

of the model. N represents the number of hidden states of the HMM model, and m is the 

number that represents the number of parameters of the underlying distribution of the 

observation process. This expression was modified for the purpose of this work by 

incorporating an additional dimension to the IOHMM over the HMM, namely the input 

signal. Both terms of equation (21) were multiplied by a number of possible input signals 

in the modelled system (three possible actions), resulting in equation (22). 

𝑘 = 3(𝑁 − 1)𝑁 + 3𝑁𝑚                                                  (22) 

The limitation of the BIC is that this approximation is only valid when the sample size is 

larger than the number of parameters in the model [216].  

The change in BIC values with an increasing number of hidden states is shown in Fig. 26 

for the lead-acid battery, Fig. 27 for lithium-ion (a) and NaS (b) batteries, Fig. 28 for 

NiMH (a) and NiCd (b) batteries and Fig. 29 for Zn/Br2 (a) and VRFB  (b) batteries.  

 

Figure 26 Change in BIC with increasing model complexity for the IOHMM model of the lead-

acid battery.  
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Figure 27 Change in BIC with increasing model complexity for the IOHMM model of lithium-

ion battery (a) and the IOHMM model of NaS battery (b).  

(a) 

(b) 
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Figure 28 Change in BIC with increasing model complexity for the IOHMM model of NiMH 

battery (a) and the IOHMM model of NiCd battery (b).  

(a) 

(b) 
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Figure 29 Change in BIC values with increasing model complexity for the IOHMM model of 

Zn/Br2 battery (a) and the IOHMM model of VRFB battery (b).  

 

(a) 

(b) 
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The minimum values of BIC in Fig. 26-29 indicate the fewest number of states for the 

IOHMM battery model that was chosen as optimal for given battery technology. The 

choice of the number of states was based on the fitted average curve. Applying BIC 

different battery chemistries resulted in different optimal numbers of states: 11 states for 

Lithium-ion and NaS batteries, 12 states for NiMH, NiCd, Zn/Br2 and VRFB batteries, 

and 6 states for Lead-acid battery.   

 Testing and Validation of Developed Model. 

The trained models of battery maloperation consist of a hidden state transition 

probability matrix, observation distribution probability and initial state distribution. The 

developed models for seven battery technologies considered in this work are included in 

Appendix A. The chemical processes taking place inside the battery during operation and 

associated degradation processes are encapsulated in the state probability matrix. As the 

battery's internal state is not observable directly, it cannot be stated, if any, or by how 

much the battery was degraded based on the state transition probabilities. Instead, it is 

captured in the observation distribution probability. The probabilities in state transition 

matrices differ for different battery types due to the differences in the battery chemistries 

and their preferences that models captured, as can be seen in Appendix A. However, there 

is no way of relating this difference to the particular preference for the battery technology 

or battery health state due to the hidden nature of the states. Similarly, when examining 

observation distribution probabilities for different battery types, it is difficult to say which 

preference of battery results in the emitted preference index by a particular state due to its 

unobservable character.  

In the IOHMM, the input variable can influence either the distribution of the latent 

variable, output variable or both. It was found that in the trained models, the input signal 

(the action that was set to be performed by the energy storage) always had an impact on 

the emission of the battery maloperation/health index by the state, irrespective of the 

battery type, but has little or no impact on the distribution of the latent variable. The 
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transition probabilities distributions, in graphical form, for three battery models, NaS, 

NiMH and Lithium-ion, for which the influence of input signal on transitions probabilities 

was not observed, are illustrated in Fig. 30.  

 

 

 

 

Figure 30 The comparison of the state transition probability distribution for input signal 

‘discharge action’ (blue), ‘hold action’ (red) or ‘charge action’ (green) for the batteries for which 

the state transition was found to be independent of the input signal: Lithium-ion (a), NiMH (b) 

and NaS (c). The thickness of the arrows indicates an increased probability of transition between 

the states. 

 

        DISCHARGE ACTION                           HOLD ACTION                            CHARGE ACTION   
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The transition probabilities distributions for the Lead-acid, Zn/Br2, VRFB and NiCd 

battery models, where this dependency was observed, are illustrated in Fig. 31. Taking, 

for example, the Zn/Br2 battery model, Fig. 31 (b), when the battery is in state eight for 

the input signal three (‘charge action’) the probability of transition to state ten is 0.98 and 

to state six is 0.02. For the input signal one (‘discharge action’) and two (‘hold action’), 

the only allowed transition from state eight is to state six with a probability of 1. The 

difference or similarities in the impact of the input signal on the distribution of the latent 

variables may be dictated by the chemical differences or similarities between batteries. 

Further research is required to find the battery characteristics governing those differences 

or similarities, which are not in the scope of this work but constitute a potential 

collaboration platform with the experts in the battery chemistry area in the future. 

For all developed battery models, the emission probability from the state depended on the 

input signal (action set to be performed) and this dependency is reflected in the emission 

probability matrix. The probabilities in the emission probability matrix are different for 

different input signals, which can be seen when examining the models’ parameters 

summarised in Appendix A1-A7. As it was stated above, due to the hidden nature of the 

states, when examining observation distribution probabilities for different battery types, 

it is difficult to say which preference of battery results in the emitted preference index by 

a particular state. The dependency of the input signal on the emission probabilities is 

illustrated in Fig. 32 in the example of the Lead-acid battery model. From that figure, we 

can see differences between emissions from states depending on the input signal. We can 

see a significant difference between the emitted health index by the state when comparing 

the possible emission from states when ‘discharge action’ (blue in Fig. 32) or ‘charge 

action’ (green in Fig. 32) was set to be performed by battery energy storage. For example, 

when the battery was in state six and ‘discharge action’ was set to be performed by this 

device, the state can emit ‘-1’ index with a probability of 0.001 and ‘1’ with the probability 

of 0.999, but if ‘charge action’ was as the input signal, only possible emission by this state 

was -1 with the probability of 1. 
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Figure 31 The comparison of the state transition probability distribution for input signal 

‘discharge action’ (blue), ‘hold action’ (red) or ‘charge action’ (green) for the batteries with the 

observed dependency of the input signal on the state transition: Lead Acid (a), Zn/Br2 (b), NiCd 

(c) and VRFB (d). The thickness of arrows indicates an increased probability of transition between 

the states. 
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Figure 32 Graphical representation of the maloperation index emission by the hidden state of the 

IOHMM Lead-acid battery model. The arrows point to the possible emission by state, given the 

system is at this state and the input signal ‘discharge action’ (blue), ‘hold action’ (red) or ‘charge 

action’ (green). The thickness of the arrow is proportional to the probability of state emission of 

the health index the arrow is pointing at, where the thickest arrow is an equal one. (‘-1’ indicates 

that the battery operates contrary to its preferences dictated by device chemistry, ‘+1’ indicates 

that performed action is in agreement with battery chemistry and ‘0’ there is no positive or negative 

influence on battery health due to performed action). 

 

The results indicating the significant impact of the input signal on the emission 

probabilities are in agreement with the knowledge of the influencing factors on battery 

well-being. The battery health is closely influenced by the action that is performed by the 

storage with a particular state of health and the preceding action that storage was subject 

to, and this is reflected in the emission dependency on input that was found in each model 

of battery developed in this work. As was said previously, there is not possible for sure to 

describe what each state represents and how the emission indexes are correlated with 

battery preferences learned by the developed model due to the unobservable character of 

model states (the information about states is hidden). With some assumptions and with 

general knowledge about battery chemistry and operational preferences reviewed in 
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Chapter 2, we can imply to some extent that, for example, state two for Lead-acid battery 

(S2), see Figure 32, might correspond to a fully charged and not perfectly healthy state of 

this device. When discharging action is performed, the positive health index is generated, 

and when charging action is performed, the negative index is generated. This is linked 

with the battery preference ‘to not being overcharged’ (when it is charged, negative index 

is generated) or ‘not being left idle’ (‘no action’ performed) (when the battery is 

discharged, positive index is generated). The negative maloperation index generated at 

state 2 when ‘no action’ is performed is linked to the battery preference being prone to 

build up of sulphate crystal due to self-discharge processes leading to performance 

deterioration or even device failure when the health of the battery was compromised. 

However, it should be remembered that the battery states assignment and links with 

preferences described here cannot be taken for granted. Transition probabilities matrices, 

emission probability matrices and the initial state probability for all IOHMM developed 

are included in Appendix A.  

  

The operational purpose of the developed battery models in this work is to predict 

the most likely output sequence (health/maloperation index) given the input signal 

(scheduled action for the BES). The prediction is based on the Viterbi approach that was 

discussed in Section 4.4. The choice of trained model was based on the model log-

likelihood and the value of the Sum of Squared Errors calculated on the cumulative 

preference/maloperation index17 predicted by the trained model and the actual values of 

this index using equation (23)  

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑛

𝑖=1                                                     (23) 

Where: 

SSE is the sum of squared error, 

                                                 
17 Cumulative health index was calculated by successive additions of generated health indexes by the 

IOHMM model during simulation. 
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 𝑦𝑖 is the actual value of the variable to be predicted, 

𝑓(𝑥𝑖) is predicted value  

To clarify at this point how the ‘original’ and ‘generated’ health indexes were produced, 

a visual summary of the procedure is shown in Fig. 33. For more details on how the series 

of health indexes were generated in the first place, please refer to Section 4.1 where it was 

discussed in more detail and summarized in Fig. 22. 

 

Figure 33 Flow chart of generation of the ‘original’ and ‘generated’ cumulative health indexes. 

The comparison of the original cumulative preference index with the cumulative index 

generated by developed battery models is shown in Fig. 34 (Lithium-ion battery), Fig. 35 

(NaS, NiCd and NiMH batteries), Fig. 36 (Lead-acid, Zn/Br2 and VRFB batteries) and are 

summarized in Table 13.  

The actual cumulative health index, the blue line in Fig 34 - 36, is characterized by diurnal 

patterns observed in the photovoltaic generation data as well as monotonic decrease. The 

higher peak on the graph corresponds to the time when the generation drops below the 

load requirements, and the lower one is when the generation starts to exceed demand. In 

the case study being analysed, energy demand is much lower than the available generation. 
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Table 13 Cumulative health index out of sample prediction. 

 

The battery is to be charged according to available resources without consideration of 

technical constraints or its limited capacity. For this reason, when energy is generated in 

excess, the battery becomes stressed due to extensive charging, resulting in a 

maloperation/health index decrease. When there is no excess of energy in the system, the 

stress on the battery due to overcharging drops; therefore, the value of the HI increases. 

For this worst-case scenario, the forecasted generation dominates the battery health impact 

in this case study.  

Figure 34 Comparison of the original cumulative preference index and index predicted by the 

developed model of Lithium-ion battery. 

 

Type NiCd 
NiMH Li-Ion 

NaS 
VRFB Zn/Br2 Lead 

Acid 

States 12 12 11 11 12 12 6 

SSE [103] 49 51 77 99 98 46 109 

Final index -234 -234 -234 -234 -132 -234 -234 

Predict index -242 -244 -248 -250 -110 -240 -230 

Over/underestimation [%] -3.42 -4.27 -5.99 -6.84 16.66 -2.56 1.71 

 



 

 

121 

 

 

 

 

Figure 35 Comparison of the original cumulative preference index and index predicted by the 

developed model of NaS (a), NiCd (b) and NiMH (c) batteries. 

 

(a) 

(c) 

(b) 

index -234 
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Figure 36 Comparison of the original cumulative preference index and index predicted by the 

developed model of Lead-Acid (a), Zn/Br2 (b) and VRFB (c) batteries. 

(a) 

(b) 

(c) 
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The results presented in Fig 34 - 36 show that the health index predicted by the models, 

the red line in Fig 34 - 36, does not follow the short-term diurnal patterns of the actual 

index, although a general long-term trend is recovered, providing valuable knowledge 

about the impact of the unbounded charging/discharging strategy has on the health of the 

battery. The estimation of battery health produced by models seems to follow the linear 

trend, but this seen linearity is the result of batteries being subject to schedule carried out 

in a consistent way based on the PV generation. The model is capable of predicting the 

non-linear trends in the battery health due to the random charge/discharge schedule that is 

shown in Fig. 38 in the following section. For most of the battery models, except for the 

Lead-acid and VRFB battery models, the predicted index alternately overperforms and 

underperforms the original index throughout the whole test period, which is illustrated in 

the example of Lithium-ion battery in Fig. 34 (points 1 and 2 on Fig. 34, respectively). 

For the VRFB battery model, the predicted preference index behaved in a similar fashion 

to that observed for most battery models until day six, then starts to increasingly 

underestimate the health index, Fig. 36(c). For the Lead-acid battery model, Fig. 36(a), 

until day eleven, the model slightly underestimates the battery health by predicting the 

health index to be higher than the actual one, then it starts to alternately overperform and 

underperform the original index in a similar fashion as it was observed for other battery 

models. The poorer performance of both models can potentially be a result of poor 

initialization of the initial conditions. It is possible that during 50 random restarts, the 

suboptimal initialization of model parameters was found, leading to a suboptimal model. 

Comparing the original health index for all battery chemistries considered in this work, 

Table 13, observation can be made that the value of the original index is the same for all 

battery models with the exception of VRFB. The occurrence of a similar value for this 

index indicates that the batteries degrade at the same pace, indicating that the maloperation 

metric is reflective of the physical degradation process. The actual cumulative health 

index of the VRFB, with the value of -132, indicates that this battery is more robust and 

the least prone to damage from maloperation compared with the rest of the batteries 

achieving an index of -234. This result aligns with the domain knowledge and can be 
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explained by the difference in battery construction that affects device health.  In VRFB, 

the reactants and products are in the solution phase during charging; therefore, no metal 

deposition occurs on the plates compared with conventional secondary batteries and 

hybrid flow batteries. The changes that occur in the electrodes materials of conventional 

batteries and hybrid flow batteries result in their degradation over time, which is 

accelerated by running the battery against its preferences. The VRFB battery is free of the 

processes leading to mechanical breakdown of the active material, as the active material 

is stored in separate tanks dissolved in liquid, which makes them less prone to degradation 

due the maloperation and this is reflected in much lower maloperation level at the end of 

the simulation. 

Most of the developed battery models overestimated battery degradation/maloperation by 

predicting the cumulative maloperation, at the end of the test period, to be lower than the 

original by the difference between 2.56% (Zn/Br2 battery) to 6.84% (NaS battery model), 

Table 13. The lead-acid battery only slightly underestimated battery 

degradation/maloperation by 1.71%. VRFB IOHMM battery model significantly 

underestimated the maloperation index by 16.66%. Overestimating the battery 

degradation level can have less severe consequences than underestimating it, but it could 

lead to loss of the opportunity to use the BES or needless replacement of the asset ahead 

of the end of its life. In contrast, the underestimating of battery degradation level can lead 

to battery failure due to using a device that is more degraded than it is anticipated. 

Comparing the predictions, the model of the Zn/Br2 battery achieved the best performance 

in predicting the preference index given the input sequence, the lowest value of SSE and 

the worst performing model of all was the model of the Lead-acid battery, which achieves 

the highest SSE value.  
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 Validation of Health Metric Against Laboratory Test Data for 

Lithium-ion Battery Model 

 Due to the limited availability of suitable battery data for testing, only validation of the 

developed Lithium-ion battery model will be carried out in this section. To assess the 

effectiveness of the proposed battery maloperation model as a proxy for actual battery 

degradation, out-of-sample testing was performed using publicly available randomized 

battery usage lab data accessible from the NASA Prognostics Centre of Excellence Data 

repository [206]. Data come from laboratory tests of Lithium-ion batteries over the period 

of seven months (from August 2014 to February 2015). Batteries were continuously cycled 

at high or low temperatures with randomly generated current profiles to better represent 

practical battery usage. As the influence of temperature on battery health was excluded in 

this work, the set of data from experiments at low temperatures was chosen for comparison 

(ambient temperature between 21 and 33°C). The dataset also included data from reference 

charging and discharging cycles, which were performed after a fixed interval of randomized 

usage (every 50 random charge/discharge cycles) to provide reference benchmarks for 

battery state of health measured in terms of capacity fading. The NASA data set consists of 

detailed electrical measurements of current, voltage, temperature, and battery capacity 

measured every 50 random charge/discharge cycles and charge schedule information from 

the period of seven months. The 10 hours of NASA battery data is shown in Fig. 37 as a 

reference.  
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Figure 37 One hour of data from random battery charging/discharging at low temperature (NASA 

battery experiment [206]). 

 

Since the developed Lithium-ion battery maloperation model has minimal input 

requirements, only the sequence of charge actions from the NASA dataset was used as the 

input to the developed IOHMM maloperation model of Lithium-ion battery. The IOHMM 

model output, maloperation index, is compared against the measurement of battery capacity 

taken every 50 random charging/discharging cycles from the NASA experimental dataset. 

A comparison of capacity fade, and cumulative maloperation/health index produced by the 

IOHMM is shown in Fig. 38.  
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Figure 38 Degradation of Measured Capacity (capacity fade) versus Maloperation Level 

(cumulative maloperation index) predicted by developed IOHMM model of Lithium-ion battery. 

(Maloperation level is dimensionless quantity) 

 

 The IOHMM maloperation measure proposed in this work follows the trend observed in 

the capacity fading of lithium-ion battery operated under random charging/discharging, see 

Fig. 38, indicating that the level of battery maloperation reflects battery capacity degradation 

due to ageing processes. This makes the IOHMM proposed here a potential tool for 

assessing battery degradation levels due to the applied charging/discharging schedule 

without requirements for extensive measurements to be carried out. It is worth mentioning 

that the battery under test showed a substantial drop in its capacity over a period of seven 

months when charged and discharged randomly without considering battery preferences to 

the way of operation dictated by its chemistry, as shown in Fig. 38. This fast property 

deterioration in capacity of the actual device shows how important is the proper battery 

schedule that will consider this device's preferences when charging/discharging to ensure 

its health and lifetime are not too quickly compromised leading to the battery’s premature 

degradation and the need for early replacement of this device. The health management of 

batteries is an important aspect of this asset management, thus a decision support tool 

increasing knowledge about the potential influence of planned action on battery health can 
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be beneficial for asset managers, supporting the decision process in battery schedule 

planning. The model of battery maloperation level presented in this work can be used in 

such types of applications as the decision support tool. 

From Fig. 38, it is clear that there is some level of association between capacity 

fading and maloperation level predicted by the developed model. To assess this 

relationship and its strength, the correlation analysis between those two variables was 

performed. The scatter plot of the cumulative maloperation index and measured capacity 

is shown in Fig. 39.  

 
 

Figure 39 Scatter plot of cumulative maloperation index produced by the proposed IOHMM 

model and measured capacity fading of Lithium-ion battery from the NASA lab test. 

 

From Fig. 39, it can be seen that there is a strong relationship between variables, but the 

relationship is not linear, which violates one of Pearson’s correlation assumptions 

(assumption of the linear relationship between the variables), thus making this method of 

relationship measure not appropriate in this case. To evaluate the strength of the 

relationship shown in Fig. 39 between the maloperation/health index predicted by the 

IOHMM battery model and measured battery capacity fading of Lithium-ion from the 

NASA data set, the Spearman’s rank correlation was applied. Charles Spearman, 

a  psychologist, introduced the Spearman Rank correlation in 1904 [217] as the non-
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parametric measure of the correlation between two variables that assess the strength and 

direction of the monotonic association between them. Spearman’s formula for rank 

correlation between variables X and Y is given by equation (24). 

𝑟𝑠 = 1 −
6 ∑ 𝐷2

𝑁(𝑁2−1)
                                                      (24) 

Where D represents the difference between the ranks of corresponding values of X and Y, 

N is the number of pairs of values (X, Y) in data. Spearman correlation between the 

IOHMM Lithium-ion battery model output and the capacity fade from the lab experiment 

was 0.99 with a corresponding p-value of 1.42*10-4. This indicated that the IOHMM 

metric, developed in this work, can determine a measure of the battery degradation with 

minimal knowledge of battery state, without invasive measurements or an intensive 

physics-based model. The capacity fade measurement from the NASA lab experiment 

required a reference cycle to be performed and measurements to be taken. Every 50 

random charge/discharge battery cycles, the reference charge and discharge were 

performed to observe the battery capacity. This included the following four steps: constant 

current charging (reference charging) followed by rest after reference charging and 

constant current reference discharge followed by the rest after reference discharge. 

The battery capacity was then benchmarked by integrating current over reference cycles. 

This required a special reference cycle to be performed to enable the gathering of required 

data to estimate battery capacity. In contrast, the developed IOHMM model estimates 

battery health by taking only the battery charge/discharge schedule as the input. The 

developed model does not require any additional measurements to be taken or reference 

cycles to be performed to estimate devise maloperation level. The battery can be used as 

demanded with no requirements of taking it from normal operation to perform the 

reference charge/discharge cycle, as it was needed in the case of the NASA laboratory 

test. 
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 Discussion 

The research in the science and technology area is constantly evolving and moving 

forward, with new developments in the area of battery health estimation and prognostics 

being published each day. The visibility of the work presented in this thesis versus the 

ongoing research up to date in the battery energy storage area will be shortly summarised 

in this section. Moreover, the capabilities of the developed model, the problems in battery 

health prognostics it addressed, and the main findings of Chapter 4 will be discussed here.  

 Currently, there is a clear trend in the increasing application of machine learning 

techniques in battery health modelling [170][218]. Battery health modelling based 

on machine learning techniques provides a non-invasive approach that is 

characterised by low computation, reduced requirement for knowledge and high 

accuracy with an increased ability to model scalability, which is very important 

for battery health modelling due to the increase of this device penetration in 

modern power systems [218]. The work presented in this thesis sits within the 

currently very fast-developing area of application of machine learning techniques 

for non-invasive battery health modelling.  

 One of the very important advantages of the developed model over other models 

for battery health estimation, such as presented in [219][220][221][222], is its 

minimum system knowledge requirement for the prediction of device health. The 

majority of the models require a substantial amount of knowledge about the system 

to predict the battery health, such as information about battery capacity, current 

and voltage in the [219]; current, voltage profiles and battery temperature in 

[220][222]; temperature, voltage, capacity and information about the cycle in 

[221]. This required knowledge increases costs, such as the additional cost of 

installation of required telemetry and the cost of maintenance of such installation 

to ensure its proper operation. The model presented in this work, on the contrary, 

requires only information about the battery regime to make a prediction, which is 

available as the fiscal meters are already installed. A minimal requirement of 
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knowledge of the system is important with the increasing level of battery 

aggregation in the energy system. The aggregation of battery devices in the system 

can lead to the substantial amount of data required to be gathered and processed 

when models with higher data requirements are used in battery health prognostics. 

This leads to the requirement for the installation of numerous sensors, which has 

financial implications. The more sensors, the more possibility of missed reading 

and more difficulties with synchronisation of all reading and more data to work 

with when estimating battery health that is crucial in the battery asset management.  

 As discussed earlier, one of the important limitations of battery modelling is the 

shortage of suitable data sets for modelling purposes. The necessity for extensive 

laboratory data required for modelling is eliminated when applying the approach 

proposed in this work. The proposed model minimizes requirements for training 

data by simply reusing available generation and demand data in conjunction with 

battery operating preferences, discussed in Chapter 2, to generate training data. 

The resulting developed model is capable of predicting of maloperation level of 

the real battery that was strongly correlated with the currently used HI measure - 

capacity fading as can be observed in Fig. 26. This indicates that the IOHMM 

metric, developed in this work, determines a measure of the battery degradation 

with minimal knowledge of battery state, without invasive measurements or an 

intensive physics-based model.  

 The proposed framework of battery health modelling based on IOHMM can be 

easily applied to the new battery technology. It can be also extended by 

incorporating new battery preferences for existing technologies or can be adjusted 

if technology will change by updating existing battery preferences. It can be 

simply implemented by: 

- Creation of heuristic rules based on the preferences of new battery 

technology and composition of a new lookup table for this device, 

- Addition of new or modifications of existing heuristic rules that are 

governed by battery preference and adjusting the lookup tables with 
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maloperation index accordingly, based on new and existing 

preferences. 

The remaining steps in model development, namely: data generation, training, 

model selection and testing, can be applied without modification for each of the 

above cases.  

 The data used in this work come from the EU FP7 ORIGIN project and has 

30- minute resolution. Data with higher granularity, if available, also can be used 

in the battery health modelling using the proposed modelling approach and 

IOHMM framework. The internal changes in the battery state and chemical 

reactions taking place inside this device are dynamic processes that may change 

very rapidly. The higher resolution of data could help catch these types of changes 

during the modelling and could further help to improve the model. However, the 

usage of data with higher granularity can substantially increase the model training 

time. The running time of the developed model, when battery health is estimated 

on higher granularity data will also increase, with the running time depending on 

the resolution of the data available and the length of the testing data set. The 

training time of the model will be substantially more impacted than the time 

required to run the trained model due to multiple reruns required to deal with issues 

associated with learning the model, namely: choice of the model size and 

initialization of transition, emission and initial state distributions. 

 For the application of BES in the power system, an important aspect is how to plan 

the charging/discharging of this device to meet the energy network requirement 

while also considering battery health. Each action can incur positive or negative 

consequences on the health of the battery, which can generate costs for the battery 

asset owner (premature battery replacement) or energy system operator (costs due 

to failure to deliver services when required). Many studies ignore battery 

degradation while dispatching BES and do not take the degradation cost into 

consideration [224]. The developed model can act as the proxy of the degradation 
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costs, as it generates a health index indicating if the battery is maloperated 

(operated against its chemistry and preferences leading to battery health 

degradation). The developed model constitutes the degradation metric that can be 

used as the policy function in an automated scheduler that accommodates battery 

health in the dispatch process. 

 Proposed battery health metrics, in terms of maloperation level, is an abstract HI 

measuring the battery health. It was shown that it is strongly correlated with battery 

capacity fading. With an available suitable data set covering the lifetime of the 

lithium-ion battery, it would be possible to derive a scaling factor enabling the 

developed measure in maloperation level to be directly translated into the capacity 

fading term. This can extend the potential application of the developed model from 

only informative (information if performed action is against battery preferences 

leading to the health deterioration that will support decision when preparing 

battery schedule) to the actual application (recalculating the capacity fading level 

based on the battery schedule with the application of the developed model in 

conjunction with the scaling factor).  

 The proposed approach is applicable to a range of battery ages. With the 

knowledge of battery health at the starting point, it can be used to estimate the 

consecutive levels of maloperation due to the battery application.  

 The ‘weightings’ of each mal-operation are treated equally in the developed 

model. There is a possibility of changing these weightings to ensure that the length 

of the action performed against battery preferences would be reflected in the index; 

for example, the longer action is performed against battery preferences, the lower 

the index should be generated. More detailed knowledge of chemical processes 

taking place inside the battery during operation and more data would be essential 

in order to provide these varied weightings. 

 The model proposed in this work excluded the system-dependent impact (e.g. 

charging regime dictated by application) on the performance deterioration of the 

battery in the modelling so that the resulting model caught the performance 
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deterioration only due to misuse dictated by battery preferences. Thanks to this 

approach, the resulting model is characterised by high generalisation in battery 

health estimation and can be potentially used to estimate battery health regardless 

of the function it performs in the system.  

 Conclusions of the Chapter 

As storage aggregation becomes more commonplace, the management of the 

constituent battery assets will require health metrics in order to ensure ongoing contractual 

turn-up and turn-down commitments are fulfilled to their agreed capacity. To support this, 

a non-invasive approach has been presented that predicts the extent to which a battery 

asset has been maloperated. The proposed IOHMM captures the differences in the 

preferred operation of the battery, dependent on its chemistry, that allows the 

incorporation of preferences like micro cycling, deep cycling, and storing full or empty. 

These preferences were encapsulated in the state transition probability matrix and 

observation probability matrix as the model was trained on the maloperation/health 

indexes that considered those events. By capturing the information on how well the battery 

is operated in regard to its chemical preferences, the model becomes a potential decision 

support tool for planning and asset management tasks by increasing knowledge about the 

suitability of this BES for its intended application or suitability of the planned 

charging/discharging regime of this device. The minimal knowledge requirement also 

makes the model suitable when dealing with practical cases where storage installations 

may comprise heterogeneous cell chemistries. While this can undoubtedly be developed 

to support condition monitoring and estimate remaining useful life, the wider interest 

could be from using this as the policy function in an automated scheduler – this can be 

used to diversify the impact of maloperation across a portfolio of battery assets, 

prolonging their life and reducing the capital expenditure costs for storage aggregators. 
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CHAPTER 5 

This chapter constitutes an updated and extended conference paper that was published 

in the Proceedings of the 52nd International Universities Power Engineering Conference 

in 2017 by Joanna Sobon, Andrew Roscoe and Bruce Stephen, titled: “Energy storage 

day-ahead scheduling to reduce grid energy export and increase self-consumption for 

micro-grid and small power park applications,” [209]. 

5. Influence of Demand Forecast Error on the BES Schedule 

Effectiveness and the Level of Device Maloperation 

 

Accurate and timely forecasting of demand and forecasting of renewable generation 

has an important influence on the operation of the power network. Due to undergoing 

changes in the GB’s power system, namely introducing a greater share of decentralised 

renewable generation that is closer to the end user, balancing the system becomes more 

challenging. The increase in embedded generation on distribution networks means that 

power must be balanced close to the end-user point.  Due to the low aggregation of these 

loads, the noise caused by routine behaviour dominates load profiles, making them harder 

to predict [2], but they still need to be balanced; hence new forecasting approaches are 

needed [225]. With the decrease in load aggregation, the forecasting error increases 

significantly from around 3% for the National level through 10% for the secondary 

substation to 30% for a single premise [2][226]. The significantly lower accuracy of 

demand prediction and the uncertainty originating from unknown generation outputs 

become an important challenge for the system operators that need to be addressed to 

ensure continuity of energy provision and the stability of the system to be maintained. 

One of the solutions to help tackle the problem of intermittency of renewable generation 

is an introduction into the system battery storage that can shift surplus energy to times 

when it is in deficit.  This solution is promising, although it introduces additional 
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unknowns when planning system operation and balancing energy. The BES need to be 

scheduled in a way that allows exploiting its capability with simultaneous provision of 

required functions and additionally ensuring its long life span and device-safe operation. 

As the balancing energy in the power system is planned in advance and is based on the 

demand and generation forecasts, the scheduling of the battery energy storage, which 

becomes an integral part of the system, will also be performed based on those variables. 

For the system operator's informed decisions and to fully exploit BES technology, it is 

important to gain more understanding on: 

- How does the applied demand forecasting method influence the BES schedule and 

effectiveness of provision required functions by this device? 

- Which demand forecasting method is the most promising in tackling the problem 

of disaggregated load prediction to support energy balancing in the system 

comprising battery energy storage and renewable generation? 

- How does the BES schedule based on the different prediction methods influence 

the battery maloperation level, thus device health? 

- How effective can be battery energy storage schedule prepared using the 

disaggregated demand forecast? 

- Can we determine how good potentially would be BES schedule produced based 

on forecasted demand by simply examining the accuracy of the demand forecast 

used in schedule production? 

The main aim of the work covered in this chapter is to investigate some of the 

aforementioned problems to help asset operators in increasing knowledge of the 

influencing factors on the BES schedule and battery maloperation level due to the applied 

schedule. The influence of increased levels of uncertainty in demand forecast on the BES 

schedule will be investigated in this work, followed by an examination of the effect of the 

demand forecast accuracy on the provision of the required function by the BES scheduler. 

Moreover, the impact of the schedules generated by the scheduling tool employing 

different forecast models on the battery maloperation level, and thus its health, will be 
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studied here by using the IOHMM battery model developed and discussed in the previous 

chapter. The additional contribution of this chapter is a design of generic parametrized 

forecasting and BES scheduling tool for small power parks and microgrid applications.  

The availability-based scheduler developed produces day-ahead energy storage charging 

and discharging schedules that decrease electrical energy export to the main grid and 

increases the self-consumption of energy resources within a local system. 

This chapter is structured as follows: Section 5.1 covers the formulation and 

implementation of the developed BES scheduler model.  The case study and evaluation of 

the performance, the effectiveness of the proposed model and the influence of the demand 

forecasting model on the BES schedule are performed in section 5.2. In the subsequent 

section, the effect of applied schedules that were based on different demand forecasting 

models on battery maloperation level, thus battery health, was examined for the purpose 

of finding the demand forecast method which application in schedule preparation resulted 

in the lowest level of battery degradation with simultaneous high schedule effectiveness18. 

Finally, the last section concludes this chapter.  

 Model Formulation and Implementation 

As power networks evolve to accommodate low carbon aspirations, new concepts 

helping in this transformation emerge, and the advances in technology may bring solutions 

to tackle the problems of load growth, increase the level of intermittent generation 

integrated with the system, prolonged power outages due to network failures (due to 

ageing equipment) or network updates, and supporting the governmental targets for low 

carbon economies. One of those concepts is the integration of decentralised groups of 

renewable generation sources, energy storage and loads to form a microgrid that is 

normally connected to a public distribution network but is also capable of working in an 

autonomous state called ‘islanding mode’ [223][224]. If microgrids become more often 

                                                 
18 The schedule effectiveness here means how effective is a scheduler in setting particular action when 

schedule prepared based on the forecasted demand compared to the action set for BES in schedule 

prepared on original demand data (perfect demand case). 
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an element of the power network [223] it is important to study further their capabilities 

and operation.  

A grid-connected system, microgrid, with ‘behind the meter’ PV generation, battery 

energy storage and an availability-based scheduler, proposed in this chapter, was 

simulated here. The scheduler tool operation is based on the available resources in the 

system (predicted amount of generated energy by PV system installation) and demand 

requirements (predicted level of load). The scheduler controls energy flow within the 

system to achieve a reduction in energy export to the grid and an increase in self-

consumption. A 40kWh lithium-ion battery energy storage with a rated power of 10kW, 

efficiency of 98%, and discharge rate of 0.001% per half-hour (corresponding to ~1.5% 

per month) is part of the simulated system along with the 8.6kWp PV installation. This 

size of battery was chosen on purpose to provide high self-consumption, around 90.3 % 

in the analysed system. The battery was not sized perfectly to allow originally also some 

export to the grid. More information about the demand and PV generation data used in 

this experiment will be discussed in Section 5.2. The energy flow and information 

exchange within the considered system are presented in Fig.  40. In the system, the energy 

generated by the photovoltaic generator can either flow to the load (EPV_Load), to the battery 

energy storage to be used to charge this device (EPV_battery) or can be exported to the grid 

(EPV_Grid) when generated energy is not needed, and the BES is fully charged. To meet the 

demand, apart from energy originating from the PV panels, if there is not enough 

generation, the energy can be imported from the grid (Ebattery_load), or BES is used to 

provide energy (Egrid_load) if enough energy is available in the storage.  
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Figure 40 Energy flow and information exchange within the simulated system. 

 

The full procedure of the model implementation and testing is shown in Fig. 41. 
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Figure 41 The summary of the model implementation process for analysis of the demand forecast influence on the BES schedule and its effectiveness in 

providing required functions and effectiveness in assigning the required storage actions.
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5.1.1  Generation and Demand Forecast Models  

The developed scheduler model makes use of the day-ahead demand forecasting 

method previously used in this area of research [210], [225]–[228].  Different methods for 

demand forecasting are employed to investigate the influence of forecast on the 

performance of developed BES schedule tool and its effectiveness in providing grid export 

reduction, increase in self-consumption functionality and influence on battery health. 

These models were previously tested on the disaggregated demand data (LV feeder level 

disaggregation). The available data has a half-hourly resolution. Due to the lack of 

numerical weather prediction data, purely data-driven forecast methods are used. 

1. Demand forecasting: Different methods of demand forecasting are implemented 

in the model. These are an ARIMA model with lags of 48 samples (a conventional 

time-series approach), a shallow feed-forward Neural Network with 48 output 

nodes, 49 input nodes and 20 neurons (one hidden layer)  (non-linear and generally 

black-box approach) as used in [227], model based on the Gaussian Process and 

Gradient Boost Machine (GBM) used by [228] (two contemporary machine 

learning approaches), Ensemble Forecast (the combination of all demand 

forecasting methods used via a simple unweighted average) [226][229] and finally 

a Persistence forecast which is a naïve week ahead forecast.  

2. PV generation forecasting: In the absence of any other information, the PV 

generation forecast used in this work is based on the persistence model. This naïve 

method assumes that the energy generated today at a given time is the same as it 

was the previous day at the corresponding time.      
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5.1.2  Battery Energy Storage Model 

The parameterised model of battery energy storage based on the energy balance 

equation (25) was developed. 

             Estored_t+1 = (1 - α)*Estored_t -  η* Estorage_flow_t                          (25) 

Where:  Estored_t - energy stored in BES at time t 

              Estorage_flow  - energy exchanged between storage  and the rest of the system             

  α - self-discharge rate of BES 

  η - efficiency of the BES 

The energy stored in the BES system is reduced by the value associated with the self-

discharge rate α over an interval of time t. The efficiency η associated with the charging 

and discharging processes of energy storage reduces the potential energy, Estorage_flow, 

which is available to flow from and to the storage. During model development, the 

following parameters were considered: state of charge of BES, minimum and maximum 

SoC, rated power (10kW), capacity (40kWh), efficiency (98%) and self-discharge rate 

(0.001% per half-hour). The energy flow from storage at any given interval of time in the 

proposed model is constrained by the rated power of the used storage technology as 

follows in (26). 

       Eflow _min ≤ Estorage_flow_t ≤ Eflow_max                                       (26) 

Where:                           Eflow_max = Prated *Δt                                                 (27) 

                               Eflow_min =  - Prated *Δt                                       (28) 

Where:  Eflow _min – minimum allowed energy flow to the storage   

              Eflow_max – maximum allowed energy flow to the storage     

  Δt  – the time interval (half-hour in this work) 

  Prated – rated power of BES 

Additionally, the energy stored in the energy storage is limited by maximum and minimum 

allowed values (29) resulting from the storage specification. 

                                           E_stored_min ≤ E_stored_t ≤ E_stored_max                                                 (29) 



 

 

143 

 

Where the E_stored_max is related to the maximum allowed level of energy in the BES and 

E_stored_min is the minimum allowed energy stored for simulated technology (corresponding 

to the allowed depth of discharge). 

5.1.3  Scheduling of Battery Energy Storage 

The day-ahead scheduling of the BES is performed based on the forecasted daily 

profile of electricity demand and renewable generation forecast. The output of the 

scheduling are periods of time and corresponding actions to be performed by BES during 

these periods (a charge, discharge or ”no action”). The logic that controls charge and 

discharge regimes is based on the available renewable energy resources in the system and 

the technical limitations of the energy storage to be simulated - a Lithium-ion battery in 

this case.  The scheduler decision making applied in this work is shown in Fig 42. The 

objective of the algorithm controlling the schedule is to reduce export energy to the grid 

and increase self-consumption within the system.  
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Figure 42 Availability-based scheduler decision flow chart. 

 Case Study and Results 

To assess the performance and effectiveness of the proposed scheduler model and 

examine the influence of the demand forecasting model used to produce the schedule on 

its effectiveness and battery health, the case study of an actual community feeder with 

significant PV generation installed is presented. Half-hourly historical data of electrical 

demand and PV generation covering 126 days were used in the case study. As an 

illustration of data used in this study case, a sample of seven consecutive days of demand 

and PV generation, Monday to Sunday in March, is shown in Fig. 43. Half of the data 

were used for training and half for testing. The impact of the different PV generation 

forecasts on the BES schedule and device health is not investigated in this work. The PV 
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generation based on a naïve persistence model was used for all the scenarios. To 

understand the impact of PV generation on the produced schedule and battery health, the 

scenario with the schedule produced based on the original data versus the schedule based 

on the perfect demand data (original demand data) and forecasted generation was used in 

this work. A more throughout investigation of the PV generation forecast on the battery 

schedule is treated as a potential future extension to the research and is not in the scope of 

this work.  

 

Figure 43 Seven consecutive days of electrical demand at LV level and PV generation data 

starting from Monday 2nd of March until Sunday 9th of March.  

 

 

(a) 

(b) 
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5.2.1  Effect of Demand Forecast Methods Accuracy on the Battery 

Scheduler Performance 

The simulations, with six different forecasting methods employed, were considered to 

study the effect of the error in demand forecasting on the level of reduction in electricity 

export to the grid and the increase of self-consumption within the simulated system 

comprising BES. The same naïve PV generation forecasting method was used in all 

scenarios to keep this variable unchanged throughout the study resulting in a similar 

impact of the PV generation forecast on the produced schedule. The schedule for 

comparison was based on the perfect demand forecast (actual demand data) in conjunction 

with the PV generation forecast based on the persistence method. Additionally, the perfect 

case when all original data were used in schedule generation was also included here to 

give some indication of the influence of the PV generation forecast error on scheduler 

effectiveness. The results of the simulations are given in Table 14. The example of the 

electrical energy storage charging and discharging schedule produced by the model is 

illustrated in Fig.  44. When examining the schedules produced by the scheduling tool, 

Fig. 44, we can observe the differences in actions that were set to be performed by BES 

depending on the demand forecasting model used by the scheduler, against the schedule 

based on the actual demand data. As can be seen, in Fig. 44, the schedule generated is 

dominated by the diurnal pattern of PV generation. During the day, when the amount of 

generated energy by PV installation exceeds the requirements of the load, the generated 

schedule mostly consists of ‘charge actions’ set to the storage, with sporadic ‘discharge’ 

and ‘no action’ actions set (in the case when the generation is lower than required energy 

to meet demand or storage cannot accept more energy as it is fully charged). Conversely, 

during the night, the dominant operation for the battery energy storage is ‘discharge’ as 

PV generation cannot provide any energy during this period of the day, and there is still 

energy required in the system. The body plots of daily error in forecasting for each demand 

forecasting method considered in this work are shown in Fig.45 and Fig.46. The body plot 

of daily error in PV generation forecasting is shown in Fig.47. 
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Table 14 Performance of Scheduler Tool that employs different demand forecasting 

models for lithium-ion battery.  

Forecasting model Demand forecasting error PV 

Generat

ion 

error 

Performance of the 

scheduler model 

Mean 

absolute 

percentage 

error 

(MAPE) 

[%] 

Mean 

squared 

error  

(MSE) 

Mean 

squared 

error  

(MSE) 

Grid 

export 

reduction                    

. 

 

[%] 

The increase 

in self-

consumption 

within the 

system 

[%] 

Perfect case        

(original demand and 

generation) 19 

- - - 89 90.3 

Perfect forecast 

(original demand) 
- - 1.83 87.8 87 

Ensemble forecast 

(all) 

27.4 0.4047 1.83 82.2 80.1 

Gradient boost 

machine 

29 0.4152 1.83 83.8 82.8 

Persistence forecast 29.7 0.5361 1.83 85.4 76 

Gaussian Process 30.6 0.4289 1.83 85.1 80.9 

ARIMA model 48.2 1.1648 1.83 75.8 75.4 

Neural network 50 1.0774 1.83 76.9 74.5 

NOTE: For all simulations with a different type of demand forecast, including the perfect forecast case 

when original demand data was used, the PV generation was based on the persistence forecast. Perfect 

forecast is used for comparison in this work, and the perfect case (original demand and generation data) is 

used here to show the impact of the PV generation on the schedule (comparison between perfect demand 

case and perfect case). 

NOTE: The PV generation forecast error was added to the table to stress that the generation forecast error 

was kept constant for all considered scenarios. 

                                                 
19 Please note that performance measured for this case originate from comparison system without and with 

BES as the part of the system.  
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Figure 44 Day-ahead schedule of lithium-ion BES achieved for twenty days when different 

demand forecasting models were used in schedule planning and schedule based on actual data. 

The colours indicate the appropriate action to be performed by BES. Colours represent the 

charging, discharging and “no action” functions of energy storage. (Actual data correspond to the 

case when actual demand data were used in schedule production, in all cases the forecasted 

generation was used) 

Charge Discharge ‘No action’ 

Actual Demand Data 
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Figure 45 Error boxplot by the time advances for the demand forecasting based on: a) Gaussian 

Process, b) Gradient Boost Machine, c) ARIMA model, d) Neural Network. 

a) 

b) 

c) 

d) 
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Figure 46 Error boxplot by the time advances for the demand forecasting based on: a) 

Persistence method, b) Ensemble model.   

 

 
Figure 47 Error boxplot by the time advances for the PV generation forecast (persistence forecast). 

 

 

 

 

 

a) 

b) 
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The mean absolute percentage error measure was used in this work to allow comparison 

across different forecasting methods used in this work. As MAPE is not sensitive to 

outliers, the mean squared error was also calculated and included in Table 14. The MSE 

is an error measure that emphasizes larger errors, penalizing models that make significant 

mistakes more heavily.   

A perfect case was added in this work to show how the PV generation forecast itself 

influences battery schedule effectiveness in grid export reduction and the self-

consumption increase. From Table 14, can be seen that when perfect data is used in the 

generation of the schedule, the grid export reduction is 89% and self-consumption 

increases by 90.3% compared to the case when the battery was not in the system. Both 

variables were reduced when the schedule was prepared based on the perfect demand and 

forecasted generation. The grid export reduction was lower by 1.2%, and the self-

consumption increase was reduced by 3.3% compared to the perfect case. 

For the scenarios employing different demand forecasting models,  the reduction in grid 

export achieved by the developed model is in the range of 75.8% - 85.4% and the self-

consumption is increased by between 74.5-82.8%, compared to 87.8% and 87% for the 

grid export reduction and increase in self-consumption respectively, achieved by perfect 

demand forecasting case. The model employing persistence and Gradient Boost Machine 

demand forecasting model achieved the best results among other for the export reduction 

and self-consumption increase respectively, Table 14. The worst performance in export 

reduction and self-consumption compared with the perfect demand forecast achieved the 

model employing the ARIMA demand forecast and applying the NN demand forecast, 

respectively. The NN model used in this work was shallow feed-forward NN. The low 

accuracy of this model is the result of not proper tuning of the model to the available data 

that resulted in a high error in the demand prediction, thus low export reduction and self-

consumption compared to the perfect demand forecast. Additionally, the low number of 

training data also influenced the accuracy of this model as it was trained only on 63 days 

of data.   
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To measure the strengths of the correlation between the export reduction and forecast error 

and the self-consumption and demand forecast error, both Spearman and Pearson 

correlations were applied. The examination of the scatter plots with only six points did 

not give a clear indication if the relationship is linear or monotonic; for this reason, both 

measures of correlation were checked here. The simulation results show that there is a 

very strong negative Pearson correlation between the forecasting error and the reduction 

in export to the grid, equalling -0.92 with a corresponding p-value of 0.008, Table 15. This 

indicates that with the reduction of the forecasting error, the export of energy to the grid 

is increasing. There was also found negative strong Pearson correlation between the 

forecasting error and the increase in self-consumption, equal to -0.76, but due to the 

corresponding p-value of 0.08 (the significance level of 0.05 is applied in this work), this 

result is treated as inconclusive evidence of an association between these two variables 

(there is no statistically significant relationship between variables). The correlation 

between the reduction of grid export and the forecast error indicates that the accuracy of 

the employed forecasting method has a significant influence on model performance. The 

Spearman correlation for both export reduction and self-consumption increase have 

corresponding p values above a significance level of 0.05 and are treated as inconclusive 

evidence of an association between these variables and forecasting error. 

 Table 15 Correlation between the forecast error and grid export reduction, forecast error 

and the self-consumption increase. 

MAPE 

association with 

Spearman Correlation Pearson Correlation 

Correlation 

coefficient 

Corresponding  

p-value 

Correlation 

coefficient 

Corresponding  

p-value 

Grid export 

reduction 

-0.43 0.42 -0.92 0.008 

Self-consumption 

increase 

-0.71 0.14 -0.76 0.08 
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The naïve method, Persistence demand forecasting, used in the developed tool, gives 

the higher export reduction among all used models, but it does not perform so well with 

the increase in self-consumption. The model employing the Ensemble forecast has the 

lowest mean absolute percentage error (MAPE) but does not introduce a higher percentage 

increase in the analysed quantities than other models. Ensemble forecast calculates the 

unweighted average of all other forecasts and uses it as forecasted value. During the 

process of averaging, some errors cancel each other; this is a reason why the MAPE is 

improved. This method, regardless of the lowest MAPE, does not provide better 

performance in grid export and self-consumption; this indicates that other performances 

of the forecasting method need to be analysed, and their influence on the performance of 

the developed model should be evaluated. 

5.2.2  Evaluation of the Storage Scheduler Effectiveness  

The analysis of the BES scheduler's effectiveness in predicting required storage 

actions is presented in this section. The method based on binary classification (the 

confusion matrix) is proposed. The confusion matrix is the table of true and false positives 

(TP, FP, respectively) and true and false negatives (TN, FN, respectively) that are results 

of comparing the outcomes of classification, hypothesis testing, and object/event detection 

with the available target/ true/ actual outcomes [203]. It is a way to describe the 

performance of the classification model or classifier [203][229]. The example of the 

confusion matrix with its notation is shown in Fig.48. The rows of the matrix represent 

the actual (target) occurrences of the particular storage action, and the columns correspond 

to predicted instances of this action. This method enables the evaluation of the scheduler 

model's capability to predict the occurrence of a particular action of the electrical energy 

storage. In this work, the target value were the actions set to be performed by BES when 

actual demand data were used during schedule generation. The predicted results came 

from simulations with different demand forecasting methods employed in the model. For 

each case, the three separate matrices were prepared for predicting charging, discharging 
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and the “no action” (hold action) actions with a comparison to the target schedule, 

included in Appendix B. 

                                         PREDICTED ACTION 

 

 

ACTUAL 

ACTION 

 (TARGET) 

 positive negative 

positive True positive 

(TP) 

False-negative 

(FN) 

negative False-positive 

(FP) 

True negative 

(TN) 

 

Figure 48 Confusion matrix notation. Separate matrices were replicated for each of the three 

considered charge actions (charging, discharging and ‘no action’). 

 

The assessment of the effectiveness of the schedule was performed based on different 

performance measures derived from those matrices, such as sensitivity, specificity, false-

positive rate, and precision/positive predicted value. All these indicators “describe the 

level at which the evaluated classifier succeeds or fails to correctly detect a positive class” 

[229]. In this case, the positive class is an action set by the scheduling tool to be performed 

by BES (either charging, discharging or “no action”).  The sensitivity gives the proportion 

of actual positive instances that are correctly identified.  The specificity gives the 

proportion of actual negative instances that are correctly identified. The false-positive rate 

indicates the proportion of the number of negative occurrences that were predicted to be 

positive. Finally, precision is the proportion of positive instances that were correctly 

identified [203][229]. Based on the confusion matrix notation from Fig. 48, these 

performance measures can be calculated as follows: 

sensitivity = TP/(TP+FN)                                              (30) 

specificity=TN/(TN+FP)                                    (31) 

false-positive rate=FP/(TN+FP)               (32) 
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precision=TP/(TP+FP)                                (33) 

 As stated in [229], using all performance measures derived from the confusion matrix 

at the same time leads to significant informational redundancy. Usually, the performance 

measure is performed by assessing a complementary pair of indicators such as sensitivity 

with specificity, precision with sensitivity or true positive rate with the false positive rate. 

It is because one of the indicators describes the ability to detect the positive occurrence, 

and the other one describes the capability to detect negative instances [229].   In this work, 

the analysis of sensitivity and specificity is carried out to evaluate the schedule 

effectiveness. 

When selecting the best classification method, ideally, both its sensitivity and 

specificity should be high; in practice, it is a compromise based on application-specific 

criteria. The method with very high sensitivity does not perform well if it is characterised 

by poor specificity and vice versa. These two quantities have complementary 

characteristics; hence, it is necessary to achieve high values for both of them to ensure 

effectiveness in classification. The sensitivity indicates how good a method is in 

predicting positive outcomes (performing the required action: charging/discharging and 

hold actions in this case), and the specificity gives information on how good the model 

performs with the prediction of “not performing this action” (not performing either 

charging, discharging or ‘hold action’ in this case). When specificity is high, it means that 

the scheduler sets fewer cases of actions to be executed even if they should not be executed 

at a particular time. For the BES, it is crucial that charging and discharging actions, set by 

the charge scheduler, are not executed when they should not be performed, as it can reduce 

the ability of this device to achieve system goals (grid export reduction and increase in 

self-consumption in this case). More importantly, this situation can negatively influence 

the health of the battery due to misuse. For this reason, specificity is treated as the leading 

criterion for assessing the schedule effectiveness in this work and sensitivity is treated as 

the subsequent criterion.    
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In the presented work, the effectiveness of the scheduler model employing a different 

method of demand forecasting was evaluated compared to the schedule based on a perfect 

demand forecast. The analysis of effectiveness was based on the performance of 

predictions for the three possible actions that storage can perform: discharge, charge or 

‘no action’ in a given interval of time. The calculated performance measures for all 

possible simulated cases are summarised in Table 16. According to Table 16, the 

scheduler model employing GP forecast of demand achieves the highest specificity in the 

prediction of the energy storage actions except for predicting the “no action” state (hold 

action for the storage), for which the model employing GBM demand forecasting 

performs the best. The scheduler model that uses GP regression to forecast demand was 

chosen as the potential candidate with good effectiveness in the charge and the discharge 

action prediction. It also achieves a higher sensitivity in predicting the “no action” state 

than the GBM model. The analysis of the model performance in the grid export reduction 

for the model employing GP shows that the grid export reduction achieved by this model 

compared to the schedule based on perfect demand forecast is lower only by 2.7%. It is 

the second-best result after the persistence model, which was off only by 2.4% in grid 

export reduction compared to the perfect forecast demand case. The model employing the 

GP forecast also achieved the second-best increase in self-consumption after the GBM 

model. The self-consumption increase of the GP model was lower by 6.1% compared to 

the perfect demand forecast case. In the case of the GBM model, the increase in self-

consumption decreases by 4.2% compared to the perfect demand case. The persistence 

forecast does not perform well with respect to the increase in self-consumption, which 

was lower by 11% compared to the perfect demand forecast case, and thus was rejected 

as the potential candidate. In the case of the GBM model, which performed better in self-

consumption than the GP model in comparison to the perfect demand case, this model 

achieved lower grid export reduction than GP and additionally has lower specificity in the 

prediction of the charge and discharge actions, the chosen leading criterion of schedule 

effectiveness, thus also was rejected. The above analysis of the model performance in the 
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grid export reduction and self-consumption increase can support the choice of the GP 

model as the most promising candidate.  

Table 16 Performance measure values for prediction of action of the BES for Lithium-

ion battery.  

Action Performance Measure The demand forecasting model used 
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Sensitivity      

 

(%) 

90.8 91.7 90.9 78.9 87.5 91.5 

Specificity 91.6 90.9 91.5 87.3 86.9 91.5 

False-positive 

rate 

8.4 9.1 8.5 12.7 13.1 8.5 

Precision 91.8 91.2 91.6 86.5 87.3 91.7 

C
h
ar

g
e 

Sensitivity  

 

(%) 

93.9 94.4 92.7 88.4 85.7 93.1 

Specificity 96.4 96 96.3 92.2 94 96.2 

False-positive 

rate 

3.6 4 3.7 7.8 6 3.8 

Precision 92.4 91.7 92.1 84.2 87 91.9 

N
o
 a

ct
io

n
 

Sensitivity  

 

(%) 

81.7 78.8 83.4 74.2 79.4 82.4 

Specificity 96.2 97 96.2 91.2 95.3 96.7 

False-positive 

rate 

3.8 3 3.8 8.8 4.7 3.3 

Precision 81.7 84.6 82.3 63.9 77.9 83.9 

 

The most accurate forecasting of demand does not necessarily provide the most effective 

schedule for all possible BES actions. It indicates that further work on the influencing 
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factors on the schedule effectiveness should be performed. Furthermore, the influence of 

the performance of the forecasting model used in the scheduling tool should be more 

closely investigated. 

5.2.3  Effect of the Error in Demand Forecasting on the 

Maloperation Level of a Lithium-ion Battery  

In this section, the examination of the influence of the BES schedule produced by the 

scheduling tool employing different demand forecasting models on the level of 

maloperation of this device for the Lithium-ion battery was carried out. For this purpose, 

the IOHMM model of the Lithium-ion battery (maloperation model) developed in the 

previous chapter was used. The charging/discharging battery schedules generated were 

run through the IOHMM model, and the output of the model, health/maloperation indexes, 

were compared. The cumulative health indexes generated by the battery model due to the 

applied schedule based on different forecasting methods and perfect cases20  are presented 

in Fig. 49 and Fig. 50 (which shows the cumulative health index change from the time 

step 550 onwards). The maloperation level of the battery due to the applied schedule based 

on the perfect demand forecast and PV generation forecast (persistence-based) was 

included in the simulations to allow comparison of the simulation with different demand 

forecasts against the perfect forecast demand case. The maloperation level of the battery 

operated using a schedule prepared based on original demand and original generation was 

also included. The purpose of this addition was to show the effect of the PV generation 

forecast error alone on the maloperation level of BES (perfect forecast demand case versus 

perfect case). The cumulative health indexes at the end of the simulation period are 

summarized in Table 17.  

                                                 
20 Perfect demand case – perfect demand data with PV generation forecasted  

    Perfect case – original demand and original PV generation data used 
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Figure 49 Comparison of cumulative health indexes generated by Lithium-ion battery model 

based on the schedules prepared by scheduler employing different demand forecasting models.  

 

Figure 50 Detail of comparison of cumulative health indexes, from time step 550 to the end of the 

simulation, generated by Lithium-ion battery. 
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From Fig. 49, it is clear that the batteries are degraded in a similar fashion by the first 

200 steps, where the level of maloperation starts to diverge for schedules based on 

different forecasting methods. The increasing spread between the estimated cumulative 

health indexes produced based on the schedule generated employing different demand 

forecasting models is due to the accumulation of the error in the demand prediction. This 

indicates that accuracy in demand prediction is very important as it can affect battery 

health. The schedule based on the ensemble forecast and persistence forecast similarly 

influenced the battery health and resulted in the lowest level of maloperation among all 

schedules considered compared to the perfect demand case.  

Table 17 Forecasting error and the Maloperation level of the battery due to the applied 

operating regime generated based on the different demand forecasting models while 

charging/discharging schedule generation.  

  

Forecasting model Forecasting error Health measure of battery 

Mean absolute percentage 

error. 

Cumulative health index 

generated due to applied 

schedule 

[%] [  ] 

Perfect case           

(original demand and 

generation data) 

- -414 

Perfect forecast 

(original demand data) 
- -420 

Ensemble forecast (all) 27.4 -428 

Gradient boost Machine 29 -442 

Persistence forecast 29.7 -430 

Gaussian Process 30.6 -438 

ARIMA model 48.2 -448 

Neural network 50 -456 
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From Table 17, it can be seen that the degradation level of the battery that was run 

with the schedule produced when employing the perfect demand data reached -420 

compared to -414 for the schedule based on actual data. In Fig. 49 and Fig. 50, the 

cumulative maloperation level curve for the perfect demand case is pushed down 

compared to the case with the original demand and original generation data used in the 

simulation. The health of the battery in this case becomes negatively impacted due to the 

applied schedule and the impact on health is solely due to the influence of the generation 

forecast error on the produced schedule. As the PV generation forecast is kept the same in 

all remaining scenarios, except the perfect case, the health changes when compared to the 

perfect demand case are due to the influence of the demand forecast method used in 

schedule generation. The degradation level for the schedule based on ensemble and 

persistence forecast reached -428 and -430 levels, respectively, compared to -420 for the 

perfect demand case, Table 17. The highest level of maloperation due to the applied 

schedule, -456, achieved the schedule based on the neural network demand forecast 

model, which is lower by -36 from the perfect demand case. When analysing the most 

promising forecast model to be used in the scheduling tool, considering the influence on 

the health of this device, the schedule based on ensemble and persistence forecast 

performed the best compared to all other considered methods with respect to the perfect 

demand case. The GP model, which was chosen as the most promising model when the 

effectiveness of prediction and providing the grid reduction export and self-consumption 

functions were used as a criterion of choice, achieved the third-lowest maloperation level 

of -438, which was lower by – 18 compared to perfect demand case. When including all 

remaining criteria (specificity and sensitivity) in conjunction with the level of 

maloperation in assessment, the GP model will keep its position as the most promising 

method among all considered in this work. The ensemble forecast provides the lowest 

level of maloperation, but it does not do so well with providing the required function by 

the scheduler (i.e. export to grid reduction and self-consumption increase). In turn, a 

schedule based on the persistence demand forecast achieves a much lower self-

consumption level compared to GP and GBP models. Additionally, it has lower specificity 
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and sensitivity in predicting charge and discharge actions than the GP model, thus is also 

rejected as a potential candidate.  

The Pearson and Spearman correlations were applied are applied here to measure the 

association between the maloperation level and the battery performance measures used in 

this work to assess schedule effectiveness. The Pearson correlation only evaluates the 

linear relationship between two variables. From the examination of data, there was not 

clear whether linear or monotonic relationships existed between analysed variables; for 

this reason, also the Spearman correlation was used (this method measures the monotonic 

association between two variables). The summary of this analysis is included in Table 18.  

 

Table 18 Association strength between cumulative health index at the end of simulation and 

variables describing the performance of the scheduler. 

Cumulative index 

association with 

Pearson correlation Spearman correlation 

Correlation 

coefficient 

P-value Correlation 

coefficient 

P-value 

Demand forecast error 

(MAPE) 

-0.79 0.05 -0.94 0.001 

Reduction of export to 

the grid 

0.76 0.08 0.60 0.24 

Increase in self-

consumption 

0.43 0.39 0.48 0.35 

S
p
ec
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y
 

fo
r 

p
re

d
ic

ti
n
g
 

ac
ti

o
n

 

Discharge 0.77 0.07 0.63 0.19 

Charge 0.063 0.18 0.60 0.20 

‘no action’ 0.43 0.38 0.72 0.10 

S
en

si
ti

v
it

y
  

fo
r 

p
re

d
ic

ti
n
g
 

ac
ti

o
n

 

Discharge 0.57 0.24 0.60 0.24 

Charge 0.79 0.06 0.49 0.36 

‘no action’ 0.70 0.12 0.77 0.10 
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The analysis was carried out for the MAPE, export to grid reduction, increase of self-

consumption, specificity and sensitivity of prediction charge, discharge and ‘no action’ by 

the scheduler. The export to grid reduction and increase in self-consumption were the main 

performance measure of the developed scheduler tool hence, they were included in this 

analysis. The two last variables, specificity and sensitivity, were selected as they were 

treated as leading and subsequent criteria respectively for assessing schedule effectiveness 

in prediction actions, as mentioned in Section 5.2.2.  

From Table 18, it is clear that only the correlation between the forecast error -MAPE and 

the cumulative health index can be treated as statistically significant. In the rest of the 

cases, the p-values associated with the correlation coefficients are greater than the 

significance level of 0.05; thus, the results were treated as inconclusive evidence of an 

association between variables. A high negative Pearson correlation21 was found between 

error in demand forecasting and the inferred battery level of maloperation at the end of 

the simulation with a value of -0.79 and a corresponding p-value of 0.05. There was also 

a very strong negative monotonic correlation (Spearman)21 between those two variables, 

-0.94, with a corresponding p-value of 0.001. This result indicates that with the increase 

in the demand forecasting error, the level of battery degradation increases (reflected by a 

decrease in the health metric). This kind of relationship between forecast error and battery 

degradation was expected. If the battery performs the action that was scheduled by 

‘mistake’ due to a wrong demand prediction, it could potentially harm this device. This 

result can imply that the demand forecasting error influences battery health by introducing 

in the schedule of this device the actions that misuse this device. This misuse instance 

might lead to battery performance deterioration and potential hazards for this device and 

the whole power system comprising it. 

                                                 
21 Note that the correlations were calculated based only on six available pair of values of error and battery 

maloperation level. 
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 Summary of Chapter Findings  

This chapter has presented an availability-based algorithm for producing day-ahead 

electrical energy storage schedules that reduce the energy export to the grid and 

additionally increase self-consumption in the modelled system. It has also discussed the 

influence of the demand forecasting methods used to generate the BES schedule on its 

effectiveness, provision of required functions by this device and level of maloperation of 

BES due to the applied schedule.  

The most significant findings of chapter four can be summarised in the following points. 

1. The most accurate demand forecasting models do not necessarily give the most 

effective schedule for all possible BES actions. This can have important 

implications for this device and the system comprising it. Performing 

charging/discharging actions of BES when they should not be performed can 

reduce the ability of this device to provide required functions due to the accelerated 

deterioration of battery performances, potentially resulting in device failures or 

safety hazards in the system. Other important implications of not appropriately 

scheduled action of the BES, this time from the system operator's point of view, 

are the potential reduction of power system capability for continuous energy 

provision to the consumers. For example, when demand in the system is much 

higher than a generation available at a particular time, and the discharge action for 

BES was not scheduled at this time, the required energy for the user may not be 

provided to him due to the wrongly assigned action to be performed by the BES. 

This finding indicates that further work on the influencing factors on the schedule 

effectiveness should be performed. Furthermore, the influence of the performance 

of demand forecasting models used in schedule generation should be more closely 

investigated, and their impact on the generated BES schedule needs to be 

evaluated. 

2. The strong dependency between the MAPE of the demand forecasting method 

used, and energy export reduction (shown by high negative Pearson and Spearman 
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correlation) indicates that a forecasting method with low MAPE is preferred as it 

can improve the overall storage system performance. Although the exception of 

schedule based on ensemble load forecast, which despite the lowest MAPE 

achieved, did not provide the highest reduction in the energy export to the grid, 

indicates that further research on the influence of the performances of the 

forecasting methods on the performance of the BES schedule should be 

investigated and more closely evaluated. 

3. The observed increasing spread between the estimated cumulative health indexes 

produced based on the schedule generated employing different demand forecasting 

models that resulted from the accumulation of the error in the demand prediction 

indicates that accuracy in demand prediction is very important as it can affect 

battery health. 
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CHAPTER 6 

6. Conclusions and Further Work 

This thesis contributed to the development of a novel Battery Energy Storage health 

measure, which requires nothing more than only operational monitoring to support its 

operation. This non-invasive approach, based on the Input-Output Hidden Markov Model, 

predicts the extent to which a battery asset has been maloperated based only on the battery 

operating regime imposed.   

Chapter Two has contributed to the formulation of rules based on an in-depth review of 

seven battery technologies and underlying degradation mechanisms which constituted the 

basis for the novel health index generation required for model training. In this chapter, the 

battery operational preferences dictated by its chemistry and physics were translated into 

the novel health index, maloperation level, which then was learned by the proposed Input-

Output Hidden Markov Model, enabling automatic future recognition of such events by 

the developed model using only the limited data observed from the battery operational 

regime. In this chapter, the battery operational preferences were summarised in tabular 

form, constituting a potential guide when selecting battery technology for considered 

application. 

Chapter Three contributed to an increased understanding of the current challenges in 

battery health prognostics. In this chapter, the state of art in the modelling of battery health 

prognostics was reviewed with a discussion about the advantages and disadvantages of 

currently used approaches in battery health modelling. Based on this review, the niche in 

battery modelling was found. This work has filled this niche. This chapter also 

summarised the research questions answered in chapter four of this thesis. 
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Chapter Four contributed to the design of a novel machine-learning model employing 

the IOHMM, which captures battery degradation mechanisms without considering the 

detailed chemistry and physics of the asset. The applicability of the developed model to 

predict battery asset degradation level was assessed against randomised battery usage lab 

data accessible from the NASA Prognostic Centre of Excellence Data repository [206]. It 

was shown that the battery degradation level expressed in the novel metric proposed in 

this thesis is comparable to capacity fading, a commonly used metric for battery 

degradation and ageing. The advantage of the proposed approach over using capacity fade 

is the minimal data requirements for operation. The developed model does not require 

intensive measurements for its operation, and health/maloperation prediction is 

comparable with currently used metrics. 

Chapter Five demonstrated the operational practicality of the developed model. It looked 

at how the demand forecast error influenced the effectiveness of the battery schedules 

generated based on this forecast and how it is reflected in the battery maloperation level.  

The availability-based scheduler was designed in this chapter, which employed different 

forecasting methods. Multiple schedules were generated based on different forecast 

methods. Those schedules were then assessed to determine how the accuracy of each 

forecasting method affected the effectiveness of the BES schedule and its performance in 

the export to the grid reduction and self-consumption increase. This chapter also looked 

if there is any association between the uncertainty due to the forecast of demand and the 

battery degradation level.  

In summary, this thesis contributed to the development of non-invasive battery energy 

storage health metrics based on revised battery technologies and degradation mechanisms 

linked to chemistry and battery physics, supported by the development of a machine-

learning model of maloperation level capturing degradation mechanisms, which requires 

nothing more than only operational monitoring to support its assessment. It also 

investigated how the forecast error, from demand forecasting, propagates to the 
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maloperation matrix and how much uncertainty in the forecast influences the maloperation 

level.   

 Recommendations  

No model includes every aspect of the real world or real system [230], as it constitutes 

only its representation.  In this section, some recommendations regarding possible 

improvements to the developed battery maloperation/health model are discussed. 

Implementing proposed enhancements, such as including additional variables impacting 

battery asset wellbeing, can further extend the ability of the model to predict battery 

health.  Additionally, in this section, some potential collaborative multidisciplinary 

research topics are recommended to further enhance the developed battery 

health/maloperation model and to increase understanding of the impact of the demand 

forecasts on the BES health, schedule and its ability to provide required functions. Further 

understanding of the influence of demand forecasts on the BES health and schedule can 

be beneficial for more informed battery management, especially when scheduling its 

operation in advance. 

6.1.1 Recommended Battery Maloperation Model Improvements 

The battery maloperation model developed in this work can be further improved by: 

 Using a ‘weighted’ preference index to accommodate the different levels of 

influence of the particular operation on the battery health. Currently, the model 

uses indexes with the same weight at any given time. More appropriate could be 

to use a scaled index to be able to accommodate, for example, prolonged action 

against the battery preferences. For example, the longer we charge the Zn/Br2 

battery before discharging it to the empty state, the higher probability of growing 

dendrites and a higher level of deterioration of device performance or even device 

damage. It would be beneficial if the length of the action performed against 

battery preferences would be reflected in the index. The longer the negative action 
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is performed, the lower the index should be generated. In the developed model, it 

is always a negative one in such a situation regardless of the length of action 

performed against battery preferences. This requires a deeper understanding and 

more complex knowledge of battery chemical processes and ways of modelling 

them than it is currently in a state of research and constitutes a potential 

collaboration platform with experts in battery chemistry. 

 The temperature of the battery and ambient temperature has a significant influence 

on the battery degradation processes. In the developed model, this dependency 

was excluded from the modelling. It was assumed that the battery operating 

environment was not hostile to this device and that the sole threat to asset life was 

through misuse. This is dictated by the fact that in the grid storage applications, 

regardless if the battery is stored in containers, dedicated rooms in the building or 

if we deal with ready-to-install systems, the system is always equipped with a 

temperature management system, which maintains the optimum conditions for the 

batteries. Adding this information to the model can allow extending the 

application of the developed model to those where the battery is not used in the 

temperature-controlled environment.  

 In addition to the improvements in the developed models, it would be beneficial 

to perform the second out-of-sample test and validation of the battery models for 

all battery technologies covered in this work, as it was not implemented due to the 

lack of available suitable datasets with the exception of lithium-ion battery for 

which this test was performed.   

6.1.2 Proposed Collaborative Research  

The work proposed in this thesis opens the numerous possible direction for further 

research, with possible cross-field collaboration. Some of the possibilities are as follows: 

 Collaborative research with the experts in the area of battery chemistry to 

improve the developed battery maloperation model by including the weighted 

preference index to catch dependency on the length of action performed 
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against battery preference on device degradation and health, which can even 

further enhance the model capabilities to predict battery maloperation level. 

 Further research on the influence of the forecasting model (used in the 

prediction of electrical demand) on the generation of the BES schedule, its 

effectiveness and battery health constitutes potential collaboration with experts 

in the forecasting area. This research will be beneficial for smart grid 

applications as the outcome can improve the understanding of the forecasting 

influence on the BES health and ability to provide required functions due to 

operation dictated by schedule based on the forecast of demand and generation.  

 The research on the influence of the PV generation forecasting model on the 

generation of the BES schedule, its effectiveness and battery health constitutes 

potential collaboration with experts in the forecasting area. 

 Development of a novel charging and discharging scheduler that plans the 

charging regime of BES under uncertainties (uncertain output of renewable 

generation, high prediction error of disaggregated demand, battery itself), 

reinforcement learning-based (for example, using Partially Observable 

Markov Decision Processes). The developed battery maloperation model can 

help accommodate the uncertainty related to the battery technology in the 

scheduler and can act as the policy function in an automated scheduler based 

on POMDP or another type of algorithm. The developed model can act as the 

proxy for the degradation costs in terms of maloperation level. It is not 

monetary cost but rather some measure of battery maloperation level that, by 

impacting the battery health, can generate monetary costs due to, for example, 

premature replacement of this device. In other words, the maloperation index 

indicates that the battery was operated against its chemistry and preferences, 

leading to battery health degradation, which can incur some additional costs in 

the system.  

 Joining efforts with the researchers proposing the battery health prediction 

based solely on the temperature to produce a hybrid model incorporating the 
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health prediction based on battery maloperation proposed in this work with a 

model based on device temperature. This can result in a more complete model 

for battery health estimation.  
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7. Appendices 

Appendix A.1 IOHMM Lead-acid battery model parameters. 

A is the transition probability matrix, B is the observation probability matrix and π is the initial state probability. 
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Appendix A.2 IOHMM Lithium-ion battery model parameters. 

A is the transition probability matrix, B is the observation probability matrix and π is the initial state probability. 
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Appendix A.3 IOHMM Nickel Cadmium battery model parameters. 

A is the transition probability matrix, B is the observation probability matrix and π is the initial state probability. 
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Appendix A.4 IOHMM NiMH battery model parameters. 

A is the transition probability matrix, B is the observation probability matrix and π is the initial state probability. 
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Appendix A.5 IOHMM sodium-sulphur battery model parameters. 

A is the transition probability matrix, B is the observation probability matrix and π is the initial state probability. 
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Appendix A.6 IOHMM Zn/Br2 battery model parameters. 

A is the transition probability matrix, B is the observation probability matrix and π is the initial state probability. 
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Appendix A.7 IOHMM VRFB model parameters. 

P is the transition probability matrix, B is the observation probability matrix and π is the initial state probability. 
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Appendix B.1 Confusion matrices for Gradient Boost Machine and Persistence 

demand forecasts. 

The confusion matrices for charging, discharging and “no action” state prediction of energy 

storage schedule for model employing (a) the Gradient Boost Machine demand forecast, (b) 

Persistence forecast 
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Appendix B.2 Confusion matrices for ARIMA and Neural Network demand 

forecasts. 

The confusion matrices for charging, discharging and “no action” state prediction of energy 

storage schedule for model employing  (a) ARIMA model, (b) Neural Network forecast. 
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Appendix B.3 Confusion matrices for Gaussian Process regression and Ensemble 

demand forecasts. 

 

The confusion matrices for charging, discharging and “no action” state prediction of energy 

storage schedule for model employing (a) Gaussian Process Regression Model, (b) Ensemble 

forecast. 
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