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ABSTRACT 

Power-by-the-hour is a performance based offering for delivering outstanding 

service to operators of civil aviation aircraft. Operators need to guarantee to 

minimise downtime, reduce service cost and ensure value for money which 

requires an innovative advanced technology for predictive maintenance. 

Predictability, availability and reliability of the engine offers better service for 

operators, and the need to estimate the expected component failure prior to 

failure occurrence requires a proactive approach to predict the remaining useful 

life of components within an assembly. 

This research offers a framework for component remaining useful life prediction 

using assembly level data. The thesis presents a critical analysis on literature 

identifying the Weibull method, statistical technique and data-driven methodology 

relating to remaining useful life prediction, which are used in this research. The 

AS-IS practice captures relevant information based on the investigation 

conducted in the aerospace industry. The analysis of maintenance cycles relates 

to the examination of high-level events for engine availability, whereby more 

communications with industry showcase a through-life performance timeline 

visualisation. Overhaul sequence and activities are presented to gain insights of 

the timeline visualisation.  

The thesis covers the framework development and application to gas turbine 

single stage assembly, repair and replacement of components in single stage 

assembly, and multiple stage assembly. The framework is demonstrated in 

aerospace engines and power generation engines. The framework developed 

enables and supports domain experts to quickly respond to, and prepare for 

maintenance and on-time delivery of spare parts.  

The results of the framework show the probability of failure based on a pair of 

error values using the corresponding Scale and Shape parameters. The 

probability of failure is transformed into the remaining useful life depicting a typical 

Weibull distribution. The resulting Weibull curves developed with three scenarios 
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of the case shows there are components renewals, therefore, the remaining 

useful life of the components are established. The framework is validated and 

verified through a case study with three scenarios and also through expert 

judgement.
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1 INTRODUCTION  

The 21st century has seen the rise of manufacturers of complex engineering 

systems provide services of their manufactured products offered to operators – 

servitisation (Ren and Gregory, 2007; Baines et al, 2009; Cheng and Johansen, 

2016; Probst et al, 2016; Spring and Araujo, 2017). Spring and Araujo (2017) 

provide insight into diverse forms of servitisation as a process of own it, use it, 

maintain it and dispose it by incorporating circular economy perspective where 

products are leased, shared, refurbished, disassembled for different components 

to be recycled and reused. Product-oriented and use-oriented models, rethinking 

repair and circular economy are performance offerings of servitisation. Cheng 

and Johansen (2016) opine servitisation creates competitiveness in the 

manufacturing space. Ren and Gregory (2007) define servitisation as a 

transformation strategy whereby manufacturers embrace service orientation, 

thereby creating better services with the sole purpose of satisfying the needs of 

the customers, gain competitive advantage and improve organisations' 

performance.  

Probst et al (2016) note that service maintenance contracts are increasing 

because manufacturers are changing their business models from product-makers 

to product-as-a-service providers. The concept offers added value to products 

and utilises advance technologies - big data, analytics and the cloud are 

supporting services such as predictive maintenance for costs reduction and 

increase efficiency. However, policy-makers can integrate services into 

manufacturing to support servitisation efforts by delivering collaboration and 

knowledge platforms to create matchmaking opportunities amongst companies. 

It provides access to skilled personnel with expertise in the field of IoT, analytics 

and big data. The concept makes ware of value proposition of predictive 

maintenance services for growth of businesses. Furthermore, innovation in the 

supply chains of companies in the nineteenth-century had led to the servitisation 

modernisations in the twenty-first century, whereby companies provide services 

bundled with goods and controlled by the same company (Schmenner, 2009).  
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Innovative servitisation establishes the advent of fusing products and services in 

the supply chain of large corporations as a competitive strategy, i.e. adding value 

by adding services to products e.g. Rolls Royce. While “TotalCare” provided the 

most cost effective, risk-mitigated engine maintenance plan to optimise the 

support and meet the customer’s operational, maintenance, and administration 

requirements, “Power-by-the-hour” set in the 1960s aligns the interests of the 

manufacturers to the operators, who only pay for engines’ operational 

performance on a fixed-cost-per-flying-hour (Rolls Royce, 2016).  

Servitisation is an innovative approach used in industrial product-service systems 

(IPSS), whereby downtime with associated costs are assessed by applying 

through-life engineering services Roy et al (2013); Redding et al (2015); Uhlmann 

et al (2015); Wilkinson et al (2009); Addepalli & Tinsley (2015); Farnsworth et al 

(2015); Van Dongen (2015) in the aerospace, automotive, energy, industrial 

machinery, oil and gas refineries, logistics, maritime, and health care industries.  

A through-life engineering services approach referred to as predictive 

maintenance discussed in chapters 2 and 6 will be introduced to reduce downtime 

issues, associated costs and spare parts inventory management prompting 

industry operators and manufacturers to pay attention to Condition-Based 

Maintenance. Although, the components in-service may fail to perform due to 

their design specifications, manufacturing processes or through-life use leading 

to major challenges. These components failures lead to downtime requiring 

urgent maintenance. The maintenance strategies include corrective and 

preventive maintenance discussed in section 2.5 of chapter 2. The maintenance 

strategies affect operations, life cycle cost and downtime. In addressing these 

challenges, the predictive maintenance strategies known as Condition-Based 

Maintenance (CBM) and Reliability-Centred Maintenance (RCM). Predictive 

maintenance strategies are facilitated by the engagement of Through-life 

Engineering Services (TES) capabilities. Through-life Engineering Services can 

be described as the ability of creating high-value engineering services based on 

design and manufacturing aimed at whole life cycle cost for better maintenance 

decision-making.  
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This research aims to understand component degradation in a broad context with 

a focus on predicting the remaining useful life of a component within an assembly. 

A component degrades because of in-service of complex degradation 

mechanisms. The design and manufacturing information require investigating in-

service components and maintenance histories of the level and nature of the 

damage. While diagnostics detect the type of the damage, prognostics predict 

the time whereby a component can no longer perform its designed function. 

This applied research seeks to improve the through-life performance knowledge 

by addressing the issues regarding degradation of assets and predicting their 

remaining useful life, which are running concurrently and partially repaired with 

different overhaul times. Difficulty getting appropriate data for modelling and 

predicting remaining useful life of a component based on assembly data has led 

to developing a proposed framework for this research.  

This chapter gives an overall background of the research. The introductory 

chapter presents the motivation and scope of the Thesis in Section 1.1. Section 

1.2 highlights the problem definition. Section 1.3 gives a list of the research 

questions. Section 1.4 focuses on the research sponsors. Section 1.5 presents 

the Thesis structure and Section 1.6 is a summary of this chapter. 

1.1 Motivation and scope 

Remaining useful life prediction is a growing research field involving techniques 

from reliability engineering, time series analysis, computational intelligence and 

regression modelling of assets (Rausand and Høyland, 2004; Majidian and Saidi, 

2007; Pecht and Jaai, 2010). Industrial product-service systems are complex 

engineering systems which include gas turbines, power trains, machine tools and 

wind turbines.  

While gas turbine made of a three-shaft-design is produced by  Rolls Royce (RR), 

a two-shaft-design is manufactured by General Electric (GE). The research aims 

to investigate degradation mechanisms on a feature of a component/commodity 
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for a specific high-pressure turbine stage one assembly/system of a particular 

product/engine shown in Figure 1-1. 

 

Figure 1-1: A schematic relationship hierarchy 

The complex engineering system contains a number of concurrently working 

multi-component. The multi-component is a collection or group of components 

such as nozzle guide vanes (NGVs), turbine blades, and compressor fan blades 

in a gas turbine that degrade by different failure modes. Degradation creates a 

need for maintenance of a complex engineering system. Failure modes such as 

corrosion, erosion, oxidation, microstructural change and wear are present in a 

gas turbine. The gas turbine operating firing temperature of the hot section is 

13710C (Boyce, 2006).  

The mechanical component under investigation is High-Pressure Nozzle Guide 

Vanes (HP-NGV), which is affected by environmental effects, operational 
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component stress, design and manufacture effects (Boyd-Lee et al, 2001; Boyce, 

2006). The HP-NGV is a family of the turbine component, manufactured from 

Nickel superalloys and covered in thermal barrier coating (TBC). The TBC is 

thermal protective ceramic top coat called Yttrium-stabilized zirconia (O'Donnell 

et al, 2017; Lashmi et al, 2017). The TBC is high temperature resistance ceramic. 

A bond coat alloy is deposited on the Nickel substrate to improve TBC adhesion. 

A thermally grown oxide (TGO) acts as a diffusion barrier, which protects the 

superalloy from oxidation corrosion (Fukuchi et al, 2017; Zhao et al, 2017). The 

temperature is far more than the melting point of foremost Nickel-based alloys. 

The components deteriorate by corrosion, cracks, damage to the TBC, wear and 

fatigue. This degradation results from low-cycle fatigue and high-cycle fatigue 

operating conditions. The degradation mechanisms cause damage to mechanical 

components of a gas turbine. The purpose of the NGV is to guide accurate 

thermal flows between their casing mounts (Rolls Royce, 2005). It also maintains 

effective air seals to protect the gas path and cooling air system from leakage 

(Rolls Royce, 2005). 

In complex engineering systems, prognostic and health management (PHM) is 

still rare and gradually gaining ground (Balaban et al, 2015). In CBM, PHM 

supports the predictive maintenance strategy to minimise system life cycle losses 

and life cycle costs (Liao et al, 2012). The predictive maintenance aids cost 

saving over traditional maintenance. Furthermore, predictive maintenance 

provides proper planning for corrective maintenance to avoid sudden system 

failures. The development and deployment of remaining useful life prediction 

frameworks is challenging, hence, the need for a prognostics approach.  

The statistical model is required for the prognostics approach, which accepts 

component life data, overhaul inspection values and the number of components 

at start, to estimate components rejected, replacement and reuse (R-Cube). A 

sequence of the state transition (overhaul times) is engaged in calculating the 

frequency of components replacement. Therefore, the motivation for this 

research is to develop an alternative approach to remaining useful life prediction 

of a component based on assembly level data. This approach is necessary for 
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aerospace and defence companies where critical components are found. The 

failure data are collected at the assembly level. Assembly level components are 

replaced after a fixed number of used cycles irrespective of their actual health. 

1.2 Problem definition 

Designers estimate life at the design stage and need realistic basis for the 

assumptions with the presence of assembly level failure data, but with no trace 

of component level records. The research provides an approach to convert 

observed rejection (historical) data into rate of component degradation towards a 

rejection threshold by modelling the through-life performance to estimate the 

number of rejections (number of degraded components), replacement (new 

components) and reuse (existing component). This approach back-fits an 

observed rejection rate and obtained estimated rejection rate as an error 

calculation to the initial characteristic life and slope values. The characteristic life 

and slope values are further applied to predict the remaining useful life of a 

component in an assembly. Examples of where failure rates are usually collected 

at the assembly level and not at the component level are marine and industrial 

engines applications where durability, availability and reliability are of utmost 

significance. 

A model-based (physics-based) model is hard to construct for a complex system 

to collect degradation data (Brotherton et al, 2000; Bolander et al, 2010). 

However, the data-driven model seems appropriate for only assembly level 

failure data. The research focuses on the components at assembly level because 

there are no available data at an individual component level. The logical 

relationship of the mechanism, component/commodity system/assembly and 

product is shown in Figure 1-2. The purpose of Figure 1-2 signifies the AS-IS 

current state analysis of historical data to determine nature and level of 

degradation mechanisms, feature of the component with failure, the 

component/commodity of the system/module and the system of the 

product/engine. The TO-BE side implies the proposed component failure and 

RUL prediction which relate to the engine and components. Damage is assumed 
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to be present in the component, hence, the use of reliability model and no need 

to show features and damage mechanisms.  

 

Figure 1-2: Relationship process for existing and proposed scenario 

The mechanism and feature phases are assumed and built-in in the degradation 

model for the component. While the AS-IS depicts the traditional maintenance 

strategy, the TO-BE relates to the predictive maintenance strategy. In the current 

practice discussed in chapter 4, the method for analysing component degradation 

consumes time, reduces the reporting time of spare parts inventory, extends 

engine downtime and increases manpower cost. There is a difficulty in evaluating 

documented degradation mechanisms. It is hard to decide when to scrap the 

entire components in an assembly. In the current practice, it can be difficult to 

know the expected number of components to be rejected within an assembly until 

a traditional maintenance assessment is conducted. However, in addressing this 

challenge, a prognostication approach known as a predictive maintenance 

strategy is recommended (Rausand and Høyland, 2004). The predictive strategy 

uses historical and current health data to estimate impending rejections for 

scheduled maintenance. This predictive strategy is referred to as prognostics and 

health management in condition-based maintenance. 
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1.3 Research questions 

The research questions are derived from the motivation of the research and 

problem definition. The research questions reflecting the information in Section 

1.1 include: 

i. How do we identify, analyse and derive relevant degradation information 

from service history data sets for the prediction of the remaining useful life 

a component in an assembly? 

ii. How do we evaluate and fuse the identified degradation variables and 

parameters from disparate sources to assess through-life performance 

using assembly level data to predict the remaining useful life of a 

component? 

iii. How do we validate the developed framework of through-life performance 

model systematically for component degradation and remaining useful life 

prediction? 

1.4 Research sponsors 

Through-life Engineering Service (TES) Centre 

The Through-life Engineering Services (TES) Centre is an Engineering, Physical, 

Science, and Research Council (EPSRC) Centre for Innovative Manufacturing. 

The centre is a £15M National Centre which include a £5.7M from EPSRC – grant 

number EP/I033246/1. The centre conducts world-class research to support 

manufacturing industries in the UK. The TES centre supports UK manufacturing 

sector with through-life engineering services for customers worldwide. The centre 

delivers high value products with predictability, availability and reliability through 

companies and their supply chain to improve competitiveness with lowest life-

cycle costs. The centre (TES Centre, 2013) creates advance and innovative 

capabilities to: develop technology and processes to improve design and 

manufacturing for engineering services; reduce whole life cost of high-value 

products; improve knowledge on interaction amongst electronics, mechanical 

and software systems; create innovative and potentially disruptive strategies; and 
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expand regenerative manufacturing. The centre aims to conduct state-of-the-art 

research in maintenance and installation costs reduction, and advise using 

robotics systems for maintenance, repair and overhaul. 

Rolls Royce (RR) 

Rolls Royce is a distinguished engineering organisation and worldwide provider 

of state-of-the-art power and propulsion systems. The systems are manufactured 

for use on land, at sea and in the skies. The company’s operating domain covers 

aerospace (civil and military), nuclear, energy, marine and services. The 

company provides maintenance, after sales support, delivery and engine 

disposal to shipping, logistics, military and airlines for passenger carriers. The 

company operates a business-to-business model of operation. Examples of 

engines for civil aviation wide body and narrow body aircraft are Trent 700, 900, 

1000 and XWB.  

The company offers performance-based business model to ensure engines have 

prolonged life through innovative and effective maintenance, repair and overhaul, 

thereby improving durable design. Its business performance model delivers 

power-by-the-hour showing the essence of circular economy for resources 

efficiency and long-term sustainability, by selling cycles of flight service. This 

business performance model is used for civil aerospace wide and narrow body 

aircraft – Boeing 787 and Airbus A380. The company offers material sustainability 

strategy through its diverse manufacturing facilities to support spare parts 

management. Components are manufactured from about 20,000 tons of super 

alloys metal materials annually. The company reprocesses 90% -100% of 

titanium and nickel super alloys captured from machining gas turbine materials 

(Kiser et al, 2016). The innovative design and advanced service operations 

improve performance and reduce whole life-cycle costs (Rolls Royce, 2005). 

The company’s overhaul activities begin on-wing in-service diagnostics using 

advanced engine health management practice to identify anomalies. This can 

lead to further investigation of the engine being taken off the aircraft – off-wing 

for further overhaul activities including repair of components and replacement. 
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Rolls Royce an Original Equipment Manufacturer (OEM) has a matchless 

understanding and knowhow in repair and overhaul of gas turbine engines. These 

repair and overhaul are conducted in facilities around the world, which include 

Ansty, Bristol, Montreal, Oakland California and Oberursel in Germany (Rolls 

Royce, 2017).  

1.5 Thesis structure 

This chapter discusses the research context, motivation and scope, problem 

definition and research questions. Figure 1-3 illustrates the layout of this Thesis. 

 

Figure 1-3 Thesis structure 
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Chapter 2 reviews the literature with respect to remaining useful life prediction 

methods, techniques and methodologies. This chapter focuses on the specific 

methodologies; techniques and methods applied in achieving the aim of the 

research. Other areas covered in this chapter include through-life engineering 

services, degradation mechanisms, taxonomy and ontology, timeline 

visualisation of events, an overview of maintenance strategies, renewal theory, 

parameter estimation, performance metrics and remaining useful life models. 

Chapter 3 highlights the aim, objectives and a systematic approach to the 

scientific research methods applied. Chapter 3 further discusses the 

methodology, rationales and the scientific research approaches used in this 

Thesis. The adopted methodology implemented in this research is presented. 

Chapter 4 examines and analyses the current (AS-IS) practice on the level and 

nature of component degradation from a traditional maintenance perspective. 

Chapter 4 discusses the relationship of the product, system, commodity, feature 

and mechanism about the service history and current health degradation 

information. In this context, taxonomies were automatically extracted using 

terminology recognition and relationship extraction techniques to show a 

hierarchy of relationship representation and the number of components, features 

and mechanisms.   

Chapter 5 presents an extension from the investigation of the degradation 

mechanisms taxonomy to events taxonomy to generate an ontology of events 

relating to multiple engines and multiple overhauls states. The investigation and 

analysis show the multiple maintenance cycles on a timeline for events 

visualisation. Furthermore, overhaul sequence and activities are outlined. 

Chapter 6 demonstrates prognostic through-life modelling based on knowledge 

acquired in chapters 4 and 5 to create a generic framework for predicting the 

remaining useful life of components. The framework outlines the through-life 

performance of component degradation based on the renewal theory from an 

actuarial perspective. The pre-processed data were used to estimate the 

parameters of the Weibull function. The application of renewal theory was 
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introduced in the model to calculate the number of R-Cube at each overhaul state. 

The through-life model distinctively and accurately forecasts the number of R-

Cube components for the next overhaul transition state. The state transition 

approach utilises the expected R-Cube outcome at the failure time onto the next 

overhaul. A model evaluation using a back-fitting algorithm was produced using 

a performance metric to calculate the deviation accuracy of the initial parameters. 

The application of a cost variable was used to determine the time to replace the 

entire component assembly. The remaining useful life of the components is 

predicted using RUL methodologies, techniques and methods discussed in 

chapter 2. The through-life performance approach reflects on the research 

objectives and contributions to knowledge stated in Sections 3.1 and 9.2.1.  

Chapter 7 discusses results of the framework developed in chapter 6 and the 

scenarios of a case study. Data-driven methodology, statistical technique and the 

Weibull method are implemented to analytically model the through-life 

performance of a set of components in an assembly. The case study scenarios 

include single stage, single stage repair replacement and multiple stage. The 

presented results of the case study scenarios are described.  

Chapter 8 describes the validation and verification conducted with experts 

including analysis of the outcomes.  

Chapter 9 presents discussions on the various chapters of this Thesis, 

contribution to knowledge and limitations, implementation challenges, future 

works and conclusions. 

1.6 Summary 

This chapter gives an overview of the research problem. The introduction 

presents the research background and highlights the relevant areas of focus in 

this Thesis. This chapter includes the motivation, rationale and scope, the 

research questions, research sponsors and overall structure of the Thesis 

sections. The next chapter presents the literature review, a research gap and 

relevant topics essential for this applied research project. 
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2 LITERATURE REVIEW 

This chapter presents a detailed literature review regarding through-life 

engineering service, maintenance strategies, ontology and taxonomy, timeline 

visualisation, parameter estimation, modelling, performance metric, degradation 

and remaining useful life prediction methodologies. In this thesis, the remaining 

useful life prediction methods and techniques are categorised into methodologies 

and further discussed in detail. The merits and demerits of the prediction 

methodologies are highlighted as well as the challenges of current prediction 

models. Section 2.1 describes the methodology for the literature review. Section 

2.2 deals with Through-life Engineering Service. Section 2.3 gives an overview 

of maintenance strategies. Section 2.4 described taxonomy and ontology. 

Section 2.5 discusses condition-based maintenance. Section 2.7 relates to 

visualisation. Section 2.8 gives evidence of parameter estimation. Section 2.9 

highlights modelling approach. Section 2.10 describes application of renewal 

theory. Section 2.11 relates to performance metric. Section 2.12 discusses 

renewal of repaired components. Section 2.13 give a detail discussion of 

remaining useful life approaches. Section 2.14 highlights the research gaps. 

Section 2.15 summarises chapter 2. 

2.1 Methodology 

This research focuses on developing a technique for through-life performance 

modelling to predict the remaining useful life of a component within an assembly. 

Figure 2-1 presents the methodology for this chapter. The study is intended to 

capture the state-of-the-art research on remaining useful life prediction. Whilst 

conducting this research, the keywords were searched and discussed briefly are 

“through-life engineering service”, “maintenance strategies”, “ontology and 

taxonomy”, “timeline visualisation”, “parameter estimation”, “modelling”, 

“performance metric”, and “degradation”. The aforementioned keywords were 

used to establish the context of the research. However, the main aspect is the 

remaining useful life prediction approach was relevant and a thorough literature 
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search and discussion were conducted in detail, and statistics about the 

outcomes presented in Figures 2-2, 2-3 and 2-4. 

 

Figure 2-1 Literature review methodology 

Content analysis is used as a research method to capture the current practice. 

The outcome is expected to support a proposed technique for remaining useful 

life prediction. Marasco (2008) note that content analysis relates to (a) defining 

the sources and procedures for searching of documents that should be analysed 

and (b) describing the categories instrumental to the classification of the 

documents collected. The extensive literature search covers articles from the 

years 2005 to 2015 as of 26th January 2016, (see Figure 2-3). The survey of 

literature was carried out using Scopus database and a total of 1,875 documents 

were analysed based on the remaining useful life keywords. Figure 2-2 shows a 

search result analysed and scaled down to centre on the pertinent documents.  
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Figure 2-2 The number of literatures on RUL per year  

Figure 2-3 shows the document counts of the authors, where Goebel, K., is the 

most prolific author in the field of remaining useful life predictions followed by 

Zerhounni, N., and Lall, P.  

 

Figure 2-3: A comparison of documents by authors 
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However, the literature type and the literature presented as a pie chart show a 

variety of the documents. This pie chart shows conference papers are mostly 

written followed by peer reviewed journal papers (see Figure 2-4A). A note 

indicates a document from the Canadian Journal of Civil Engineering. 

 

 

Figure 2-4: Comparative literature by (A) type and (B) subject area 

Figure 2-4B shows that the engineering discipline engages mostly on this topic 

of remaining useful life research closely followed by the computer science field. 

These documents were reviewed and classified in line with their contents. The 

outcomes of the findings from the literature review inspired a provision of semi-

structured interview questions for industry interaction (see chapter 4). 

2.2 Through-life Engineering Services 

Through-life Engineering Services (TES) concept is defined as technical services 

that are necessary to guarantee the required and predictable performance of an 

engineering system throughout its expected operational life with the optimum 

whole life cost (Roy et al, 2013). TES coordinates and provides the research 

capability for the creation of high-value engineering systems based on design 

and manufacturing. TES aims to improve the reliability, spare parts availability, 

maintainability and safety of products to deliver the lowest possible whole life 

cycle cost. TES assists in the transfer of best practices between different 

industrial sectors and extending the life of industrial goods (Roy et al, 2013). 
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However, TES can be suitable for all manufactured industrial product-service 

systems.   

Through-life Engineering Services has themes that allow for maintenance, repair 

and overhaul functions to align with the operations strategy of an organisation. 

TES facilitates correct application of technology supported by the efficient use of 

service knowledge. Significant benefits obtained from accurate life prediction can 

improve MRO decision making (Farnsworth et al, 2015; Uhlmann et al, 2015). 

The simulation tools are used to adapt procedures, modular maintenance 

systems, and informed disposal decisions that facilitate the prediction of 

trustworthy life expectancy. Increasing the application of advanced information 

technology, Product Lifecycle Management (PLM) processes for distribution and 

collaboration, condition monitoring, and prognosis can significantly improve 

product availability, thereby reducing cost and downtime (Okoh et al, 2014). 

Degradation management is an aspect of TES and the maintenance of 

autonomous systems as well as the development of capabilities in a collaborative 

environment to enhance the lifespan of components. The concept of cost 

engineering provides a performance-based service approach and whole-life cost 

model, which applies to the full system maintenance and service delivery systems 

to deliver effective business solutions. The uncertainty modelling and simulation 

techniques based on technological and trade uncertainties are used to improve 

component/product designs. The concepts above and methodologies when 

supported by obsolescence management, service network for capability 

assessment and cost estimation have the potential to improve the design function 

greatly. As a result, there will be an improvement in quality, reliability, availability 

and safety while yielding feedback to manufacturers (Roy et al, 2013; Chopra et 

al, 2016; Morant et al, 2016; Zhang and Pham, 2016). 

2.3 Degradation Mechanisms 

The characterisation of in-service degradation mechanisms analysis requires 

knowledge of the properties of the titanium and nickel based super alloys which 

are candidate materials for gas turbine engines. The materials degrade over time 
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at the high temperature associated with aircraft operations. The candidate 

material is the primary component manufactured for gas turbine engines. The 

degradation mechanisms which are predominant in metallic components are 

corrosion, deformation, fracture and wear (Zhu et al, 2013; Imran et al, 2014; 

Prozhega et al, 2014; Giourntas et al, 2016). There is a need to curtail 

component’s failure and a timely awareness of failure mechanism is essential for 

maintenance decisions with regards to through-life engineering services 

(Farnsworth et al, 2015; Redding et al, 2015; Uhlmann et al, 2015; Van Dongen, 

2015). The types of degradation mechanisms are further discussed in and 

applicable to chapter 4. Furthermore, the degradation processes discussed are 

hard to predict, hence, supporting the need for this research. 

2.3.1 Corrosion 

Corrosion is a chemical deterioration process resulting from an electrical or 

biological reaction, which includes oxidation and sulphidation (see Figure 2-5).  

Methods to measure corrosion rates include, for example, an electrochemical 

technique, which shows the speed at which reinforced steels are corroding and 

help identify degraded areas (Soleymani and Ismail, 2004; Prozhega et al, 2014). 

 

Figure 2-5 Metal discs showing corrosion on the surface 

2.3.2 Deformation 

Deformation changes the geometry or shape of a component such as shrinking, 

stretching, bending, and twisting. They have cumulative effects upon strain in a 

component due to an applied force (Norman, 2013; Zhu et al, 2013). Aspects of 
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deformation are time dependent and time independent mechanisms. In Creep 

deformation, the component gradually accumulates over time with the presence 

of high temperature and thermal cycles stress until the product fails (Norman, 

2013; Zhu et al, 2013; Giourntas et al, 2016). Monte Carlo-based uncertainty 

technique, optical measurement systems, digital image correlation, the intensity 

method and phase shift method are often used for deformation measure (Gåsvik 

et al, 2014).     

2.3.3 Fracture 

Fracture is separation of a material by means of cracking or disintegration which 

makes a component incapable of performing its designed functions.  It can occur 

as a result of chemical effects, shock and/or stress. This fracture failure 

mechanism occurs via loading which is independent of time (Norman, 2013). A 

slow change (creep) in structure can lead to fracture whereby the presence of 

crack can grow rapidly in steels and aluminium alloys as shown in Figure 2-6. 

Johnson and Cook (1985) indicate that fracture increases slightly as strain rate 

increases in copper, iron and steel using a fracture model, pressure - strain ratio 

is critical as well as temperature and stress rate. 

 

Figure 2-6 Bearing external ring failure and inner ring failure with fracture                          

(Source: (Medjaher et al, 2012)) (see appendix A for permission) 

2.3.4 Wear 

Wear – material loss over a period of time resulting from component use. The 

estimation of wear (or resistance to wear) can be achieved by implementing the 

weighting method to fix and measure wear. This wear failure mechanism can be 

calculated by weighting the component before and after use. The variables to 



 

20 

 

consider include speed, friction co-efficient, surface finish/texture, surface 

hardness, load, the number of cycles, and time are all critical in estimating 

adhesion wear of metallic engine components (e.g. nickel based super alloys, 

brass, aluminium and steel) (Ameen et al, 2011; Zhu et al, 2013; Imran et al, 

2014). This research submits that deformation, fracture, wear and corrosion can 

be measured to ascertain through-life perspectives of a component using a 

variety of methods relative to prognostics models.   

2.4 Taxonomy and Ontology 

Taxonomy involves non-similar words and broadly is a vocabulary, but a 

collection of controlled terms organised into hierarchical structure. The taxonomy 

extracted from a service maintenance repository for different degradation 

mechanisms include for example “fracture” with synonyms as crack, tear, and 

break (Uschold and Gruninger, 2004).  

Ontology (Gruber, 1993) serves as a problem solving tool of the conceptualisation 

of entities (Maedche and Volz, 2001). The concepts and relations between them 

are used to reason and describe a domain knowledge. Ontology knowledge 

repository which may use taxonomy in a controlled vocabulary, but expressed in 

an ontology representation language by employing a grammar that shows 

something meaningful for a domain of interest. Ontology can be described as a 

recognised nomenclature and classification of the different word types, 

properties, and interrelationships, which are present in a specific domain, for 

example, aerospace. The ontology hierarchical arrangement represents a more 

natural means of information management in a unique domain. The content in 

the ontology aids the identification and retrieval of relevant keywords from 

sentences and reports based on subject, verb and object approach. The 

application and analysis are conducted in chapter 4 of this Thesis. 

2.5 Overview of maintenance strategies 

Brown and Sondalini (2016) describe maintenance as the management, control, 

execution and quality of activities to reasonably ensure design levels of 
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availability and performance of assets meet business objectives. Maintenance is 

conducted using different strategies as presented in Figure 2-7. The maintenance 

strategies are listed and classified as a taxonomy with a focus on the selected 

strategies in the blue boxes (Rausand and Høyland, 2004).  

 

Figure 2-7 A proposed taxonomy of maintenance strategies 

Corrective maintenance 

Rausand and Høyland (2004) argue that corrective maintenance relates to repair 

tasks carried out after an asset has failed. Historically, the last sixty year since 

the second World War, the world has transformed the maintenance perspective 

(Brown and Sondalini, 2016). Corrective maintenance was the only viable option 

for engineers to fix or replace breakdown equipment. Though, corrective 

maintenance is still very much in use currently such as electric light bulbs. 

Corrective maintenance aims to bring equipment back to its functioning state 

(Rausand and Høyland, 2004). 

Preventive maintenance 

Rausand and Høyland (2004) describe preventive maintenance as a planned 

maintenance performed when an item is functioning properly to prevent future 
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failures. The preventive maintenance strategy consists of age-based, 

calendar/clock-based, opportunity-based and condition-based. Age-based 

specifies the age of an asset measuring time in operation such as the number of 

take-offs and landings for an aircraft, while clock-based maintenance tasks are 

conducted at specific calendar times; a block replacement policy (Rausand and 

Høyland, 2004). In the special case, where the downtime due to maintenance 

and the downtime due to repair/replacement is negligible, the calendar-based 

and the age-based maintenance policies become alike (Tang, 2012). In practice, 

clock-based is easier to schedule compared to age-based. The former is less 

proficient than the latter from random maintenance scheduling before renewal 

(Tang, 2012). Opportunity maintenance – preventive maintenance applicable for 

multi-item systems where maintenance tasks on other items give an opportunity 

for carrying out maintenance, which were not the cause of opportunity (Rausand 

and Høyland, 2004). Pintelon and Gelders (1992) opine opportunity maintenance 

replaces equipment components, which are yet to fail based on available 

maintenance resources. This opportunity maintenance improves system 

availability and reduce production loss by reducing operations excellence and 

increases production efficiency (Borges, 2015). Condition-Based describes 

measurements of one or more condition variables of an asset, which are initiated 

when a condition variable passes a threshold (Rausand and Høyland, 2004). 

Rausand and Høyland (2004) state that condition-based is also known predictive 

maintenance, which determines the state of an in-service system to predict future 

maintenance when the need arises. The concept assesses the health condition 

of an equipment continuously and extrapolates to a predefined failure threshold 

(Camci and Chinnam, 2010; Eker et al, 2011). The condition-based maintenance 

is one aspect of focus in this research with further discussions presented in the 

next section. 

2.6 Predictive maintenance 

In the context of this Thesis, predictive maintenance and traditional/conventional 

maintenance are discussed. However, a predictive maintenance culture adopted 
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for on-time decision making assesses the health of a component in-service before 

system failure. The predictive maintenance minimises system life cycle losses 

and life cycle costs. This predictive maintenance strategy can save cost over a 

traditional maintenance. It provides appropriate scheduling for a traditional 

maintenance to prevent unpredicted system failures. The advantages of 

predictive maintenance include optimisation of spare parts management, 

enhanced system lifetime, guarantees safety and availability of the system. The 

predictive maintenance strategy reduces the risk of tragic events, remove 

unexpected outage and minimise the cost of gas turbine components (Di Maio et 

al, 2011). Figure 2-8 shows a categorisation and the relationship of predictive 

maintenance as diagnostics and prognostics.  

 

Figure 2-8: A taxonomy of condition-based maintenance 

2.6.1 Component degradation diagnostics 

Diagnostics is a process for checking faults and the healthy state of sub-systems 

and units in an operating environmental condition with the aid of sensors. During 

maintenance, inspection is required to identify damage on components and 

provide information on the current performance status (Banjevic, 2009). 
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Boyce (2006) analyses the turbine section of the gas turbine, which houses the 

first-stage vanes and the last-stage blades. In the turbine section, the effect of 

corrosion on the first-stage vanes of the gas turbine is a severe and preliminary 

inspection for cracks or bowings can be conducted. However, this Thesis focuses 

on the first-stage vanes. The first-stage of vanes are typically superficially 

inspected using a Borescope for gaining entrance into the turbine through the 

combustion chamber areas or by removing the inspection plates. Degradation 

mechanisms are also called fouling mechanisms, which affect the turbine section 

are described in Table 2-1.  
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Table 2-1 Failure mechanisms in vanes (Boyce, 2006) 

No Failure Mechanisms General Description First Stage Vanes 

1 Nozzle vane bowing  Reduction in the passage area 

 High temperature 

 Improper cooling 

 High wheel space temperature 

 The vanes can suffer from 
hot corrosion 

 Thermal Barrier Coating 
(TBC) Spallation  

2 Burnt nozzle vane Uneven combustion creates various hot 
spots, which lead to melting of the vanes 

 Trailing edge melted  

 Damage to vane platforms is 
usually due to improper 
cooling 

3 Incomplete 
combustion or excess 
fuel 

 During start-up, the fuel is not 
combusted and collects in the stationary 
vanes, which acts as flame holders 

 Ensures that the control system has a 
rate of acceleration and shutdown mode 

Vanes totally melted 

4 Hot corrosion Type I 
(over 1500oF) 

 An active form of oxidation, caused by 
the reaction of the Sodium (Na) in the air 
of fluid 

 Sulphur, which is usually in the fluid and 
oxygen 

 Intergranular attack 

 Sulphide particles,  

 A denuded zone of base metal 

 Damage to the leading edge 

 Erosion of the TBC attack on 
the base coating 

5 Hot corrosion Type II 
(between 1100oF to 
1450oF) 

 Caused by low melting eutectic 
compounds resulting from the 
contamination of Sodium sulphate and 
some of the alloy constituents such as 
nickel and cobalt 

 Layered type of corrosion 

Not applicable 

6 Hot gas erosion-
oxidation 

 Caused by small solids in the air or the 
fuel 

 With common combustor pattern 

 Excessive engine gas temperature 
(EGT) pattern  

 Failure of the TBC on the 
nozzle vane or platforms 

 Not even around 
circumference 

7 Blade tip rubs  Due to subtle tip clearance 

 High metal temperatures in the blades 

Not Applicable 

8 Blade fretting erosion  Fretting in the dovetails/fir trees is 
caused by the rocking action of the 
blades 

 Peaking turbines are highly susceptible 
to this problem 

 Several attacks on trailing 
edge and leading edge 

 On the concave side of the 
airfoil 

9 Blade and wheel 
rupture failure 

 This failure occurs in high temperature 
and highly loaded blades (highly 
stressed) and disks 

 Disk failure can be catastrophic 

 Caused by inadequate cooling due to 
blockage cooling passages 

Creep distortion usually at trailing 
edge 

10 Foreign object 
damage (FOD) 
Domestic object 
damage (DOD) 

 FOD occurs from materials coming from 
an external source to the gas turbine 

 DOD occurs from failure of internal 
components 

Most damage from this point 
forward 

11 Low Cycle Fatigue 
(LCF) 

 Turbine disks 

 First stage turbine suffering from low 
steady state stress due to thermos-
mechanical fatigue problem 

 Peaking turbines more susceptible 

 Cracks in the Vanes 

 Single vane segments suffer 
less than multiple vane 
segments 

12 High Cycle Fatigue 
(HCF) 

 Can Occur in any blades or vanes due 
to the blade resonance frequency being 
excited 

 Occurs in blades where there are no tip 
or mid-span shrouds 

 Not applicable to most 
designs 
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2.6.2 Component degradation prognostics 

Prognostics defined as "analysis of the symptoms of faults to predict future 

condition and residual life within design parameters" (International Standard 

Organisation, 2015). Medjaher et al (2012) argue that Prognostics is the 

estimated-time-to-failure (ETTF) based on the risk of existence or subsequent 

appearance of one or more failure modes. Prognostics estimate the time after 

which a component can no longer perform its intended or expected functionality 

to improve system safety. Physics-based and data-driven approaches can 

support this process. The data-driven approach engages a collection of 

maintenance and monitoring data to deduce failure modes, while physics-based 

model utilises mathematical models to estimate lifespan of components (Chen et 

al, 2012; Daigle and Goebel, 2010). The next section discusses visualisation of 

events. 

2.7 Visualisation  

In the field of visualisation, timelines are frequent and powerful form of graphic 

design which include data maps and time series (Tufte and Graves-Morris, 1983). 

Tory and Moller (2004) observe scientific, information and knowledge 

visualisation, while Tufte and Graves-Morris (1983) present a 2D-graphical plot 

algorithm to display a summary of events on a timeline. Timeline visualisation 

application has been used extensively in electrical engineering to represent 

electrical signals as the most common display generator as seen in an 

oscilloscope (Karam, 1994), interactive documents as interfaces to historical data 

(Kumar et al, 1998), personal histories for medical records (Plaisant et al, 1996), 

novel organiser for digital libraries (Alonso et al, 1998), and understanding 

relationships amongst events for cognitive advantage (Allen, 1995). Due to the 

limitations of the current practice, the study of the timeline visualisation regarding 

the analysis of maintenance cycles was conducted to gain useful insights on how 

to develop the remaining useful life prediction framework.  
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2.8 Weibull Parameter estimation 

Parameter estimation relates to distribution estimation from data. It is processes 

time-to-failure data in reliability engineering to estimate the parameters of the 

selected distribution (Abernethy, 2006). The goal of this aspect to establish 

background knowledge required for this research. There are several parameter 

estimation methods available. This section presents an overview of the existing 

methods used in life data analysis. Examples of the parameter estimation 

methods are least squares, maximum likelihood estimation, a method of 

moments and Bayesian estimation methods. The least square and the maximum 

likelihood are used and discussed in this research (see chapter 6).  

2.9 Modelling  

Modelling is a process of developing a structured procedure that will enable policy 

makers to predict the effect of changes to the system (Maria, 1997). In this Thesis, 

the modelling approach demonstrates a system starting at time t = 0 until the next 

overhaul inspection state. At each overhaul inspection state, the system should 

be assessed to find out any form of defect on the components using non-

destructive testing techniques (Kumar and Mahto, 2013). Roy et al (2013) note 

that during maintenance, repair and overhaul, the components with defects are 

rejected and/or replaced, while those without defects are reused. The procedures 

for developing a numerical/statistical model include problem identification and 

formulation, real system data collection and data processing, model formation 

and development, model validation and documentation, select and establish 

conditions, perform calculations and results interpretation.  

2.10 Renewal theory 

Renewal theory is the study of particular probability problems connected with the 

failure and replacement of components (Doob, 1948; Cox, 1962; White, 1964; 

Rausand and Høyland, 2004). In this Thesis, the research relates to multi-

component of a one-component system (assembly), e.g., aerospace gas turbine 

NGV component assembly.  
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Doob's (1948) argues that renewal theory is based on the theory of probability, 

which deals with a population of individual components. When any individual 

component fails (rejection) at inspection, there is an immediate replacement 

based on scheduled maintenance. Since the components are supposed to 

survive or fail independently of each other, it is sufficient to consider a population 

at any time consisting of only a single component. At birth, the future lifetime of 

the individual component is a chance variable with distribution function F(t) (the 

probability of failure before age t). At any age t, the lifetime remaining then follows 

a distribution function. Renewal theory is part of counting processes applied to 

examine the reliability of a repairable system as a function of time (Rausand and 

Høyland, 2004). The renewals with respect to time can be expressed as 

{X(t), t ∈  T} (2-1) 

For instance, a system start at time T = 0 and when an NGV fails from within a 

collection of components (NGVs) in an assembly, it is expected to be immediately 

replaced with new components and the system continues in service. The 

assumption is that all components are taken as a population, each with the same 

failure law and must follow an overhaul process.  

In this context, the random variables X(t) of the number of components rejected 

in the time interval (0,t] as a stochastic process {X(t), t > 0}. This work relates to 

a multi-component in an operating assembly as a series. The multi-component is 

represented in a through-life performance prediction model. The model is 

formulated as follows:- 

i. The assembly of an engine contains an X number of new components 

ii. The X number of components starts off during a test/in-service 

iii. At time T, first inspection, X1 number of components have failed based on 

progressive usage at T, Y% (percentage of failed components) of X is 

expected to fail, the more the engine is used, the more of X that will fail 

iv. The number of X1 which failed at first inspection are replaced together with 

the existing X which becomes Xreuse 

v. The repair time is neglected 
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vi. The second inspection occurs at time T2, T3, …, therefore the sequence of 

failures is T1, T2, T3,…. 

vii. ITi  is the time between failure i-1 and failure i for i = 1, 2, 3….ITi is the 

interoccurrence time i for i = 1, 2, 3, … which is the time between failure, 

current and previous inspection time 

viii. The distribution of the rejection (failure) rate is based on Weibull 

cumulative distribution function. The Weibull functions is selected because 

a renowned OEM uses it for failure and reliability analysis (Rolls Royce, 

2005). The environmental and operating conditions remain constant 

through life. 

The population of a set of component in-service at any overhaul state give R-

Cube outcome. The concept of the through-life performance modelling is 

dependent on a mathematical entity to estimate the R-Cube outcome. The typical 

two-parameter Weibull cumulative distribution function is used to model through-

life performance (Abernethy, 2006). Two events (rejection) can lead to 

replacement of components (i) end of life and (ii) rejection based on degradation 

mechanisms (Okoh et al, 2014). Survival and reliability analysis determine a “fit 

for use” of the reused components. The through-life performance model 

determines the rejection rates. The failure analysis subjects the rejected 

components to further investigation to gain an understanding of the cause of 

failure (Okoh et al, 2014). 

2.11 Performance metric 

Performance metric for accuracy measures the “nearness” of a point estimate 

values to the observed values (Engel et al, 2000; Saxena et al, 2008). The 

performance metric is accuracy and precision based (Saxena et al, 2008). In this 

work, the accuracy aspect of the performance metric has been selected. The 

accuracy based metric includes Bias, Mean Absolute Error (MAE), Mean Square 

Error (MSE) and Root Mean Square Error (RMSE) (Willmott and Matsuura, 

2005). While MAE seems straight forward and used to obtain better 

understanding due to its averaging, the MSE happens to be more popular than 
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MAE. MSE deals with larger errors, while RMSE is most widely used because of 

the interpretable units. The MAE is selected and applied in this study because it 

offers better average and widely used by an OEM. 

2.12 Renewal with repaired components 

Barringer and Associates (2010) explain that the Weibull analysis can be used 

on both new components and repaired components based on the practical 

conditions that include  

i. Repaired to good as new: If the NGVs are repaired to good as new, then 

the repaired Weibull trend line should lie near the original Weibull 

distribution for new components,  

ii. Repaired to good as old: If the NGVs are repaired to good as old, then the 

Weibull line should be displaced to the left (shorter characteristic life, η), 

iii. Repaired to something in between good as new or good as old: If the 

NGVs are repaired to the in-between cases, something between good as 

new or good as old then a displacement between the old and new Weibull 

lines with the “goodness” of the repair manifest by the “how much 

displacement” with a significant displacement, and  

iv. Repaired is better than new: Make improvements over the new parts base 

line and repaired NGVs to a condition which is better than new. A 

displacement of the Weibull trend to the right produces a new Weibull line 

when repaired to better than new. This translation of the Weibull trend line 

would then demonstrate a significantly improved η value.  

The Weibull analysis can be used for new NGVs and repaired NGVs, however 

the concern is getting the time-to-failure correctly identified and addressing the 

named failure conditions. The repair of gas turbine component is done by third 

party specialist companies approved by the Original Equipment Manufacturer 

(OEM). Sulzer (2016) asserts metallurgical procedures provide repair elements 

to return gas turbine component to their metallic properties. This repair of a 

component reinstates the health to a more reliable state “as good as new”.  
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2.13 Remaining useful life prediction approaches 

This Thesis categorised RUL prediction methods and techniques into RUL 

methodology. The primary RUL prediction methodology are model-based and 

data-driven. Over time, researchers have extended the methodology covering 

knowledge-based and hybrid as identified in the literature. Figure 2.9 illustrates 

the RUL prediction methodology classification and simplifies the selection 

process for specific models to address different cases. Refer to appendix B for 

analysis of RUL techniques from literatures reviewed for the categorisation. 

Figure 2-9 is read bottom-up approach where the method(s) such as Weibull 

requires a statistical techniques and data-driven methodology to perform 

predictions, while neural network method is utilised by a computational 

intelligence technique with a data-driven methodology. Parametric instance 

supports experience technique which is related to knowledge–based 

methodology. Distributed method is utilised bay fusion technique as a 

combination of technique and for the hybrid methodology. Figure 2-9 can also be 

interpreted such that a model-based methodology requires a physics-of-failure 

technique which in-turn uses a method outlined. A data-driven methodology 

requires any of statistical or computational technique to perform analysis by 

selecting the needed methods listed. 

 

Figure 2-9 Categorisation of RUL prediction methodologies 
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Medjaher et al (2012) state that majority of the literature adopted the term RUL 

against Estimated-Time-To-Fail (ETTF). These authors concluded that the 

absolute value of RUL was only about a confidence interval, which is useful for 

decision making. In this thesis, the research combines multiple methods to 

generate results critical to designers and manufacturers. These results aid the 

improvement in optimisation of component design, and the manufacturing 

processes. The results also enable better decision making with configuration, 

usage and maintenance data. The application of multiple health indicators offers 

a more informed basis upon which to classify event data. The representation of 

remaining useful life on a degrading component in Figure 2.10 shows the 

feedback to design and manufacture. 

 

Figure 2-10: RUL showing component health index against time 

The remaining useful life approaches embedded in the design of service delivery 

systems for through-life performance in the servicing, production, and 

manufacturing sectors are changing at an increasing rate (Liao and Tian, 2013; 

Di Maio et al, 2011; Shao and Nezu, 2000; Yang et al, 2012). In the application 

of diagnostics and prognostics, estimating remaining useful life requires 
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researching on the equipment functional capabilities (An et al, 2013; Benkedjouh 

et al, 2013; Bolander et al, 2010; Cheng and Pecht, 2007; Xiongzi et al, 2011).  

2.13.1 Prediction Methods 

Prediction methods can be equations or functions for data extraction to estimate 

the remaining useful life of a component. In this section, the methods highlighted 

are extracted from the technique based on reviewed literature (see appendix C). 

Weibull Reliability Function 

The Weibull function is a statistical distribution which can assume different failure 

distributions when there is a change in the shape determining parameter. The 

Weibull function is well known to reliability engineers and developed by Waloddi 

Weibull in 1951 (Abernethy, 2006). The mathematical model for the distribution, 

failure rate and the cumulative function is the two-parameter Weibull function. 

The demonstration of the through-life performance model uses the knowledge of 

system reliability to represent the behaviours of components degradation. The 

degradation modelling is based on Cumulative Distribution Function (CDF) of the 

Weibull distribution to assess through-life performance. The Weibull distribution 

can take one, two or three input parameter(s) to model failure rate (Abernethy, 

2006). The three-parameter Weibull includes a location parameter which traces 

the distribution alongside the distance from a point to the vertical (abscissa scale). 

A change in the value of location parameter can have an effect by moving the 

distribution and its related function from right to left. The two-parameter Weibull 

is when the location parameter is zero and the one-parameter Weibull is the slope 

becomes a constant. The Weibull distribution is a continuous distribution used in 

various applications to model lifetime of components such as bearing 

(Bechhoefer et al, 2015).  

In the operation of complex mechanical engineering systems, an increase in the 

rate of failure shows the characteristic life and the mean-time-to-failure of the 

system can have approximately equal values (Abernethy, 2006). 

The Weibull Probability Density Function (PDF) can be written as 
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f(t) =  ηβηtη−1e−(βt)η
        0 < t ≤ 0 (2-2) 

F(t) = 1 − exp [− (
t

η
)

β

] (2-3) 

where t is time (cycles), η denotes the scale parameter > 0, and (β > 0) denotes 

shape parameter. The Weibull CDF is governed by the Equation (2-3), which is 

the probability of failure or component rejection rate in an assembly between (0 

to t]. Equation (2-2) is a two-parameter Weibull function for PDF, while Equation 

(2-3) is a two-parameter for CDF, which used for this research.  

Therefore, Equation (2-4) introduces the probability of surviving to time t as 

Prsur(t) = 1 –  F(t)    (2-4) 

For the Weibull distribution, the mean time to failure (MTTF) is the First moment,  

MTTF = η ∗  Γ(1 +  
1

β
) (2-5) 

where Γ denotes a gamma function, which is defined for complex positive 

numbers. The Weibull distribution Second moment is calculated using Equation 

(2-6) 

VarWeibull = η2 ∗  Γ(1 +  
2

β
) (2-6) 

where VarWeibull is the variance. The Weibull distribution is a continuous 

probability distribution with a statistical reliability modelling capability of fitting life 

data. The Weibull distribution parameters can be estimated with extremely few 

samples. If the Weibull is not a good fit for the data, then sample size provides 

little assistance. The Weibull is capability of estimating parameters from 3 to less 

than 20 samples (Abernethy, 2006). The Weibull reliability function facilitates 

failure forecasting, maintenance planning strategies and costs, effective 

replacement policies, spare parts forecasting and recommendation to 

management in response to service problem (Abernethy, 2006). Advantages of 

Weibull analysis include provision of reasonable failure analysis and forecast of 
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with extremely samples, the Weibull tests are whenever an initial failure happens 

in a batch of components. The Weibull generates other distributions such as 

Poisson, Normal, Exponential Binomial, and Rayleigh. The drawbacks include 

lack of failure data, unidentified failed components and mixtures of failure modes. 

For example, where there is a trend in data, the Weibull model will be an 

inappropriate choice. The selection of the Weibull distribution is purely due to the 

choice of the OEM. Other reliability functions which exist are as gamma 

distribution and log normal distribution are not part of the Weibull group of 

distributions. The log-normal can a likely choice for materials analysis, crack 

growth rate, accelerating system degradation and non-linear systems.  

When transferred to remaining life prediction, the Weibull Cumulative Distribution 

Function is used by researchers to illustrate behavioural patterns, performance 

loss and equipment performance degradation (Kim et al, 2012). In analysing the 

model, the Weibull distribution demonstrates through-life performance of 

components in an assembly for which the failure rate is proportional to a power 

of time. The feature parameters β and η were derived from the Weibull distribution 

which depicts the bathtub model in Figure 2-11. The shape parameter β which is 

power plus one is interpreted as:  

i. A value of β < 1 indicates that failure rate decreases over time. Rolls Royce 

(2005) describe a failure risk with substantial “infant mortality” further than 

a definite life of early failure. The failure frequency declines over time as 

defective assets are rejected from the population  

ii. A value of β = 1 indicates that failure frequency is constant over time. Rolls 

Royce (2005) suggest component failure occurs randomly through life 

iii. A value of β > 1 indicates that failure frequency increases with time. Rolls 

Royce (2005) submit that no component failure risk at minimal life, while 

significant failure risk occurs resulting from aging assets as wear-out 

failure. The mechanical failure modes are low cycle fatigue, corrosion and 

erosion.  
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Figure 2-11: Weibull bathtub model with state transition approach 

The estimated parameters from a through-life performance of the service history 

and current health data are used in the model to forecast the rate of rejections. 

The rate of rejection is based on the failure modes, which indicate infant mortality, 

random and wear-out. However, certainty in ages of failure results from high β 

values, while lack of predictable failure times results from low β values. The 

outcome of rejections can be interpreted in both cost and safety directions with 

respect to reliability and maintenance for prognostics purposes. The Weibull 

distribution is applied as a regression model to estimate failure rate of 

components (Peng et al, 2010). The Weibull distribution assumes and interprets 

different failure behaviours using β and η parameters. Whereas the η represents 

the characteristic life, the β signifies the degradation rate of 1, less than 1 and 

greater than 1, which affects the shape of the distribution (Rausand and Høyland, 

2004). Cox (1962) applies actuarial function (Baye’s theorem) in describing the 

survival time remaining. 

Monte Carlo Method 

Monte Carlo method involves using random numbers and probability to solve 

problems. The term Monte Carlo method is about the game of chance in a popular 
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Casino in Monte Carlo, Monaco (Metropolis and Ulam, 1949). The Monte Carlo 

algorithm facilitates physical simulation and computational statistics by taking 

random samples. In the model evaluation section, the Monte Carlo method was 

used to generate random number. The simulation was conducted by generating 

random numbers using the Equation (2-7) (Microsoft, 2008). 

MCβ = Rnd() ∗  β ∗ 10% (2-7) 

where MCβ denotes the sensitivity, Rnd() denotes a method for generating 

random numbers, β is the varied determinant of sensitivity.  

The Monte Carlo simulation is carried out for sensitivity analysis. The sensitivity 

analysis can be used for qualitative and quantitative reasoning of a problem. This 

sensitivity analysis assesses the rate of change of the β degradation parameter. 

The β parameter is the single operating point for the evaluation and assumes that 

η performance parameter remains constant. This assessment helps observe the 

through-life performance prediction model behaviour. The sensitivity can result 

from fuel type, unexpected impacts and unexpected accidental braking. If there 

are catastrophic events, the prediction of remaining useful life of components 

would not hold. 

2.13.2 Prediction techniques 

Prediction techniques are designed to provide guidance on addressing a problem 

situation by analysing the data aspects and how things interact (Avison and 

Fitzgerald, 2006). As a result, a remaining useful life prediction technique can be 

a fundamental analysis of a method used to predict the remaining useful life of a 

component, and to assess its functional capabilities before failure happens. 

However, choosing an appropriate approach to address specific issues in a 

particular domain can be difficult (see appendix D). 

Statistical 

Statistical techniques relate past and present data duly observed and analysed 

with methods such as exponential smoothing autoregressive moving average 
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(ARMA), and for effective prediction of the result (Okoh et al, 2014). Coppe et al 

(2012) apply random variables to new data, which improves distribution of 

unknown parameters. Inferential statistics are crucial for extrapolation and 

interpolation of time series events. Samples of data extracted during an 

experiment exercise are used for descriptive and inferential statistical analysis. 

Graphical representation of the arithmetic mean, median, mode, correlation and 

standard deviation describes continuous data type, e.g. length of a crack. 

Relevant to the frequency of possible values of categorical data are ‘fair’, ‘good’, 

and ‘better’ apply to descriptive statistics (Bechhoefer et al, 2008). Abernethy 

(2006) draws statistical inferences by estimation and prediction of unobserved 

values data patterns, while regression analysis provides answers to hypothetical 

questions and information modelling of relationships. Least square estimates and 

maximum likelihood estimates are techniques for regression analysis. 

In a similarity-based prognostics approach for remaining useful life estimation of 

engineered systems, Wang et al (2008) deduce that remaining life of a test unit 

is to estimate the actual life of the training unit with similar degradation pattern. 

Regression and ARMA techniques have been introduced to extrapolate the curve 

to certain criteria. These predictive methods are deterministic to producing an 

estimated output at a given time. However, ARMA method is used to fit data 

showing an exponential degradation pattern. Cheng & Pecht (2007) identify 

regression of the relationship of the parameters to forecast remaining life. In 

unvarying operating conditions, ARMA is used to recognise the dynamic 

behaviour of components (Tran et al, 2012). The alternative statistical approach 

used in medical and biomedical fields include Proportional Hazard Model (PHM) 

whereas, when applied to lifecycle issues, can accurately and reliably predict 

RUL (You et al, 2010). 

The time series statistical technique depends on previous values rather than 

future values. Auto Regressive and Moving Average (ARMA) is a time series 

analysis technique requiring past and present observation data for exponential 

smoothing to predict results based on the dynamic behaviour of a component 

(Tran et al, 2012). Shao and Nezu (2000) introduce auto-regressive integrated 
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moving-average (ARIMA) model as another time series approach to forecast life 

of bearings. The time-series method forecasts future signatures prediction (Liu et 

al, 2007, 2012), while estimating is more accurate, forecasting is reliable in the 

medical and biomedical fields (You et al, 2010).  

In statistical technique, Bayesian technique merges probability and graph theory. 

Both Dynamic Bayesian Network (DBN) and Hidden Markov Model (HMM) use 

historical sequential data to predict future failure. As a result of the conditional 

independence, the methods are affected by the diffusion, where effect of past 

experience makes credible prediction (Ferreiro et al, 2012; Gobbato et al, 2012).  

In (Ahmadzadeh and Lundberg, 2014), Dynamic Bayesian Network method is 

used within a statistical technique with graphical representation of stochastic 

processes. It helps users to assess and update a system to predict further states 

of a system, while Dynamic Bayesian Network (DBN) is applied to predict the 

remaining life of vertical machine drill bits (Dong and Yang, 2008). However, 

Bayesian Belief Net (BBN) was applied to simulate remnant life (Przytula and 

Choi, 2007). Bayesian update and expectation-maximum were employed to 

obtain an exact closed-form distribution for remnant life (Si et al, 2013). Bayesian 

regression uses a linear technique to process past and current data to predict the 

likelihood failure-time (Bernstein Distribution) for consistent improvement of 

results with higher prediction accuracy (Zaidan et al, 2013). The Hidden Markov 

Model is a stochastic process model and a powerful method to estimate 

remaining life (Ahmadzadeh and Lundberg, 2014). This HMM is a parametric 

model with distinct features for both diagnostics and prognostics, the technique 

simulates sensor signals, identifies the health conditions and predict remaining 

life (Chinnam and Baruah, 2003). Wang (2002) establishes use of stochastic 

gamma process and hazard rate to estimate the remnant life.  

In (Goode et al, 2000) a reliability function is applied in a statistical technique to 

estimate RUL of pumps in a hot strip of the steel mill. Wang (2010) submits that 

reliability function accepts data with specific failure modes to generate significant 

historical information. The Weibull distribution is used to model time-to-failure to 
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estimate the RUL by fusing vibration and reliability data between potential and 

functional failure boundaries regarding reliability. The Weibull distribution 

adequately illustrates observed run-to-failure data to define a probability density 

function and cumulative density function that uses the shape and scale 

parameters for RUL prediction (Yang et al, 2012). 

In (Bechhoefer et al, 2015), a failure rate is used to predict the η and β parameters 

of the Weibull distributions in estimating remaining useful life using actuarial 

methods. Historical data and product life cycle operating hours are used to predict 

the remaining useful life based on a conditional survival function, whereby a 90% 

probability of surviving for the next time is generated by an actuarial method with 

regards to opportunity cost. The distribution describes fatigue failures of the 

bearing. A regression estimate used data efficiently with few data sets to predict 

life, but has poor extrapolation capability. Besides, domain experts can correctly 

interpret the application of this technique, whereas non-domain experts may 

experience difficulty in interpreting statistical results. Statistical techniques are 

significant to investigate causality (cause and effects) of various domain specific 

events. The run-to-failure data generates the distribution for confidence bound 

that is dependent on the volume of data. 

Artificial intelligence 

Artificial Intelligence (AI) is described as reasoning, knowledge, learning, natural 

language processing and communication processes which are dependent on 

input and output. This technique is also known as machine learning. Examples of 

artificial intelligence include fuzzy, neural networks (NN) and artificial neural 

network (ANN) (Schwabacher and Goebel 2007). An understanding shared in 

literature attribute NN to black-box techniques which analyses the computational 

complexity of components without foreknowledge of the internal structure 

(Xiongzi et al, 2011). Traditional artificial intelligence uses symbolic knowledge 

and modelling to reason the way humans do and act rationally, while 

computational intelligence uses numeric coding.  
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Computational intelligence (CI) is mainly numerical with NN, Evolutionary 

Algorithm (EA), Genetic Algorithm (GA), Fuzzy Logic (FL), while artificial 

intelligence is for reasoning, planning and making intelligent machines e.g. Expert 

systems, NN, FL, intelligent agent. The technique uses performance conditions 

to estimate the future state of an asset. 

Yang et al (2012) confirm that observation (condition monitoring) data are used 

as input, outputs as function can be used to predict some features of future data, 

permits separate implementation and supports theoretical learning and decision 

boundary. However, artificial neural network (ANN) is used to train and learn data 

collected from sensors via networks to predict the RUL of an asset. Support 

Vector Machines (SVM) use an interconnected functional relation between input 

variables and expected output to incorporate statistical estimates of conditions 

with limited samples for predictive learning.  

Saha et al (2007) conclude that SVM supervised learning is used for classification 

and numerical regression, while a Relevance Vector Machine (RVM) learns and 

uses a set of input vectors to predict accurately unseen values. Unsupervised 

learning has the ability use patterns as input streams. In order to estimate 

imprecision of pattern matching process Di Maio et al (2011) introduce fuzzy logic 

to deal with vagueness of reasoning based on the rule classification in bearings. 

Physics of failure 

Physics-of-Failure (PoF) is an approach based on reliability, designed to reduce 

risk of maintenance by understanding the performance of a component (Varde et 

al, 2006). The PoF technique requires parametric data with formulas for 

estimation, that is, in the process of developing and implementing latest 

technologies, both unknown and new defects, and failure modes can be deduced. 

Fatemi and Yang (1998) have explicitly reviewed Continuum Damage 

Mechanics, Linear Damage Rules, Non-Linear Damage Curve and Two Stage 

Linearization, Life Curve Modification Method of Stress and Load Interaction, 

Crack Growth Concept and Energy-Based Damage Model as prediction theories. 

Against this background, Yang et al (2012) opine that physical failure models are 
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quantitative and analytical regarding degradation mechanisms with the 

understanding of failure modes, while a detailed physical modelling based on 

engineering judgement, established wear database and Lifecycle support is 

enumerated in (Greitzer and Ferryman 2001).  

While Saha et al (2007) suggested a Particle Filtering (PF) method to estimate a 

set of points regarding sampled values from unknown state against weights, 

Xiongzi et al (2011) reiterated that PF provides a robust framework for long-term 

prognosis of accounting for uncertainties relevant to forecasting – the procedures 

include a collection of input data, a chosen algorithm and an expected output, 

but, can be used for non-linear model with non-Gaussian noise in prognostics (An 

et al, 2013). Tang et al (2011) introduced a classic PF-based prognosis also 

known as a Monte Carlo algorithm for accurate and precise RUL prediction of a 

component.  

Kalman Filter is a state estimation method for features tracking to minimise error 

between state transition equation and a measurement to predict future feature 

behaviour, but used for short term estimate (Byington et al, 2004). It can also give 

exact PDF in analytical form in a linear model with Gaussian noise (An et al, 

2013). It can be used for normal distribution assumption for noises (Xiongzi et al, 

2011). 

Variables such as temperature, stress, test level and duration, humidity, sample 

size and radiation are required as input to perform physical accelerated tests. 

This technique helps to understand the root cause of the failure during the 

investigation and solves the problem of uncertainty based on sound scientific 

knowledge. Design of experiments requires parameters such as material 

properties and geometry information with a number of samples for accelerated 

test to ascertain RUL. However, the modification of routine maintenance depends 

on the predicted health of the component. 
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Experience 

The experience technique is specific to judgment of subject matter expert (SME) 

for maintenance decision-making. This technique is based on sound reliability 

analysis from non-parametric to parametric probability distributions (Fernandes 

et al, 2011). A non-parametric instance is when the processes and objects are 

consistently under constant observation to ascertain the length of time before 

failure, data acquisition – service knowledge of failure events. However, the 

parametric instances require few parameters to analyse acquired data, but 

extrapolation is possible in the lower and upper segment where parametric 

instances are distributed (Fernandes et al, 2011). Based on experience, 

parametric instances deliver accurate and precise failure distribution. 

Furthermore, an analysis of the extracted data from the degradation mechanisms 

would provide a meaningful dataset for classification to determine the RUL of an 

asset directly by predefining threshold level (Si et al, 2011).  Thus, a continuous 

monitoring of the system and processes to ensure information gathered is 

updated and guidelines are established for feedback to designers.  

Fusion 

The fusion technique uses a combination of two or more data from disparate 

sources required to estimate RUL of an asset. The fusion technique is either 

distributed or centralised. Data classification is a way to incorporate fusion. The 

uncertainty RUL estimate, on-demand data collected from different sensors are 

fused to accurately predict useful life using Principal Component Analysis (Cheng 

and Pecht 2009, Wei et al, 2011). However, decentralised fusion uses each 

sensor to predict RUL according to its information based on stochastic filtering, 

then fuses prediction results from all sensors with fusion weights at a subsequent 

update time. Centralised fusion allows measurement between sensors to 

independently predict RUL to reduce the parameter estimation uncertainty and 

obtain the final fusion of all sensors as a single input data for RUL prediction. 

Thus, a fuzzy approach improves accuracy of an estimate of a structured data 

when compared with an unstructured data representation (Di Maio et al, 2011).  
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Liu et al (2012) implemented a fusion method to improve transparency of 

methods to properly manage prediction of RUL uncertainty. It incorporates a PF 

learning process to provide a more accurate forecast, but the fusion technique 

also uses the PoF and experience techniques to predict damage and analyses 

stress factors. The PoF can be combined with statistical to predict uncertainty 

bound based on parameters used in the design of experiments. However, a 

representation of the various parameters from disparate sources can be fused. 

2.13.3 Prediction methodology  

The prediction methodology justifies the collection of phases, procedures, rules, 

methods and techniques (Avison and Fitzgerald, 2006). In reliability-centred and 

condition-based maintenance, prognostics methodology is fundamental to 

remaining useful life prediction of components to prevent unnecessary downtime 

and costs. Remaining useful life (RUL) prediction methodology is a systemic 

analysis to evaluate prediction techniques and estimation methods to determine 

time remaining for a component to perform its functional capability before failure 

occurs.   

In literature, authors adopted prognostics approaches such as data-driven and 

physics-based approaches (Daigle and Goebel, 2010; Chen et al, 2012; Gasperin 

et al, 2012; Zhao et al, 2013). The data-driven approach engages a collection of 

maintenance and condition monitoring information to deduce the models, while 

physics-based approach utilises mathematical formulas to estimate the lifespan 

of the component under investigation. Researchers have unveiled new 

prognostics models for RUL prediction, which include data-driven, experience-

based, knowledge-based and model-based approaches (Gorjian et al, 2009; 

Fernandes et al, 2011). Both papers discussed the same RUL approaches about 

reliability, but in a different context. While the latter Fernandes et al (2011) focus 

on life prediction suitability of product life cycle and concluded that increased 

modelling accuracy is a function of the life cycle, the former Gorjian et al (2009) 

consider RUL estimate in engineering asset management by providing a potential 

application to asses health and reliability prediction. RUL prediction is analysed 



 

45 

 

based on data-driven, model-based and fusion approaches with a conclusion that 

the choice of fusion approach estimates life of a single system; the fusion of more 

than one RUL distributions is required to estimate new RUL based on probabilistic 

methods (Xiongzi et al, 2011).  

Hybrid  

Hybrid methodology combines different prognostics methodologies and various 

techniques. The hybrid methodology uses several techniques for RUL estimation 

to improve accuracy. The hybrid methodology uses parametric and non-

parametric data to perform and improve RUL estimations, accuracy and 

precision. RUL estimated individually and through methods based on probability 

theory facilitates the fusion of two or more RUL prediction results to attain a new 

RUL (Medjaher et al, 2012).  

In the work of (Ahmadzadeh and Lundberg, 2014), two or more methodologies 

can be used to extract data, analyse data and model problems relating to RUL; 

reduces computational complexity, thereby improving RUL prediction precision. 

The data gathered over time are input, while the RUL becomes the output from 

the model. A combination of fuzzy logic with a neural network identifies current 

health condition of an asset used as input to the neural networks with RUL as 

output. Combination of statistical models with a neural network, Fourier 

transforms with a neural network, dynamic wavelets with neural networks, and 

wavelet transform analysis with statistical models have also been reported.  

Liao and Kottig (2014) propose a hybrid prognostics model with a combination of 

experience-based, data-driven and physics-based models. The authors 

extensively reviewed hybrid prognostics models for remaining useful life 

prediction of engineering systems and application to battery life prediction for 

performance. In their work, three models are fused to incorporate different types 

of data and established results for fusing multiple approaches to significantly 

improved RUL. Data quality and wholeness can be insufficient for the data-driven 

model, however, in the case of recently designed systems historical knowledge 

needs to be acquired.  
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Ahmadzadeh and Lundberg (2014) review three state-of-the-art models for RUL 

prediction about the experimental-based model, data-driven model and physics-

based model as well as Hybrid approaches. The authors presented taxonomy 

with advantages and disadvantages of the approaches.  Bagul et al (2008) initiate 

a blend of methodologies to estimate a more accurate result. Jardine, Lin and 

Banjevic (2006) review machinery diagnostics and prognostics, and implemented 

condition-based maintenance to show that statistical, artificial intelligence and 

model-based prognostic approaches can be used to estimate remaining life with 

accuracy, precision and confidence limit.  

Data-Driven  

RUL prediction methodology applies to statistical and artificial intelligence (AI) 

techniques which rely on historical and current health data to match identical 

patterns. These techniques derived from the configuration, usage and historical 

‘time/run-to-failure’ data for maintenance decision making. Components analysed 

and documented in literature include bearings and gear plates from 

manufacturing industries. Data-Driven methodology is often used to estimate 

RUL, thereby informing maintenance decisions based upon failure threshold. 

Gåsvik et al (2014) propose a ‘wavelet packet’ decomposition approach and/or 

Hidden Markov Models to predict RUL, where the time-frequency features allow 

more precise results than using only time variable. Xiongzi et al (2011) note that 

approaches consequent from historical data are used for predicting RUL of a 

useful asset without foreknowledge of the physics formation of a component. 

Malinowski et al (2015) argue that remaining useful life estimation of turbofan 

engines and performance be different from classical similarity-based approaches 

with training ones. Patterns are designated based on RUL-shapelets relationship 

for predicting the RUL of an equipment. 

Javed et al (2015) propose improving accuracy of long-term prognostics of Proton 

Exchange Membrane Fuel Cells (PEMFC) stack to estimate remaining useful life. 

Their work contributed to data-driven prognostics of PEMFC by an ensemble of 

constraint-based Summation Wavelet-Extreme Learning Machine (SW-ELM) 
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algorithm to improve accuracy and robustness of long-term prognostics. A new 

framework was presented for remaining useful life estimation using support 

vector machine classifier and the Weibull function for general degradation of an 

equipment due to aging (Louen et al, 2013). 

In (Majidian and Saidi, 2007), fuzzy logic and ANN are used to predict RUL of 

boiler re-heater tubes with a closeness of outcome observed, while ANN method 

applies to the neurones present, and the suitable design of the membership 

relates to fuzzy logic. Further analysis of the extracted data from the degradation 

mechanisms provides a useful dataset for classification to predict the RUL of an 

asset directly by predefining threshold level (Si et al, 2011). The mean residual 

life computes a function of the current health based on conditional reliability 

function, and the outcome uses advanced maintenance planning of complex 

engineering systems (Ghodrati et al, 2012). There are difficulties in proper 

domain knowledge and practical applications which requires simulation and 

longer training times without transparency. 

Model-Based  

Physical model-based RUL prediction methodology represents the physical 

failure technique. The analytical-based methodology refers to an understanding 

of techniques, which aid reliability estimates of the physics-based model 

attributed to Physics-of-Failure (PoF), physical science of components and 

generated empirical equations (Bolander et al, 2010). Coppe et al (2012) propose 

use of a simple crack-growth-model for predicting RUL of a system affected by 

fatigue failure mechanism. Failure measures such as crack by fatigue, wear and 

corrosion of components relate to mathematical laws used to estimate RUL 

(Medjaher et al, 2012). Thus, huge costs and components specifications, which 

are not reusable earned this methodology these limitations (Brotherton et al, 

2000).  

The analytical-based methodology requires the combination of experiment, 

observation, geometry and condition monitoring of data to estimate any damage 

resulting from a particular failure mechanism. The model-based methodology 
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requires an equation to recognise specific parameters to monitor tools to identify 

and extract features by using failure modes, mechanisms and effect analysis. 

Lesieutre et al (1997) design a classified modelling approach for system 

simulation to predict RUL. Model-based approach extracts the relationship 

between the lifetime and condition variables for RUL prediction of helicopter gear 

in a mechanistic modelling (Jardine et al, 2006).  

In (Peng et al, 2015), a real-time composite fatigue life prognosis framework was 

proposed to integrate detected stiffness degradation. While a Bayesian fatigue 

life prediction approach was used in an inference framework to predict remaining 

useful life, the prediction performance on experimental data validation was 

conducted using prognostics metric. Kulkarni et al (2015) apply prognostic 

technology to determine the health status of a system and estimates its remaining 

useful life. A testbed was used to implement the prognostics methodology on 

cryogenic propellant loading systems for pneumatic valves. This pneumatic 

valves testbed subjected to magnitude-varying leaks follow a progression 

damage pattern.  

Chiachío et al (2015) present a condition-based prediction of time-dependent 

reliability in composites to find the remaining useful life of composite materials 

subjected to fatigue degradation. The stiffness reduction and an increase in 

matrix micro-cracks density sequentially estimated through a Bayesian filtering 

framework. The prediction of the remaining useful life was obtained as a 

probability from estimating the time-dependent reliability. Multi-scale fatigue loss 

data from a cross-ply carbon-epoxy laminate for validation.  

Fan et al (2014) describe the Particle Filter-based (PF-based) prognostic 

approach of both the Bayesian and Sequential Monte Carlo (SMC) statistical 

techniques to predict the lumen maintenance life of LED light sources. The 

proposed PF approach analyses the preparation of factors influencing the 

prediction accuracy and uncertainties. In sum, a careful comparison shows the 

PF approach achieved better prediction performance to the TM-21 method (Fan 

et al, 2014). In a similar vein, Balaban et al (2015) propose prognostics and health 
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management system development for electromechanical actuators. Moreover, 

the authors employed prognostics algorithms to track fault progression and 

predict the actuator's remaining useful life. The validation experiments were 

conducted in both laboratory and flight conditions using a flyable 

electromechanical actuator test stand. 

Model-based RUL methodology depends on the theoretical knowledge where 

models are designed for specific systems. These systems are monitored and 

simulated based on factors and responses. In predicting RUL, accuracy, 

precision and confidence interval are practical issues in engineering services 

(Engel et al, 2000). Peng et al (2010) design models which can be revised to 

increase accuracy and enhance performance using understanding of the 

degradation mechanics of a system. Oppenheimer and Loparo (2002) determine 

RUL of a machine by merging fault strength-to-life model with crack growth law 

for rotor shafts. A combination of the physics-based simulation model and wear 

prediction model were implemented to predict the RUL of a high dynamic power 

dry clutch system using double exponential smoothing future values (Watson et 

al, 2005). Again, three models namely gear meshing stiffness identification, 

driving gear and fracture mechanics were incorporated to estimate the RUL of a 

gear with a fatigue tooth crack (Li and Lee, 2005). The model-based methodology 

requires more assumptions about a component and its operating conditions. It 

also requires specific mechanistic knowledge and various parameters estimate, 

which depends on a component parameters. 

Knowledge-based  

The knowledge-based methodology combines computational intelligence and 

experience by collecting stored information from databases, subject matter 

experts and interpretation of the rules set (Chen et al, 2012).  Expert system for 

decision support can be regarded as a performance service system for service 

delivery based on the principles of service feedback analysis. Parameters of 

reliability are estimated using an experience-based technique to gather 

information from understanding the operations of an asset (Medjaher et al, 2012). 
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Knowledge-based approach assesses the similarity between a temporary 

situation and a databank of prior failures to infer the life expectancy from previous 

occurrences using an expert and fuzzy systems (Sikorska et al, 2011). 

Knowledge is the through-life accumulation of data from experience based on 

stochastic and probabilistic models of degradation of components (Keller et al, 

1982). An expert knowledge based on experience is used to develop an expert 

system, which is applicable in plants diagnosis and prognosis by using fuzzy 

inference system to define easy-to-understand rules based on IF-THEN 

statements (Biagetti and Sciubba, 2004). In the context of consumer products, a 

two-phase approach namely Weibull analysis and artificial neural network 

methods respectively predicts RUL of components. While the first relates to mean 

life component assessment based on run-to-failure data, the second is used for 

condition monitoring, degradation analysis and RUL prediction (Mazhar et al,  

2007). There are difficulties in converting domain knowledge to rules, which 

require other techniques for prognostics and rules building. 

There are several prognostics prediction approaches reviewed in literature, which 

determines RUL of subsystems or systems. Vachtsevanos et al (2006) define 

prognosis as the ability to predict accurately and precisely the remaining life of a 

failing component or subsystem. Data-driven, model-based and hybrid models 

are classified as prognostics approaches (Vachtsevanos et al, 2006). The data-

driven approach requires no peculiar physical model and solely depends on 

measured data. However, the model-based approach describes the behaviour of 

degradation available for the physical model by combining the approaches with 

measured data to identify model parameters. Hybrid methodology utilises the two 

approaches above to enhance the prediction performance. Table 2-2 shows the 

merit and demerits of the methodology and requirements.  
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Table 2-2 Methodology, Requirements, merits and demerits 

Methodology Requirements Merits Demerits 

Data Driven 

(Statistical and 
Artificial 
Intelligence 
techniques) 

Extensive data 
on the 
challenge and 
conditions  

 Required for static and 
dynamic component prediction 

 Can withstand stochastic and 
complex degradation process 

 Incorporates statistical 
techniques for life prediction 

 Captures complex processes 
without prior knowledge 

 The accuracy is dependent on 
the quantity and quality of the 
data to predict accurately and 
precisely RUL  

 Challenging to fit 
domain knowledge 
in practical 
applications 

 Requires 
simulation 

 Requires longer 
training times and 
not transparent 

Knowledge-
based 

(Experience and 
Artificial 
Intelligence 
Techniques) 

Expert 
knowledge 

 Incorporates uncertainty, 
vagueness and inaccuracy 
using Fuzzy logic 

 Used where mathematical 
models are usually difficult to 
build 

 Suitable for problem-solving 
by domain specialist  

 Requires IF... THEN 
statement for decision-making 

 Problematic to 
convert domain 
knowledge to rule  

 Requires other 
technique for 
prognostics 

 Difficulty in building 
rules 

Model-based 

(Physics-of-
failure and 
Statistical 
techniques) 

Mathematical 
representation 
(component, 
degradation 
mechanisms, 
and operating 
condition) 

Parameters, 
e.g. material 
properties and 
geometry 

 Establishment of direct 
relationship between 
explanatory variables of 
degradation process and life 
prediction  

 Calculates the damage to 
critical components as a 
function of operating 
conditions 

 The flexibility of the logic, 
system behaviour and 
operating condition. 

 Easy to establish standard 
algorithms 

 Substantially high accuracy  

 Requires more 
assumptions about 
the component and 
its operating 
condition 

 Requires specific 
mechanistic 
knowledge 

 Requires 
estimation of 
various parameters 

 Depends on 
component 
parameters 

Hybrid 

 

Selected 
requirements 

 Combination of methodologies 
to improve prediction 
performance  

 Overcomes limitations by 
reducing uncertainty issues 

 Inability to use a 
single method 

 Requires more 
data for prediction  

2.14 Research gap analysis 

In academia, the definition of “Remaining Useful Life” is well established and 

standardised through the International Standard Organisation – Remaining 

Useful Life (RUL) is "remaining time before system health falls below a defined 
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failure threshold" (International Standard Organisation, 2015). However, the term 

remaining useful life comes in various forms such as “remnant life”, “excess life”, 

“remaining life”, “mean residual life” and “lifetime remaining”. In literature, RUL 

results have been presented as a probability density function, regression, value, 

confidence limit or a proportion of the likelihood of failure. In this Thesis, the 

presented results will have the form of a value based on a 95% confidence limit. 

While a well-established approach in remaining useful life prediction can be found 

in the aerospace avionic/electronic domain, research shows this discipline is still 

developing in the maintenance context. However, the maintenance prognosis is 

gradually gaining ground. The research gap relates to predicting the remaining 

useful life multi-component in an assembly. 

Nguyen et al (2015) propose a novel predictive maintenance policy with multi-

level decision approach. Their work focused on multi-component systems with 

complex structure by using a system level and a component level for decision-

making. A Monte Carlo simulation technique is used for evaluating maintenance 

costs. They argue that the approach is robust, but computing time can increase 

when the number of components is high. 

Rodrigues (2017) estimates remaining useful life prediction of multiple-

component systems based on a system-level performance indicator. In his work, 

a system-level performance indicator is calculated based on the performance of 

each component and the system-level RUL predicted. The focus is on hydraulic 

system containing multiple pumps with an air conditioning system for aircraft 

containing various components. The method used is Particle Filter known as 

Sequential Monte Carlo. 

Lee and Pan (2017) present a predictive maintenance of complex system with 

multi-level reliability structure, where data generated from on-board sensors are 

utilised. A discrete time Markov Chain model for modelling multiple degradation 

processes of components and a Bayesian network model for predicting system 

reliability is applied. A probabilistic inference is conducted at the system level. 
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Hafsa et al (2015) emphasise the essence of interactions between complex 

system components RUL by conducting a prognostics of health status of multi-

component systems. Their work focused on a Lorry system and the Weibull 

model is applied to estimate the remaining useful life of the system. 

Bian and Gebraeel (2014) present stochastic modelling and real-time prognostics 

for multi-component systems with degradation rate interactions. In their work, the 

behaviours of condition-degradation-based sensor signal relating to each 

component are modelled. The model estimates the residual lifetime distribution 

of each component using a Bayesian model. 

Furthermore, the prediction methodology described in literature for estimating the 

remaining useful life of residential appliances incorporates Weibull analysis 

(Welch and Rogers, 2010). This methodology actually solves fraction of units 

remaining using a β factor to reasonably estimate the RUL of a residential 

appliance based on a particular Expected Useful Life (EUL) and years in service 

instead of remaining useful life. The systems under investigation are air 

conditioning units and the methodology can be applied to other appliances such 

as refrigerator, freezers clothes washers and dryers (Welch and Rogers, 2010). 

Louen et al (2013) propose a two-step RUL framework which requires acceptable 

and unacceptable performance data for training. A support vector machine (SVM) 

method detects faults and monitors health of an equipment in operating mode, 

while the performance degradation is Weibull distributed. The Weibull distribution 

produces a trajectory for the performance degradation, which is the distance to 

the SVM’s separating hyperplane. The trajectory performance degradation is the 

performance indicator. The RUL is described as the difference between the end 

of life and the current time focusing on a single asset. 

In (Bechhoefer et al, 2015), the RUL is estimated using actuarial methods. The 

failure rate is initially used to estimate the parameters for the Weibull distribution. 

The conditional expectation of the truncated survival function of the Weibull is 

used to estimate the time-to-failure: given that the equipment has survived to time 

t, the probability that the same equipment would survive to time t plus y. The RUL 
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is calculated as the difference in the expected time of failure from current time. 

The RUL compares the simulated and the experimented time of failure to give the 

RUL. An opportunity cost is linked with lost productivity due to a failure in order 

to calculate the associated cost. This cost is based on the safety margin on the 

equipment.  

The researchers above developed a framework to predict the RUL of a single 

component and appliance using a Weibull function and data-driven methodology. 

In their research, the single component or appliance is run and assessed until 

failure. However, in this research, RUL prediction of a component is conducted 

by assessing the same components in an assembly – multi-component using the 

Weibull reliability function, statistical technique and data-driven methodology. 

This research is conducted in the TES centre to identify the qualitative and 

quantitative factors from the historical information, which is likely to affect 

maintenance prognosis of mechanical component degradation. 

In academia, prognostics focus on the performance of a system, subsystem, or 

component to estimate its remaining useful life, while this Thesis aims to assess 

the mechanical multi-component degradation to predict their remaining useful life. 

Research in academia provided only the framework structure and data analysis 

of remaining useful life. However, in literature, no evidence relative to the RUL 

prediction of multi-component in an assembly, which has led to undertaking this 

research. 

2.15 Summary 

This chapter gives a review of through-life engineering services, degradation 

mechanisms, taxonomy and ontology, maintenance strategies, condition-based 

maintenance parameter estimation methods and remaining useful life prediction. 

The overview and explanation of the Through-life Engineering Services regarding 

complex system maintenance and maintenance strategies describe the types of 

maintenance, namely corrective and preventive with a focus on condition-based 

maintenance. In this Thesis, the identified methods and techniques of remaining 
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useful life prediction are categorised in the remaining useful life prediction 

methodologies. 

The review of the techniques requires a variety of methods to interpolate and 

extrapolate data. The ARMA, ARIMA, time series and linear regression statistical 

techniques are used to plan and infer results. The techniques are used to 

manipulate known and unknown parameters to accurately and precisely predict 

RULs. The experience technique explains the knowledge gathered from failure 

events about continuous monitoring while computation intelligence techniques 

deal with vagueness and imprecision regarding machine learning and training. 

The Physics of Failure technique explains the analytical processes, whereas the 

fusion approach uses distributed or centralised methods to merge data from 

multiple sources, classify, and manage uncertainty to accurately estimate RUL 

precision. The PoF technique uses the Failure Mode and Effects Analysis to 

monitor deterioration trends, failure definitions and identifies failure mechanisms. 

On-demand databases define the failure mechanisms if mock-ups are not 

available. 

The remaining useful life prediction literature review is the main part of this 

chapter. The other areas (sections and sub sections) described in the literature 

review chapter have been applied in chapters 4 and 5. The next chapter relates 

to the research aim, objectives and methodology of this Thesis. 
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3 RESEARCH AIM, OBJECTIVES AND METHODOLOGY 

This chapter describes the aim, objectives, application of the selected research 

methods and the research methodology adopted.  

3.1 Research aim and objectives 

This research aims to develop a framework for predicting the remaining useful 

life of a gas turbine mechanical component in an assembly. The assembly level 

historical data are required to model the through-life performance of components 

degradation. The purpose of this research is to develop a framework to assess 

component deterioration and predict the remaining useful life of the component 

in the assembly based on historical (assembly level) data. The life of the 

assembly is determined by the life of a component failing in the assembly at any 

overhaul inspection time. However, the proposed framework contains an 

approach to convert rejection rate data into an understanding of the underlying 

component degradation occurrences towards the rejection threshold.  

The through-life performance of component degradation engages a reliability 

function to improve the modelling application to predict the number of rejected, 

replaced and reused (R-Cube) components. This through-life performance model 

increases the applicability of remaining useful life with the following core 

objectives: 

i. To perform a critical analysis of existing research relating to remaining 

useful life prediction 

ii. To investigate the current (AS-IS) practice of the level and nature of 

degradation information available on the aero component deterioration 

service; 

iii. To model component degradation for through-life performance on 

assembly level data, thereby forecasting the expected component failure 

to predict component remaining useful life 
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iv. To develop a framework for the assessment of through-life performance 

assumptions taken at the design stage, thereby predicting the remaining 

life of the mechanical component based on assembly level data; 

v. To validate the framework through expert judgement and an industry case 

study. 

The proposed framework focuses on component degradation based on predictive 

maintenance, predicting the number or frequency of R-Cube and remaining 

useful life of the component. A literature review is conducted to gain 

understanding of the research domain followed by an investigation (AS-IS 

practice) of the degradation mechanism study based on traditional/conventional 

maintenance. This investigation of the AS-IS practice captures the types of 

damage and the relationship with components. The captured information such as 

the types of components, damage and number of components. The historical 

data can be fused into the through-life performance model. The efficient and 

effective capture, interpretation, transition, storage and fusion of a vast volume of 

complex data from disparate sources represent an enormous challenge on many 

levels.  

The research attempts to estimate the life consumption of components by 

assessing the through-life performance of components in an assembly. 

Furthermore, checking the valuable time remaining for future use requires certain 

parameters to determine the time to replace the entire batch whilst predicting 

remaining useful life. A scheduled maintenance, repair and overhaul (MRO) at 

the shop floor supports detection of events of both high and low levels for 

components’ rejection, replacement and reuse (R-Cube).  

Consequently, an engine usage is dependent on several factors such as 

temperature, pressure, relative humidity, contaminants, and flight cycles. 

Subsequently, the parameters of the engine operating conditions include failure 

modes such as high and low cycle fatigue and foreign object damage. In industrial 

product-services systems (IPSS) such as gas turbine engine, comprises 

systems, sub-systems, and components. The IPSS gas turbine engine incurrs 
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costs in the operation phase, which dominates the whole product life cycle  

(Fernandes et al, 2011). 

3.2 Research methodology 

The research selection includes the chosen research methods and the rationales 

as detailed in this chapter. The research methodology explains the justifications 

for choosing the appropriate research strategy (see Figure 3-1). The research 

strategy describes the data collection methods for the study. 

 

Figure 3-1: Layout of the methodology section 

Avison and Fitzgerald (2006) argue that methodology reasonably justifies the 

process for collecting and managing different procedures and methods. However, 

methodology describes and analyses the procedures used in conducting 

qualitative and quantitative research (Clough and Nutbrown, 2012). The 

application of methodology justifies the research questions and explains the 

methods utilised in this research. While methodology articulates applying specific 

research methods, a method is a data gathering tool for research (Sachdeva, 

2009). Examples of methods in qualitative research are interview and survey, 

while methods for quantitative research include questionnaires.  

However, this research aims to develop a framework to predict the remaining 

useful life for a component based on the assembly level life and overhaul data. 
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This research focuses on the concept of remaining useful life prediction within the 

field of Prognostics and Health Management for Condition-Based Maintenance. 

The background of this research is the analysis of mechanical component 

degradation. In this research, the Weibull method is applied to the model-building 

data available to develop the through-life performance prediction model. The 

Weibull method is adopted to approximate the targeted random process. The 

Weibull method will also be used in the validation data available to estimate 

parameters for cross-validation purposes. The research gaps identified in the 

reviewed literature and the industry challenges captured would direct the 

research to reduce the preconception contained with any ambiguity. The next 

section relates to the research method selection and justification. 

3.3 Research method selection and rationale 

The methods applied in this research are highlighted in the blue boxes with white 

text in Figure 3-2. The research technique identified include exploratory, 

explanatory, mixed (qualitative and quantitative), case study, brainstorming / 

workshop, documents review and analysis, interviews and literature review. The 

research technique defines aim and outcomes to clarify techniques for 

conducting this research (Wisker, 2007). 

  

Figure 3-2: The research selection approach (the blue boxes with white texts were 

used in this thesis) 
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3.3.1 Research design 

The research design discusses qualitative, quantitative and mixed research 

techniques  (Robson, 2002; Wisker, 2007; Lapan et al, 2011; Bernard and 

Bernard, 2012; Symon and Cassell, 2012; Bryman, 2016). The quantitative 

techniques deal with the certainty of the research theme before design, whereas 

the qualitative research design engages a generic strategy to describe the 

research subject and the mixed deals with both design techniques. 

i. Quantitative technique 

In this study, the researcher engages a significant knowledge of the research 

theory in the research process. The quantitative research relates to fixed designs 

(Robson, 2002). In quantitative technique, data collection method is either 

experimental, correlation, survey or descriptive, whereby numerical data are 

collected for analysis using statistical methods. Statistics resulting from 

quantitative research are used to establish the presence of chance relationships 

between variables (Walliman, 2005). Another method associated with 

quantitative research includes questionnaires (Wisker, 2007). Data collection was 

conducted in a structured manner to eliminate bias (Robson, 2002).  

ii. Qualitative technique 

The qualitative research referred to flexible design (Robson, 2002).The author 

applied the qualitative technique, which provides a platform for theory-building. 

The qualitative research design meant gathering and interpreting relevant 

information. The researcher seeks to understand the notion of the challenge by 

engaging this research design which changes over the progression of the project. 

Data collection methods include interviews, case study, focus groups, participant 

observation and personal learning logs (Wisker, 2007; Symon and Cassell, 

2012). In this research, there is a significant degree of engagement with 

stakeholders for the success of the study. 
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iii. Mixed technique 

The mixed research design is a hybrid of both the qualitative and quantitative 

research techniques. The hybrid technique allows a fusion of the approaches 

mentioned above to assist the researcher in managing and documenting this 

research properly (Wisker, 2007). The researcher used a qualitative design in the 

initial stage followed by the quantitative design at a later stage of this study. 

Based on the rationale, both qualitative and quantitative research designs were 

not simultaneously applied in the research. However, the qualitative design was 

primarily used to explore the background of the research to gather relevant 

information, while the quantitative research design was used for the analytical 

and numerical applications. The mixed research design allows the application of 

a two-stage research process whereby one is used before another. With the 

nature of this study, both the qualitative and quantitative research designs are in 

line with the aim and objectives of the research, hence, the selection and use of 

the hybrid / mixed research design in this PhD Thesis.  

3.3.2 Research purpose  

Robson (2002) argues that research purpose addresses research questions. The 

purpose of the study informs readers what the research should accomplish during 

a discussion on the theme. The research purpose includes descriptive, 

explanatory and exploratory approaches. The researcher has selected the 

explanatory and exploratory research purpose for this study. 

a. Explanatory 

The explanatory research purpose are causal (Zikmund et al, 2012; Yin, 2013). 

As suggested by  Zikmund et al (2012) the major aim of this research purpose 

identifies a cause-and-effect analysis. For the purpose of this study, the 

researcher used an illustrative method in the context of either qualitative, 

quantitative or mixed research designs (Robson, 2002). The explanatory 

research purpose applies to the AS-IS practice discussed in chapter 4 to 

understand the cause and effect analysis of the components degradation. 
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b. Exploratory 

The exploratory research purpose addresses the nature of the problems to gain 

a better understanding of problem dimensions in a current practice (Zikmund et 

al, 2012). This research is exploratory qualitative research design exploring the 

how in an AS-IS industry practice (Robson, 2002; Symon and Cassell, 2012; 

Bryman, 2016). The exploratory research design will be applied in chapter 4 

highlighting the nature of degradation in relation to cause and effect analysis of 

failure mechanisms regarding mechanical components. The exploratory process 

supports identification of parameters required for input in the proposed framework 

in relation to the literature findings. 

The rationale for applying a combination of the exploratory and explanatory 

research purpose in this study addresses the aim and objectives of this research. 

The initial phase of this research reports maintenance strategies, and challenges 

in academia and industry, but rarely discusses the connection of the complexity 

and project resources. This research introduces the exploratory research 

purpose. Changes within this research led to explanatory research purpose 

based on the complexity and resources of the relationship between conventional 

and predictive maintenance for components degradation and remaining useful 

life prediction.  

3.3.3 Research strategy  

Robson (2002) argues that a case study illustrates a credible means and new 

ways of addressing challenges and problem solving to facilitate learning. The 

research strategy should be compatible with the research purpose and research 

questions (Robson, 2002). As indicated by Robson (2002), the research strategy 

concerns potential research questions. The data collection methods should 

provide solutions to the research questions. 

A case study focuses on the study of a person, a group, a setting and an 

organisation with the intention of providing viable solutions involving detailed 

development knowledge (Robson, 2002; Symon and Cassell, 2012). The case 
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study supports involvement of decision makers by depicting real life situations 

either through questions or discussions. In essence, a case study enables 

thorough analysis and understanding of the case (Symon and Cassell, 2012). It 

simplifies complex concepts and improves analytical thinking and 

communication, but unsuitable for a short-term programme. The research 

strategy includes collection and reporting descriptive information about the event 

histories and present occurrences. The researcher uses various types of data, 

which are possibly accessible to deliver fairly comprehensive information about 

the investigation. 

Yin (2013) asserts a case study supports investigation of complex cases, which 

are difficult to understand in research laboratories. It provides rich qualitative 

extensive information; creates new ideas and skills (e.g. data scientists) for 

further examination to initiate change (Gummesson, 2000). Case studies lack 

redundancy and are time-consuming, while the results generalised by 

researchers to a wider community and influence impact on the case outcome. 

In a case study, processes, procedures and activities recreate events in a 

structured manner. In the process of conducting a case study, tasks are 

investigated in detail for  better comprehension. The case study is a useful 

method for data collection and analysis. The case study methods for gathering 

data include workshops / brainstorming, observations, unstructured and semi-

structured interviews, and official document are suitable for the case.  

The rationale for selecting the case study in this PhD Thesis is that predictive 

maintenance strategy is a relatively new concept when compared to corrective 

maintenance as discussed in Section 2.5. The predictive maintenance strategy 

requires an understanding of PHM to perform through-life performance modelling 

of mechanical component degradation. The case study conducted in this 

research adopts an approach based on the characteristics of degradation 

analysis and expert knowledge. Case studies concern the development process 

that applies to condition-based maintenance application. The case study strategy 

appears appropriate for capturing existing knowledge from experts and creating 
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new theories. The dominant research purpose is exploratory by introducing a 

qualitative research design. Semi-structured interviews were conducted to 

identify the nature of component degradation in an AS-IS industry practice in this 

study.  

3.3.4 Data collection strategy 

This section describes the various data collection methods for this research. The 

data collection methods such as literature review, documents, interviews and 

workshop/brainstorming session were applied in this research and the rationale 

presented. 

a) Documents 

Documents were reviewed, analysed and utilised as evidence of the findings in 

the data collection phase of this research. Documents is a data collection method 

for supporting other methods. The content of the articles undergoes quantitative 

analysis. The analysed contents of the documents concern reliability and validity 

of this research (Robson, 2002). The articles were utilised to support the findings 

of the case study and defined the parameters for assessment of the through-life 

performance. 

b) Interviews 

Interviews are often preferred for data collection in research (Robson, 2002; 

Marshall and Rossman, 2016). Dialogue is an interview process with purpose 

and is qualitative, which researchers strongly depend upon (Marshall and 

Rossman, 2016). Participants in the interview process describe the topic of 

interest in their own context (Marshall and Rossman, 2016). The research reveals 

participants’ opinions by exploring universal topics (Gerson and Horowitz, 2002; 

Marshall and Rossman, 2016). Robson (2002) describes different interview types 

as follows:- 

i. Structured: Prearranged with fixed questions and wording, usually 

specific 
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ii. Semi-Structured: Prearranged flexibility to adjust the direction and 

wording based on researcher’s discernment. Usually relates to qualitative 

research design 

iii. Unstructured: Usually relates to qualitative research design. 

Researchers allow the discussion to emerge and evolve around the topic 

of interest 

Semi-structured and unstructured interview methods were applied to collect data 

from participants in the organisation. Interviews with different participants at 

different times help to gain understanding of the area of study and to obtain views, 

which others did not disclose. 

Methodology for interview questions design 

In designing the interview questions, the interviews types were highlighted, and 

the semi-structured interview chosen. Semi-structured interview has been 

selected to put together specific qualitative non-numeric data. This type of 

interview questions creates a sense of balance of open-ended questions for an 

interview. The semi-structured interview clarifies the research domain and the 

specific research questions. The designed questions support exploration of the 

research at the early stage of this research. The designed interview questions for 

this research facilitates the uncovering of descriptive data on the personal 

experience of respondents. The information gathered from the use of interview 

question can create specific insights from generic domains.  

The process for designing the interview questions is as follows 

i. The researcher created open-ended questions to gather descriptive 

responses unlike closed-ended questions with "Yes" or "No" 

ii. The researcher prevented the use of leading questions 

iii. The researcher utilised terms which respondents could comprehend 

based on their language skill, knowledge, age, gender, and experience. 

The researcher ensured cultural and social contexts are considered 
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iv. The researcher constructed questions based on the keep it, short and 

specific approach. The researcher avoided asking two-in-one question 

type. 

v. The researcher restricted questions with strong positive and negative 

connections. The researcher discouraged the use of negative questions. 

The process for participants’ selection for the interview is discussed in 

chapter 4. 

 

c) Literature review 

Through literature reviews, the researcher gained knowledge of the current and 

previous research regarding the topic area (Hart, 2001; Marshall and Rossman, 

2016). Literature provides an avenue for the researcher to define the research 

theory (Marshall and Rossman, 2016). A comparison of research findings with 

other literature was conducted to identify research gaps in existing research, 

which produces contributions to knowledge to this research (Hart, 2001). 

Evidence of gaps in the industry is available in chapter 4 assisted the researcher 

in the avoidance of errors from prior research (Hart, 2001). Literature reviews 

support the investigator’s research design methodology to identify the significant 

challenges and data collection strategy relevant to this research (Hart, 2001). 

d) Workshop 

The workshop is a brainstorming session (Brock et al, 2016; Shokri, Bradley and 

Nabhani, 2016) for collecting data. The process gives individuals opportunity to 

provide independent responses based on the facilitator’s presentation and the 

questionnaire presented. The process allows free-flow of ideas and open-

discussion in order to respond to the questionnaire without bias. The data 

collection strategy support collation of large data in a single setting rather than 

one-to-one interview. 
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Data collection strategy selected for the Thesis 

The researcher uses data collection methods as described above. The major 

strength of a case study data collection is the opportunity to use disparate 

sources as evidence (Yin, 2013). The introduction of triangulation reduces threats 

to validity (Robson, 2002; Symon and Cassell, 2012). Triangulation uses either 

multiple methods or sources. A combination of qualitative and quantitative 

research techniques enhances investigation and feasibility of this study. Robson 

(2002); Symon and Cassell (2012); Bryman (2015) conclude triangulation is a 

valuable and widely used strategy for checking results of qualitative technique 

with that of quantitative technique.  

In this research, the application of triangulation aided proper collection of data 

from disparate sources. This process ensures the engagement of more than one 

observer should be present during the study. The triangulation applies to both 

qualitative and quantitative research techniques. This triangulation engagement 

mitigates bias and improves research outcomes. However, triangulation 

assesses literatures reviewed, experts’ knowledge, results of reviews, interviews, 

observations, and discussion sessions. The threats to research validity are 

mitigated using strategies of prolonged involvement, peer briefing, member 

checking, audit trail and negative case analysis (Robson, 2002; Symon and 

Cassell, 2012) as shown in Table 3-1.   

Table 3-1: Mitigation strategies 

Strategies to mitigate threat to research validity 

Prolonged involvement Interaction over an extended period 

Peer debriefing Reduce researcher bias through debriefing 
sessions 

Member checking Checking transcripts, accounts, and interpretations 
made by respondents through various means (e.g. 
Email, face-to-face) 

Audit trail Keeping a full record of the conducted activities 
during a study 

Negative case analysis Searching unproven developed theory 
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3.4 Research Process 

The validity of qualitative research concerns its accuracy, correctness and 

trustworthiness (Robson, 2002). The accuracy of qualitative research design 

describes the outcomes and  findings (Robson, 2002). Tests for assessing the 

quality of the research design include internal, construct, reliability and external 

(Kirk and Miller, 1986; Harrison, 2002; Yin, 2013). In the process of conducting 

this research, a causal relationship was created within the organisation to gain 

the most valuable outcome during the interview sessions. Construct the concepts 

of the prediction by identifying the correct operation measures. The reliability of 

the research design is key to assess and minimise bias; validate the data 

collection procedure, conduct an audit by tracking the consistency of methods 

and practices, and use of standardised research instruments to measure 

reliability. Robson (2002) outlines the threat to validity in flexible research design 

to include description, interpretation, theory, reactivity, respondent biases and 

researcher biases (see Table 3-2).  

Table 3-2: Threat to validity in the research design 

Threat to validity 

Description  Avoidance of inaccuracy of the data seen or heard, for 
example, audio and visual recording of interviews 

Interpretation Provision of the happenings rather than emerging from one’s 
involvement within the research environment. 

Theory Proactively search for discrepancies in available data which 
are not in line with one’s theory. 

Reactivity Researcher’s physical presence could affect the environment 
and the people involved 

Respondent 
bias 

Obstructing and withholding information; an example is a 
researcher perceives as a threat and the respondent would 
not want to share relevant information 

Researcher 
bias 

Preconceptions and assumptions brought in a research 
environment that refers to the behaviour of the types of 
questions asked 
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Addressing these threats require effective triangulation strategy in this research. 

This triangulation strategy was employed to create a balance in the rigour of this 

research based on a case study, workshop, observations and interviews.  

The research process framework reviews the relationships amongst the different 

segments (see Figure 3-3). This research framework includes situation, research 

topic, research method, data and conclusion (Walliman, 2005). The research 

process illustrates the key phases, methods, rationales and deliverables 

presented in Section 3.2.   

 

 Figure 3-3: The research process. Source: (Walliman, 2005)  

The research methods in the research design were used in collecting and 

collating relevant data for analysis. The data analysed were critical to the 

research decision-making. The outcome of the information analysed applies to 

the situation by verification and validation. This research process is a continuous 
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cycle of a product at the end of each phase of the methodology. The next section 

explains the research methodology adopted for this research. 

3.5 Research methodology adopted 

The research methodology adopted for the research purpose, research design 

and research strategy is described in this section. The research process engaged 

in Figure 3-3 includes three stages represented systematically in Figure 3-4. The 

process of the research methodology comprises the review of the literature, 

industry interviews, workshops and case study scenarios. The three phases are  

i. Phase 1: Understanding context and current practices 

ii. Phase 2: Framework and tool development 

iii. Phase 3: Framework and tool validation 

3.5.1 Phase 1: Understanding context and current practices  

The research involved a partnership between Cranfield University, manufacturing 

department and an aerospace industry based in the United Kingdom. The project 

relates to through-life engineering services of a gas turbine performance. The 

project focuses on the stator of the turbine as highlighted in chapter 1. The project 

aims to address prediction of component degradation and remaining useful life of 

component before failure happens. The project focuses on individual components 

within a multi-component assembly of a gas turbine engine. Literature review 

shows evidence of remaining useful life prediction for a single component, 

however, in this study, a framework is developed to assess the component 

degradation and overall remaining useful life of components at component level 

using only assembly level. Furthermore, failure data at component level is 

unavailable, while only assembly level is available in this context, hence the 

research. Historical and overhaul data from literature, reviewed documents and 

findings from industry investigation are used in building a through-life 

performance model from a statistics standpoint. The validation data is the data 

used in the scenarios of the case study. Since the case study is used to validate 

the framework, the "data" from industry is utilised as validation data. This means 
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the data used for model-building is completely different from the validation data. 

The approach of using "model-building data" and "validation data" reflect 

partitioning in cross-validation. The research addresses issues regarding single 

stage assembly with replacement of pristine components, single stage assembly 

with replacement of repaired components and multiple stage assembly with 

component replacement.  

The inability to conduct experiments to mirror the operating conditions and the 

operational pattern in determining degrading components of a gas turbine at 

assembly level is difficult, expensive and time-consuming. However, data 

collection for statistics and computational analysis of the component degradation 

for complex engineering systems such as gas turbine stand as a suitable 

approach.  

In understanding the context, the situation observed in the current practice led to 

the identification of problems relating to the research questions. The investigation 

in the current practice in industry led to the knowledge discovery of degradation 

mechanisms. The approach improved low-level events capture and 

categorisation of degradation mechanisms as taxonomy. The taxonomy of 

deformation, corrosion, fracture, wear and their causes is described in the data 

collection phase to address the first objective. The process to identify the 

taxonomy is based on a set of questions validated by an interview with experts. 

An understanding of the degradation mechanisms affecting different components 

is significant in the through-life performance modelling to know how many 

components are fitted in an assembly and the likely number of degraded 

components. Based on the investigation, low-level events at component level are 

identified. 

Prior to the case study, industry visits, document reviews and interviews with 

partners, the researcher conducted a literature search in the areas of PHM and 

CBM, in related field such as aerospace, medicine, manufacturing, electronics 

and maintenance to address the second objective. The research process 

employed in Figure 3-3 has been applied to achieve the outcomes – relevant 
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prediction methods, techniques, and methodologies; identify and categorise high-

level events at system level; and maintenance cycles of multiple overhauls and 

engines. The findings show a linkage between components and 

assembly/systems assets whereby a component is required for a system to 

perform its expected function. Based on regular overhaul maintenance, the 

research aims to predict the remaining useful life of a component in an assembly. 

Furthermore, the observation is tailored towards conventional maintenance 

strategy, which is a complex and time-consuming approach to maintaining 

complex engineering system of industrial product-services systems.  

3.5.2 Phase 2: Aero component based framework development  

The first phase delivers an understanding of the context regarding conventional 

maintenance approach on component degradation practice and challenges. The 

identified challenges led to the discovery of the importance of having a predictive 

maintenance strategy for assessing component degradation before failure. 

Furthermore, investigation in an analysis of multiple overhaul maintenance cycles 

conducted reveal a timeline visualisation of high-level maintenance events. 

Overhaul sequence and activities are highlighted to gain knowledge to build a 

timeline visualisation. The introduction and utilisation of entity relationship 

diagram (ERD) and association of the relations are key in developing a 

maintenance database. The visualisation environment which displays the 

information on a single page screen is developed with a web technology (PHP). 

The essence of this investigative analysis is to provide actionable insights 

regarding root cause and swift retrieval of relevant information for maintenance 

decision making. The reason for the MRO and replacement of any components 

are entered in a log. This log is stored in the database and can be retrieved during 

an investigation. The insights created in the analysis is used to deliver the 

approach for developing the through-life performance model. 

The second phase identifies types of data and variables needed to model the 

through-life performance of the components in an assembly, which addresses the 

third objective. The selected remaining useful life prediction methodology, 
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technique and method in this research are the Weibull method, statistical 

technique and data-driven methodology. The through-life performance prediction 

framework is derived from the data-driven prognostics approach. The through-life 

performance framework combines the basic characteristics of a component for a 

RUL prediction. In this context, the outcome of the modelling results from the third 

objective to feedback to policy makers. A framework to predict remaining useful 

life includes algorithms to fuse maintenance parameters collected from disparate 

sources.  

In this Thesis, the Weibull cumulative distribution function is applied as a 

conditional probability for modelling the through-life performance of components 

in an assembly. According to literature, where the shape value is greater than 1, 

overhaul of components is appropriate. The stochastic (random probability 

distribution) process indicates frequency of the individually degraded component. 

The Weibull CDF contains two parameters, namely Eta (η) is a scale, which 

describes the time a large percentage (63.2%) of the components are expected 

to experience performance loss, while the Beta (β) is a failure rate (shape) with 

positive constants defining the characteristic life of a location. The Eta or 

characteristic life (η) equals the mean-time-to-failure (MTTF) when the failure rate 

is constant. This approach does not perform a model fit test such as the Weibull 

plot. 

The data-driven prognostic approach facilitates the predictive maintenance for 

through-life performance prediction. The implementation of an estimation 

algorithm shows overhaul activities using a statistical technique which supports 

the generation of a distribution to estimate rejection rate, thereby predicting the 

remaining useful life, which takes care of the fourth objective. The proposed 

Weibull Through-life Performance Prediction Model (framework) is a data-driven 

prognostic methodology for:-  

(i) Data preprocessing and parameter estimation of processed failure time 

data 

(ii) Statistical modelling of prior overhaul of observed rejections 
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(iii) Applying renewal theory to predict the expected number of 

components rejected, replaced and reused 

(iv) Predicting remaining useful life of components given that components 

survived until time t, the probability of surviving until the next overhaul 

period with the inclusion of renewals 

(v) Incorporating cost variable as a threshold to calculate when the entire 

component in the assembly should be replaced 

A case study has been utilised to validate the final version of the theoretical 

design. Real data are used in this case study which serve as the default data in 

the Through-life performance prognostic modelling.  

3.5.3 Phase 3: Framework validation  

An industrial case study and expert judgement are used to validate the framework 

to demonstrate the effectiveness of the prognostic tool, which addresses the fifth 

objective. A test run of the working application is conducted at the EPSRC Centre 

for Innovative Manufacturing in Through-Life Engineering Services.  At this stage, 

verification and validation of the time/run-to-failure maintenance data are required 

to test the developed framework. The results are either in cycles. A comparison 

of the fused input and output results data with user expectations is conducted. 

An evaluation of the outcomes is based on domain expert’s knowledge (in 

academic and industry) relative to the sourced data using questionnaires. 

The validation process involved the collaborating industry and academic. The 

industry case study focuses on servicing to feedback to design and manufacture. 

The purpose of the validation includes: - 

i. to ensure the tool meets user expectations in term of assessing the 

mechanical component degradation and estimating the remaining 

useful life in cycles;  

ii. to check the underlying mathematics for the prognostics and RUL of 

the mechanical component;  
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iii. to assess the technique used for the development of the through-life 

performance framework.  

The next section gives a summary of this chapter. 

 

Figure 3-4: Adopted research methodology (Light blue colour is the phase 1, pink 

colour is the phase 2 and purple colour represents activities conducted in phase 3) 
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3.6 Summary  

This chapter presented an adopted methodology in line with the industry nature 

of the research. The research design, purpose, strategy and data collection 

methods are the research methods applied in deciding the methodology. 

A research design through exploratory and explanatory perceptions of the case 

study approach is conducted. This chapter emphasises issues relating to validity 

of a qualitative design covering strategies to improve this research. The research 

utilised the data collection methods; document, workshop/brainstorming, 

literature review and interviews. The rationale for selecting the research approach 

and data collection methods were enumerated. The discussion of the research 

methodology adopted includes understanding the context and current practices, 

framework development for aero component prediction and framework validation. 

The next chapter discusses the current practice of maintenance strategy in 

through-life performance of component degradation from industry interactions. 
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4 CURRENT INDUSTRY PRACTICE 

This chapter investigates current industry practice and captures findings of 

through-life performance events. Data mining from historical sources, forecast of 

component degradation and remaining useful prediction of a component in 

assembly has become crucial. Prognostics on degrading component are 

predicted to ascertain future rejection for on-time maintenance, which is crucial 

in the aerospace sector with a focus on gas turbine engine multi-component 

system. This chapter provides initial introduction of the current industry practice 

in the context of component degradation and remaining useful life prediction. In 

relation to the investigation and interviews conducted, findings show the current 

approach in analysing component and maintenance data, but identifying and 

categorising failure mechanisms from historical sources seem complex and 

labour intensive (Okoh et al, 2014). 

In this chapter, Section 4.1 presents the scope of participant selection for the 

study and industrial association with the collected information for the current 

practice. Section 4.2 centres on development of the questionnaire. Section 4.3 

discusses results of the semi-structure and unstructured interview and analysis. 

Section 4.4 is a description of the current industry practice. Section 4.5 highlights 

vital observations including challenges. Section 4.6 summarises this chapter. The 

following section presents the scope of the current practice. 

4.1 Scope of participants’ selection 

In this study of AS-IS industry practice, the scope relates to the selection of the 

participants for interview in the course of the investigation. The selection of the 

participants is in conjunction with the project sponsor, based on this research 

project. However, since the research context is a stator of a gas turbine engine, 

the relevant individuals with key responsibilities in this area were identified. Again, 

another area of interest is assessing component degradation and the major 

degradation mechanisms found in gas turbine engine. While the study focuses 

on gas turbine, the assessment of the nozzle guide vanes is eminent. The 
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relevant experts in charge of the design and maintenance of the components 

were located in the department in different teams. The teams responsible for 

maintenance of Trent 700, 900, XWB, engineering for service, knowledge 

management and lifecycle engineering were identified. The identified personnel 

were later contacted through a face-to-face meeting to briefly discuss the 

research project and a proposed interview date was set. The interviews were 

conducted as part of the investigation to further gather relevant information about 

this study. The roles and years of experience presented in Table 4-1 are experts 

who were interviewed using unstructured and semi-structured interview 

questions presented to them, but due to confidentiality the names of persons 

were not specified in this Thesis. The next section describes the methodology for 

developing the questionnaire for the study. 

Table 4-1 Experts, role space and experience 

Experts Role Space Experience 

(years) 

A Chief Lifecycle Engineer – Trent 900         30 

B In-service Event database  20 

C Design for Service - Trent XWB 22 

D Information Manager - Engineering for 

Services  

12 

E Design for Service - Trent 700 10 

F Rolls-Royce Engineering Associate Fellow 

- Life Cycle Engineering 

30 

G Knowledge Management Technologist 4 
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4.2 Methodology to develop interview questions 

In this research, the methodology for developing the interview question and 

conducting the study is described. A systematic research methodology was 

adopted in conducting the investigation of the current practice of through-life 

analysis and producing the questionnaire. The tasks include questionnaire / 

interview questions development – literature review, initial discussions with 

sponsoring organisation; an initial question – pilot research 1-2-1 (organisation 

and participants); outline of the questionnaire; conducting the data collection – 

on-site, number of hours used for note taking, teleconference and no recording 

allowed. The systematic methodology for developing the questionnaire is 

presented in Figure 4-1. 

 

Figure 4-1 The systematic research methodology for phase two 

This research aims to investigate the current practice relating data mining of 

maintenance information, component degradation knowledge and predicting 

failure of components using historical data. The purpose is capturing relevant and 

significant information required for prediction and maintenance within an 

aerospace domain. A review of literature further enables the questionnaire 

development, comprehension of the research area and identify limitations. 
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Literature review enhances selection processes by choosing the appropriate 

approaches to address prevailing challenges of the study. Discussions with 

industry sponsor began with attending a meeting to initiate this research project. 

The meeting was attended by relevant stakeholders. The meeting started with an 

introduction of the study and relevant requirements from the sponsor. However, 

the aim of the meeting was to relate with stakeholders, to identify and capture 

vital requirements. Subsequent meetings were attended to further gather and 

understand compositions of the investigation to address the research questions 

and to meet the objectives of this research. 

4.2.1 Pilot research 

Pilot research are conducted as part of initial communications with a participant 

(Lifecycle Engineer) with 30 years of experience from the sponsor organisation. 

Two meetings were conducted, while the first meeting took an hour, the second 

lasted for two hours. Both meetings were essential to further discover the context 

and scope relevant questions for the research. During the meetings, unstructured 

interviewing method was implemented. The participant stressed the need to data-

mine historical data of components, feature and degradation mechanisms from 

maintenance information databases to assess health status of different 

components. The assessment analysis of textual data is to further identify, 

recognise relevant information and conduct a component, feature and 

mechanism categorisation. There is cultural impact on the way historical data are 

stored and utilised in the organisation for component degradation investigation. 

Based on the knowledge acquisition and discovery, data maintenance team 

happens to be the right stakeholders for the study.  

However, as a result of the initial meetings and literature review, an array of 

questions was designed for interviewing specific stakeholders in the organisation. 

The subsequent meetings relate to reviewing and structuring the interview 

questions. The purpose of the interview questions is to assess how the 

organisation analyses and estimates component degradation based on failure 

modes using historical data from disparate sources including merits and 
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demerits. The questions support capturing current procedures utilised to reflect 

component degradation and remaining useful life prediction. Whilst conducting 

interviews with the participants, the designed questionnaire is presented to 

provide realistic information in a two-hour period. The outcomes from the 

interview were validated through a report submitted to the sponsor. While tasks 

carried out during the study were joint efforts with the project team, an analysis 

of the investigation was conducted by the author. Examples of the questions 

include  

i. How would you describe the degradation data? 

ii. How are degradation data managed? 

iii. What are the component degradation mechanisms?  

A comprehensive full list of the questions is presented in section 4.3. 

4.2.2 Conducting the data collection 

Subsequent to pilot research in Section 4.2.1, semi-structured interviews are 

initiated for data collection. With respect to initial project meetings, stakeholders’ 

attentions were considered to support identification of relevant personnel to be 

interviewed. In the process of the study, resource provision from sponsor 

provided opportunities to invite the right specialists for interview. During the 

meeting, the sponsor identified and listed would-be professionals for the 

interviews. The interviews are designed to happen between one and two hours. 

Additionally, the adopted process for requirements gathering from a semi-

structured interview is shown in Figure 4-2. 
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Figure 4-2 Process for information gathering from organisation interaction 

In conducting the investigation in the AS-IS industry practice, early stages of the 

research were a joint approach with other researchers in the characterisation of 

component degradation project. The preliminary stages aim to deduce and gather 

relevant information for the project. The joint approach was useful during the 

initial stages of the research because it facilitates the provision of a clearer picture 

of the AS-IS practice and issues within an organisation. As the researchers in the 

overall project worked collectively, the project became individualised (specific 

focus) as the research progressed.   

i. Task 1 relates to a case study as a formation given detailed descriptions 

of component degradation based on historical data. While this study 

assesses component degradation relatives to diagnostics – problems 

examination. It also focuses on gaining understanding by conducting an 

analysis on maintenance cycles relating to engine availability from a 

timeline visualisation perspective as a scope and a case study relating to 

Prognostics – when something erroneous occur.  

In this study, a prior investigation of the current practice relating to the 

ontology and taxonomy of degradation mechanisms in this chapter 

followed by an analysis of events at various maintenance cycles in chapter 

5. The investigations conducted provided relevant complimentary outputs 

Case Study Analysis
[1]

Interview
[2]

Data Collection
[3]

Notes Transcription
[4]

Data Analysis
[5]

Research Refinement
[6]

Identify Improvement
[7]

Validation
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for the project. The study involves the investigation of the component 

degradation to assess the level and identify types of damage. A 

categorisation of degradation mechanisms found includes component 

type, degradation type, and number of degraded component. Documents 

and databases were provided to enable delivery of the project. The study 

is further extended and supported by previous findings and available 

documents regarding maintenance informatics. Interviews and 

brainstorming sessions were conducted to ensure the required inputs are 

identified and outputs produced.  

Component degradation and other relevant information are captured such 

as time of inspection/overhaul, life of component at design stage and 

flights cycles. The study validates the application of a generic framework. 

It emphasises the application of predictive maintenance strategy for 

prognostics. The historical data of specific degraded components in an 

assembly of the same product which travels on specified routes are 

statistically analysed. The applied model estimates the numbers of 

components expected to degrade at certain future flights cycles before 

failure occurrences to predict its remaining useful life.  

In the course of the communication, importance was more on the 

presentation of the connection with the degraded component, the features 

of the component and the mechanisms which affect specific features and 

components accordingly. The interaction was based on capturing current 

processes of data mining and analysing component degradation from a 

convention maintenance strategy, while estimating the number of 

components expected to degrade and predicting remaining useful life of 

the components in the assembly. 

ii. Task 2 refers to the semi-structured interviews developed for data 

collection process, interviews, case studies and documents gathering. In 

this task, questions were developed to identify and extract relevant 

information during interviews and case study from a holistic perspective. 
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During the interview process, the author made handwritten notes, but did 

not record the interviews. 

iii. Task 3 uses developed interview questions to facilitate and conduct face-

to-face conversations with stakeholders. The roles of the management 

personnel include subject matter experts and life-cycle engineers. Several 

meetings were initiated. Data collection methods were engaged during the 

process. Communication methods used in the investigation process are 

unstructured and semi-structured as highlighted in chapter 3 include face-

to-face meetings, telephone interviews, video conferencing (WebEx), 

email and teleconferencing. 

iv. Task 4 shows notes transcription from interviews during the investigation. 

An example interview question is – How would you describe the data? 

– The data relates to the complex data representation and storage in both 

structured and unstructured format. The data is a combination of numeric 

and text. The text refers to the taxonomy of the different deterioration. 

Examples of the taxonomy of the deterioration include tear, wear, rust, and 

crack. Triangulation is utilised to process the effect from different 

communication sources of the data. The process illustrates transcription 

of the handwritten interview notes and report writing, which signifies 

learning.  

v. Task 5 describes the analysis of the data. The responses from the 

interviewees are handwritten as the conversation progresses.  

vi. Task 6 uses collected data to refine the research procedure.  

vii. Task 7 acknowledging areas of improvement during data analysis.  

viii. Task 8 supports validation using email and face-to-face meeting to contact 

participants and producing reports. The reports presented findings which 

were achieved through this study, interviews and documents on 

component degradation, through-life engineering services and prediction 

in the aerospace sector. 
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4.3 Analysis of interviews and findings 

The section examines results and interpretation from interviews conducted with 

experts mentioned in Table 4.1. However, in the course of interview process, the 

researcher presented a list of pre-stated and additional interview questions in the 

line of remaining useful life prediction.  

i. How would you describe the degradation data? 

ii. How do you manage the data? 

iii. What are the component degradation mechanisms?  

iv. How are the data extracted? 

v. What is the process of extracting data? 

vi. How would you describe taxonomy and ontology in this context? 

vii. How would you describe the degradation mechanism? 

viii. What are the prominent degradation mechanisms? 

ix. What are the components which are prone to these degradation 

mechanisms? 

x. What are the key features of nozzle guide vanes component and 

described it?  

xi. What is the essence of development test event? 

xii. How would you describe the degradation model for prediction? 

xiii. Is there a link between component level and assembly level data in a 

multi-component system?  

xiv. How would you demonstrate component rejection, replacement and 

reuse?  

The interview questions were validated with my supervisors, members of my 

research team and colleagues from research centres. The researcher discussed 

the interview questions with supervisors, who in turn assessed the questions 

before approval to ensure it is in line with the research and follows the required 

standards, ethics and processes. The researcher conducted a one-to-one 

interview with centre colleagues to ascertain the validity of the questions as a test 

case for further interviews with experts in sponsoring organisation. The 
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responses to the face-to-face and semi-structured interview questions posed to 

the experts are presented. A total of 11 semi-structured interviews questions were 

used to conduct the interviews with different experts listed in Table 4-1. 

Based on question 1, Participant A described degradation data as large set of 

structure and unstructured data. Participant B and D emphasised that 

degradation data are complex containing numeric and textual data. Participant C 

referred to degradation as deterioration, which includes tear, crack and wear. 

Regarding question 2, Respondent A opined that degradation or maintenance 

data are stored in databases. Respondent B highlighted that degradation data 

are managed using Maximo and FRACAS databases. Respondent C noted that 

data are stored in different locations depending on the nature of the maintenance 

information. Respondent D provided a clear response by indicating the in-service 

data used for resolving customers’ issues are available in the Maximo database, 

while FRACAS database contains specification and design work information. 

Respondent E highlighted that data are stored in different locations or sources 

e.g. hardcopy documents archives and softcopy in Excel. Furthermore, the data 

stored in these databases are components, features, and deterioration for 

capturing the understanding of the physical system.  

Relating to question 3, Participants A to G noted some of the component 

degradation mechanisms including corrosion, deformation, wear and fracture. A 

request was made to view the database for more mechanisms.   

With question 4, Respondents F and G responded to this question. While 

Respondent F emphasised that data in databases are extracted using an in-

house application, Respondent G reiterated that extraction tool is a “recognition 

tool” designed by an in-house expert using Java. Respondent G also noted that 

the database contains different modules called containing concepts / terms of 

deterioration (taxonomy). Database contains information such as the names of 

products, customers, service types, system types, components, features and 

mechanisms. This study focuses on products, components / parts / commodities, 

features and mechanisms. 



 

87 

 

In question 5, Respondent F explains the process of importing data into excel 

and using the tool to select the concepts add-on to identify and extract relevant 

terms. Respondent G opined that the data extraction include (i) concepts/terms 

only and (ii) relationship extraction between a component and mechanisms. 

While concepts are currently being extracted using add-ons to recognise and 

retrieve terms, relationship extraction based on subject-verb-object (SVO) add-

on is applied to retrieve components and mechanisms (Jiang, 2012). Example “a 

blade has crack” (“blades” as component and “crack as mechanisms”). 

For question 6, Participants F and G responded to this question. Participant F 

described a taxonomy as synonyms of degradation mechanisms and ontology as 

a collection of different taxonomy for specific space e.g. ontology module can be 

a deterioration process containing synonyms of degradation mechanisms. 

Respondent F emphasised that study should focus on corrosion, deformation, 

fracture and wear as the major degradation mechanisms affecting gas turbine 

mechanical components in the hot section. Respondent G highlighted that ‘split’ 

can be another name of ‘tear’ or ‘cut’, but the underlying meaning might be 

different from the nature of the mechanisms. Respondent G noted that ontology 

in this context relates to the different excel sheets, which are used to store the 

taxonomies for each ontology module. 

Regarding question 7, Respondent D relates degradation mechanisms to loosing 

performance depending on usage. Respondent E noted degradation mechanism 

results from use of an asset and when the limit or end of life is approached, the 

rate of performance tends to reduce. Respondent F described degradation 

mechanisms as a process which makes an item to lose its strength. Respondent 

G highlighted that degradation mechanism affects the functionality of assets. 

In question 8, Respondent A noted that nozzle guide vane and turbine blade are 

prone to degradation mechanisms in the hot section. Respondents F and G made 

mentioned of the nozzle guide vane, blades and seal segment. 

For question 9, Participant A gave a vivid description of the nozzle guide vane as 

the central focus of this study. Participant A stressed that components are mainly 
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in compressor, combustor and turbine segments of an engine. However, a jet 

engine is a multi-component system. For example, nozzle guide vane (NGV) can 

be either single or in pairs. The NGVs can be between 16 and 20 pairs depending 

on the manufactured engine. Additionally, a gas turbine is a pressure energy 

system for velocity and the function of NGV is tuning high pressure gas out of the 

combustion at 16000C, which undergoes a uniform burning. Participant A gave 

key features of the NGV, which include leading edge, trailing edge, gill holes, 

shroud, cooling holes, TBC and fir tree root. Participants F and G requested 

reference to the specific experts such as participant A. Other participants made 

reference to the engine manuals to get the acceptance limit for engine usage, 

technical variance of the engine, and events recording management system. 

With question 10, Respondents A and F provide responses to this question. In 

the engine testing process or programme, various events occur during testing. 

Both participants noted that development test event is the test in progress with 

the sole task of validating the system based on the specified operating conditions. 

Participant F provided further insights illustrating that degradation model such as 

the Weibull function is suitable for degradation, reliability and maintenance issues 

and it is widely used in industry especially aerospace. Participant F described the 

operation of an engine in a start and stop mode depicting the numbers of 

component rejection, replacement and reuse. This question provides information 

to the case study relating to prognostics. 

Relating to question 11, Participant F showed that there is link between 

component level and assembly level. In this context, an individual component is 

unable to power a system, while collection of components as an assembly has 

capability to fire a system. Though, at the component level no insight on data, 

while assembly level has insight on data such as how many were scrapped, how 

many were reused and replaced and how many repaired components were 

replaced. 
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4.3.1 Comparative analysis of participants’ views 

A comparison based on participants’ views is presented and emphases on the 

current practice relating to component degradation and remaining useful life 

prediction. The similarities, differences and unique features relating to the experts 

about the component degradation and failure mechanisms considered are 

highlighted.  

Similarities 

i. Use in-house application for data analysis  

ii. No set standards for analysis of complex data to predict component failure 

existed 

iii. No standard methodology for estimating component degradation for future 

replace existed   

Difference 

i. Terminologies of different terms and concepts are present in the database 

ii. Definition for failure modes and failure mechanisms vary 

Distinct 

i. Each participant happens to have distinct level of experience in reliability, 

which results to difference in interpretation of understanding failure 

analysis. 

ii. The advantages of lessons learned are applicable to different individuals 

by providing enhancement to existing practice  

4.4 Description of current practice in industry 

The corrective maintenance strategy discussed in chapter 2 relates to 

conventional maintenance strategy. The domain experts gained a better 

understanding of gas turbine jet engine during overhaul maintenance and 

development engine testing (Rolls Royce, 2005). In the course of maintenance, 

repair and overhaul (MRO), historical and current health data are gathered such 



 

90 

 

as the time (flight cycles – start and stop of an engine), the number of components 

which had failed and types of damage found during inspections (Rausand and 

Høyland, 2004; Rolls Royce, 2005; Roy et al, 2013). All recorded events 

encountered during inspections are analysed to give insights enabling domain 

engineers understand behaviour of the system. In this case, the historical and 

current health data are both qualitative and quantitative. Examples of the data 

include component, degradation mechanisms, time of failure in cycles and the 

number of degraded components. The data are stored in events database and 

Failure Reporting & Corrective Action System (FRACAS) (Rausand and Høyland, 

2004).  

 The research aims to recognise the current challenges in conventional 

maintenance for estimating the life of mechanical components. The research 

justifies the objective to investigate the level and nature of mechanical component 

degradation available in the historical evidence. This research identifies the 

following based on objective one: - 

i. The level and nature of predominant mechanical component 

degradation mechanisms 

ii. The challenges encountered in classifying the level and nature of 

mechanical component degradation mechanisms 

iii. The visualisation of components with features and nature of failure 

mechanisms 

The research conducted in conjunction with an aerospace company – an original 

equipment manufacturer. The company provides TotalCare® and Power-by-the-

Hour® maintenance services to operators as described in chapter 1 (Rolls Royce, 

2005). The focus of the study is on a specific commodity in a product; refer to 

section 1.1 of chapter 1. In this research, service data containing various 

components of an engine (e.g. Trent 900) which had been in service and had 

MRO data were investigated. The service documents and reports were examined 

and analysed. This study was conducted using semi-structured interviews 

supported by observations. In relation to Section 1.1, a logical descriptive 



 

91 

 

language was applied to grasp the interaction between different aspects outlined 

in Figure 4-3 from a single case or multiple cases (Gummesson, 2000). The 

investigation was systematically conducted across different sections in the same 

department, which were identified in relationship with service data required for 

the research. The discoveries made during the investigation were analysed and 

reported in a universal case study approach (Robson, 2002). The universal 

approach in conducting the study of a research project is complex with an 

impossibility to conduct multiple case studies (Gummesson, 2000). 

The issues presented in literature and by subject matter experts emerged during 

and after the course of the study. These issues resulted from conventional 

maintenance strategy leading to high downtime, man-hours and cost. The 

conventional maintenance strategy has been previously discussed in chapter 2, 

which can make gas turbine maintenance and spare parts availability difficult to 

manage. This strategy is reactive instead of proactive. The designed and 

manufactured gas turbine representative relationship is outlined in Figure 4-3 

illustrating the structure of the data management from product, system, 

commodity, feature and mechanism per the findings. The data management 

structure can be read top-down and bottom-up. The top-down approach is an 

hierarchy showing different connections as steps that transform one into the other 

(Crespi, Galstyan and Lerman, 2008). The procedures can help in the analysis of 

the product into another segment to identify the type and nature of failure 

mechanisms which is responsible for the component damage. The bottom-up 

approach in Figure 4-3 focuses on the details of the type and the nature of the 

mechanism affecting the component in the specified product to assess the root 

cause of the incident (Biederman, Glass and Stacy, 1973; Crespi, Galstyan and 

Lerman, 2008).   
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Figure 4-3 Outlined relationship of the AS-IS practice from product to mechanism 

The AS-IS practice describes the relationship associated with: - 

i. Product – described as the engine type, e.g. Trent 900 

ii. System – defined as the module based on shaft type. The product can 

contain 1, 2 or 3 shafts. However, in this study, all system shafts are 

examined. The fan, compressor and turbine are the major systems 

which make-up the product. 

iii. Commodity – refers to components or parts, e.g. nozzle guide vanes, 

fan blades, etc. 

iv. Feature – defined as a different segment of the commodity, e.g. leading 

edge 

v. Mechanism – refers to damage or failure modes, e.g. fracture, 

deformation, wear, corrosion, creep. 

For instance, as indicated in Section 1.1, the HP-NGV is a group of individual 

commodities within an assembly (system). The focus of this study is to review the 

AS-IS practice relative to degradation mechanisms – fracture, corrosion, 

deformation and wear from a traditional maintenance perspective, and identify 

the number of components with features of damage mechanisms.  

Top-down relationship 

Bottom-up relationship 
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Ontology for taxonomy of degradation mechanisms 

The findings from this study recognises types of damage and approach used in 

conducting the analysis. Figure 4-4 contains the taxonomy in the ontology 

showing a typical component to system relationship, various failure causes and 

failure modes.  

 

Figure 4-4 The relationship between failure cause, failure mode and failure effect. 

(Adapted from Source: (Rausand and Høyland, 2004))  

This analysis informs decision making when seeking to consider the choice to 

either scrap or continue to use the component under investigation. The 

connections created assist in detecting failure mechanisms easily based on the 

approved and agreed threshold. It relates to the use of the monitored operating 

and maintenance information as inputs to determine through-life performance in 

terms of remaining useful life of the component under investigation by observing 

geometry, property loss and material loss (Okoh et al, 2014). The list tends to 

grow depending on the number of synonyms available. The findings emanated 

from the model application to the existing data repository for reuse and sharing 

as seen in Figure 4-5. The purpose of reuse and sharing of data is to deliver 
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consistent approach to problem solving and decision making. Tangible results 

can be extracted from knowledge sharing and reuse.  

 

Figure 4-5 A model to modify and develop the existing data repository 

(a) Damage characterisation (Problem definition) – the initial idea of the 

challenge is conceived and reasoned. An example of such is “What kind of 

damage affects mechanical components?”  The procedures to modify 

ontology (Gruber and Gruber, 1993) relates to the process, meaning of the 

types of damage and how /where damage should be classed. The issue of 

how identified terms should be uploaded for a rerun and re-analysis is 

addressed. 

(b) Damage identification – the damage identified relates to the damage 

characterisation. Documents are assessed to identify and retrieve relevant 

damage based on predominant degradation mechanisms for knowledge 

sharing (Dadzie et al, 2009). The information gathered is then pre-processed 

and filtered from the raw ‘on-demand’ textual data. The data contain various 

terms and concepts which are systematically and hierarchically arranged for 

use in the engineering for service domain. The process starts with observing 

issues with material loss, change in shape and properties and questions to 

understand the nature of damage. 

(c) Damage classification – the classified damage in (b) are categorised into 

class and subclass (see Table 4-2). The definitions and the questions 

provided domain experts with the how and where to allocate the identified 

damage. The identification process includes: - 
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i. Define and seek specific meaning of the types of damage to ensure 

better understanding of taxonomy of degradation and causes;  

ii. Attempt to ask and answer questions to ascertain whether an identified 

keyword is relative to a specified category of degradation mechanisms;  

iii. Identify, assess and filter damage based on material loss, separation, 

change in geometry and property maintained. 

In the course of this study, the identification process determines whether the 

material under investigation is affected by either corrosion, deformation, fracture 

or wear to generate a taxonomy (Okoh et al, 2014). In this context, a class is 

attributed to degradation mechanisms, while subclass relates to examples of 

damage based on the findings.  

Table 4-2 Sample concepts, meanings and questions 

Class Subclass Definitions Questions 

Corrosion  Blistered 

 

Change in the texture – 

presence of uneven surface or 

raised bubbles  

Is there a variation in colour, 

weight and appearance or 

are there elements of 

deposit on the surface of the 

material? 

Deformation  Bent 

 

Change geometry - Altered from 

an originally designed shape 

Is the material altered from 

its original shape? 

Fracture  

 

Cracked 

 

Material separation - Split 

without coming apart 

Is there a separation within 

the material? 

Wear Abraded 

 

Material loss - Scrape or wear 

away by friction or erosion 

Is there a removal of some 

material particles? 

(d) Gap analysis – introduced to compare current and future states of the 

ontology. A framework to modify and develop the ontology serves as a guide 

to help understand current position, future position and approach to get there 

(Rosemann and Vom Brocke, 2015). In applying the framework, the current 

state of the ontology and the iterative reality check process is what to do to 

get to the future state – the desired robust ontology. The original data sets 

of the knowledge representation are the maintenance information extracted 

during the AS-IS investigation, which needs to be updated and maintained, 
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while the proposed future knowledge representation is the TO-BE 

(Rosemann and Vom Brocke, 2015). 

(e) Data extraction – use of a recognition tool to automatically identify and 

retrieve relevant terms for data analysis. The recognition tool is applied to 

text mining. The procedures to extract data are described as: - 

i. Context - the application domain where the interrogated report resides  

ii. Metadata - information about the identified knowledge  

iii. Feature - is the knowledge of specific damage area 

iv. Concept - alternate knowledge and relationship with feature in the 

metadata  

v. Message - the specified request to extract knowledge represented in the 

events document with related types of damage   

vi. Knowledge Extraction - the recognition tool is used to data-mine and 

return results 

vii. Update - when ontology is amended with any newly found 

terms/knowledge 

(f) Analyse Data – data analysed using an iterative reality check process to 

assess and retrieve actual terms for taxonomy creation. An introduction of a 

systematic process to iteratively execute “before update”, “during update” 

and “after update”. A reality check technique is used to get precise number 

of similar terms present/omitted in the database during analysis with the 

recognition tool. A reality check technique is manually searching and 

identifying knowledge discrepancy with a search function.   

i. Before Update – when results of damage are initially processed to 

capture mechanisms 

ii. During Update – current state when results and failure knowledge are 

manually checked to find the number of precise and accurate 

mechanisms captured. 

iii. After Update – checking results and damage knowledge against the 

events information to identify the mechanisms present in the ‘during 
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update’. The relevant knowledge which the recognition tool could not 

capture is identified by the investigator (writer). The newly found terms 

are then updated in the taxonomy within the ontology. The uploaded 

knowledge takes effect immediately after the next run, while the 

recognition tool automatically runs in the background to effectively 

update changes.  

The AS-IS and TO-BE architecture in Figure 4-6 shows the procedures for 

translating the current state to the future state. The results show the current and 

future states (AS-IS and TO-BE) of the deterioration process (ontology module) 

datasets shown in Figures 4-7 and 4-8. The presence of exclusion represents ‘!!’ 

in the deterioration process because some words are not mechanisms (see 

appendix E). The current structure allows assignment of words (taxonomy) 

anywhere in the deterioration process (ontology module), hence, a proposed 

agreed structure and arrangement by policy-makers is available in appendix E. 

The taxonomy for predominant deterioration mechanisms and their causes are 

available in appendix F. 

 

Figure 4-6 Representation of iterative reality check process 

A reality check technique ensures data integrity and eliminate redundancy 

(Boritz, 2005). The reality check technique in this context identifies, captures and 

stores terms – taxonomy within the ontology. The knowledge extracted from 
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events report should be accurate and consistent irrespective the number of times 

the tool is applied, when the ontology is updated accordingly. The audit is done 

on the update section as presented within the architecture. A reality check was 

conducted by physically counting the identified concepts and by running the 

embedded recognition tool. The researcher used the following criteria: - 

i. True Positive (TP) – when the extracted concepts from the event 

information are correct. An example includes “fret”. 

ii. True Negative (TN) – concepts not captured by the recognition tool but are 

correct. The concepts are identified from events report and fixed by adding 

the same to the ontology e.g. “frozen”. 

iii. False Positive (FP) – extraction of an incorrect concept in the events 

information (see Figure 4-7). A fix for FP is removal of concepts in the 

taxonomy e.g. “close”.  

iv. False Negative (FN) – attributed to human error – misspelling actual 

concepts. The recognition tool will not identify and capture relevant 

knowledge. For instance, “luse” instead of “lose”, to fix this, the word “luse” 

is added as a taxonomy in the ontology. The reason for this is because 

service representatives’ report events from different locations around the 

world and typographic errors are bound to occur. However, it is advisable 

to train the tool to extract the knowledge “luse”.  

A reality check conducted uses new keywords captured to confirm outcomes as 

shown in Figures 4-7 and 4-8. 
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Figure 4-7 Samples of relevant concepts analysis (“4” indicates missed keywords) 

 

Figure 4-8 Identification of relevant concepts (“4” means right keywords found)  

(g) Result – anticipate and plan the process to know exactly what to extract and 

how it is conducted. Comparing both current and future states of the ontology 

of degradation mechanisms to gain insights. Act to agree and implement 

pruning and refining techniques refer to appendix G.  

(h) Test – tests are based on historical information and domain experts’ 

knowledge  

(i) Applying results – outcomes are applicable to other domains requiring 

ontology for documents processing.  
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The study provides knowledge discoveries, which examines failure mechanisms 

observed during maintenance repair and overhaul of gas turbines for wide body 

aircrafts. The events and maintenance information are stored in databases. The 

databases contain history of issues reported and documented by service 

engineers. The events information (service data) examined include a collection 

of engine IDs and names, components’ events or problems encountered, engine 

types, year of manufacture and date of entry into service and the kind of 

deterioration experienced by engines’ components during operations.  

4.4.1 Index representation of products, components, features and 

mechanisms 

The outcome from the textual analysis is the Master Index Representation (MIR). 

The MIR categorises taxonomy of degradation mechanisms which affect features 

of a component. The component is related to the system or product or engine. 

The study examines relationship associated with this knowledge representation. 

The process for conducting this exercise is using a recognition tool to extract 

concepts from a sentence. The sentence is part of a textual data in a report which 

follows the ‘subject- verb-object’. Table 4-3 contains data with relationships.  

Table 4-3 Extraction of concepts from relationships 

Components Relationships 

Seal&&Spacer&& Ring Adjusting-hasMechanism-damage 

Seal&&Spacer&& Ring Adjusting-hasMechanism-NICK 

Seal&&Spacer&& Ring Seating-hasMechanism-Damage 

Seal&&Spacer&& Ring Seating-hasMechanism-NICK 

In the analysis, recognition of terms as subject and object, verb and noun, and 

interpreted by extracting the specific taxonomic concept matching the ontology 

and the text. Future ontology module could be made more robust with standard 

specific names (concepts) based on an agreed policy. These names can range 
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from single to triple words, separated by a space to ease analysis. In the analysis, 

hyphenation of concepts in the taxonomy and the report could be avoided, 

however, they are extracted. For example, the term ‘feature-Hasmechanism-

deterioration process’ is used to identify and extract both feature and mechanism 

with true and untrue relationships. The final master index representation for the 

analysis shows the name and number of products, the components, features and 

mechanisms in a hierarchical order (see appendix G). 

4.5 Key observations 

Comparisons are made between industry practice and academic research based 

on the industry collaboration and literature review. The outcomes indicate the 

need for further research in the area of predictive maintenance for assessment 

of through-life performance prediction of component degradation. Furthermore, 

maintenance database is required to gain background understanding of the AS-

IS practice and come up with a better means of establishing the research aim. 

Challenges include systematically storing data, identification and classification of 

the level and nature of component degradation. Due to the limited time, analysing 

processes are conducted in a traditional way when all data is available. 

Insufficient time for analysis may hinder expected outcomes. However, the 

rationale for conducting this industry study relates to the need to understand the 

challenges of conventional and preventive maintenance from a through-life 

engineering perspective. The study captures the understanding of through-life 

performance of component degradation relating to maintenance strategies. The 

findings from the interactions with stakeholders provided background knowledge 

about component degradation, through-life engineering services, maintenance 

strategies, the Weibull distribution, diagnostics and prognostics. 

At design stage, all information for constructing component scheme, detail and 

specification relates to durability. Viswanathan (1989) argues that component life 

at design stage can be determined by material composition and parameters by 

considering creep-rupture properties regarding stresses at different 

temperatures, and crack/fracture hardiness properties. It relates to inspection 
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requirements and procedures for start and stop operation, and resistance to hot 

operating conditions. Components without data for RUL prediction at component 

level include turbine blade and fan blade. Assemblies with failure data include 

rotor and stator, which operate multi-component servicing. 

Through-life performance prediction relates to component degradation in an 

assembly with insufficient data recorded for individual components at assembly 

level. Failure data are often associated with an assembly as a whole. Therefore, 

issues involved:- 

i. Predicting long-term sustainability of spare parts for inventory 

management to support operators; providing designers and manufacturers 

with the information to reduce downtime and save cost.  

ii. Predicting time remaining of run-to-failure samples to ensure early 

maintenance, thereby avoiding unexpected / catastrophic events and 

providing ample opportunity to schedule maintenance.  

iii. Proffering designers and manufacturers better estimate of components’ 

failure to enhance future products. However, the methodology for 

calculating the number of components expected to degrade, thereby 

applying a predictive strategy for remaining useful life prediction will be 

discussed in chapter 6 as well as gaps identified focusing on the research 

activities. 

4.6 Summary 

This chapter presented investigation and interviews conducted in the industry to 

capture an AS-IS practice. The practice is a corrective and preventive 

maintenance in the aerospace sector from a through-life performance 

perspective. The capture of the current practice aids assessment and analysis of 

degradation data. The AS-IS practice was conducted and captured through face-

to-face semi-structured interviews with relevant outcomes such as data mining of 

historical data for classification of taxonomy into predominant mechanisms for 

ontology, a visual analysis of relationship of components, features and 
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mechanisms. A link between component and system is presented. This chapter 

compares and identifies gaps between academia and industry. The gap 

illustrates the predictive maintenance strategy for assessment of through-life 

performance relating to component degradation. The identified gap is expected 

to be a research contribution and presented in chapter 6.  

This chapter aided the delivery of objective two – investigating the level and 

nature of components degradation as a current AS-IS industry practice, 

identifying components, features of that component and the damage 

mechanisms affecting the components. The findings are further applied to the 

proposed framework in chapter 6 by incorporating the selected variables for 

specific components (multi-component assembly). The assembly is combination 

of the same components interlocking one another in circle / ring. The data 

collected in this study included number of components in the assembly (stator or 

rotor), flights cycles, numbers of component expected to degrade and the 

reliability/degradation model – Weibull distribution. The investigation identifies the 

qualitative and quantitative data required for analysis. The study captures 

procedures for analysing historical data to generate qualitative and quantitative 

results. The next chapter delivers an extension of this chapter to investigate and 

analyse multiple engines maintenance cycles based on events taxonomy from a 

through-life performance perspective. 
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5 ANALYSIS OF MAINTENANCE CYCLES  

In this chapter, additional investigation and analysis are conducted following the 

current practice carried out in chapter 4. While chapter 4 focuses on the taxonomy 

of different damage mechanisms at low-level, this chapter further classifies 

taxonomy depicting events at high-level, which affect the availability and reliability 

of an engine. The understanding of high-level events has led to this study, 

minimising significant periods devoted to searching for relevant information 

concerning different assets and their histories.  

Data analysis on historical maintenance data containing taxonomy of high-level 

events is conducted in an attempt to analyse through-life maintenance cycles of 

multiple aero engines and multiple fixed overhauls. The study conducted here 

serves as a data collection method and proof of data analysis with multiple 

overhauls through multiple intervals. The investigation of the maintenance 

histories identifies relevant keywords needed for information visualisation. 

Information visualisation concentrates on the use of computer-supported tools to 

derive new insights and knowledge. A combination of information and knowledge 

visualisation is explored to deliver an interactive application.  

The events accumulated over time at a point-in-time or interval-in-time are 

rendered along a timeline. However, an event can be defined as a point-in-time 

where a decision to act is made (event decision). The events will be visualised 

on a timeline for decision making and help navigate summary information about 

maintenance from a through-life engineering services perspective. The 

information modelling approach, techniques used to elicit requirements and 

navigation of the data are discussed. Section 5.1 describes of events taxonomy. 

Section 5.2 discusses data collection method. Section 5.3 highlights overhaul 

sequence and activities. Section 5.4 delivers the methodology to visualise 

summarised maintenance histories on a timeline. Section 5.5 highlights analysis 

of data collected for the design of summarised maintenance histories on a 

timeline. Section 5.6 gives evidence of the design of the summarised 
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maintenance histories on a timeline. Section 5.7 relates to the development of 

the summarised events on a timeline. Section 5.8 summaries the chapter.  

5.1 Description of events  

An event is an occurrence at a point-in-time where a decision to act is made. 

Events are occurrences at any point-in-time or any interval-of-time. Engine 

events result from in-service which become histories stored in a repository. 

Dunglinson and Lambert (1983) suggest that an event could be initiated causing 

disturbance in system variables; enabling, permitting and initiating events to 

cause system failure. However, a fault occurrence which makes a system 

unstable, resulting in a number of devices operating with a very short period of 

time (King, 1981). From the sponsor’s perspective, an event is a point-in-time 

when something significant occurs, which can be a point-in-time where the ‘state’ 

of a system is measured or confirmed e.g. an observation or inspection event. 

Furthermore, the author describes an event as a significant expected or 

unexpected happening at a single point-in-time or an interval-in-time. An event 

can be defined as the point-in-time where a decision to act is made (event 

decision). This event can be related to some system of interest crossing or 

confirmed to have crossed a threshold of significance, e.g. failed (not functioning), 

about to fail (rejection decision), and has insufficient life to reach the next 

inspection event without unacceptable risk of failure (repaired/reuse decision). 

These events can be either major or minor. Events can be interpreted as 

interventions on an engine.  

Furthermore, outcomes from brainstorming sessions are used to create an 

ontology for engine events based on agreed keywords used to develop events 

timeline visualisation. The approach for creating the ontology is discussed in 

Section 5.5.2. The study demonstrates the means to view relevant knowledge 

about events which an engine experiences during and after in-service. This study 

identifies and captures events based on routine checks on engines on-wings 

before taking to the skies. For example, “routine inspection” is classed as a high-

level event. This study aims to categorise engine events collected during 
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maintenance, repair and overhaul, and from workshops/brainstorming 

sessions/interviews with domain experts. The brainstorming sessions were 

conducted with selected Rolls Royce senior and mid-level personnel. 

The categorised events are occurrences which have impacts on engine 

availability. The categorisation is at different levels for better understanding of the 

types of events which are termed “worst”, “less severe” and “standard routine”. 

The levels of events are outcomes from interviews and brainstorming sessions 

validated by domain experts. The events are also grouped in key colour codes. 

The taxonomy of events is processed to display or visualise the categorised 

events on a timeline. The level and group of events are standard keywords with 

respective colour codes presented on an interface showing engines’ numbers 

against point or intervals in time. The study aims to provide visualisation toolkit to 

help improve service knowledge. This investigation validates the importance of 

studying a component’s remaining useful life based on maintenance data from 

both high-level and low-level events. Though records are available at the 

assembly level, it remains difficult to predict remaining useful life. 

5.2 Description of data collection method  

This case analyses and visualises maintenance information regarding multiple 

fleets and multiple overhauls states of different events, which are likely to hinder 

operational services throughout the life of the engine. Gaining understanding of 

the rationale for conducting this additional case, a couple of groups participated 

in brainstorming sessions at different dates and times. The brainstorming 

sessions were facilitated by the author. The author made a presentation of the 

sample design of a timeline events visualisation and presented participants with 

questionnaires based of the proposed design. The event categorisation contains 

different levels: - 

i. Level 1 describes events which determine availability of the product for 

customer service. For example, overhaul, service disruption, delivery of 

engine 
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ii. Level 2 relates to non-standard or infrequent events with the potential to 

modify a product’s availability or functionality. For example, Borescope, oil 

change 

iii. Level 3 relates to standard activities (daily or weekly) of health 

maintenance status. For example, engine health monitoring data 

5.3 Description of overhaul 

An engine is taken for overhaul after in-service operations.  Rolls Royce (2005) 

declare that the RB211 has a total of 42,000 hours on wing prior to overhaul, 

which is equivalent to 4.79 years approximately 5 years. After specified hours of 

starts and stops engines are overhauled. Engine histories uses Weibull analysis 

to enhance and support engine removal factors, thereby creating novel engine 

management practices based on component statistical failure analysis and 

distribution relative to bathtub review in chapter 2. Rahman et al (2015) describe 

overhaul as a procedure for periodic preservation of an engine to achieve its 

functional expectation regarding its design life, thereby enhancing an engine's 

useful life. Engines are expected to be detached, pull apart, make anew, 

examined, returned and verified relative to the policymakers’ approved 

procedures. As suggested by Hoddenbach (2014), during overhaul aircraft 

engines should be carefully inspected at every 100 hours, and in the process 

snags discovered are repaired in an annual occasion. Furthermore, van Damme 

and Stolk-Oele (2015) state that after 3000 flight cycles engine overhaul takes 

place by disassembling, cleaning and servicing.  

The gap between two overhauls and total number of overhauls are dependent on 

the type of engine, operational routes of the engine, whether long haul or short 

haul and based on the engine health management practice. As indicated above, 

it could be after an average of every 3000 cycles. On-wing, about 42,000 hours 

between overhauls is set by the RB211-535e4 in year 2000 (Rolls Royce, 2005) 

– but this is for old engines. Modern engines are expected to be on-wing 13,000 

hours between overhauls (Rolls Royce, 2005) – meaning about four, six or more 

overhauls are likely through the life of an engine. 
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Overhaul sequence and activities 

Phase 1: On-Wing 

Diagnosis with engine health management system notify the policymaker of any 

issues of abnormalities (Rolls Royce, 2005). 

Phase 2: Off-Wing – Engine removal 

Stage 1: Work scope definition - arrival of in-service engine at shop floor. When 

an engine reaches its cycle threshold, the engine is taken off-wing for 

maintenance. The identity of the engine - serial number is noted with its unique 

maintenance place and complete history data. The work scope gives a synopsis 

regarding the required work to be carried out. Log book is checked before 

commencing overhaul on an engine – important to have an idea of the previous 

maintenance and repair conducted and causes.  

Stage 2: Cleaning and Inspection – Van Damme and Stolk-Oele (2015) note that 

cleaning and inspection involve washing an engine with various fluids to get rid 

of any debris and grease ahead of a visual inspection. The use of borescope 

inspection is the application of camera driven equipment to examine inside of the 

engine. Borescope is a flexible pipe with micro camera which move freely inside 

an engine to identify abnormalities such as wear, deformation and tears (Van 

Damme and Stolk-Oele, 2015). Rahman et al (2015) present a methodology for 

teardown inspection stripped components from within the engine based on 

approved procedures and cleaned prepared for inspection. During inspection, 

reliability and airworthiness conditions are considered to determine health status 

of the engine based on compression tests. Examples of signs of damage on 

mechanical components include crack and corrosion, mechanical looseness, 

clutch engagement, lubricant filling, corrosion, foreign object damage, thermal 

fatigue and leak, which can lead to disruption of service and unavailability of an 

engines 

Stage 3: Disassemble - Van Damme and Stolk-Oele (2015) argue that about 

40,000 components are disassembled from within an engine during overhaul, a 
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combination of static and rotating components. Components are inspected and 

taken for special examination and repaired as per repair policies to return them 

to their functional state. A root-cause analysis can be carried out to unveil the 

nature and level of damage using special methods such as NDT and Borescope.  

Stage 4: Assembling and testing - Engine components with limited life span are 

completely replace with pristine ones. Repairable components are repaired using 

advanced innovative technologies such as ebeam welding and laser-cladding 

(Van Damme and Stolk-Oele, 2015). Components are carefully collected and 

assembled for onward subjection to various testing conditions. Installation is done 

by mounting of engine and connection of required fluid hoses onto the aircraft. 

Successfully testing an engine guarantees airworthiness approval, the counter is 

reset to zero and the engine sets for the skies for years (Hoddenbach, 2014). 

5.4 Methodology for visualising maintenance cycles  

The systematic approach used in addressing this study includes a literature 

review relative to information modelling, ontology, database development, 

timeline visualisation of events histories, observation and participation in 

brainstorming sessions, and interviews with domain experts for elicitation of 

engine events. Furthermore, analysis of the requirements, design and 

development, and results are presented. In this context, the software 

development approaches considered include, prototyping, eXtreme 

programming in Agile, Test Driven Development (TDD), Rapid Application 

Development (RAD) and Waterfall Model. However, an Enhanced-Extreme-

Waterfall model has been proposed and developed. The proposed model applies 

to this case due to stakeholders and users’ involvement. This model improves the 

quality of the product and respond promptly to the customers’ changing 

requirements. The modelling of the data will be achieved using Unified Modelling 

Language (UML) and Microsoft Visio (MS Visio). The model will be implemented 

using Oracle MySQL database and SQL scripting language for manipulating the 

database. The frontend interface is implemented in PHP to control the design 
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representation. Other visualisation tools include High-charts and data-driven 

document (d3.js).  

The methodology adopted for this timeline visualisation is SUMEE 

(Summarisation of Engine Events) which utilises an aggregate visualisation 

technique (timeline, data map and time series). According to Tufte and Graves-

Morris (1983) the use  of a 2D graphical plot algorithm provides a summary of 

events on a timeline. SUMEE observes both scientific, information and 

knowledge visualisation (Tory and Moller, 2004). The rationale is to create an 

avenue where users are able to view on a single screen vast amount of 

information on a limited space in a timely fashion. The outcome is expected to 

reduce the number of man hours spent investigating and identifying relevant 

information for decision making. The outcome helps decision makers to deliver 

quality results and decision within a specified time frame. 

The events visualisation on a timeline is a summarised graphical representation 

of information in a single user interface. The functionalities attributed to 

visualisation include data rendering, hover to zoom, click to display and drill down 

based on key group events. The helicopter and fisheye views have been adopted 

to focus on events.  

i. Helicopter view: A graphical helicopter view is a data map which 

incorporates a time series statistical method. The data map illustrates the 

point of the state space with regards to its dependent variable. Its view 

might look meaningless; however, it was chosen because big datasets can 

be neatly represented on a page view of a single-squared dot as a point-

in-time and collection of squared dots as a stream or continuous data of 

time intervals. These squared points are colour coded “look and feel”, 

which makes the graph attractive and draws the user’s attention to want 

to investigate what is behind them. The interface describes the 

presentation of information as data points in a single view without any 

additional information. The helicopter view is an aerial view of the objects. 

ii. Fisheye view: A graphical fisheye view is a focus-based technique which 

allows concentration of one specific coloured region on the screen whilst 
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keeping the context visible (Kumar et al, 1998). When a user points, hover 

or click on a point or an interval-in-time, detailed aggregate information is 

revealed. The fisheye view can be attributed to the bird’s eye view. 

Relevant information is embedded in each data point on the graph. The 

fisheye view focuses on a specific object while other objects are negligible. 

5.5 Analysis of the historical through-life data 

In eliciting and analysing requirements, information extracted from the 

interviewees and brainstorming sessions is presented in Table 5-1. The Unified 

Modelling Language (UML) technique is used to model and analyse the captured 

requirements. 

Table 5-1 Interview and brainstorming sessions personnel 

Expert Role Space Experience 
(years) 

Expert Role Space Experience 
(years) 

1 Chief Lifecycle Engineer – 
Trent 900         

30 1 Functional System 
Engineer - Trent 
700 

25 

2 Chief Life Cycle Engineer 
Future Programmes CSM 
- Engineering for Services 

30 2 System Engineer 
A 

20 

3 System Engineer - Trent  
900 

22 3 System Engineer 
B 

18 

4 Reliability Engineer – 
Trent 900 

20 4 System Engineer 
C 

15 

5 Life Cycle Engineer – 
Trent 900 

12 5 System Engineer 
D 

12 

6 Life Cycle Engineer – 
Trent 900 

10 6 System Engineer 
E 

10 

7 Life Cycle Engineer – 
Trent 900 

3 7 System Engineer 
F 

8 

8 Life Cycle Engineer – 
Trent 900 

2 8 System Engineer 
G 

8 

9 Life Cycle Engineer – 
Trent 900 

3 9 System Engineer 
H 

6 

10 Safety and Reliability 
Engineer - Individual 

25 10 System Engineer I 6 

   11 System Engineer J 4 

   12 System Engineer 
K 

3 

   13 System Engineer 
L 

1 
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5.5.1 Criteria to determine levels of events 

In this study, events gathered from the sessions are categorised based on the 

criteria in Table 5-2. The levels are based on the scheduled and unscheduled 

impact on availability of the engine.  

Table 5-2 Criteria for Levels  

Level Criteria Description 

1 Worst Affect the availability of the engine in terms of 

downtime based on a point in time or interval of 

time 

2 Severe Infrequent occurrences that are likely to affect the 

availability 

3 Daily Routine Check The events which assessing insignificant or no 

impact on the availability of the engine 

The criteria mentioned in Table 5-2 have been used to design a form which the 

participants (domain experts in different teams) will fill out as regards to their 

knowledge in the service domain (see appendix H). The events are captured 

using the form/questionnaire presented in appendix H based on the criteria in 

Table 5-2 and presented in Table 5-3. Figure 5-1 depicts the criteria and the 

overhaul cycles whereby regular routine checks can occur daily; severe fault 

requires maintenance to be conducted in a duration of few months and worst 

conditions need maintenance to be carried out over a longer period.  

  

Figure 5-1: Events occurrences and maintenance durations 
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The research aims to utilise routine check / regular assessment for the prediction 

of remaining useful of components in an assembly because events happen at 

random. Furthermore, the criteria applied describe maintenance during engine’s 

service life to ensure a proper, safe, reliable and cost-effective engine operation. 

Maintenance of an engine is conducted in accordance to full sets of instructions 

contained in the maintenance manual (Rolls Royce, 2005). The maintenance is 

based on OEM’s recommendations to ensure routine checks are consistent with 

relevant certification approval. However, maintenance conducted on-wing can be 

classed as schedule and unscheduled. While schedule maintenance is a vital 

constituent of gas turbine engine operations, unscheduled maintenance is not 

considered part of the day-to-day programme of operation which can be initiated 

by observed symptoms and remote engine monitoring systems. The analysis 

focuses on schedule maintenance study where routing checks are conducted and 

analysed for failure effect hidden from human visibility. Examples of common 

maintenance schedules include cleaning, inspection, lubrication and discard 

(Rolls Royce, 2005). 

5.5.2 Interviews and Brainstorming sessions  

In order to understand the rationale for carrying out this study, an individual and 

two groups participated at different sessions. The first brainstorming session was 

conducted with T900 Life Cycle Engineering group as shown in Table 5-1. The 

group is made of nine professionals with various years of experience. After an 

introduction and a short presentation of the task, individuals in the group engaged 

in the session by asking several questions amongst themselves based on the 

questionnaire and to the facilitator such as “what is the purpose of the events 

timeline visualisation?”. The contribution is based on an individual’s knowledge 

with respect to the business from the T900 Life Cycle Engineer perspective. 

However, only an individual was allowed to document / fill the form as the session 

progressed. The events translated are shown in Table 5-3. An interview was 

conducted with a Safety and Reliability Engineer as shown in Table 5-1. The 

events were presented from the safety and reliability perspective. The individual 
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with a considerable number of years of experience classified different events 

based on Table 5-2, which are transcribed in Table 5-3 and presented in Table 

5-4. Furthermore, another brainstorming session / workshop was conducted with 

the Functional System Engineering group. It was another interactive session 

made up of thirteen individuals with different years of experience as shown in 

Table 5-1. Then, the facilitator introduced and presented the task and the goal as 

well as what is required by the group. The idea of the task was welcomed by the 

group and suggested that the facilitator contacts the right individuals responsible 

for access to a MAXIMO system, which contains most events. Additional 

definitions were captured. Different ideas and names of events were presented 

with common ones being repeated. 

The data extracted from the interview and brainstorming sessions have been 

analysed and presented in Table 5-3. The colour codes represent information 

gathered from different participating groups. Information highlighted in “Yellow” is 

an individual, “Blue” is also provided by one person, “Green” given by groups and 

the researcher.  

Table 5-3 Extracted events from brainstorming workshop  

Level  Description Event 

1 Events that determine the availability of the 
product for customer service  

Engine installation 

 
Events that results in a disruptive index Engine removal   

Aircraft downtime   
Unplanned engine removals   
Planned engine removals   
In-flight shutdown   
Aborted take-off   
Diversion   
Cancellations   
Delays   
Engine Swap   
Shop visit   
Engine pass-off – Certification test   
Service Disruption   
Delivery   
Engine overhaul   
Fire   
Shaft failure   
Blade-off   
Crack in the disc 
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Level  Description Event 

2 Non-standard or infrequent events with the 
potential to modify the products availability or 
functionality 

Service Bulletin 

 
Trouble shooting performed on engine Non-mode service bulletin   

Controlled service introduction   
Bulk data download   
Technical variance   
Immediate operational request   
Diagnostic magnetic chip detection use   
On-wing repair   
Air craft de-icing   
Maintenance message   
LRU replacement   
On Wing compressor washing   
Module swap   
EHM Alert   
Follow up analysis   
SB incorporation   
Foreign Object Damage   
Bird strike   
Ramp strike   
Engine start failure   
Part replacement   
Borescope   
Inspection   
Oil Change   
Rejection 

3 Standard daily or weekly activities that 
maintain health status 

Core washing 

  
Oil level check (starter and Tank)   
Walk round checks (pre-flight)   
Scheduled Borescope   
LLP remaining life records   
Flight profile monitoring   
Maintenance Planning Document tasks   
Fan Blade maintenance   
Dry film lubrication reapplication   
Leading Edge Erosion monitoring    
Oil top up   
Trend alerts   
Operational data   
Engine health monitoring data   
Oil Consumption   
Thermal Couple front   
Thermal Couple Rear 

Grouped events 

The various events are grouped based on the following criteria and colour codes 

as key indicated in Table 5-4. This grouping is done to combine related events to 

different levels. The groups are classed in terms of delivery, installed 
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maintenance, inspection, instruction manual, overhaul, disruption and engine 

pass off. 

Table 5-4 Grouped events and colour names 

No Key Group Criteria Colour 
name 

1 Delivery Activities which illustrate supply Green 

2 Installed Maintenance Activities that happen on-wing Black 

3 Inspection Activities regarding manual or automatic checking Blue  

4 Instruction Manual Activities referencing manuals Grey 

5 Overhaul Activities of major engine disassembly Yellow 

6 Disruption Activities stopping operation for an interval of time Red 

7 Pass Off Activities requiring successful test Brown 

Partly grouped events as shown in Figure 5-2 with regards to specific keys with 

reference to Table 5-2. The extracted knowledge is categorised and developed 

into a list of terms/events taxonomy. 

 

Figure 5-2: Events classified based on key groups 

5.5.3 Requirement analysis for the maintenance cycles design  

The requirements presented in this section are analysed using object-oriented 

analysis and design technique. Techniques for analysing requirements include 

user stories (Breitman and Leite, 2002; Cohn, 2004), rich picture, mind map and 

UML use case (Avison and Fitzgerald, 2006). 

 

Delivery Installed Maintenance Inspection Disruption Overhaul Pass-Off

Delivery LLP remaining life records Scheduled boroscopes Foriegn Object Damage Engine start failure Engine pass-off

Engine Swap Flight profile monitoring Walk round checks (pre-flight) Bird strike Part replacement

Engine installation Maintenance Planning Document tasks Boroscope Ramp strike Module swap

Fan Blade maintenance Leading Edge Erosion monitoring Fire LRU replacement

Dry film lubrication reapplication Trend alerts Shaft failure Rejection

Oil top up Operational data Blade-off Planned Engine Removals

Oil Consumption Engine health monitoring data Crack in the disc Shop visit

Thermal Couple front EHM Alert Aircraft downtime

Thermal Couple Rear Diagnostic magnetic chip detection use Unplanned engine removals

Core washing Maintenance message Inflight shutdown

Oil level check (starter and Tank) Aborted take-off

On Wing compressor washing Diversion

TGT Trimmer Change Cancellations

On-wing repair Delays

Air craft deicing Compressor Failure

Oil Change

Controlled service introduction

Bulk data download

Immediate operational request
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User Stories 

It is part of an agile approach that helps users discuss requirements. The user 

stories have been adopted in this study because it very well supports elicitation 

of requirements quickly in a concise manner. It requires constant communication 

with users and stakeholders. The user stories as shown in Figure 5-3 is made up 

of a series of conversation about desired functionalities, which users would prefer 

to see in a design. 

 

Figure 5-3: Events timeline user stories presented at the brainstorming sessions 

Use Case 

A UML representation which has been selected to show interactions of the user 

with the application. The use case as shown in Figure 5-4 focuses on the user's 

goal. The actor is end user as a role, the line connecting the role and functions is 

the association, the oval shape is the use case which are functions to be 

performed by the actor and the rectangle relates to the system/application where 

the entire operation occurs.  It is a graphic representation of the actor’s (end user 

role) association and operation of the proposed events timeline visualisation 

solution.  
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Figure 5-4: Event visualisation use case diagram 

The service engineer (end user) is an actor who uses the event timeline 

application. The end user can perform only four operations. The use case 

consists of the visualise timeline which is when the application starts. The view 

event functionality is when a mouse is pointing or hovered on a data point in the 

timeline to show relevant information, while the display event stream is when a 

user initiates a click to reveal stream of information. The drill down function is 

when a user selects a key group event from the drop-down menu. The developer 

is an actor who modifies the application. The developer can perform all five 

operations, hence the introduction of ‘maintain application’ use case.   

5.6 Design of maintenance cycle event visualisation  

The conceptual data model represents the data model for information required to 

develop the database of the historical events.  

5.6.1 Entity relationship diagram  

The Entity Relationship Diagram (ERD) graphically represents an understanding 

and capturing of business information requirements (Connolly and Begg, 2005). 

This technique shows the relationship between each entity, which can be 
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represented as an ontology. The ERD shown in Figure 5-5 is designed using 

Microsoft Visio in the perspective of using UML. 

 

 

Figure 5-5: Entity Relationship Diagram (“1” means one and “M” signifies many)  

The ERD is a specialised graphic for illustrating the relationships between entities 

in creating a good database design. The rectangle represents an entity, the 

diamond shape is for relationship, the oval is attribute (primary key shown), and 

a 1-to- M (means one-to-many) as cardinality. This gives an overview of how the 

data would be represented and stored in the database. The data dictionary for 

named variables is available in appendix I. 

The ERD is developed using the description of the entities presented below as 

their relationships from the investigation and brainstorming sessions; 

i. Engine relates to attributes, e.g. engine number, model and name  
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ii. Activity relates to location, point or interval-in-time such as start and end 

dates events occurred. It shows relationships of repetitive engines and 

events as well as comments.  

iii. Event entity – attributes of different events and relationship to level, colour 

and group.  

iv. Level describes the attribute of the categorised event as numeric values 

and description in text with named caption. 

v. Group entity is the classification of events as key and the representation 

of the criteria with respect to colour codes.  

vi. Colour used to differentiate groups, e.g. blue, green. 

5.6.2 Database logical schema  

The logical schema gives an overview of the variable names used for the 

application. The schema represents entities as tables with integrity constraints, 

primary and foreign key attributes presented in Figure 5-6. This schema extends 

current industry practice but not state-of-the-art. 

 

Figure 5-6: Database Logical Schema  

The illustration in Figure 5-6 is created with MS Access, the individual square 

boxes are the tables referred to as relations. The entire picture is designed with 

relationship functions. The engine and activity relations are connected with a one-
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to-many relationship meaning a unique engineNo is primary key in the engine 

table, and cannot be duplicated, however, in activity table, engineNo is a foreign 

key. The logical schema supports the retrieval of data from a database 

management system based on Atomicity, Consistency, Isolation and Durability 

(ACID).  

5.6.3 Class diagram 

 

Figure 5-7: Conceptual Class Diagram (“*” signifies many by connecting two table 

with primary and foreign key attribute) 

The class diagram shows functionalities of the application. Figure 5-7 describes 

the attribute and operation to be performance when the database and the 

application are developed. The significance is to create a smooth sync or 

communication between both parties to talk each other when there is a flow of 
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data. Figure 5-8 illustrates an extension of the class diagram in Figure 5-7, which 

is the representation of grouped events. 

 

Figure 5-8: Conceptual Class Diagram (Group Entity) with subclass and 

superclass 

In the class diagram in Figure 5-8, group of events distinguishes one group from 

another. Generalisation and specialisation rule is a one-to-one relationship of 

superclass and subclass. A specialisation rule utilises differences between 

members of an entity by identifying distinguishing characteristics, while 

generalisation uses differences between entities by identifying common 

characteristics. The participation constraint and disjoint have been used in 

modelling of the information (many tables – one table for the superclass and one 

table for each subclass).  

5.6.4 Initial interface design  

The visualisation technique for the interface design is a timeline. It represents 

knowledge and information in a clear and concise manner. It entails techniques 
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applied in presenting interactive display of documents. Each technique alters 

spatial presentation of documents. A user can experiment with these techniques 

on electronic documents until he/she finds a display that best conveys documents 

semantics. Aggregate visualisation technique – categorising events into key 

groups using colour codes differentiates and classifies events into levels. The 

engine events are represented on data map, timeline, time series and a 2D 

graphical plot. The proposed application interface visualises occurrences of 

events over time by an engine in a timeline using summarisation in helicopter and 

fisheye views. An initial idea of the event timeline application is illustrated in 

Figure 5-3 as a user story. A reviewed of the proposed idea based on discussions 

with stakeholders and users is presented in Figure 5-9. This representation 

serves as a guide for the researcher. 

 

Figure 5-9: Initial interface design with Engine number, levels and year of service 

5.7 Development of the interface design 

The implementation represents a 2D plot, hover and zoom, click and display, and 

drill down algorithms developed using tools such as NetBeans IDE, Apache Web 

server, PHP programming language, HTML, JavaScript with MySQL for the 
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database based on object-oriented programming. It is a graphical display 

interface resulting from the information modelling. The design patterns was 

initially implemented as a working prototype. 

System Architecture  

Figure 5-10 shows a system architecture connecting the user interface, business 

layer and data layer. 

 

Figure 5-10: Architecture of the events timeline visualisation  

User interface: The user interface is attributed to application layer with the main 

aim of translating tasks into results, which an end user can understand to make 

better maintenance decisions.  

Business layer: The business layer coordinates the application interface layer, 

which processes the commands for manipulating maintenance records to make 

logical business assessments and decisions. The layer performs calculations and 

processes data when transferred between user interfaces and data layers. The 

apache web server plays a key role connected the application to the internet, so 

that, the application can be accessed. It communicates with the database and 

helps render Web pages served over Hypertext Transfer Protocol (HTTP). 
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Data layer: The data layer stores and retrieves maintenance information from a 

database. The information is passed on to the business layer for processing and 

displays it to the end user. 

 

The implementation of events visualisation of maintenance cycles displays 

objects, attributes and their relationships. The implementation strategy is the 

system architecture for the design. The visual display of quantitative information 

on the graphical excellence shows how complex big datasets can be 

communicated with clarity, precision and efficiency. The graphical design 

excellence displays data, induce users to think about the substance and not the 

methodology or graphic design, make large data sets coherent and present much 

information in a short space, reveal data at several and reasonable level of detail 

relevant to users for decision making. This study supports and demonstrates a 

substantive maintenance content. It displays big datasets with real variability of 

multivariate data.  

Interactive user-interface attributes 

The single-phase view of a timeline visualisation improves the means of 

condensing a vast amount of information to unveil relevant data when a mouse 

hovers on a point or an interval of a state space (time). The timeline visualisation 

functionalities include: - 

a. Drilldown functionality: The drill down functionality is a collection of events 

grouped into specific categories. The categories are colour coded to 

differentiate the various data points on the graph when a user clicks the drop-

down menu. 

b. Key Colour Coding (KCC): Key colour coding indicates group events 

(aggregate) referencing irrespective of levels to show severity e.g. red means 

disruption, green relates to delivery.  

c. Levels of events: The levels of events refer to classification of events based 

on certain criteria defined by a domain expert e.g. Events>>Level 1>Delivery, 

Disruption; Level 2>Repair, Overhaul. The level can be called facet.  
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d. State space (time) Axis: Indicates horizontal representation of the latitude in 

terms of time e.g. year 2011 

e. Engine Axis: This shows the engine number as an attribute, which is 

dependent on the state space. It is the vertical representation of the 

longitudinal line to demonstrate the location of the point of occurrence 

f. Events: The event attribute is the various terms which a domain expert would 

use to describe the impact of the availability of an engine to be in-service e.g. 

overhaul.  Examples of terms which can lead to an overhaul include bird strike, 

foreign object damage, crack, wear, corrosion and deformation described as 

low-level events. 

g. Mouse hover: When there is a mouse hovers on a data point, the information 

pops up to give relevant on-demand detail 

h. Mouse click: A mouse click on an engine number reveals a stream of data 

relating to a specific level of an engine 

i. On-demand information: These are the relevant information which the user 

would require for decision making. The on-demand information includes 

engine number, the level of the event, duration, start and end dates, image, 

and comments which are revealed when a user does mouse hovers or click. 

j. Relationships: This represents mapping of the latitude of time to longitudinal 

events. The events ontology and description are available information for 

creating a database.  

2D graphical plot algorithm 

Given a dataset “D” of “M” member of data elements, “D” is classified into groups 

to illustrate that a member “M” (engine events) is in the same group (Kocherlakota 

and Healey, 2005). This method is applicable to the different levels created. The 

levels contain related classified engine events. The group of related events is 

classified under a different colour coding scheme as key. Apart from enhancing 

flexibility of information modelling technique, clustering shows a timeline plot as 

a powerful function to help users to quickly, easily and accurately make decisions. 

Therefore, it simplifies means through which information is fused to display 

multivariate data. A 2D graphical plot method introduced on the grounds that 
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visualised information is temporal. Since time is an independent entity, object 

used is completely dependent on the state (time) space, a mathematical index 

was implemented to plot a squared dot or rectangular range of the data on a 

vertical and horizontal axis of events and year of occurrences.  

Snapshots of development codes are illustrated to demonstrate how the interface 

is developed. The codes include structured query language (SQL) scripts to 

retrieve data from MySQL database, HTML codes to structure the horizontal and 

vertical lines, fit and format the graphical presentation. The JavaScript codes 

powers the dynamic nature of the timeline visualisation application, while the PHP 

code supports alignment of the format and interactivity of events timeline 

visualisation. However, NetBeans IDE allows fusion of codes for making 

meaningful outcomes for decision making. The snapshot codes in Figure 5-11 

fetch and display engine axis, year, engine numbers and various maintenance 

cycles histories of activities on the timeline application. 

 

Figure 5-11: A snapshot of the SQL script to return maintenance activities  

The snapshot codes retrieves data from database,  the scripts produce a record 

sets and the events are positioned on the timeline, create and adjust vertical lines, 

engine number and iterate through event levels, display drill down menu to select 

key events group. The selected key displays data points as events attributed to 
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a specific group and reveal detailed information when mouse-over on a data 

point. 

The validation of the timeline visualisation interface for engine events has been 

developed to demonstrate past occurrences. The representation contains events 

in a timeline, which impacts on the engine. The results show summarisation in 

helicopter and fisheye views. The visualisation is a data-rich illustration based on 

available information. The key for the event timeline is presented in Table 5.5 

Table 5-5 Key: Colour and meanings 

Meanings  Colour 

Delivery Green 

Installed Maintenance Black 

Inspection Blue 

Instruction Manual Grey 

Overhaul Yellow 

Disruption Red 

Pass Off Brown 

The functionalities implemented in the application illustrate the history of events 

as shown in Figure 5-12. The summarisation of events renders output in a 

helicopter view mode. 

 

Figure 5-12: Summarisation of Helicopter view events 
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Figure 5-13: Summarisation Fisheye view with hover and zoom  

The visualisation of the events in a timeline rendered in fisheye view uses hover 

and zoom functionalities (see Figure 5-13). With mouse hover on a data point, 

information behind the point pops up and reveals relevant information. The 

information beneath the summarised data point include event type, duration, start 

and end dates, image of events, locations and comments.  

 

Figure 5-14: Fisheye view with click and display entire events stream  

The visualisation of the event histories in a timeline renders Fisheye view using 

click and display functionalities as shown in Figure 5-14. A click on an engine 

number on the left axes opens a page on the right to show the entire maintenance 

information stream.  
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Figure 5-15: Selection of disruption from the drop down menu  

The drill down functionality enhances the power of the timeline application. It 

displays only events in the selected group. This functionality is useful to users 

who decide to analyse specific events attributed to one or more engines as 

indicated in Figure 5-15. 

 

Figure 5-16: Drill down of disruption  

Figure 5-16 demonstrates a drill down of disruption. When disruption is selected 

Figure 5-17 renders.  

Drill down menu as 
Key to select group 
events. Disruption 
selected

Disruption is 
selected
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Figure 5-17: Display of only selected disruption events  

Figure 5-17 illustrates only disruption grouped events are colour coded in red.  

 

Figure 5-18: Inspection key selected  

As indicated in Figure 5-18, the inspection key group is selected whilst still in the 

disruption selection window. When ‘GO’ button is pressed, the result changes as 

shown in Figure 5-19. The inspection view reveals events grouped in this 

category with blue colour code. 

Only selected 
Disruption group 
events are 
displayed with 
respect to the 
engines and time

Inspection is 
selected in order 
to display events 
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Figure 5-19: Inspection group event  

5.8 Summary  

This chapter is an extension of the investigation conducted in chapter 4. Whilst 

chapter 4 focuses on current industry practice relating to taxonomy of degradation 

mechanisms, chapter 5 emphasises various events taxonomy which can disrupt 

engine availability. The events taxonomy in relation to maintenance cycles based 

on through-life performance historical data are collected via brainstorming. 

Analysis and categorisation of events levels and criteria are presented, whereby 

events occur randomly across life of components are difficult to predict. This 

analysis further suggests regular overhauls cycles as a process for predicting 

remaining useful life for components in an assembly. The design and 

development of the through-life maintenance cycles for multiple engines and 

overhauls are visualised in a timeline for quick identification of root causes from 

system to component levels. The outcomes from this analysis created new 

knowledge about different high-level events found in a gas turbine engine in the 

aerospace industry. Furthermore, a developed web-based user interface 

illustrates a single-screen view of in-service information presented in a timeline. 

Hovering on a data point provides more details; key colour code illustrates 

grouped events; click on an engine number reveals complete information on a 

specific level. The next chapter discusses generic framework development.  

Only selected 
inspection event is 
displayed with 
respect to engine, 
levels and time
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6 THROUGH-LIFE PERFORMANCE FOR REMAINING 

USEFUL LIFE PREDICTION  

The findings from previous chapters provided the variables for modelling a 

proposed novel framework – the Weibull Through-life Performance Prediction 

Model (WTPPM). The framework uses data-driven prognostic methodology, a 

statistical technique and the Weibull method to evaluate through-life performance 

of components degradation in a complex engineering system. This generic 

framework aims to predict the remaining useful life (RUL) of components in an 

assembly using only assembly level data. No evidence of predicting remaining 

useful life of components in an assembly, based on only assembly level data was 

observed in reviewed literatures. The study is motivated by this gap and a quest 

to understand the relevance of through-life performance in components 

degradation. This chapter aims to improve the comprehension of the through-life 

performance RUL prediction which influences service delivery of spare parts 

availability, proper maintenance planning and cost analysis. The approach for 

developing the proposed WTPPM framework is presented. 

6.1 Methodology for the proposed framework 

The methodology for the proposed WTPPM fulfils the fourth objective and 

comprises:- 

i. Estimation of the Weibull parameters using statistical technique to analyse 

historical data of observed rejections and flight clyces to interpret the 

behaviour of the data  

ii. Modelling different overhaul states to estimate rejection rates in each state 

and  calculate the effect of prior and next overhaul activities based on 

renewal theory – whereby components are susceptible to failure at 

specified overhaul inspection intervals 

iii. Fuse observed rejection data with predicted rejection data to conduct 

performance prediction accuracy to determine deviation/error for back-
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fitting, thereby predicting the remaining useful life of a component in an 

assembly  

iv. Estimation of the time to scrap using a novel cost-benefit analysis with cost 

variable to create a threshold of when renewals on the assembly should 

cease 

v. Separate data employed in the development of this framework 

Assumptions and limitations considered in developing the framework are:-  

Assumptions 

i. A single failure mode 

ii. All engines analysed must be of the same model at any one time, e.g. 

Trent 900 and  operate in the same way, (e.g. regions or routes) 

iii. All data are clean and complete 

iv. There should be only six overhaul states, the model could accept less than 

six overhaul states 

v. Consideration of variability linked to interdepencies between sub-

assemblies 

Limitations 

i. Applies to only components in an assembly 

ii. Only the Weibull distribution applies since it assumes some typical 

distributions as special cases (Abernethy 2006). It is the most often used 

distribution in the context of reliability and RUL estimation (Abernethy 

2006). Weibull plotting to assess the validity of the Weibull assumptions 

iii. Fragmented data, that is, missing data concerning failure or engine 

number or rejected parts for any overhaul was not considered  

The assumptions can positively influence the framework development, while the 

limitations may help control the framework functionality. The choice of a single 

failure mode enables a systematic application of the Weibull function. Clean and 

complete data in the specified format enhances robustness of the framework 

including data relating to six or less overhaul states. 
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Implications of the WTTPM framework beyond the gas turbine (NGVs)  

The WTTPM framework can be deployed in the following industries: - 

i. Rail transport (train wheels) 

ii. Air transport (fan and turbine blades) 

iii. Renewable energy (wind turbine blades) 

iv. Healthcare (drug manufacturing machines) 

v. Manufacturing (robots for manufacturing of cars at industrial scale) 

vi. Robotics (animatronics) and 

vii. Marine (fan and turbine blades) 

The framework assesses performance of the multi-component to improve design 

and enhance future component manufacture. This exploratory and explanatory 

research can be validated with multi-component and multi-connected systems 

such as the Internet of Things.  

6.2 A framework for WTPPM  

The framework is developed by through-life performance modelling to: 

i. Numerically illustrate the rejection rate at assembly level, the overhaul 

times, the replacement and reuse values through their life 

ii. Get better insights of the data to make realistic decisions based on 

assessments of the components in an assembly 

The framework development started with a direct case which then evolved into a 

complex model from stages 1 to 4. Stage 1 initially accepts two input parameters, 

processes the parameters through the four overhaul states and later six overhaul 

states and produces different results including the number of rejected, replaced 

and reused components. Stage 2 of the development process introduces 

observed rejection data, which is compared with the predicted rejection data in 

Stage 1. In this Stage 2, different error minimisation equations are tested and one 

is selected. Stage 3 is the back-fitting of the estimated parameters with resulting 

error values presented in matrix for performance metric and enumeration. The 

matrix is presented in a 21 x 21 dimension inclusive of the first row representing 
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a range of η parameter, the first column shows a range of β parameter and the 

remaining 20 x 20 contain the indicative error values for the respective 

parameters. However, 20 x 20 is suitable dimension for a single page view. 

Furthermore, an approach to identify optimised parameters from a selected 

region with minimum error values is incorporated into the modelling. The 

identified optimised parameters are applied to the Weibull function to estimate 

the probability of failure for components in an assembly over time. Stage 4 

delivers the final framework as shown in Figure 6-1 by incorporating the datasets 

with specified format and transforming the probability of failure into remaining 

useful life. The probability failure and the remaining useful life are calculated 

during the model evaluation. The proposed Weibull Through-life Performance 

Prediction Model is a non-parametric prediction technique. 

  

Figure 6-1: Fundamental through-life performance approach to RUL estimation 

6.2.1 Prepared data 

Data cleansing – also called pre-processing – is a statistical analysis requiring 

the collection of historical time-to-failure, run-to-failure data and operational data 

from the operating system. Time-to-failure data are time in cycles, while run-to-

failure data relate to observed components. Failure data should be pre-processed 
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to guarantee accuracy and consistency. Data cleansing ensures validation and 

supports modifications. Application based tools are used to pre-process failure 

data for a quick and better analysis. A database that stores historical operational 

time and run-to-failure can expedite data cleansing and sieving.  

The initially available data used in this Thesis are observed data provided and 

assessed by domain experts as shown in Table 6-1. The degradation assessment 

conducted during maintenance, repair and overhaul of the system assists with 

identifying rejections. The data requirements include a system’s identity, current 

inspection time and the number of rejections. Whereas components with defects 

are rejected and replaced with new components, components without faults are 

reused. The historical and current health data can be used to assess the through-

life performance of a subsystem. However, with semantic knowledge of failure 

modes and degradation mechanisms, domain experts interpret reasons for 

rebuffing the predicted components. The types of mechanisms affecting 

mechanical components can be found in (Okoh et al, 2014).  

Data generation 

The sample data presented in Table 6-1 were derived and formulated from the 

understanding of the failure modes commonly found in aero mechanical 

components.  

Table 6-1 Sample of pre-processed data (model-building data)  

System No Failure times 
x 6 (Hours)  

Failure times 
(tInspect(i) -
Cycles) 

Failure 
rate=f/100*36 

Quantity 

10012 6000 1000 5/100*36 = 1.8 2 

10012 15000 2500 10/100*36 = 3.6 4 

10012 19200 3200 25/100*36 = 9 9 

10012 36000 6000 30/100*36 = 10.8 11 

10012 48000 8000 40/100*36 = 14.4 14 

10012 66000 11000 55/100*36 = 19.8 20 
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The degradation data generated were based on the service knowledge from the 

AS-IS industry practice and maintenance cycles analysis. With this same 

understanding, the nature of the data and the quantity of the rejections or scrap 

were created and modelled as shown in Figure 6-2. Figure 6-2 gives a conceptual 

through-life performance prediction model to demonstrated components 

degradation within an assembly. The numbers represent components in “black = 

new”, “blue = reused”, and “red = degraded”. The reused components are 

expected to have different failure rates than the new ones. 

 

Figure 6-2: Conceptual modelling of through-life performance of components for data 

generation  

In Figure 6-2, the curved lines with different colours illustrate the quantity of 

components beginning its run at each overhaul state to show a clear distinction 

of the regression. The red vertical lines represent demarcation of individual 

overhaul states. The percentage presented in the coloured boxes at the top 

depicts the failure rate at each overhaul state. Based on the study, where only 

assembly level data are available, the author attempted to model the through-life 

performance of different overhaul states, an assumption relating to the expected 

rate of rejection was taken at “5%”, “10%”, “25%”, “30%”, and “40%”. In the course 

of developing the framework a 6th state with 55% degradation rate was included. 
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The quantities rejected are solved using the above stated percentages (see Table 

6-1). However, the generated data are created and validated in conjunction with 

experts.  

6.2.2 Model selection 

The model equation selected for this statistical analysis is the Weibull reliability 

function. The Weibull reliability function is most appropriate for degradation and 

maintenance problems as indicated in chapter 2. A more detail segment of the 

framework is presented in Figure 6-3 to give a better insight of the variables 

required for the WTPPM. 

 

Figure 6-3: Detailed model of through-life performance 

Statistical analysis is conducted on the time-to-failure data with analytical 

methods to calculate and describe the data in terms of mean, standard deviation, 

coefficient of variance and confidence level of 95%. The time-to-failure in cycles 

is denoted with tInspect(i). The time-to-failure tInspect(i),…, tInspect(n) are statistically 

analysed to get the moments that describe the data. The first moment calculates 

the mean of the time-to-failure data with Equation (6-1).  
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t̅ =
1

n
∑ tInspect(i)

n

i=0

 (6-1) 

where t ̅denotes the mean and n denotes the number of cycles tInspect(i),…, tInspect(n). 

The standard deviation (σ) is solved with Equation 6-2. 

σ = √
1

n
∑(tInspect(i) − t)̅2

n

i=0

 (6-2) 

The coefficient of variance (CoV) measures variability in absolute term using 

Equation (6-3). An increase in n can lead to a rise in coefficient of variance. 

CoV =
σ

t̅
 (6-3) 

The confidence level (LConfidence) Equation (6-4) assesses the level of assurance 

of the failure data. The confidence level of 95% describes the Mean with a 

confidence coefficient of 1.96 (Rumsey, 2016). A confidence level of 95% has 

been selected with a significance level of 0.05 (Field, 2009).   

LConfidence = t̅ ±  Zα/2

σ

√n
 (6-4) 

where Za/2 denotes a confidence coefficient, the standard error of the mean is the 

standard deviation of the sampling distribution represented as 
𝜎

√n
. The margin of 

error is the product of the multiplier and the standard error, which is added to and 

subtracted from the mean to get the interval endpoints. The sample mean is the 

best point estimate and the centre of the confidence level. The minimum and 

maximum values for a chosen confidence level are statistically generated to fall 

between the through-life bounds of the failure times. The next section describes 

the methods of estimating two parameters of the Weibull function. 
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6.2.3 Weibull Parameter estimation 

Analytical techniques for estimating the two-parameter Weibull function include 

Least Square Estimate (LSE) and Maximum Likelihood Estimator (MLE). Based 

on the time-to-failure sample data the η and β parameters are calculated 

(Abernethy, 2006). 

F(t) = 1 − exp [− (
tInspect(i)

η
)

β

] (6-5) 

where F(t) is the probability of failure, tInspect(i) is the failure times, η represents 

characteristic life measured by cycles and β is slope for determining failure rate. 

Least square method 

The least square method as an analytical method estimates the Weibull 

parameters needed as input into the WTPPM. This method is applied best where 

data sets are complete with an assumed single failure. The preferred estimating 

method is the median rank (see Equation 6-14) (Bernard’s Approximation), a 

statistical regression approach for fitting data as a standard method and best 

practice (Abernethy, 2006). The objective of the LSM is to estimate the 

parameters based on best fit lines solved by the LSM to minimise the sum of 

squared errors (E). 

E = ∑(yi − ŷi)
2

n

i=1

 (6-6) 

where yi denotes probability of failure and  ŷi denotes estimated probability of 

failure. Using the well-known Weibull distribution in Equation (6-5). The two-

parameter unreliability Weibull CDF is transformed into the natural (base e) 

logarithm of the failure times (Abernethy, 2006). 

ln(1 − F(t)) = ln (e
−(

tInspect(i)

η
)

β

) (6-7) 
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ln(1 − F(t)) = − (
tInspect(i)

η
)

β

 (6-8) 

ln(−ln(1 − F(t))) = βln (
tInspect(i)

η
) (6-9) 

ln (ln (
1

1 − F(t)
)) = β ln(tInspect(i)) − βln (η) (6-10) 

Setting the value  

x = ln (TInspect(i)) (6-11) 

and  

y = ln (ln (
1

1 − F(t)
)) (6-12) 

The cumulative distribution function equation is rewritten as 

y = βx − βln (η) (6-13) 

This CDF equation becomes a linear equation, with  slope of  β and an intercept 

of βln (η). The procedure to perform parameter estimation is as follows:- 

Step 1: Calculate median rank using Bernard’s approximation estimates failure 

times using Equation (6-16), where i denotes incremental rank order and n 

denotes number of items (Abernethy, 2006).  

MR = [
i − 0.3

n + 0.4
] (6-14) 

The median rank, calculated with Equation (6-14) is used in Equation (6-15) to 

determine the values for the y-axis. 

Step 2: Calculate the natural (base e) logarithm of the time by calling  
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Y = ln [ln [
1

1 − MR
]] (6-15) 

X = ln[tInspect(i)] (6-16) 

Step 3: Calculate the least square estimates of A and B of A (intercept) and B 

(slope) in Equation (6-17) 

Y = A + BX   (6-17) 

Where Y̅ is the average of the Ys and  X̅ is the average of the Xs 

Â = Y̅ − B̂X̅   (6-18) 

B̂ =
∑ xiyi −  

∑ xi ∑ yi
n
i=1

n
i=1

n

n
i=1

∑ xi
2 −n

i=1

(∑ xi
n
i=1 )

2

n

 (6-19) 

However, the correlation coefficient calculates proportion of variation in the data. 

cc =
∑ xiyi −  

∑ xi ∑ yi
n
i=1

n
i=1

n

n
i=1

√(∑ xi
2n

i=1

(∑ xi
n
i=1 )

2

n
) (∑ yi

2n
i=1

(∑ yi
n
i=1 )

2

n
)

 

(6-20) 

where cc denote correlation coefficient and calculated as cc2. 

Step 4: Calculate the median rank regression estimates of the first parameter β 

β̂ =
1

B̂
 (6-21) 

η̂ can be solved since β̂ has been estimated. To calculate the median rank 

regression estimates of the second parameter η, e denotes exponential 

η̂ = e
Â

β̂ (6-22) 

Maximum likelihood estimate 
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The MLE is another analytical method for parameter estimation. The MLE 

commonly used due to its desirable properties. Let (t1, t2, …, tn) be a random 

sample of size n from a probability distribution function. The maximum likelihood 

Weibull analysis method comprises finding the η and β parameters, which 

maximises the “likelihood” of getting the  and  parameters of a given observed 

data (Abernethy, 2006). The objective is to estimate the probability of η and β 

using a statistical expression of the likelihood function, given the observed data. 

When the samples are complete (all units are run to failure), the likelihood 

function L becomes Equation (6-23);  

L = ∏ F(ti)

n

i=1

= F(t1)F(t2) … F(tn) (6-23) 

where n denotes the sample size. 

The MLE of t maximises F(t) is equivalently, the logarithm of F(t). The MLE of t is 

a subject to: 

dL

dt
= 0 (6-24) 

The MLE solution is:  θ̂ = argθ∈ϑmax(L) where θ = {β,η}, ϑ is the whole parameter 

space of β,η. The solution space follows the Weibull distribution using Equation 

(6-5). Regarding reliability, F(t) is the probability that components will fail by time 

t. F(t) represents the unreliability at time tInspect(i).   

The Weibull probability density function (PDF) gives 

f(t) =  
β

η
(

tInspect (I

η
)

β−1

e−(tInspect(i)/η)
β
   (6-25) 

Apply MLE to estimate η and β parameters by considering the Weibull probability 

density function. This MLE application to Weibull probability density function 

becomes Weibull likelihood function in Equation (6-26). 
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L(t1, … , tn; η, β)  = ∏ (
β

η
) (

tInspect(i)

η
)

β−1

e
−(

tInspect(i)

η
)β

n

i=1

 (6-26) 

ln L  = ∑ ln (
β

η
) (

tInspect(i)

η
)

β−1

e
−(

tInspect(i)

η
)β

n

i=1

 (6-27) 

The likelihood of the sample failure data is a function of the Weibull parameters 

η and β. Taking the logarithm of Equation (6-27), differentiating based on 

parameters η and β which equates to zero. The maximum likelihood estimate of 

β is subject to: (the β̂ signifies maximum likelihood). From Equation (6-23), the 

Equation (6-28) holds. 

∑ ti
β̂n

i=1 ln(tInspect(i))

∑ tInspect(i)
β̂n

i=1

−
1

n
∑ ln(tInspect(i))

n

i=1

−
1

β̂
= 0 (6-28) 

In Equation (6-28)  η has been eliminated. However, when β̂ is solved, the η can 

be determined by the MLE using Equation (6-29). The η̂ denotes maximum 

likelihood. 

η̂ = (
∑ tInspect(i)

β̂n
i=1

n
)

1

β

 (6-29) 

The MLE of β is solved using an iterative process (i.e., Newton-Raphson method) 

(Abernethy, 2006). The estimated parameters are for the Weibull reliability 

function. Once the estimated parameters were established, the parameters are 

then introduced to the prognostics modelling discussed in the next section. 

6.2.4 Through-life performance modelling 

Through-life performance modelling (TPM) is a data-driven predictive approach 

used in Stage 1 of the initial framework development. The TPM visualises and 

represents estimated η and β parameters, total number of components in an 

assembly, number of components rejected, replaced and reused, different 

overhaul states, times and subsequent population to be replaced either brand 



 

146 

 

new and/or repaired components as well as the varying repair condition. The TPM 

facilitates components renewal / replacement in an assembly as independently 

and identically distributed (Rausand and Høyland, 2004). The objective of TPM 

is to model R-Cube components in an assembly to assess degradation at each 

overhaul state and through their life cycle. The purpose of TPM provides an 

understanding of the through-life performance assessment at design stage to 

recognise number of degrading components before failure occurs. The TPM 

incorporates renewal modelling process of replacing components in a multi-

component assembly to demonstrate the effect of changes to the system (Maria, 

1997). The through-life observation ensures accuracy of the outcome from TPM. 

The use of input plus model application gives outputs which visually represents 

rejected, replaced and reused components. The contribution is the application of 

the Weibull cumulative distribution function to a renewal process in TPM to  

i. model and estimate prior inspection to estimate R-Cube,  

ii. determine when to scrap the entire multi-component in an assembly and 

iii. predict the remaining useful life of components.  

The goal of through-life performance modelling is to estimate the rejection rate 

and calculate number of component rejections based on probability theory. The 

TPM is developed to estimate the expected number of rejected components at 

the next inspection; converts rate of rejections; converts designed model into 

statistical model; verifies and validates expected outcome with an expert. A 

systematic approach solves for the population of components starting at an initial 

zero value. The new population of components continues with existing reused 

components. In this research, the requirements for TPM include: - 

i. Factors are input from historical and current health data including mock-

up numbers for a specified domain. These are called uncertain variables 

ii. Process are in-between deterministic computations on the inputs in (i) 

iii. Responses are output which depends on computing the input based on 

selected functions 
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The flowchart presented in Figure 6-4 is used to visually depict the prognostics 

modelling operations.  

 

Figure 6-4: An outline of a modelled TPM for through-life performance operation 

The Microsoft Office (MS) Excel and Visual Basic for Application (VBA) modelling 

of the through-life performance of components in an assembly. The modelling 

establishes the use of recursive process based on a population and overhaul 

inspection times. The flowchart presented in Figure 6-5 shows a step by step 

processing through the chart shown in Figure 6-4. 
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START

Assign Static Variables

Ncomp_to=36

Initial Start time=0

Model Variables

Eta, Beta, iOC

i = 1 to 6 

N(comp(t))=

N(Rem_comp(t))+N(Rep_co

mp(t))

END

A(tInspect(i)  )=
G(t(Inspect(i)),η,β,Ncomp_to)

N(Rej_comp(t))=

⌊(N(comp_to)*F(t))  ⌉

N(ARej_comp(ti) )=

N(ARej_Comp(t(i-1))) 

+N(Rej_comp(ti) )

N(Rep_comp(t))=

N(Rej_comp(t))

T = ti – t(i-1)

N(Rem_comp(ti) )=

N(comp(t_i) )-

N(Rej_comp(t_i) )

 

Figure 6-5: The flowchart to modelling each segment of TPM 

The TPM is transformed into the Weibull Through-life Performance Prediction 

Model (WTPPM) with specified data format. The renewal modelling consists of n 

inspection overhaul states (s1, s2,…, sn) starting with the first inspection overhaul 

state. The population of component at the inspection (p1,p2 …,pn) represents 

replacement and recursion. For every item of population p, p=1,2,3,…np, there 

are a series of overhauls states s, s=1,2,3,…maxs. The data can be summarised 

in a matrix A, where A(tInspect(i)) is number of rejections on Ncomp_to at tInspect(i). 

While the A(tInspect(i)) is output of the function for the input, the input includes 

overhaul inspection time, number of component at the start, characteristic life and 

slope parameter. The mathematical model for A(tInspect(i)) for the through-life 

predictive model is given as 

A(tInspect(i)) = G(tInspect(i),η,β,Ncomp_to) (6-30) 

where A(tInspect(i)) is rate of expected degrading component, t(i) represents failure 

time in cycles at various overhaul stages (1, 2,…, n), Ncomp_to is total number of 

components (e.g. 36). The Equation (6-30) determines outcome of components 

expected to fail at each inspection overhaul time. The mathematical model uses 

the two-parameter Weibull cumulative distribution function by incorporating 

Ncomp_to as seen in Equation (6-30). Equation (6-30) is necessary for the process 

flow of the population and overhaul inspection times. It calculates the rate of 

rejections based on the overhaul inspection time and population. The matrix 
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formation in horizontal and vertical directions – horizontal  formation relates to 

population, while vertical formation is top-down showing the overhaul inspection 

states  and the number of components expected to fail. At every state inspection 

space, the data box / block reuses Equation (6-30). The total number of both the 

reused and replaced population of components are kept for the next overhaul. 

The through-life performance model, which is prognostics modelling limited to n 

inspection states with n iterations of the population. 

The Population Group and Overhaul State/Point at time t(i)  

Equation (6-31) provides a current inspection time of the system from a start time. 

This equation describes the differences between overhauls and the initial start 

time = 0.  

Tinspect(i) = tinspect(i) −  tinspect(i−1) (6-31) 

where tinspect(i) denotes current inspection overhaul time, tinspect(i-1) denotes 

previous time and Tinspect(i) denotes total inspection overhaul time by time t(i).  

Call the result of Equation (6-31) as input to calculate failure rate for each 

inspection overhaul time. The predicted rate of unreliability uses Equation (6-5).  

The calculated failure rate is a cumulative function. Conversion to number of 

rejections from cumulative rate of rejection uses Equation (6-32) to round to the 

nearest value. The symbol ⌊ ⌉ represents round-up and round-down. Examples 

are a value 6.56 is rounded up to 7, and a value 6.46 is rounded down to 6 a 

single figure. The rationale is to get a discrete whole number.  

NRej_comp(t) = ⌊(Ncomp_to ∗ F(t)) ⌉ (6-32) 

where NRej_comp(t) denotes number of cumulative rejected components, Ncomp_to  

represents total number of components at start. An exact number of rejections at 

each inspection uses Equation (6-33) which is same as cumulative number of 

rejections for the first inspection.  
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NRep_comp(t) = NRej_comp(t) (6-33) 

where NRep_comp(t) denotes number replaced at this overhaul 

Get total number of components at each inspection and population of component 

which will transit until next inspection by calling Equation (6-34). The total number 

of components after replacement Ncomp(t) and number of reused components 

NRem_comp(t) plus number of replaced components : 

Ncomp(t) = NRem_comp(t) + NRep_comp(t) (6-34) 

where Ncomp(t) denotes total number of components after replacement and NRem-

_comp denotes number of reused components. 

Next Overhaul Point 

In the next overhaul, the Population Group One and Overhaul Point Two starts 

with using  

i. Equation (6-31) to give the time tinspect(i), tinspect(i+1),…, tinspect(n) n represents 

overhauls 

ii. Equation (6-5) uses the outcome from Equation (6-31) to produce the 

failure rate  

iii. Equation (6-33) applies results from Equation (6-5) and converted failure 

rate into cumulative number of rejections 

iv. Equation (6-35) is called to calculate exact number of rejections for that 

population and overhaul inspection time.  

NARej_comp(ti) = NARej_Comp(ti−1) + NRej_comp(ti)  (6-35) 

where NRej_comp(ti) denotes exact number of rejections for that population and 

overhaul inspection time and NARej_comp(ti) denotes cumulative number of 

rejections. 

Equation (6-36) calculates remaining replacement after the rejected components 

through the lifecycle of the replacements and overhaul states. 
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NRem_comp(ti) = Ncomp(ti) − NRej_comp(ti)  (6-36) 

In order to validate the installed components after overhaul, use Equation (6-34) 

to check that the number of parts and replacements at n inspection stages equal 

number of components at start, the outlined equations have been utilised to 

successfully model through-life performance component degradation as shown 

in Figure 6-5.  

The population block in Figure 6.6 contains inspection time, the Weibull estimated 

rejection rate, cumulative and explicit component rejections. Each block contains 

recursively reused formulae. The block at subsequent inspections include 

calculations of cumulative number of rejections throughout the life cycle and 

number of rejections at each inspection by adding rejections minus cumulative 

number of rejections. The result on the first population gives an underlying 

distribution rejection rate. The capability of the data-driven prognostics 

methodology estimates expected rejections before failure occurrence. The 

prognostics approach supports maintenance scheduling and reduction of 

unnecessary maintenance actions in spare parts manufacturing and 

maintenance management. Refer to appendix J for model class diagram and 

appendix K for through-life model flowchart. The next section focuses on error 

minimisation calculations for back-fitting using performance metric evaluation. 

6.2.5 Performance metric evaluation   

The MAE calculation minimises error for back-fitting of the initial estimated 

Weibull parameters. The predicted outcome from the through-life performance 

predictive model and the observed real-world values are evaluated. The 

difference between predicted and observed rejection rate is evaluated using 

Equation (6-39) to calculate for absolute error. 

E̅ =
1

n
∑|V̂i − Vi|

n

i=1

 (6-39) 



 

152 

 

where V̂i denotes predicted values from the through-life performance prediction 

model and Vi denotes observed values. The error values reflect the two 

parameters, which are initially predicted in the parameter estimation and 

performance evaluation for the back-fitting (enumeration / matrix), the process to 

select optimal η and β parameters for probability of failure and RUL prediction is 

presented. Figure 6-6 illustrates an enumeration of the η and β parameters to 

produce resulting error values. The optimised error values, η and β parameters 

are transformed into probability distribution and RUL. The enumeration is a 

complete and ordered listing of estimated parameters and error values (Thomas, 

2002). The enumeration presents a matching error values to both η and β 

parameters as back-fitting.  

 

Figure 6-6: Approach to calculate probability distribution and RUL; ‘e in green’ means 

acceptable and ‘e in red’ is unacceptable error values 

The back-fitting displays error values with a range of η and β. The colour code is 

introduced to differentiate high and low error values. The back-fitting process is 

a Generic Enumeration Technique (GET) as shown in Figure 6-6 and in Figure 

6.7 as an outcome, and the procedures outlined below. The rationale ensures 

error values and estimated parameters match. The enumeration relates to a 20 x 

20 dimensional array based on a visual acuity that a person can see detail from 

a specified distance (Kirschen and Laby, 2006; NDT Resource Center, 2014).  
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Figure 6-7: Enumeration of error values, estimated η and β parameters  

Step 1: Define the η and β parameters; calculate change in maximum and 

minimum η and β parameters: the maximum minus minimum η and β 

parameters, are used to generate an enumeration of a range of the η 

and β parameters with calculated error values.  

Step 2:  Display the η and β parameters on horizontal and vertical axis with the 

error values in the matrix as an enumeration. The matrix is a 20x20 – 

a single view area of focus.  

Step 3: For each η and β values, calculate the rejection rate by calling 

Equation (6-30) and subsequent equations. The equations are 

repeated through the life cycle. 

Step 4:  Define performance metric variables and call Equation (6-39). The 

equation calculates error values based on the inspection overhaul 

state with outcomes from Equation (6-30) in Step 3 for single and 

multiple engines. 

Step 5:  For every minimised error value calculated, estimated η and β 

parameters are shown in matrix. This matrix illustrates a total of 400 

varying error values resulting from the range of η and β parameters. 

Colours green and red in gradient form applied shows region of data sensitivity. 

The green region indicates closeness to the actual data – components can still 
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be in good condition and fit for reuse, while red region indicates distant deviation 

from real data – components are likely to be significantly unfit for reuse.   

6.2.6 The process to select optimal η and β parameters   

A Generic Optimisation Technique (GOT) is a zoom-in functionality applied in the 

GET to identify and optimise for realistic parameters. The procedures for 

conducting the GOT are   

Step 1:  Display error value for every η and β across the matrix for every result 

element of η and β, then use the lower and upper η and β parameters 

based on the error values to do a recalculation into the 20 x 20 matrix.  

Step 2:  Draw a borderline to highlight the region of green with low error values 

as shown in Figure 6-8. The selected region with the lowest error 

values is defined as a pattern, which is search by the GOT algorithm. 

 

Figure 6-8: Borderline for the selection of low error values   

Step 3:  Use zoom-in (GOT) functionality to further recalculate for error 

minimisation  highlighting region in relation to the η and β parameters. 

The output of the GOT from Figure 6-8 is presented in Figure 6-9. 
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Figure 6-9: Optimised estimated η and β parameters with error values   

6.2.7 Through-life performance model evaluation 

As stated in Section 6.2.6, the optimised η and β parameters are achieved by 

drawing a borderline focusing on a region of interest (green region) based on the 

selected error values. The highlighted region is assumed best area with good 

data for analysis. However, the rationale for selecting error values on the border 

is to get optimised required values based on the cells of the first row with last 

column and the last row with the first column. The GET represents the entire 

stream of error values and the parameters in the matrix. The GOT capability 

minimises error values until the coverage of the entire matrix (three times – the 

maximum zoom-in recalculation) is rendered. A Weibull distribution resulting from 

Equation (6-5), the estimated parameters and the interval time/age in cycles step 

are passed as input to graph the probability of failure in Figure 6-10.  

 

Figure 6-10: A Probability of failure distribution  
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In this Thesis, remaining useful life of individual components in an assembly is 

time left for each component to perform its defined function. The estimated 

parameters for the error values are transformed into the Weibull distribution 

probability of failure and remaining useful life of the components. The outcomes 

give realistic η and β parameters for the error values. The probability of failure 

becomes an input into Equation (6-40) by incorporating the values of t ∈ {ti, ..., 

tn.} to calculate the remaining useful life (TRUL). Figure 6-11 illustrates the RUL 

distribution from a Weibull perspective.  

TRUL = (1 − F(t)) ∗ t   (6-40) 

 

Figure 6-11: A Weibull representation of the RUL 

Considering a maintenance situation where renewals are component rejections, 

the distribution is the remaining useful life of components at time t (Rausand and 

Høyland, 2004).  

The confidence level (LConfidence), the Weibull MTTF and Variance (second 

moments) were calculated by calling Equations (6-29) and (6-30). The confidence 

coefficient and significance level is 0.05 as a 95% confidence level.  

LConfidence = MTTF ±  Zα√Var   (6-41) 
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6.2.8 Cost-benefit analysis 

A safety factor of 50% of the original cost of new components within the entire 

assembly replacement for a single system. The end of economic life is 

determined by the Weibull mean-time-to-failure as seen in Equation (6-41). The 

decision to replace entire multi-component in an assembly depends on overall 

cost at each overhaul state. The replacement cost is applied to make better 

maintenance decision to know when to scrap or replace a whole component in 

an assembly. Other applicable costs were assumed to be included in the cost per 

item and replacement cost. In this case, where Rcost = Tcost the entire components 

in the assembly are expected to be replaced with new components. 

TCost = 50% ∗ ACost (6-42) 

where ACost denotes cost per component in an assembly, TCost denotes threshold 

cost 

RCost = CReplaced ∗ IComponentCost (6-43) 

where CReplaced denotes number of components replaced, RCost denotes 

replacement cost, and IComponentCost denotes cost of replacing individual 

components. The class diagram is in appendix J. The flowcharts for these 

sections relating to the through-life performance approach is presented in 

appendix K.   

6.3 Summary 

The overall through-life performance prediction framework presented in this 

chapter presents a theoretical description of a predictive modelling tool capability. 

In this research, the proposed framework developed addresses the knowledge 

gap identified in literature and AS-IS industry practice from a Through-life 

Engineering Services perspective. The MS Excel software was used to develop 

the component deterioration and remaining useful life tool for through-life 

performance assessment. The gap has led to the development of a Weibull 

Through-life Performance Prediction Model – a prognostics tool for decision 
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making. The application of the approach assesses components in an assembly 

to enhance prediction accuracy and robustness in estimating the number of R-

Cube components. The framework applies to assessing through-life performance 

of components in an assembly for Through-life Engineering Services.  

The data provide sufficient indication showing minimum and maximum 

components rejected would fall into a region of certainty. The framework contains 

parameter estimation of the Weibull function based on failure data, modelling of 

the Weibull through-life performance prediction model, back-calculation using 

performance metric and enumeration, and introduction of the model evaluation 

with interval time step and remaining useful life prediction. The next chapter 

presents an application of the framework to case study scenarios.   



 

159 

 

7 CASE STUDY SCENARIOS AND RESULTS  

The previous chapter presented a framework describing component degradation 

and remaining useful life prediction of components within an assembly using only 

assembly level data. During the implementation of the methodology for the 

framework, different data were used. This chapter presents the application of the 

WTPPM framework to a relevant case study with three different scenarios and 

their results presented.  

In the framework, a partitioning cross-validation approach is applied in the 

performance assessment, whereby model-building and validation data sets were 

introduced. In the evaluation of the model, MAE and RMSE were tested. The 

MAE gives low error values, while the RMSE provides large error values. 

Initial results from the WTPPM framework 

The initial results from this framework uses the model-building data sets (see 

Table 6-1, page 137). The data applied to the model and analysed produces 

results presented in Tables 7-1 to 7-2 and Figures 7-1 to 7-5. 

Table 7-1 The 𝛈 and β outcomes of the LSM and MLE  

Estimation Method η β Optimised η Optimised β 

MLE 5881 1.5 6156 1.46 

5481 1.70 

LSM 6073 1.2 6523 1.09 

5873 1.28 

 

Table 7-2 The number of rejected components, η and β outcomes of the LSM and MLE  

Methods η  β OS1 OS2 OS3 OS4 OS5 OS6 Total 

LSM 6073 1.2 4 7 4 14 10 14 53 

MLE 5881 1.5 2 7 3 16 11 16 55 
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Figure 7-1 Graph with same observed and predicted rejection rates and time 

 

 

Figure 7-2 MLE: Normal and optimised error values of η and β parameters to check the 

approach returns the expected outcome 
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Figure 7-3 LSM: Normal and optimised error values of η and β parameters to check the 

approach returns the expected outcome 
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Figure 7-4 MLE: 3D visualisation of normal and optimised error values with η and β 

parameters 
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Figure 7-5 LSM: 3D visualisation of normal and optimised error values with η and β 

parameters 
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Figure 7-6 Probability of failure and RUL of optimised η and β parameters 

Further results are analysed and discussed for components of complex 

engineering systems. Figure 7-7 shows a complete framework of the research 

with different scenarios of the case study: - 

i. Single stage turbine (Nozzle Guide Vanes) for an Aero engine 

ii. Applying repaired components of the single stage turbine 

iii. Multiple of four stage turbine (Blade) for Steam Turbine  

The Weibull analysis estimates η and β parameters from the data using LSM and 

MLE parameter estimation methods to show the robustness of the developed 

WTPPM framework. This section presents the application of the Weibull through-

life performance prediction model framework to three scenarios for the case 

study. 
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Figure 7-7 Framework with different scenarios  

7.1 Scenario one - Single stage turbine 

In the first scenario, multiple engines with different overhaul times are analysed 

using the developed framework in chapter 6. The framework can be applied to 

the two aero engines (a two-shaft and a three-shaft). Both aero engines are 

subject to same problem. The following technical configurations for a three-shaft 

High Bypass Ratio engine are Fan Diameter - 97.4 inches, Eight-stage 

intermediate pressure (IP) compressor, Six-stage high pressure (HP) 

compressor, Single Combustor with 24 fuel injectors, Single-stage HP turbine, 

Single-stage IP turbine and Four-stage low pressure (LP) turbine. A two-shaft 

technical configuration includes low-bypass turbofan engine with a mixed 

exhaust, low-pressure and high-pressure spools. The fan and booster stages are 

powered by low-pressure turbine, high-pressure compressor is driven by high-

pressure turbine. 

This scenario of the case study focuses on a single-stage turbine nozzle guide 

vanes (NGV) of a gas turbine. The data presented in Table 7-3 were developed 

in conjunction with industry partners and presented as a representative of real 

data. 
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Table 7-3 Data with multiple engines and overhaul state used for the analysis 

(validation data)  

Engine No Time (hrs) Time (Cycles) Scrapped Quantity 

10010 6000 1000 2 

10010 12000 2000 4 

10010 18000 3000 9 

10011 6000 1000 2 

10011 15000 2500 4 

10011 19800 3300 9 

10012 6000 1000 2 

10012 19200 3200 4 

10012 36000 6000 9 

10012 48000 8000 11 

10012 66000 11000 14 

10013 12000 2000 2 

10013 21000 3500 4 

10013 36000 6000 9 

10013 60600 10100 11 

10014 6000 1000 2 

10014 15000 2500 4 

10014 36000 6000 9 

10014 48000 8000 11 

10015 6000 1000 2 

10015 15000 2500 4 

10015 19200 3200 9 

10015 36000 6000 11 

10015 48000 8000 14 

10015 66000 11000 20 

10016 5880 980 2 

10016 13200 2200 4 

10016 21600 3600 9 

10016 36000 6000 11 

10017 5520 920 2 

10017 8400 1400 4 

10017 15000 2500 9 

10017 33000 5500 11 

10017 48000 8000 14 

10019 6000 1000 2 

10019 12000 2000 4 

10019 18000 3000 9 

10019 24000 4000 11 

10019 30000 5000 14 
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The OS represents an overhaul state described in chapter 6, this case analyses 

a single engine (10015) from the multiple engines data in Table 7-3 using same 

η and β parameters. In Table 7-4, comparison of results from the historical failure 

data are analysed using LSM and MLE methods. The outcomes of data analysis 

using the two methods varied slightly. While LSM gives high β, MLE produces 

less β. The MLE method has a high η value, and LSM outputs a low η value.  

Table 7-4 The rejected components, η and β outcomes for LSM and MLE methods 

Methods η  β OS1 OS2 OS3 OS4 OS5 OS6 Total 

LSM 4353.8 1.6 3 9 5 21 13 23 74 

MLE 4523.5 1.5 4 9 5 19 14 19 70 

The η value suggests 63.2% of components reflect performance loss. The values 

show difference between the LSM and MLE. The difference is due to the median 

rank discussed in chapter 6. The Weibull β of ‘1.0’ indicates an exponential 

distribution of the data, ‘2.0’ is a Rayleigh distribution and ‘3.0’ is a normal 

distribution of the data. The β values tend to unity describing the effect of the 

failure mode, therefore, β range between 1.5 and 1.6 with a difference of 0.1 

indicating deviation away from the degradation observed data. As indicated in 

Table 7-1, this outcome is significant because initially the β of 1.5 will produce 

high number of rejections, while β of 1.6 give a less number of rejections in the 

model. However, as replacement continues, high numbers of rejections are 

observed between OS4 and OS6. As an engine's β increases, estimated 

rejections decrease. There is bigger variation and sensitivity to variation in each 

individual component β. The optimised zoom-in capability estimates the most 

realistic 𝜂 and β with error values. Hence, if the β value is greater than 2, indicates 

a small variation in the degradation data.  

The results presented in Figure 7-8 show the number of data points and trajectory 

of non-linearity. The points illustrate a cumulative distribution for a through-life 

predictive model of a single-stage assembly.  
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Figure 7-8 Single system (A) LSM β = 1.6 and (B) MLE β = 1.5 with predicted and 

observed values on Probability of failure 

The observation was based on rejection and replacement strategy following the 

bathtub curve where the failure rate remains constant, decreasing and 

increasing. The outcome in Table 7-4 illustrates that policymakers, 

manufacturers, designers and maintenance engineers can make better 

maintenance decision based on cost as a safety factor and the rate of failure of 

components. The practitioners can decide at what stage the entire components 

should be replaced with new components, that is, where the numbers of expected 

renewal are slightly above half of the total of 36 components. 

The life of a population of NGVs can be described as early life, useful life and 

wear-out or ageing. The values of β in Table 7-4 signify an early wear-out when 

β value is > 1 and < 2. In the analysis, components in an assembly show a slight 

wear-out condition because the value of β parameter is greater than 1. The 

outcome leads to an optimal time of replacement analysis based on total cost of 

maintenance. Few early ageing failures are observed which increases over time 

in cycles. The β parameter for all methods gives a better predictability of the 

scenario with variance showing through-life performance of NGVs in an 

assembly. 

The early wear-out with β is constant for the six overhaul states. In OS1, LSM 

predicted the rejection of the 3 while MLE estimated 4. For OS2, quantity of NGVs 

rejected are 9 for both LSM and MLE. This difference resulted from (a) failure 

modes, and (b) reuse of existing NGVs relative to time interval. In OS3, degraded 
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NGVs are 5 – this outcome can be attributed to optimum renewal (replacement) 

of rejected NGVs in OS2. However, in OS4, 21 NGVs are projected to fail using 

LSM, while 19 NGVs are estimated to reject with the MLE method. This 

occurrence can be ascribed to minimal renewal in OS3 and the time interval. The 

reliability of a majority of the NGVs are based on the renewal principles, hence, 

the high number of rejections in OS4. The same can be said of OS5 and OS6.  

The WTPPM predicts the number of rejections and optimal renewal 

(replacement). LSM has a total number of NGVs renewals at 74 and MLE 

projected a through-life performance quantity of NGVs rejected as 70. These 

outcomes can be attributed to β parameters – high β leads to less number of 

rejections and low β produces a high number of rejections. The outcome can be 

seen in the first overhaul state, but the reverse is the case for the rejections at 

subsequent overhauls.  

The replacement cost of individual NGV, maintenance, repair, overhaul and 

logistics can be high regarding the engine for each OS. At each OS, if the cost of 

replacing the NGVs in an assembly is 50% of the cost of replacing the entire 

NGVs in an assembly, the expert advice would be to scrap and replace.  The 

LSM and MLE have been described as reliable methods for parameter 

estimation.  

In calculating the minimised error values, η and β parameters are passed through 

the model. Equation 6-39 (MAE) is called to calculate the outcome from predicted 

rejection values and observed rejected values as shown in Figure 7-8. The 

outcome is a single error value based on the estimated Weibull parameters. The 

error values are presented in a 20 x 20 matrix for back-fitting as shown in Figure 

7-9. The matrix representation is a generic enumeration approach, which is 

calibrated into different shades of green and red. While green colour indicates a 

region with the closest deviation, red colour specifies a region with the farthest 

deviation. The effect of the failure modes affects the characteristic life of the 

population of NGVs. While red region indicates that NGVs cannot be reused, 

green region illustrates the population of NGVs can be reused.  
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Figure 7-9 Single system (a) LSM β = 1.6 and (b) MLE β = 1.5 with error values, η and 

β parameters 

The representation shows robustness of the WTPPM for reliability purposes. 

Optimal η and β values based on the residuals can be used for decision making. 

The region with the closest residuals of observed data is highlighted around the 

green area. The region indicates optimised fit for predicting values of η and β of 

the Weibull distribution. The predicted η and β parameters are used to estimate 

number of future rejections, and when they will occur. The 3D surface map is a 

representation of maximum and minimum error values seen in the Wireframe 

contour map is numerically analysed and illustrated in appendix L.  

Further analysis shows that the generated parameters from GOT as shown in 

Figure 7-10 are calculated as failure probability in the Weibull distribution. The 

failure data are solved to represent RUL of components. Table 7-5 shows the 

estimated and optimised η and β parameters. 
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Figure 7-10 Single system (a) LSM β = 1.6 and (b) MLE β = 1.5 with error values and 

optimised η and β parameters 

Table 7-5 Outcomes of the optimised values from LSM and MLE methods 

Method Initial η Initial β Zoom-in 
(optimised) 

η β 

LSM 4353.8 1.6 High η and Low β  8103.8 0.98 

Low η and High β 3353.8 2.6 

MLE 4523.5 1.5 High η and Low β  8273.5 1.0 

Low η and High β  3523.5 2.5 

The RUL results in Figure 7-11 are presented as “RUL with High η Low β” and 

“RUL with Low η High β” with values in Table 7-5. The distribution can be used 

to highlight the RUL of components from each data point in the trajectory. RUL 

distribution is reliable and appropriate because it depicts multiple renewals of 

multi-component in an assembly.   
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Figure 7-11 RUL for single system (a) LSM β = 1.6 and (b) MLE β = 1.5 for optimised η 

and β parameters 

The results of predicted rejected NGV in an assembly historical data are required 

for the remaining useful life prediction derived from probability of failure 

distribution illustrated in Figure 6-7. The data analysed for a single system with 

an outcome of underlying predicted rejection rate and observed rejection rate with 

time are based on the historical data.  

A cost indicator discussed in chapter 6 creates a known threshold of when it is 

uneconomically viable to continue replacing components in the assembly. If cost 

at any overhaul state equals average total cost of an assembly replacement, the 

assembly should be replaced with new NGVs in the assembly as shown in Figure 

7-12. 

 

Figure 7-12 Cost threshold for components assembly rejection 
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Multiple engines and overhauls analysis 

The application of multiple engines and overhaul states present the following 

results. The GOT capability aims to get the most realistic η and β parameters 

relating to error values (see Figure 7-13). The GOT process is initiated until the 

function reaches ends of the matrix. The residuals of estimated η and β 

parameters are recalculated using GOT. The representation shows a variation of 

residuals /error values with respect to the η and β parameters. The variation of 

results comes from failure modes which affect NGVs in their environmental 

operating condition. A representation of the variation of error values is presented 

in a 3D surface map (see Figure 7-14), which represents a real-world entity 

behaviour of components in an assembly in service. The variation can be 

described as noise, which reflects failure modes and the characteristic life of 

NGVs. Most of the low error values of the estimated η and β parameters have 

various gradients or shades of green with same error values. Invariably, error 

values are similar, but appear the same due to approximation problem. The value 

with the lowest decimal has bright green colour; others have low and high decimal 

approximate values respectively with different shades of green.  

The model evaluation is conducted with selected error values, η and β 

parameters in green region as outcome from GOT functionality, the Weibull 

function is then applied to the last selected optimised η and β values to generate 

a Weibull distribution for probability of failure and converted to remaining useful 

life. The graphed red distribution results from the minimum η value, while the blue 

distribution from the maximum η. The outcomes relate to the actual historical data 

as shown in Figure 7-15. 
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Figure 7-13 MLE multiple systems: β = 1.5 with error values, realistic η and β with  
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Figure 7-14 3D surface map: β = 1.5 with errors values, realistic η and β   

 

 

Figure 7-15 RUL: MLE multiple systems: β = 1.5 
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7.2 Scenario two - Repair of single stage turbine for aero 

engine 

Repair refers to actions taken during the use of a product in order to return it to a 

working condition after a fault has occurred. In this scenario case, new 

components failure times are estimated as well as repaired components for 

further analysis of single stage turbine for an engine as illustrated in Figure 7-16. 

 

 

Figure 7-16 Framework for incorporating repair components 

7.2.1 Generating repair failure data  

The failure data for repair is developed based on the assumption that design life 

of a new component is not same for a repaired part. If the nominal life of a new 

component is 100%, the nominal life of a repaired component is assumed to be 

90%.  

Multiple components of different assembly in a gas turbine have different failure 

times, hence, failure times for multiple repaired components may vary. The 

scenario considers same components of a single assembly. The logic is 
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multiplying failure times of repaired components by 90% in the framework to 

achieve new failure times. The new failure times are aggregated to estimate the 

Weibull parameters.  

The repaired components have a nominal life less than new components; 

however, Figure 7-17 illustrates a typical new component, rejected and repaired 

replacement in relation to Figure 6-7. The colour “purple” indicates repaired 

components.  

 

Figure 7-17 A typical trend of new, reused, degraded and repaired components 

Repaired replacement is conducted in Through-life Engineering Services to study 

the behaviour of NGVs within an assembly. The components rejected in the 

prediction model are replaced with repaired NGVs. The rejected components 

contain locations of the NGV affected by damage mechanisms in the operating 

environment, but not investigated in this Thesis.  

7.2.2 The procedure for replacement with repaired components 

The framework was applied to the second scenario of the case study and results 

are presented accordingly. The estimated parameters from the LSM method are 

highlighted in this analysis.  
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Step 1: Get single engine failure data (overhaul times), then estimate the Weibull 

parameters with the LSM approach in chapter 6. The new and repaired 

data used are presented in Table 7-6. The data “New” is representative 

of real data, while “Repair” is simulated as it difficult to obtain component 

life. This research is designed to offer engineers and policy makers an 

approach to identify and predict component RUL in a multi-component 

assembly which include repaired components. 

Table 7-6 Estimated parameters for new and repair data 

New Repair 

Time (Cycles) Time (Cycles) 

1000 630 

2500 1350 

3200 1800 

6000 1980 

8000 2520 

11000 2700 

 3150 

 4320 

 4500 

 4500 

 4950 

 6300 

 7020 

 7650 

 9000 

The estimated parameters of the new and repaired values are presented 

in Table 7-7 as outcome from Table 7-6. 

Table 7-7 Estimated parameters for new and repair data 

Type of component η β 

New 6073 1.2 

Repaired 4968 1.5 

Step 2: Pass the estimate Weibull parameters into the model as well as the 

overhaul times in step 1 to calculate the number of rejections at any 

overhaul time. 
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Step 3: Introducing repaired NGVs to replace the rejected NGVs. Assumed 

nominal life of repaired NGV is 90%. The 90% nominal life is applied to 

the repaired NGVs at each overhaul state throughout all populations in 

the through-life performance model. 

Step 4: Get repaired failure times by identifying them individually and perform a 

Weibull parameter estimation using LSM to predict the characteristic life 

and the slope. The characteristic life and the slope become ηrepair and 

βrepair 

Step 5: Pass the newly estimated parameters in the model and ascertain the 

forecast of the rejections 

Step 6: Use initial and repaired estimated parameters to generate a distribution 

of probability of failure 

Step 7: Convert outcomes of Step 6 into remaining useful life of NGVs (new and 

repaired) 

Step 8: Get η and β values for total failure times of both new and repaired 

population to determine probability of failure and RUL  

7.2.3 The results of the repaired replacement 

The results of the single stage gas turbine engine with known overhaul failure 

times are presented. Simulated data employed here due to the nature of the 

analysis, where in real application identifying the underlying time-to-failure for 

replacement is difficult. This approach provides an insight into the way to achieve 

it. The prognostics outcome of number of rejections is shown is Table 7-8.  

Table 7-8 The 𝛈 and β outcomes of new and repaired rejected components with LSM  

 η  β OS1 OS2 OS3 OS4 OS5 OS6 

New 6073 1.2 4 7 3 16 11 17 

Repair 4968 1.5 4 7 3 15 10 16 
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The overhaul times are generated to estimate the Weibull parameters and to 

calculate the number of rejected NGVs at subsequent overhauls. The green 

region shows error values based on the likelihood of realistic η and β parameters. 

The outcome shows closeness of predicted values to observed values. The error 

values of the refined estimated η and β parameters are calculated. The estimated 

η and β parameters give a variation of the NGVs in the assembly and the most 

realistic values are those with lowest error. In the repaired, each population and 

overhaul times are calculated to estimate Weibull parameters for the repaired 

replacement based on initial outcome. Threshold is calculated by a given 

assumed design life multiplied by 63.2%. With a shape factor of less than one, 

the outcome can be attributed to maintenance issues during the putting together 

of the entire system.  

Figure 7-18 shows GET and GOT for the new, repaired and optimised outcomes 

of the predicted and observed error values based on initially estimated 

parameters. Figure 7-19 illustrates 3D map representation for the GET and GOT 

of the new, repaired and optimised outcomes. The results illustrate the numerical 

analysis for the through-life performance of the components in complex 

engineering systems (see appendix L). The combination of the new and repaired 

components produces optimised ηnew+repair and βnew+repair (see Table 7-9). 
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Figure 7-18 Normal, optimised and repair optimised for error values, η and β 

parameters 
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Figure 7-19 3D shape of normal, optimised and repair optimised error values, η and β 

parameters 
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Table 7-9 Outcomes of the optimised values from LSM methods 

 Initial η Initial β zoom-in (optimised) η β 

New 

 

6073 

 

1.2 

 

High η and Low β  7123 1.4 

Low η and High β 4873 2.2 

Repaired 4968 1.5 High η and Low β  6848 1.2 

Low η and High β  4801 2.3 

Figure 7-20 displays failure rate and RUL distribution results which are interpreted 

in statistics and engineering context with only initial new and repaired η and β 

parameters. In Figure 7-21, ηnew and βnew (6073 and 1.2) – data provided from 

historical overhaul inspection time for single engine system. The application of 

repaired components in the model starting with new components are further 

considered and analysed. The first population contains new components and 

subsequent population replaced consists of repaired components. The idea 

suggests repaired components may have less life. The likelihood of less life is 

included in the individual segment and a recalculation conducted visualises the 

outcome. The recalculated η and β gives ηrepair and βrepair (4968 and 1.5) – β 

parameter illustrates an early wear-out showing that the components suffer from 

either corrosion, erosion or low cycle fatigue. The ηrepair and βrepair (4968 and 1.5) 

are achieved by taking an aggregate of the failure times in the through-life 

performance model together with the new population of component. In Figure 7-

21, optimised ηnew; βnew and ηrepair; βrepair gives final results showing mixture of 

new and repaired components. The mixture of new and repaired replacement 

probability of failure and remaining useful life are illustrated in this scenario. The 

Weibull distribution for RUL prediction shows that observed pattern relates to 

multi-component renewal. The results appeal to both end-users and experts in 

relation with the validation and verification conducted. Technically, outcomes of 

the Weibull distribution resulted from the replacement of a proportion of the 

components in an assembly. The results suggest that the mixed replacement with 

repaired components could lead to early maintenance and submit that engines 

should be assessed more frequently. 
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Figure 7-20 RUL for new η,β: 6073,1.2 and repaired η,β: 4968,1.5. The red represents 

the repair and blue indicates new components.  

 

 

Figure 7-21 Failure rate and RUL for optimised new and repaired η,β    

7.3 Scenario three - Multiple of four stage turbines 

The developed framework in Figure 6-8 is modified to include multiple stage 

turbine as indicated in Figure 7-22 and demonstrated with data (see Table 7-10) 

from a large centrifugal compressors and turbine equipment in a refinery 

environment. This equipment is a steam turbine engine. Barringer & Kotlyar 

(1996) produce the Weibull estimated parameters from failure data of multiple 

stage compressor and turbine of steam engine.  
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Table 7-10 Estimated parameters (Barringer & Kotlyar 1996)  

Parameters Row 1 Blades Row 2 Blades Row 3 Blades Row 4 Blades 

η 205 179 163 159 

β 2.7 2.6 2.5 2.4 

The failure data (η and β parameters) were based on assumptions according to 

(Barringer & Kotlyar 1996) and due to the challenges of acquiring real data from 

industry. Failure data found in literature (Barringer & Kotlyar 1996) are applied to 

assess through-life performance of components. 

  

Figure 7-22 Framework for multiple stage turbine 

The reliability is the survival rate calculated based on lack of failures. The failure 

data are a different combination of η and β values, with η values given in months. 

This third scenario focuses on the multiple stages of a turbine. The turbine is 

designed for operation ranging from 8,000 to 14,000 rpm with continuing 

operation of 12,500 and over-speed set of 13,758 rpm. The turbine has four 

different stages with blades. The mean tip speed of the final stage is 1289 feet 

per second (fps). The blade roots are dovetailed and the shrouds are riveted. 

The through-life performance prediction model is applied to a single stage (Row 

1 to 4 Blades) based on individual engine data in Table 7-11 using the η and β 
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parameters from literature illustrated in Table 7-10. The outcome is presented in 

Table 7-12 showing the number of rejections at each overhaul state for multiple 

blades using Engine No 10015. 

Table 7-11 Data with multiple engines and overhaul state used for the analysis 

(validation data) 

Engine No Time (hrs) Time (Months) Scrapped Quantity 

10010 6000 8 2 

10010 12000 17 4 

10010 18000 25 9 

10011 6000 8 2 

10011 15000 21 4 

10011 19800 28 9 

10012 6000 8 2 

10012 19200 27 4 

10012 36000 50 9 

10012 48000 67 11 

10012 66000 92 14 

10013 12000 17 2 

10013 21000 29 4 

10013 36000 50 9 

10013 60600 84 11 

10014 6000 8 2 

10014 15000 21 4 

10014 36000 50 9 

10014 48000 67 11 

10015 6000 8 2 

10015 15000 21 4 

10015 19200 27 9 

10015 36000 50 11 

10015 48000 67 14 

10015 66000 92 20 

10016 5880 8 2 

10016 13200 18 4 

10016 21600 30 9 

10016 36000 50 11 

10017 5520 8 2 

10017 8400 12 4 

10017 15000 21 9 

10017 33000 46 11 

10017 48000 67 14 

10019 6000 8 2 

10019 12000 17 4 

10019 18000 25 9 

10019 24000 33 11 

10019 30000 42 14 
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Table 7-12 Failure data with predicted rejection data for the turbine stages  

Stage Blades η  β OS1 OS2 OS3 OS4 OS5 OS6 Total 

Row 1 Blades 205 2.7 0 0 0 1 1 2 4 

Row 2 Blades 179 2.6 0 0 0 1 2 3 6 

Row 3 Blades 163 2.5 0 0 0 2 2 4 8 

Row 4 Blades 159 2.4 0 0 1 1 2 4 8 

The failure starts at OS3 of Row 4, while the least failure begins at OS4 of Row 

1. All rows of blades are concurrently in operation with an end of life is 200 

months. The ageing of the blades is defined by the β factor/parameter between 

2.4 and 2.7. The η varies from 159 and 205 months, depending on the stress 

levels of their very high temperature environment. Table 7-13 illustrates the failure 

data with zoom-in/optimised values. The optimised values represent the range of 

η and β values of the failure data.  

Table 7-13 Failure data values with optimised values 

No η  β Zoom-in (optimised) η β 

Row 1 Blades 205 2.7 High η and Low β  261.3 1.7 

Low η and High β 205 2.195 

Row 2 Blades 179 2.6 High η and Low β  224 1.60 

Low η and High β  179 2.16 

Row 3 Blades 163 2.5 High η and Low β  198 1.50 

Low η and High β 163 2.00 

Row 4 Blades 159 2.4 High η and Low β  194 1.40 

Low η and High β  159 1.94 

All Row Blades 45.2 1.7 High η and Low β  70.2 0.775 

   Low η and High β  45.2 1.525 

These values signify that any η and β parameters within the specified range are 

realistic, producing a distribution relative to historical failure data as shown in 

Figure 7-23. The range of error values shows the same number across the colour 

gradient. The difference in the colour gradient means that the exact values vary 

based on approximation. The nature of operation between a gas turbine in an 
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aerospace domain and a steam turbine in power generation differs. While the 

latter is usually running continuous non-stop until schedule maintenance, the 

former is run based on the start and stop flight cycles. The essence of the 

framework is to proffer a predictive maintenance strategy in the power generation 

sector to determine number of components expected fail prior to overhaul, 

maintenance, repair, logistics and remaining useful life.  
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Figure 7-23 Optimised error values, η and β parameters of multiple stage turbine  
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The distribution is further analysed to calculate probability of survival or fraction 

of remaining useful life. The fraction of remaining useful life is converted to 

remaining useful life in months. Overall multiple assemblies with multiple 

components working concurrently show calculation of number of rejections using 

estimated parameters (η and β). The remaining useful life of components is 

predicted using optimised parameters in Table 7-13.  

Figure 7-24 illustrates the output for the blades in the four different rows based 

on Table 7-13. The results show the performance relative to lifecycle costs and 

maintenance from a reliability estimate stand point. The outcome highlights when 

components fail in the rows of the turbines. The estimation of parameters 

determines at what point components should be serviced or replaced in individual 

rows.   

The analysis shows that excessive replacement cost can be curtailed and to 

improve customer satisfaction. The data quality and resulting distributions can 

influence cost-saving decisions in the cause of design development and 

customer use. Furthermore, in relation to environmental applicability and 

operating mode of an industrial system, the deterioration of the components is 

gradual, unlike a gas turbine for aircraft operation. With this, remaining useful life 

is lengthy for land base / prime mover application as shown in Figure 7-24 based 

on optimised solutions. The results illustrated are relative to overall intricacy of 

multiple components of multiple stages of a gas turbine. 
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Figure 7-24 Overall results of multiple stage turbine probability of failure and RUL 
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Application of literature data to case study Scenarios 

The acquired data from literature, which are analysed and optimised as shown in 

Table 7-14 are applicable to different scenarios discussed and results presented 

in Figure 7-25. 

Table 7-14 Failure data from literature with optimised values 

No Turbine η   β Zoom-in (optimised) η  β 

A Single 
Stage 

159 2.4 High η and Low β  3996.50 2.10 

Low η and High β 3659 3.30 

B/
C 

Repair 4948 1.5 High η and Low β  8218 0.98 

Low η and High β 3468 2.49 

D Row 1 
Blades 

205 2.7 High η and Low β  5205 1.70 

Low η and High β 4682 2.08 

E Row 2 
Blades 

179 2.6 High η and Low β  5179 1.60 

Low η and High β  4579 2.20 

F Row 3 
Blades 

163 2.5 High η and Low β  5163 1.63 

Low η and High β 4513 2.22 

G Row 4 
Blades 

159 2.4 High η and Low β  5159 1.60 

Low η and High β  4559 2.20 

H All Row 
Blades 

53.2 1.7 High η and Low β  3987.70 2.14 

   Low η and High β  3620.20 2.70 

The results in Figure 7-25 are generated with the following values in Table 7-14. 

The result in A of Figure 7-25 indicates RUL for single stage turbine of multiple 

engines. The solution is close to the outcome produced in section 7.1 relating to 

a single stage turbine. The outcome is determined by the data. The solutions in 

B and C of Figure 7-25 represent repaired and new components. The results in 

D, E, F, G and H are for multiple stage turbines.  
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  Figure 7-25 Overall RUL results for all three scenarios 

The outcomes are dependent of the analysis and any of the two trajectories on 

each graph to estimate the RUL prediction of the engine components in the 

assembly of the different scenarios. Figure 7-25 illustrates all distributions depict 

Weibull analysis relating to individual components RUL prediction. At the mean 

time of about 15000 cycles on the x-axis, while y-axis contains the outcome 
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(contains the component RUL signifying total components replacement within an 

assembly) which is a function of x. Graphs C, D, and F have a maximum value of 

about 3000 cycles on the components RUL due the shape value being between 

1 <= 1.70. Graphs A, B, E, G and H are a little more than 3000 and 3500 cycles 

at maximum components RUL with shape value of between 2 and 2.50. The 

sharp contrast in C is due to the introduction of repaired components. F shows 

more skewness to the left because of the optimised low and high β values are 

2.14 and 2.70 respectively – more components renewals are expected in the 

overall multiple stage turbine.  

Comparing scenarios and RUL prediction 

The scenarios in the case study are applicable to gas turbine engine in the 

aerospace and power generation. While the single stage turbine is analysed to 

determine the components RUL prediction in an assembly, the multiple stage 

turbine is assessed to estimate the component RUL prediction. The former is 

relative to aerospace and the latter is attributed the land base power generation. 

Whereas the RUL prediction shows the need for consistent inspection and 

maintenance of the air based turbine, the RUL prediction in land based turbine 

reveals longer time interval between maintenance. The outcome is affected due 

to start and stop flight cycles for aircraft, and longer hours of start and stop for 

land base turbines. The repair and replace scenario reflects the implementation 

of measure for constant and accurate deliver of spare parts. The development of 

the framework has been applied to different scenarios of complex machines 

showing significant failure distributions. The reliability of the complex equipment 

is based on the function of the collaboration of the individual independent 

components failure distribution and RUL prediction. The scenarios and RUL 

prediction provide an avenue to ensure predictability and reliability, thereby 

reducing infantile exclusions. The approach does consider for variability of nature 

factors such as accident braking, fuel types but where catastrophic incident 

occurs, the approach do not support. The approach can be applied to real 

application, however, the system should be trained in accordance with the model 
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to achieve the expected outcome. Further numerical analysis of the scenarios are 

illustrated in appendix L.  

7.4 Summary 

The parameter estimation methods show differences in β values (failure modes). 

The framework applies to gas turbine and steam turbine applications. The 

WTPPM framework can be applied to other fields, whereby components are 

collectively and concurrently operating in same environment. The framework 

uses a prognostic data-driven methodology to produce acceptable results. The 

data used for this analysis showing multiple engines and overhaul states are 

presented. The results of rejected components from through-life performance 

model application are illustrated, GET and GOT outcomes with 3D shape 

visualisation are shown, and remaining useful life trajectory presented. The data 

from literature are applied to all three scenarios showing various results. 
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8 VALIDATION AND VERIFICATION 

The validation and verification of the WTPPM framework are conducted to ensure 

the technique, input and output results are validated and verified with respect to 

accuracy and the process of ensuring procedures provide assurance. Verification 

and validation are independently conducted with reference to independent 

procedures used for checking viability that a software meets its requirements and 

specifications to fulfil its intended purpose (Global Harmonization Task Force, 

2004). While validation ensure tool meets end users operational needs, 

verification provides assurance assessment that the developed tool meets a set 

of design specifications (ISO/IEC/IEEE 24765:2010(E), 2010).  

In validating and verifying the WTPPM framework, data for input are extracted 

from literature, sample data from documents and data developed with experts. 

Initial verifications were conducted relating to assessing accuracy of the 

calculations. For each segment of the case study, input, output and validation 

outcomes are presented. Participants’ initial suggestions and modifications are 

effected. Validation results from questionnaire administered through semi-

structured interviews are evaluated. The questionnaire assesses framework 

logic, suitability, generality, usability and results. The sample data are applied to 

the framework for single stage, repair and multiple stages scenarios of the case 

study. 

8.1 Internal verification 

Internal verification revolves around the development strategy of the calculations 

for each segment within the framework, which was applied to ensure assessment 

accuracy and validity of the calculations. At the different stages of development 

of the framework, verifications were conducted with the industry sponsor, my 

supervisors, subject adviser and industry partner. The verification in the first stage 

lasted for 1 hour 45 minutes and the three other stages for an hour each. The 

calculations within the WTPPM seemed appropriate with provision of expected 

outcomes. Suggestions from the meetings include representative results, 
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estimation of the Weibull parameters, providing means to know the total number 

of engines being analysed, components being scrapped and the data to validate 

the tool. 

During the initial verification in the first stage of development, the outcome of the 

first overhaul inspection state is assessed. The calculation of number of 

components expected to fail within the assembly is presented in Table 8-1. The 

significance of the calculation is assessing the failure rate from a statistical 

standpoint. The number of components in assembly are fixed depending on the 

model of the engine. The estimated parameters are derived from averaging the 

overhaul times. The overhaul times are start and stop times in cycles of flight. 

The formula is an enhanced Weibull function for determining the rate of failure. 

The proportion of components degraded is the probability of failure outcome, 

which is then converted to number of components degraded. Other calculations 

including summation of the number of components for R-Cube are validated and 

verified to produce the expected results for each overhaul state versus each 

population (replacement renewal). 

Table 8-1 Calculation of the number of components degraded 

Inputs Process Output 

Number of 
components 
rejected 

Estimated 
parameters  

Overhaul 
time in 
cycles 

Formula: 

Weibull  

Proportion 
of 
components 
degraded 

Converted 
to number of 
components 
rejected at 
each 
overhaul 
state 

Table 8-2 illustrates the strategy for assessing the error values by comparing the 

predicted and observed values. The values are the outcomes from the model 

calculation, while observed values are the real-world outcomes. The MAE is 

mean absolute error formula, which compares both values to output a single 

value indicating how close or far the predicted deviates from the observed. 
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Table 8-2 Technique for conducted error calculation. 

 Inputs Process Output 

Technique for 
calculating error 

Predicted 
values 

Observed 
values  

Formula: 

MAE  

Error value 

Table 8-3 shows the assessment of range of high and low η and β parameters 

with their error values. The η and β parameters are split into a matrix with their 

representative error values. Change in η and β parameters are defined to enable 

iteration focus on the matrix. Each representative error value is dependent on the 

η and β parameters relative to the Weibull function. The application of colour is 

dependent on the error values, for example, if the error value is high a red colour 

is assigned and if low, a green colour applies. 

Table 8-3 Presentation of a range of η and β parameters 

Input  Process Output 

Range of 
scale and 
slope 
factors 

change in 
estimated 
parameters  

 Define 
matrix 

Apply 
colours  

Show 
results 

Table 8-4 presents the assessment of probability of failure of the optimised η and 

β parameters. The optimised η, β and error values are translated to calculate the 

probability of failure for the components. 

Table 8-4 Assessment of probability of failure 

Inputs Process Output 

Probability 
of failure 

optimised 
parameters  

Time in cycles Formula: 

Weibull  

Probability of 
failure results 

In Table 8-5, the calculation for remaining useful life is conducted by multiplying 

the time intervals in cycles with the outcome of probability of survival (a nominal 

value minus the probability of failure).  

Table 8-5 Assessment of remaining useful life 

Inputs Process Output 

Remaining 
useful life 

Time in cycles Formula: 

Converting probability of 
failure 

Visualise 
results 
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Table 8-6 provides calculation for estimating η and β parameters using least 

squares and maximum likelihood estimation methods. The times in cycles are 

aggregated to estimate η and β parameters relevant for the model to calculate 

expected number of degraded components within an assembly through the life of 

the engine at the various overhaul states. 

Table 8-6 Estimation of scale and slope parameters 

Inputs Process Output 

Estimate 
parameters 

Time in 
cycles 

Formula: 

Weibull/MLE/LSM  

Shows results 

Table 8-7 illustrates the cost and safety margin calculation to determine when to 

scrap the entire multi-component and replace with pristine components. A safety 

margin is pre-determined in line with the number of rejected components and the 

cost per component. 

Table 8-7 Calculation of cost to scrap entire components in an assembly 

Inputs Process Output 

Cost 
analysis 

Safety 
margin 

Cost Number of rejected 
components at each 
overhaul 

Formula: 

scrap  

Shows 
results 

 

8.2 Case study  

Gas turbine engine 

With reference to chapter 1, scenario one of the case study demonstrates the 

through-life performance of components in an assembly of a single stage turbine, 

which includes application of renewals (new components) to show a proportion 

of degraded components at each overhaul times in cycles. Scenario two 

illustrates the through-life performance of the components in an assembly with 

renewals (repaired components) of a single stage turbine. The attention is on an 

assembly of HP-NGV of a complex engineering system. 
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Steam turbine engine 

The developed framework is then applied to scenario three. Scenario three is an 

industrial power generator application with multiple stages turbine as described 

in chapter 7 to examine the behaviours of the four-stage turbine and predict the 

remaining useful life of the components.  

The case study is selected to assess the nature and level of component 

degradation and its through-life performance at design stage by using the 

WTPPM framework. The case demonstrates the components deterioration to 

estimate reject, replace and reuse occurrences. The product of the study will 

enable domain experts select a realistic characteristic life and the slope to 

determine the life of an assembly of components for better maintenance decision, 

thereby predicting remaining useful life of the components.  The case is an aspect 

of a research project which has been split into a number of sub-project 

concentrating on providing support to in-service characterisation of components 

relating to maintenance, spare parts, manufacturing and design. 

8.3 Qualitative validation  

In conducting the validation and verification, the research problem was 

introduced and the aim of the research stated describing the process of the 

framework. The questionnaire is then presented for feedback. The feedback is 

summarised, the analysis of the feedback and suggested changes to the 

framework are presented. The questionnaire for the validation technique used in 

this research is produced using Likert scales of four with granularity of 1 to 10. 

The scale ensures more precise data collection, increases reliability and validity 

of data from a statistical analysis perspective (Pearse, 2011). The Likert scale of 

four with granularity of ten is chosen over five because it delivers more value in 

terms of accuracy, reliability and validity of the responses for analysis (Pearse, 

2011). The analysis of the validation is further discussed relating to scenarios of 

the case study. 
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In summarising the feedback from the questionnaire, the validation and 

verification of the framework are conducted in conjunction with experts, who have 

experience in academia and industry. The comments on the generality, 

responsibility, benefits, limitations, usability, assessment of the framework and 

quality of the results are analysed. The experts are statisticians and engineers 

with academic and industry experience in different fields of endeavours. Only 

years of experience and letter identifying respondents are disclosed, but names 

of the respondents are not disclosed for confidentiality as shown in Table 8-8 and 

the questionnaire validation and verification of the technique for the RUL 

prediction framework is presented in appendix M. The user manual is available 

in appendix N. 

Table 8-8 Failure data values with optimised values 

Respondents A B C D E F G 

Experience (years) 3 7 20 6 40 21 13 

 

Validation results per section with observation  

The responses from the respondents are presented in tabular form (see Tables 

8-9 – 8-15) describing the results for each section of the questionnaire together 

with observations. The aim outlines specific individual assessment of the 

framework to reduce or eliminate bias from the researcher. The respondents are 

identified by the supervisors, so there was no influence on the hand of the 

researcher.   
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Table 8-9 Assessing the prediction modelling logic in the framework 

Respondent Logic 

A The logic and suitability have a score of “8” and “9” 

respectively, which show an agreement with each section in 

the framework. The framework can be applied to “industrial 

component failure”.  

B The logic and suitability were given a score of “8” and “9” 

respectively. The framework can be useful for “other 

manufactured products with complex composition.”  

C The logic and suitability had a score of “7” and “7 respectively, 

stating that “in general it is logical, to the extent that 

deterioration can be modelled in the specified probabilistic 

terms” and “in general yes, to the extent that deterioration can 

be modelled by the proposed probabilistic framework.” The 

framework can be applied in another scenario “…but with 

significant customisation.”  

D The logic and suitability had a score of “8” and “8” 

respectively, stating that “prediction modelling could 

potentially provide a close enough relation establishing an 

approximation of remaining useful life of the part. And this 

could safe both inspection downtimes and improve reliability.”  

E The logic and suitability have a score of “7” and “7” 

respectively, showing an agreement with each of the sections 

in the framework whilst considering the relationship with cost. 

The framework can be applied to “any complex system of 

subsystem”.  

F The logic and suitability have a score of “8: a logical approach 

has been adopted. Role uncertainty would be good to 

consider further” and “7: would be good to clarify input from 

literature”. “The framework looks adaptable.”  

G The logic and suitability have a score of “8: A closed loop 

framework is suggested, which allows the produced model is 

valid” and “9: More real data are required to valid this 

application.” “The framework itself is general.”  
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Table 8-10 Assessing the generality of the framework 

Respondent Generality 

A The generality of the framework can be applied in a broad 

variety of components in assemblies based on “Consideration 

of repair option in addition to new parts”. 

B The generality of the framework has a wider “applicability in 

relation to automotive engine is a possibility.” 

C The generality of the framework in the aerospace industry 

“Significant customization is needed for more generic 

applicability.” The generality of the framework in other 

industries “The framework is applicable to other industry but 

the details out of necessity will have to be re-worked and 

tailored to problems in other sectors.” 

D The generality of the framework “This framework in the 

current state does fit in with the aerospace model dealing with 

HVM parts. However, the level at which this might be applied 

to is a discussion that is needed with the end users especially 

to improve its fidelity.” 

E The generality of the framework “highly applicable to many 

industries and any complex equipment with sufficient 

historical data.” 

F The generality of the framework in aerospace industry “the 

steps are general and clearly applicable for aerospace.” In 

relation to other industries “would be, but need to clarify the 

drivers.” 

G The generality of the framework “Although the framework is 

general, the performance of this modelling quite depends on 

the model selected, which will be different case by case. 
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Table 8-11 Assessing the responsibility for the use of the framework 

Respondent Responsibility 

A Responsibilities include who should use the tool and take 

ownership. “The designers, maintenance engineers and 

maintenance department.” 

B Responsibility includes the “designers, manufacturers, 

maintainers and results overview should be presented to 

managers. The design and manufacturing department can 

take responsibility of the model” 

C Responsibility includes the “All of the above, but the 

framework should specify its own validity limitations” as stated 

in the questionnaire. “Would ownership by a single 

department be consistent with a whole-lifecycle management 

approach?” 

D Responsibility: “This framework should be handled by 

designers, manufacturers and maintenance personnel in the 

first instance as it involves the actual users who are based in 

the working field. This should further be adapted to the 

requirements of the job itself.” “A dedicated technology / 

research team overlooking all processes should own and 

maintain this framework.” 

E Responsibilities include who should use the tool and take 

ownership “maintenance and business managers in an 

availability contract.” 

F Responsibilities include who should use the tool and take 

ownership. “Designers and service engineers.” 
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Table 8-12 Assessing the benefits and limitations of the framework 

Respondent Benefits and limitations 

A The benefits to organisation include “lower cost due to the on - time 
intervention for corrective maintenance”. The limitations are “the 
historical data needed in a big consistent datasets, new parts in the 
behaviour that is not predictable and catastrophic failure is 
impossible to predict.” 

B The benefits to organisation can lead to “full lifecycle assessment 
of the parts and engine performance.” “The user knowledge of the 
tool is a limitation and user guidance may be needed.” “Automated 
input can impact the background of people entering the data and 
processing should be considered.” 

C The benefits to organisation can lead to “Improve maintenance 
planning; feedback observations from operations and maintenance 
to improve design; available to policymakers for strategic choices.” 

D The benefits to organisation can lead to “Immediate benefits would 
be improved performance, especially in maintenance routines, 
which could lead to reduction in inspection downtimes, improved 
parts inventory and overall reduction in maintenance cost.” 

Limitations: “The tool does not have real-time information and to my 
understanding the tool currently uses simulated data. It needs real-
time data to make sure it is fit for purpose, in other words it needs 
full validation and needs to use real-time data to check the reliability 
of the tool. This would only be possible when it gets into an actual 
working environment. Further, training and tuning of the tool for the 
specific job needs to be undertaken.” “The major limitation would 
arise in the actual field where the data handling capacity of the tool 
is challenged.” “The major concern could be the type of data that is 
being fed into the tool, where the data and the scenarios might be 
completely new and the tool fails to provide corrective measures.” 

E The benefits to organisation include “reduction in WLC”. The 
limitation is “availability of historical data and company willingness 
to invest in resources, validation process, and needs competent 
users, not simply number crunchers” 

F The benefits to organisation include “Reliable/robust RUL 
calculation for multi-component”. The limitations are “risk and 
uncertainty, how much data are needed, and potential subjective 
opinions as input.” 

G The benefits to organisation include “RUL prediction using limited 
number of data.” The limitation is “The number of samples is 
different.” 
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Table 8-13 Assessing the usability of the framework 

Respondent Usability 

A Usability considers the “historical data presentation and style as strength, 
summary of data in one view as weakest feature and possible 
improvement”. The tool offers an adequate guide to a user. The time 
required to populate the tool for implement is very good. The scale of 1 to 
5 (worse, less worse, moderate, good, very good) assesses the facets of 
the tool, a score of “4” is assigned to the layout, ease of navigation and 
level of awareness, while a scale of “5” is given to the use of colour. The 
flexibility of the tool to different levels of information available has a scale 
of “3”. 

B Usability – “better user guidance should be made available to help users 
to effectively use the tool”. “An e-help file should be provided”. The facets 
of the tool in terms of layout, use of colour and ease of navigation had a 
score of “4”. Level of awareness should be improved since it was given a 
score of “3”. The prototype is flexible and needs to be communicated to 
the users. 

C The benefits to organisation can lead to “Improve maintenance planning; 
feedback observations from operations and maintenance to improve 
design; available to policymakers for strategic choices.” 

D Usability – “The tool is appropriate as a prototype. It allows fast 
experimentation showcasing benefits. As a next step, once the prototype 
is validated, further effort could look into going beyond an excel tool, 
handling uncertainty in the data and designing a proper data 
generalisation approach with adequately designed cross validation, to 
reduce learning data bias, especially in cases of either limited or not 
sufficiently rich data.” “In general the tool is best used after a demo with 
explanations.” “If data entry remains manual it may be slow and prone to 
errors; however, the time required for a rapid prototyping of a solution is 
relatively limited, making it appropriate for a research prototype.” The 
facets of the tool contain layout with a score “5” was assigned, use of 
colour had “4”, ease of navigation had a score of “4” and the level of 
awareness was given a score of “3” which requires improvement. 
Compare the tool flexibility with different levels of information available 
“Although have not seen it working with different levels of information, it 
could in principle be applicable, but with limitation regarding the nature of 
data (data richness) and uncertainty management.” 

E Usability: “Excel based as the strongest feature with unknown weakness” 

F Usability considers the historical data presentation and style as strength; 
“lack of guidance on how to use the tool.” The tool offers an adequate level 
of information to guide a user. Layout had a scale of “4 – need further 
guidance on the steps.” 

G Usability – assessing feature: “The selection of optimal parameters.” The 
tool offers an adequate level of information to guide to a user. The scale 
of 1 to 5 (worse, less worse, moderate, good, very good) assesses the 
facets of the tool, a score of “4” was assigned to layout, ease of navigation, 
level of awareness, and use of colour. The flexibility of the tool to different 
levels of information available had a scale of 3. 
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Table 8-14 Assessment of the framework 

Respondent Assessment of the framework 

A Assessment of the framework in terms of completeness and suitability 
for input has a score of “7”. The approach used for the parameter 
estimation has a score of “8”; a score of “9” is given to the modelling 
and simulation. The comparison of the observed and predicted data 
has a granularity of “8”. A granularity score of “9” was assigned the 
optimisation approach to the solution, while the unreliability distribution 
of the optimised solution gives a score of “8”. The transformation of the 
unreliability distribution to survival distribution was given a score of “8” 
and the remaining useful life has a score of “7”. The cost logic to scrap 
the entire assembly as a granularity of “8”, while the iterative process 
for multiple stage turbines case study has a score of “7”. 

B Assessment of the framework in terms of completeness and suitability 
for input has a score of “8”. The approach used for the parameter 
estimation has a score of “8”; a score of “8” is given to the modelling 
and simulation. The comparison of the observed and predicted data 
has a granularity of “8”. A granularity score of “8” is assigned the 
optimisation approach to the solution, while the unreliability distribution 
of the optimised solution gives a score of “8”. The transformation of the 
unreliability distribution to survival distribution is given as a score of 8 
and the remaining useful life has a score of “8”. The cost logic to scrap 
the entire assembly as a granularity of “8”, while the iterative process 
for multiple stage turbines case study has a score of “8”. 

C Assessment of the framework in terms of completeness and suitability 
for input has a score of “7: The framework is adequate but strongly 
depends on data availability”. The approach used for the parameter 
estimation has a score of “4: deficiency 1: how can it be ensured that 
data fit a specified probability distribution? Deficiency 2: solving a more 
difficult problem (that of fitting a probability distribution) compared to 
make a direct empirical estimation/prediction on the basis of limited 
data availability could be an issue of concern. Otherwise parameter 
estimation could be sound and is well understood”; a score of “6: 
although comprehensible, the concerns of the previous question apply 
here too” is given to the modelling and simulation. The comparison of 
the observed and predicted data has a granularity of “8: Easy to 
understand”. A granularity score of “6: The principle is sound but the 
underlying assumptions not tested or guaranteed to hold” is assigned 
the optimisation approach to the solution. The conversion to remaining 
useful life has a score of “7: comprehensible”. The logic to scrap the 
entire assembly based on cost has a granularity of “8”, while the 
iterative process for multiple stage turbines has a score of “9”. 

D Usability – “The tool is appropriate as a prototype. It allows fast 
experimentation showcasing benefits. As a next step, once the 
prototype is validated, further effort could look into going beyond an 
excel tool, handling uncertainty in the data and designing a proper data 
generalisation approach with adequately designed cross validation, to 
reduce learning data bias, especially in cases of either limited or not 
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Respondent Assessment of the framework 

sufficiently rich data.” “In general the tool is best used after a demo 
with explanations.” “If data entry remains manual it may be slow and 
prone to errors; however, the time required for a rapid prototyping of a 
solution is relatively limited, making it appropriate for a research 
prototype.” The facets of the tool contain layout with a score “5” was 
assigned, use of colour had “4”, ease of navigation had a score of “4” 
and the level of awareness was given a score of “3” which requires 
improvement. Compare the tool flexibility with different levels of 
information available “Although have not seen it working with different 
levels of information, it could in principle be applicable, but with 
limitation regarding the nature of data (data richness) and uncertainty 
management.” 

E Assessment of the framework in terms of completeness and suitability 
for input has a score of “7”. The approach used for the parameter 
estimation has a score of “6”; a score of “6” is given to the modelling 
and simulation. The comparison of the observed and predicted data 
has a granularity of “7”. A granularity score of “6” is assigned the 
optimisation approach to the solution, while the unreliability distribution 
of the optimised solution gives a score of “5”. The transformation of the 
unreliability distribution to survival distribution is given as a score of 6 
and the remaining useful life has a score of “6”. The cost logic to scrap 
the entire assembly as a granularity of “6”, while the iterative process 
for multiple stage turbines case study has a score of “7”. 

F Assessment of the framework in terms of completeness and suitability 
for input has a score of “8”. The approach used for the parameter 
estimation has a score of “8 – need more openness about the 
calculation and avoid black box”; a score of “9” is given to the modelling 
and simulation. The comparison of the observed and predicted data 
has a granularity of “8”. A granularity score of “8” was assigned the 
optimisation approach to the solution, while the unreliability distribution 
of the optimised solution gives a score of 8. The conversion to 
remaining useful life has a score of “9”. The cost logic to scrap the 
entire assembly as a granularity of “9”, while the iterative process for 
multiple stage turbines case study has a score of “9”. 

G Assessment of the framework in terms of completeness and suitability 
for input had a score of “5 – the data are not sufficient for me”. The 
approach used for the parameter estimation had a score of “6 – some 
optimisation methods can be used”. A score of “7” is given to the 
modelling and simulation. The comparison of the observed and 
predicted data had a granularity of “8”. A granularity score of “6” was 
assigned the optimisation approach to the solution, while the 
unreliability distribution of the optimised solution had a score of “6”. 
The transformation of the unreliability distribution to survival 
distribution was given a score of “6” and the remaining useful life had 
a score of 6. The cost logic to scrap the entire assembly as a 
granularity of “6”, while the iterative process for multiple stage turbines 
case study had a score of “6”. 
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Table 8-15 Assessing the quality of the results of the framework 

Respondent Quality of the results 

A Results quality with realistic outcome has a score granularity of “9”. 
The significance of the result compares to the understandings of 
similar components is “8”. The visual representation of the output 
of the tool is clear. Suggested improvements of the overall 
framework are inclusive of “repair parts and design of a lean GUI 
for tool usability” 

B Results quality with realistic outcome has a score granularity of “8”. 
The significance of the result compares to the understandings of 
similar components is “8”. The visual representation of the output 
of the tool is clear and user guide required. Suggestions included 
“improvements of the overall framework diagram are inclusive of 
repair parts and design of a lean GUI for tool usability.” 

C Results quality with realistic outcome has a score granularity of “6 
results are realistic to the extent that data are too and also to the 
extent that probabilistic assumptions hold.” The significance of the 
result compares to the understandings of similar components is 8. 
The visual representation of the output of the tool is clear. 
Suggestions “1. Include cross validation / generalisation options for 
learning approach, 2. Include uncertainty handling mechanisms, 3. 
Include software - enable data management (reduce manual data 
management), and 4. Once validated, consider moving beyond an 
excel prototype to full software development”. 

D Results quality with realistic outcome has a score granularity of “5”. 
The significance of the result compares to the understandings of 
similar components is “5”. 

E No comment 

F Results quality with realistic outcome has a score granularity of “9”. 
The significance of the result compares to the understandings of 
similar components is “9”. The visual representation of the output 
of the tool is clear. 

G Results quality with realistic outcome has a score granularity of “6 
– the observed data are not sufficient. It is not clear for me”. The 
significance of the result compares to the understandings of similar 
components is 8. The visual representation of the output of the tool 
is clear “the resolution can be improved”. 
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Suggested observations 

The suggested observations provided improvements of the overall framework;  

i. The repaired component inclusion and design of a lean GUI for tool 

usability 

ii. The comparison of parameter estimation outcome with existing software. 

The handling of data is relative to processing historical data in-line with the 

format presented to reduce noise and ensure accuracy. The data are not 

manually entered; however, the pre-processed data are transferred from 

one application to another or copy and paste the data into the specified 

format. The Excel working prototype is converted to a software showing 

only the required features. 

iii. The outcome of the distribution is challenged; however, the distribution 

depicts the model selected and is appropriate when compared with other 

responses from respondents. The RUL distribution outcome resulted from 

renewals of multiple components 

iv. The RUL describes relationship with cost and risk, whereby a comparative 

analysis of how RUL influences cost on subsystem and a whole system 

lifecycle.  

v. Inclusion of model selection. Why and how is minimum and maximum 

value of shape and scale? The minimum and maximum values are 

determined to get a variation of inputs and outputs in the matrix to aid 

visual view of the error values and selection of the optimised parameters. 

The RUL representation solution holds true because it follows the Weibull 

distribution resulting from the multiple replacement renewals through the 

lifecycle. The range of η and β are calculated by dividing the η and β using 

a matrix value of 20. 

vi. The approach for conducting the scenario three of the case study was 

validated for input, output and framework verification through a 

comparison of the results obtained from literature and domain expert 

knowledge. The model developed captures the through-life performance 

objectives of the research.  
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Results from the questionnaire 

In the validation and verification of the framework, the results presented show 

Respondents A, B, D, F, and G have common response, while Respondents C 

and E differ in opinion, however, the respondents gave a high score for the 

framework logic and suitability. 

All Respondents agree that the framework is generic with a wide applicability to 

many industries. Respondent A mentioned the inclusion of repair, while 

Respondent C argue that re-worked details for specific problem are needed. 

Respondent C note that performance of the modelling depends on the chosen 

model. 

Respondents A, B, E and F agree that designers, maintenance engineers and 

department should take ownership of the framework, while Respondents C and 

D differ. 

All Respondents agree with different responses to the benefits of the framework 

to an organisation, which include reduction in cost and on-time maintenance, 

supports full lifecycle assessment of the engine, improvement of maintenance 

and spare parts management, enhanced performance and robust RUL 

calculation for multi-component. The limitations highlighted by Respondents 

include number of samples and real-time data being fed into the framework. 

Respondents agree that e-help should be included with the user manual 

provided. All Respondents assigned scores for colour, ease of use and level of 

awareness indicating framework performs well regarding usability.   

In assessing the framework, Respondents A gives an average score of 8, 

Respondent B with a mean score of 8, Respondent C with a mean score of 7, 

Respondent D assigns an average of 4 because the section is not completed, 

Respondent E with a mean score of 6, Respondent F with a mean score of 8 and 

Respondent G gave an average score of 6. 
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In assessing the results quality, Respondents A, B, F gave similar high score, 

Respondents C and G gave same score for the quality and realistic outcomes 

and Respondent D assigns marginal resulting from the notion of the knowledge 

and understanding of the subject area in this context. 

Based on the validation and verification of the framework, there are insignificant 

changes to the framework modelling. The change reflected in the RUL distribution 

where the dots of the probability of failure and remaining useful life are connected 

with lines signifying a cumulative strategy. The outcomes leverage the Weibull 

distribution to provide insights and further explore root causes from the data. The 

reason for a proportion of component to have same RUL at different interval of 

life shows that multiple engines with same overhauls (shop visits), but this rarely 

occurs. Whereas there are multiple engines data with similar overhauls, a match 

of same RUL at different interval can be unrealistic and not feasible, which might 

be due to the nature of the data.  

However, in relation to the first scenario of the case study validation, the idea of 

applying repaired components is to observe the complexity of the framework. The 

algorithm solves the through-life performance of the degradation data for a single 

stage engine with replacing new components. The algorithm produces 

reasonable results with accuracy. In the replacement of the repaired component 

population, the algorithm produced accurate results. In the repetition of the 

process, the algorithm behaves in a consistent manner with the results obtained 

from validating the through-life performance model. The expected visualisation of 

the results is accurate and depict the new and repaired components. The results 

show repaired components will have slightly early failure and new components 

having slightly late failure and survive longer. These results prove true because 

the life of the new part is assumed to have a nominal life, while the repaired 

component is expected to have a less than nominal life. The outcome of the 

visualisation provides maintenance engineer with a strong tool for decision 

making when combining new and repaired components of an industrial product-

services system. The decision to use a mixture of the components can lead to 

variations in the operation of an engine, which calls for close monitoring and 
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assessment of components, and engines on-wing with consistent maintenance 

activities. 

The results of the approach in the third scenario of the case study follow the 

validation of the first scenario. The algorithm calculates the through-life 

performance of the components in a multiple stage turbine with multi-component. 

The results are indicative of the types of gas turbine. The results are compared 

with literature and validated by domain experts. The visualisation of the results 

proves that the algorithm accurately predicts the probability of failure at each 

stage of the multiple stages turbine. The visualisation indicates the accuracy of 

the results and the consistency of the algorithm to generate the probability of 

failure and the remaining useful life of the proportion of the population. 

The approach for developing the framework and the predicted results were 

validated using domain expert knowledge. The framework is designed to capture 

crucial historical data required for input to assess through-life performance of the 

components in an assembly. The accuracy of the model is determined to validate 

the results from the through-life performance algorithms. An assessment is 

conducted to determine the accuracy of the different aspects of the through-life 

performance approach that make up the framework. The objectives of the 

research are compared with the models and evaluated by subject matter experts 

with many years of experience.   

The validation assesses the integrity check on the historical data for input to 

ensure no tampering with the data and no changes to the important input data. 

For example, overhaul times, quantity rejected, the η and β parameters are the 

same for the framework. The data should be strongly typed with the correct 

syntax, within specified boundaries and contains only permitted numbers. The 

validated data should follow the specified business rules. For example, failure 

rates can be decreasing, increasing and remain constant. The use of the correct 

terms in research as business rules can ensure financial gain and stability to an 

organisation. 
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The visualisation of the results in the modelling section show the algorithm 

calculates the number of components expected to fail and the distribution of the 

rejection rates and RUL prediction. The algorithm accepts the input data and 

accurately calculates the results. The algorithm performs accordingly as 

expected in a prognostics modelling of a reliability problem. The visualisation of 

the results in the performance metric section show the algorithm is able to auto-

calculate the predicted values and compare with the observed values to produce 

a single residual value. The single residual extends to a range of residuals with 

respect to variations of η and β parameters with accuracy. The optimised results 

provide accurate outcomes after re-calculation. The results illustrate the 

algorithm is able to produce a good estimate for the degradation problem with 

getting the representative values. The visualisation of the results in the model 

evaluation section show the equations are rightly applied and algorithms correctly 

estimates the outcomes. The graph is properly and clearly presented to depict 

the proportion of components expected to fail as well as their remaining useful 

life. These outcomes relate to (i) the single engine data and (ii) multiple engines 

data for this case study. These outcomes also confirm the algorithm performed 

well for degradation and reliability problems. 

In the course of the study, implementation challenges are noted during tool 

verification. In addition, few changes are initiated on the linking of the sheets 

rather than processing its sheet-by-sheet to ease translation of input and output 

data. The user manual with references is presented electronically to make the 

tool more user friendly and interactive. The input to the tool was verified to ensure 

the data were processed as expected. The estimated parameters presented to 

the tool calculates the number of components degraded/rejected. A couple of the 

respondents argued that the RUL output representation should be a “straight line” 

rather than “curvy line – Weibull representation”. The tool verification and 

validation were demonstrated using observed data presented by the sponsor via 

WebEx to show the relevance of the tool. In conducting the validation, the 

observed data were converted to “failure rate” and positioned in the probability of 

failure distribution.  
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8.4 Quantitative validation 

The quantitative validation evaluates the framework to assess the usefulness, 

applicability, reliability and verification of the equations. The validation of the 

equations is a statistical assessment conducted by an expert in the field of 

statistics/engineering with many years of experience. The objectives of the 

research were clearly outlined in a walk-through format for easy follow-up of the 

equations and the rationale. The equations for each section of the framework 

were introduced and the formulae were clearly stated in chapter 6. Some of the 

questions relate to the appropriate application of the equations in each phase of 

the framework development.  

The datasets analysed were overhaul inspection states. The overhaul inspection 

state is when an engine “starts and stops”.  The overhaul inspection states are 

considered failure times and the unit is in cycles. The failure times are used in 

the parameter estimation section to estimate the required values for input to the 

Weibull model. These values are the η and the β of the Weibull cumulative 

distribution function. An analysis of the failure data was conducted to get a 

statistical correlation of the regression  data which indicated that p-value is less 

than 0.05 with a statistical significance in the data.  

The research relates to the presence of assembly level failure data, with no trace 

of component level records. Designers assume life at design stage and need 

realistic basis of their assumptions. The scope is to optimise a predictive strategy 

for component degradation and remaining useful life of components within an 

assembly of the gas turbine engine. The tool aims to provide a predictive 

modelling of component degradation and remaining useful life prediction of 

components of a single stage turbine. The objective of the tool is to estimate the 

failure rate at component level, given only the failure data at the assembly level. 

The process of this section of the research has five phases: -  

Phase 1 – to statistically analyse the failure time data in cycles. The analysis is 

conducted using mean, standard deviation and confidence interval. 
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i. Phase 2 – to conduct a parameter estimation on the failure time data in 

phase 1 using least square method and maximum likelihood estimation 

method. The estimated parameters are η and β for the Weibull cumulative 

distribution function 

ii. Phase 3 – to model the number of components expected to fail at any 

overhaul inspection state over nth overhaul states. The input data used 

include estimated η and β parameters, failure times over nth overhauls 

and the total number of components starting before the first overhaul state 

iii. Phase 4 – to perform prediction performance metric to assess the close 

fitness of the observed and estimated rejection rates of the data 

iv. Phase 5 – to evaluate the model using optimised parameters in phase 4 

to estimate probability of failure and remaining useful life 

The validation of the statistics in the Thesis clearly follows the process outline 

above. The statistics adheres to the data-driven approach developed for the 

research. The step by step calculations from the data gathering through the 

parameter estimation process, then the model application with renewal theory 

application followed by the performance metric and finally the remaining useful 

life prediction are explicitly represented in the equations in chapter 6. The input 

data through the processing presented the expected results in chapter 7 in terms 

of the Weibull distribution in the aspect of maintenance and reliability. 

Changes to the framework resulting from the final validation 

After the final validation, the effected changes comprise, modification to the 

framework design to show model selection section in the process information 

flow. Included electronic user manual about the tool usability. Each section of the 

software is linked to ensure a smooth transition and communication.  

8.5 Summary 

The validation and verification were conducted at the initial and final stages of the 

framework development.  The framework validation and verification chapter 

focuses on internal verification with various stakeholders, a case study with 



 

217 

 

different scenarios relating to gas turbine engines for the aerospace sector and 

the power sector respectively. A quantitative assessment and validation of the 

equations were conducted to ensure the suitability of the research and applied 

correctly in developing the framework. 
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9 DISCUSSION, CONCLUSIONS AND FUTURE WORK 

9.1 Discussion of the research findings 

9.1.1 Literature review 

The purpose of this research assesses components degradation within a multi-

component assembly for predicting the remaining useful life of components. The 

analysis of the research relates to a reliability problem of complex engineering 

system and conducted through investigating the following fields “Through-life 

Engineering Services” considering the Industrial Product-Service Systems 

(complex engineering systems), “Maintenance Strategies” concerning 

“Condition-based (Predictive)” and “Prognostics and Health Management” 

involving “Remaining Useful Life”.  

This research in TES centre focuses on predictive maintenance strategy with the 

application of prognostic tool-set to estimate time to overhaul based on the 

calculated rejections, thereby predicting the remaining useful life of components 

with assembly level data. In the through-life engineering services domain, the 

themes relate to the following scope: critical-enabling maintenance, repair and 

overhaul functions to align with the operational strategy of an organisation. The 

efficient application of service knowledge in the TES and advances in technology 

can lead to the estimation of accurate and precise remaining useful life prediction 

to enhance decision making. The simulation tools, adaptability procedures, 

modular maintenance systems, and informed disposal decision can facilitate the 

prediction of reliable life expectation.  

However, information technology for distribution and collaboration; condition 

monitoring, and prognostics can lessen interruptions and provide availability of 

assets. The issue of degradation management is a key aspect in TES as well as 

maintenance of autonomous systems for developing capabilities in a 

collaborative environment can enhance the life-span of components. The concept 

of cost engineering provides performance-based service approach and a whole-

life cost model, which is applicable to the whole system maintenance and service 
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delivery systems in order to deliver effective business solutions. The modelling 

and simulation techniques for technological and business uncertainties are 

capabilities to improve component/product designs.  

The aforementioned toolsets and methodologies can support obsolescence 

management in relation to service network for capability assessment and cost 

estimation to improve the design. These can deliver significant improvement in 

quality, reliability, availability and safety whilst yielding feedback to designers and 

manufacturers. 

The research focuses on the Through-life Engineering Services theme of the 

advanced information technology called diagnostics and prognostics. The 

diagnostics and prognostics are applicable to predictive maintenance. The 

predictive maintenance is a classification in the maintenance strategies 

discussed in chapter 2. The remaining useful life prediction approaches are data-

driven models, physical-model, knowledge-based models and hybrid models.  In 

literature, there is an established international standard organisation definition for 

remaining useful life. A standard classification of the maintenance strategies was 

used in this Thesis. The researcher identified a pattern in literature for the 

categorisation of maintenance strategy and remaining useful life. The analysis 

shows the remaining useful life prediction research is predominantly conducted 

in the engineering and computer science domains. Components / subsystems / 

systems for remaining useful life prediction are identified during the literature 

review. The systematic literature review aided in identifying the trend in the 

research area and the industry to ascertain the research gap. The modelling of 

multi-component degradation in an assembly and predicting the remaining useful 

life using a predictive maintenance strategy is yet to be explored. However, in 

future, chronological analysis can be considered whilst conducting literature 

reviews relating to finding root causes and research gaps.  

9.1.2 Research methodology 

In chapter 3, the research methodology adopted include both quantitative and 

qualitative research techniques. The qualitative research is usually prone to bias 
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from the participants and the researcher. But bias in qualitative research is a 

liability that can affect the validity of the research findings. With the introduction 

of a mitigation concept known as triangulation, the minimisation of the bias 

guaranteed reasonable outcomes. Semi-structured questionnaires were used at 

different stages of the interviews to collect data.  In the course of this research, 

triangulation was applied to produce validated and verified results from the data 

collection by cross-checking the information against literature.  

In other words, a methodological triangulation is used in this research to gather 

information from the responders, interviews with stakeholders, questionnaires to 

validate and verify the data applied in the framework and the expected outcomes. 

Internal documents and literature reviews validate the methods and techniques 

relating to the research to eliminate bias. While systematic bias can occur in a 

research data collection, it is interesting to know that this bias can happen in 

validation when an outcome is chosen over another, that is, design, procedural, 

interviewer and response bias can impact on a research. A weakness of the 

selection bias is the selection of the data provided by the sponsor for validation 

because only the sponsor has foreknowledge of the nature of the data.  

The research is an industry collaboration to gain contextual and sufficient 

understanding of the most appropriate methods to engage when collecting data. 

The researcher engaged more than one method to ensure the weakness of a 

singular method did not impair the research outcomes. As described in chapter 

3, the methods engaged in collecting data from disparate sources for this 

research include face-to-face interviews, telephone conferences, WebEx 

meetings, reports and documents from industry provided by the sponsor, 

workshop/brainstorming, and case study scenarios. The methods agreed with the 

qualitative information gathering from domain experts. The regular collaboration 

with industry partners was very effective in the development of the framework as 

a research product. 

In this research, the use of case study enabled the researcher gain an all-

inclusive view of the area of interest to identify gaps within industry practice and 
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literature. The case study research technique gave more insights into the 

understanding of this complex field of interest. The case study created a platform 

for developing state-of-the-art solutions which would be a contribution to the 

industry and the academic body of knowledge.  In a broad-spectrum, the inability 

to manage large data may stray this research’s aim and justification of the 

assumptions using quantitative data – large datasets should be prepared 

systematically for use in a research.  

9.1.3 Current practice in industry 

In chapter 4, the AS-IS industry practice was discussed. The researcher upon 

conducting face-to-face interviews relating to the case study captured the current 

practice. The current practice of component degradation analysis from a 

maintenance or through-life engineering services perspective. The component 

degradation analysis revealed the level and nature of the degradation 

mechanisms found in assets, and how the analysed textual data were captured 

by domain experts. The domain experts are responsible for recording the events 

that occurred during maintenance, repair and overhauls. This recording includes 

the collection of historical data sets for further studies to assess and gain 

understanding of the behaviour of the system.  

The investigation is based on an aerospace gas turbine asset with a focus on the 

component assembly of the single stage turbine in the hot section, which is 

usually affected by corrosion and fatigue. The analysis shows the link between 

product, system, commodity, features and damage mechanism. The data 

analysis requires the extraction of the terms found in a database. The terms 

identified and extracted are categorised into product, system, commodity, 

features and damage mechanism. A terminology recognition tool was used to 

identify and extract the relevant terms from the report with the aid of both the 

taxonomy and the ontology. The domain experts’ tasks attributed to a 

conventional maintenance strategy is time consuming, expensive with long hours 

of manpower and cost. With this conventional strategy, a more rigorous approach 

is required to accurately estimate components rejections and predict remaining 
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useful life of components in an assembly. Through-life performance prediction 

provides schedule maintenance support and spare parts management. The 

analysis supports service delivery improvement for spare parts inventory 

management, shortens longer hours of spreadsheet data analysis, reduces 

interruption time, minimises lifecycle costs, but the predictive strategy can be 

expensive to implement. 

9.1.4 Analysis of through-life maintenance cycles 

In chapter 5, the analysis is conducted to identify gaps and industry needs relating 

to multiple overhauls and maintenance cycles, timeline visualisation for prompt 

access to relevant maintenance information. The relevant maintenance 

information is the history of events throughout the life of the engine from 

conception, in service and to disposal. There is a need to visualise the information 

on a timeline in the aerospace sector from a Through-life engineering service 

perspective. While literatures show cases of timeline visualisation in the medical 

field, none is attributed to a maintenance domain. The analysis focuses on 

through-life maintenance cycles by grouping various events, represented in 

different colour schemes then display on a timeline. The timeline represents a 2D 

display method graphing engine identification as rows (multiple engines) and 

years as columns. The points on the graph are the relevant maintenance 

information showing different colours depicting various events. The different 

maintenance events are high level events (taxonomy) required for the 

visualisation of various maintenance cycles. The 2D display is a single page 

visualisation serving as a summarisation view of complex information on a 

concise single screen. It will be beneficial for the large and complex data 

visualisation. The understanding of the analysis of the events timeline 

visualisation at system level and investigation at component level have further 

been developed to calculate for R-Cube, thereby predicting the remaining useful 

life of the component within an assembly. 
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9.1.5 A framework of Through-life Performance Prediction Model 

In chapter 6, the researcher presented a comprehensive description of the 

WTPPM as a generic framework. The developed framework resulting from the 

initial findings in chapters 4 and 5 is then applied to different scenarios of a case 

study in chapter 7. The framework can be applied to multi-component system (the 

same component designed and manufactured to operate in the same condition). 

This framework facilitates extraction of degradation data which helps to estimate 

the specific number of components expected to be rejected at any inspection 

time. The WTPPM calculates the rejection at next inspection/overhaul for 

predictive maintenance. It informs the domain expert of the time when a system 

should expect maintenance treatment, so that, the spare parts needed are 

transported just-in-time to reduce downtime. When the outcome in the WTPPM 

becomes zero, this means the system does not require any form of overhaul 

maintenance. 

The renewal theory is a technique for replacing a population in the prognostics 

model application. The analysed information is converted and represented in the 

through-life performance predictive model. The through-life performance 

predictive model demonstrates the prediction of the number of failed components 

at each inspection time space thereby predicting the RUL. The WTPPM can be 

used to predict the expected failure in the next inspection, which can help 

ascertain when the system needs to undergo detailed maintenance, repair and 

overhaul. The number of fitted components based on reuse, reject and replace 

must equal the number of components at the start for validation purpose. The 

data pre-processing results show the time-to-failure and run-to-failure data are 

used to determine the accuracy of the data and the model validated by the 

domain expert. Data mining of the historical data was conducted to capture the 

specific input data required for the model. 

On the maintenance shop floor, the actual number of rejected components is a 

whole number and not a fraction. The model outcome should show what the users 

understand is scientifically and mathematically proven. The maintainer is 
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expected to view and use whole numbers and not fractions for better decision 

making. The prognostics modelling in through-life performance prediction model 

can serve as a predictive maintenance decision making tool for policy makers to 

decide whether there should be the continuous replacement of rejected 

components, and to determine when to stop in order to minimise cost and for 

safety purposes. The research provides a model for statistical analysis of 

component degradation of a batch of component to predict the remaining useful 

life of a component in the assembly. A decision to stop replacement of the 

components can result from overall cost.  

The distribution describes each overhaul inspection time, observed and predicted 

failure rate. The outcome of the TPM compares the behaviour of the performance 

based on the observed and predicted failure rates. The GET produces error 

values relative to the range of η and β parameters. The GET is a back-fitting 

approach that shows the solved error values for the η and β parameters. The 

combination of the high η and low β parameters, and low η and high β parameters 

give different shades of red and green. The region where β<1 and β>1 with low 

η give large error values in red and components in these regions are unfit for use. 

The GOT is further introduced to optimise the error values with η and β 

parameters respectively by recalculating selected regions to achieve the realistic 

parameters. 

The optimised η and β parameters generate a closely matched distribution that 

shows the failure rate. The optimised low η is close to the initially estimated η, 

while the low β closely follows the initially estimated β. The distributions show the 

combination of the parameters gives confidence that the optimised η and β 

parameters are close to the initially estimated η and β parameters indicating the 

components being investigated are from the same batch. The GOT approach 

might not select the most low and minimal values for the optimised parameters. 

The approach selects two numbers from the matrix and returns four parameters, 

which can be attributed to selection bias for the output. Numerical data of 

independent variables have been collected and applied in the framework. The 

numeric data should be presented in the format described in chapter 6 for better 
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accessibility and performance. Introducing text or ordinal data of categorical 

variable might become an implementation challenge. Uncleaned data can pose 

quality issues relating to the results and distortion in the framework. 

While studies in literature mentioned remaining useful life methods highlighted in 

chapter 2, the remaining useful life reflects the Weibull principles applied in this 

framework to deal with reliability issues. The shape shows that the higher the 

operational use of the components, the less the life remaining and vice versa. 

The distribution clearly depicts the Weibull distribution because the β parameters 

affects and drives shape of the graph. The β parameter shows the components 

are designed and manufactured to the specification and experience failure modes 

such as low cycle fatigue and corrosion. 

The modelling of component degradation and replacement present probability 

prediction of nth components failing at the next service. The results show the 

performance of the failure data in the Weibull model and demonstrate the effect 

of the β parameter. The effect signifies the components had undergone low cycle 

fatigue, corrosion and erosion; an early lifetime is probable at the beginning to 

ageing effect on the components with less overhaul, production and misassembly 

problems are suspected. The β parameter indicates that there is the absence of 

foreign object damage, human errors in maintenance of the components in the 

assembly. 

A through-life performance prediction model has been developed to assess 

component reliability. The recursive and iterative process has been applied at the 

state transition to assess the component failure rate, rejected components, 

replacement of the failed components and reuse of the remaining components. 

The through-life performance prediction model would allow optimisation for RUL 

prediction and minimising of the replacement costs. The input and output 

parameters were used to demonstrate the prognostics modelling of a through-life 

performance behaviour of an engine's mechanical component assembly. The 

research can be used to gain a deeper understanding of how an assembly of a 

complex system will operate in the real-world through the life cycle. 
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The through-life model with six overhaul states was increase from an initial four 

due to the nature of data available. If the available data contain seventh overhaul 

state, then the model would require an adjustment, however, the model is 

designed to handle data below six overhaul states. Only the 2-Parameter Weibull 

function is used due to the reliability problem and no utilisation of a mixture of 

numeric and text data. The model does not support categorical variable in the 

statistical predictions. The outputs are numerical data of dependent variables. 

The overhaul states assess the through-life performance of the component 

assembly. The spreadsheet model visually illustrates the view of the exact 

parameters and values for the input and output. The cost analysis conducted 

determines when to scrap the entire component in an assembly and replace with 

new parts. In relation to cost and benefit to organisation shows that at 63.2% 

(probability of failure) is the threshold at which the entire replacement is expected 

to happen. The outcome shows that it is economically viable to replace all 

components with new components to ensure reliability, reduce downtime and 

whole lifecycle cost. However, result of repair analysis show increase in whole 

lifecycle cost, expensive to maintain and high maintenance schedule with respect 

to reduced component cost. 

In assessing the performance and complexity of the algorithm for the framework, 

the “Big O notation” was considered. The outcome shows that the speed of 

processing is less than 30 seconds to return the results in each scenario. The 

outcome is consistent if the process is repeated with the same data. The outcome 

is inconsistent if the process is repeated with same data and inclusion of Monte 

Carlo method. The Monte Carlo method can be applied to assess the sensitivity 

to simulate the effect of the failure rate. 

9.1.6 Case study scenarios 

In chapter 7, the results of the initial data for developing the framework and three 

scenarios of the case study were presented. Run-to-failure and time-to-failure 

data were used in developing the framework. The first scenario relates to gas 

turbine NGVs assembly. The results from the framework were compared based 
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on the outcome from the LSM and the MLE statistical techniques. The MLE gave 

a low β parameter; LSM produced a high β parameter. Where the failure rate 

equals 1, this leads to a random failure from a maintenance perspective. The 

Weibull β parameter, which is an indicator of the distribution in the data – the 

larger the β parameter, the smaller the number of degraded components. The 

outcomes from the prognostics modelling application show the LSM had a high 

number of rejections compare to MLE as a result of the β parameter. In literature, 

the method for estimating parameters in line with best practice has been LSM. 

The procedures have been presented, researchers and experts alike can apply 

various data depending on their expected outcomes.  

The second scenario of the case study incorporates repaired components into 

the through-life performance model. This analysis follows the renewal theory from 

the probabilistic point of view, the renewals are considered component rejections 

and replacement. The remaining useful life becomes the function of the 

proportion of the probability of survival and the time. The introduction of repair 

NGVs in the Weibull through-life performance prediction model supports 

performance assessment of the population. The performance of the repaired 

population is examined in order to predict the remaining useful life as a 

contribution in this research. The comparison of the new and repaired 

replacement shows a difference in the sixth overhaul state with higher quantity of 

rejections (see Section 7.2). The high number of rejections resulted from the 

introduction of the repaired components. 

The third scenario of the case study uses failure data collected from a steam 

turbine which system operating condition is affected by very high temperature. 

The data are η and β parameters, which is the shape factor and characteristic life 

of a four-stage turbine (see Section 7.3). The observed rejection data were similar 

to those used in the first scenario of the case study (see chapter 7) due to the 

format and pattern. However, the data were further translated to months from 

hours. The framework was adopted for the steam turbine application after the 

data conversion (see Section 7.3). There were no data quality issues during the 

introduction of the data to the model. The study illustrates the developed 
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framework delivers accurate and robust results when applied to various similar 

applications. Furthermore, time and access to data have had influence on this 

research.  

9.1.7 Verification and Validation 

In chapter 8, the WTPPM was applied to the three scenarios. The validation was 

conducted to determine the statistical model responded as expected regarding 

the number of component rejections, probability of failure and remaining useful 

life. The research proves the framework works across the three scenarios and 

produces realistic RUL results as an approximation for the individual component 

of an assembly. The verification signifies that the WTPPM performed 

appropriately as expected by subject matter experts. The questionnaire required 

domain experts and academics as well as research fellows to compare the 

behaviour of the WTPPM according to their experiences and rank their responses 

on a scale of (1: illogical; 2-5: major deficiencies; 6-9: minor deficiencies; 10: 

logical) and (1: very incomprehensible; 2-5: major deficiencies; 6-9: minor 

deficiencies; 10: very comprehensible). The validation in chapter 8 examines the 

usability, logic, quality and overall the consistency of the WTPPM in the 

application in chapter 7.  

The validity of the through-life performance approach for the second and third 

scenarios shows reasonable consistency as indicated in chapter 7, Sections 7.2 

and 7.3. The WTPPM shows some confidence when optimising for realistic 

solutions because the same results are achieved when rerun with the same data. 

The validation of the results was performed in relation with the visualisation of the 

proportion of the probability of failure and remaining useful life of the components 

in an assembly. A visual comparison of the results show the approach applied 

conforms to renewal of pristine and repaired components operating in the same 

environmental conditions. The approach would require constant visual inspection 

and maintenance. The results achieved from the algorithm provided an 

acceptable prediction. The application of the algorithms on the through-life 

performance and reliability problems validate the competence of dealing with the 
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replacement of repaired components of single stage turbine. The assessors 

certified that the WTPPM is consistent with the through-life process domain. The 

proposed WTPPM is an approach to remaining useful life prediction of multi-

component assembly based on only assembly level data. The outcomes from the 

validation and verification indicate that the framework is generic and has a wide 

applicability for only multi-component system. 

9.1.8 Implementation issues 

Putting the software tool derived from the developed framework to use analyses 

component degradation and remaining useful life prediction. The implementation 

of the application should be installed in a computer system with the following 

configuration: 

i. Microsoft Windows operating system – Windows 7 Professional and 

Windows 10. 

ii. Microsoft Office 2010 and higher (Excel) 

iii. Hard disk size 120GB 

iv. Memory 4GB 

The installed application on the computer system is a combination of input, 

processing and output to perform specific tasks. The input section is an interface 

where extracted and clean datasets are introduced following specific format. The 

format accepts only continuous and independent variables data. The data set is 

a combination of multiple engines, multiple overhauls states and number of 

observed components, which have degraded at each overhaul states. The output 

section presents components degradation, probability of failure and remaining 

useful life prediction. While the component degradation outputs number of 

components expected to degrade at a point in time, the probability of failure 

shows the failure rate of the multiple components in the assembly relating to their 

remaining useful life in the framework. The study conducted supports experts in 

delivering state-of-the-art approach for statistical analysis of large data sets for 

decision making to feedback to designers and manufacturers on the status of the 

components. The findings support investigative and forensic analysis to unveil 
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the root cause of the expected component degradation. The outcome of the 

findings can be applied to improve future new product development. The new 

product development, therefore, are tested to further investigate and identify 

issues which may likely arise when the components are put in service. Based on 

the analysis, the components should be able to withstand long hours of operation. 

The results of this research can provide feedback to designers and manufacturers 

by identifying the expected component degraded for further root cause analysis, 

determining the region in the distribution where the performance loss of the 

components is at 63.2%, the appearance of the observed components on the 

distribution and the Weibull distribution, which shows the remaining useful life of 

the proportion of the components through the different renewals. The research 

provides some benefits already highlighted, but, there are implementation issues 

that should be considered. These implementation issues include culture change, 

management and technical. These issues are probably likely to impact the 

successful implementation of the developed framework. 

In the implementation, significant training resource would be required to use the 

tool. It would be useful to engage end users as stakeholders in the development 

stage to establish acceptance from onset. It is important to ensure user 

requirements and interface issues are captured, agreed and reflected in the 

model design strategy. The development, implementation, data gathering and 

training overhead costs should be considered. Change culture should be 

emphasised during validation and testing, so that, end users can react in a 

positive manner whilst using the tool. 

9.2 Research contributions and limitations 

9.2.1 Research contributions 

This research provides an understanding of modelling through-life performance 

assessment, thereby estimating the rejections of component in an assembly 

using a framework. The research has produced a component assembly 

prediction system which could facilitate proactive maintenance decision making 
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and insights creation for gaining understanding that would inform domain experts. 

The research provides experts with forensic capability and serves as an enabler 

to similar future areas of focus.  

The contributions are as follows: - 

i. Identification of the specific types of data required for the remaining 

useful life prediction of a component within an assembly 

ii. Development of a timeline visualisation approach to analyse multiple 

maintenance cycles thereby summarising the various events and 

displaying multiple events on a stack representation for relevant 

information. The timeline visualisation approach contains an embedded 

conceptual-logic relating to database design with association ensuring 

data normalisation 

iii. Applied a renewal theory knowledge to the Weibull cumulative 

distribution function for estimating the failure rate for R-Cube 

assessment of through-life performance of components. It enhances 

prediction accuracy and robustness 

iv. Developed a framework for through-life performance assessment of 

components by applying a data-driven prognostic approach in 

predictive maintenance for predicting the remaining useful life 

v. Applied the framework for through-life performance prediction in 

predictive maintenance to assess the through-life performance of 

components in Through-life Engineering Services, where failure data at 

the assembly level are available, but unavailable at the individual 

component level 

9.2.2 Research limitations 

The research limitations presented relates to the methodology adopted and the 

findings. The applied qualitative research, case study and interviews relate to the 

research limitations of the methodology. The limitations regarding the findings are 

described based on the research context.  

i. The application of qualitative technique can affect reproducibility of 
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results.  

ii. The findings in the study from the industry practice cannot be shared with 

a wider community unlike quantitative analysis. 

iii. The Weibull method used as the underlying distribution of the analysis is 

unsuitable where failure data are unavailable – Weibull is selected due to 

its popularity in addressing mechanical component failure analysis. 

iv. Where there are unknown cycles for components, the Weibull method 

become inappropriate 

v. The framework, the Weibull reliability function and categorical variable 

data have impact on the results of the analysis 

vi. The framework does not accept datasets with more than six overhauls 

states. The number of time the zoom-in is rendered to optimise for the 

best Weibull parameters is applied could further be extended if the matrix 

enumeration occupied a wider area. 

vii. The framework would not support data format other than the specified 

format in the input section 

viii. The framework is unsuitable for calculating component degradation and 

remaining useful life of one individual item. 

Furthermore, the framework developed for the aerospace sector (aero engine 

assemblies) can apply to non-aerospace domain. The Engineering systems 

identified during the validation stage can utilise the framework, however, certain 

changes to the parameters are eminent and must relate to degradation and 

reliability. The named domain use of duration or time are used instead of flight 

cycles. 

9.3 Fulfilling research aim and objectives 

In general, this research has satisfied the aim and objectives outlined in chapter 

1.  

i. The first objective focuses on performing critical analysis and review of 

literature in relation to prediction methodology. The analysis of historical 

data and current health degradation information are classified into the 
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predominant failure mechanism. The critical review performed identified 

the research gaps, classifying existing methods, techniques, 

methodologies and selecting the data-driven approach for this research. 

ii. The second objective relates to the investigation of the current (AS-IS) 

practice to understand the level and nature of degradation available on the 

aero component. This objective identified the specific format for presenting 

the data for input and numerical data of independent and dependent 

variables for continuous data. 

iii. The third objective gives insight into the design of the model for through-

life performance of component degradation based on the analysis of 

maintenance cycles of historical events on multiple engines and multiple 

overhaul states. This objective was achieved by designing a novel 

framework for the entire research showing how collected data from 

multiple sources are applied and analysed for degradation analysis. The 

analysis also considers multiple engines and overhauls using timeline 

visualisation and conceptual database design approaches. The outcomes 

met the expected requirements. 

iv. The fourth objective aims to develop a framework to assess through-life 

performance assumptions taken at the design stage, thereby predicting 

the remaining useful life of the mechanical components in an assembly. 

The process involves using a data-driven approach in estimating 

parameters of the historical datasets, prognostics modelling application of 

through-life performance prediction, performance metric to calculate the 

error values to back-fit the initial estimated parameters. The Weibull 

distribution is used to determine the probability of failure of a component 

and further predicts the remaining useful life of a component in an 

assembly. This objective was achieved by assessing through-life 

performance, where at the design stage, the data introduced to the 

framework is used to determine the behaviour of the component 

performance to evaluate the nature and strength of the component under 
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stated conditions. The developed framework provides significance 

outcome from modelling of multi-component. 

v. The fifth objective is validating the developed framework using expert 

judgement and industry case study scenarios. The results of the 

framework were analysed from the perspective of the observed data and 

identifying the types of data required. The outcomes from the parameter 

estimation methods were presented in chapter 6 for the single, repair 

application and multiple stages scenarios. The validation and verification 

as well as the case study results shows consistent value and the 

distribution depicts several renewals as confirmed by experts during the 

validation stage. 

9.4 Recommendations for future research  

The WTPPM predictive modelling approach is designed for predictive 

maintenance strategy to address conventional maintenance issues. The 

predictive maintenance strategy uses a data-driven prognostic approach. The 

predictive modelling approach incorporates the statistical technique and the 

reliability Weibull method for further analysis and decision making. The WTPPM 

consists of six overhaul states to demonstrate through-life performance 

procedures. The overhaul states can be increased depending on the available 

historical data of the engine overhauls (initially the state were four, then five and 

increased to six). The WTPPM focuses on a single stage component assembly. 

The process of renewal is continuous until a policymaker decides to end the 

process based on cost. The logic in stopping the renewal process relates to the 

engine health maintenance and cost of replacing the components and threshold 

based on 63.2% of the average design life of the assembly. 

This research is a useful calibration for future research focusing on: - 

i. Incorporating multiple repaired components in the assembly and 

extending the through-life performance prediction model to accommodate 

more overhaul states  
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ii. Applying and comparing other relevant statistical models in assessing 

through-life performance considering the input data format 

iii. Data indicating a variety of life of the gas turbine components should be 

considered to examine the behaviour of the engine using the developed 

model  

iv. The developed model can serve as a trigger for further investigation into a 

trade-off between maintenance and availability of asset management 

v. The advent of Internet of Things (IoT), massive data would be available 

and the data could be analysed using advanced technologies. These 

technologies can interact with sensors, online and databases of structured 

and unstructured data from disparate sources for meaningful insights. The 

flow of data can allow manufacturers to identify problems as fast as they 

happen with the availability of streamed sensor data from equipment at a 

low cost. The results from the analysed data can help to proffer repair of 

equipment proactively with guided maintenance. 

This data-driven predictive strategy can keep equipment running with less risk of 

incidents and reduces maintenance costs.  

9.5 Conclusions  

In this Thesis, the aim and objectives outlined in chapter 3 have been achieved. 

The through-life performance prediction framework for the assessment of 

component degradation in an assembly and calculating R-Cube, scrapping of 

component in an assembly based on a cost estimate of the components and 

predict remaining useful life has been developed. The research focuses on a 

single stage component assembly in a three shaft spool gas turbine, adding 

repaired components population to the model and assessment of a four-stage 

steam turbine engine. 

This Thesis presented a review of the prognostics methodologies, techniques 

and methods applicable to predictive maintenance strategy. The strategy 

supports reliability, availability, maintainability and safety of Industrial Product-

Service System relating to TES. The research gaps were identified during the 
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current industry practice assessment and literature review, which led to the study 

of this research. The analysis in the current practice shows that the start and stop 

(time to failure) times were not applicable to the generation of the master index 

representation. The run-to-failure data were considered and are represented in 

the component degradation representation. In the through-life performance 

prediction model, the time-to-failure and run-to-failure data are crucial for the 

framework development.  

In designing the framework, data quality relating to data management strategy is 

considered to handle data and to ensure the data is assessed, noise-free and 

cleansed. Data management strategy leverages and manages the data for 

strategic advantage for data quality to enhance reproducibility of the results and 

repeatability of the analysis of a research. It improves maintainability of the data 

to avoid inconsistency such as noise and to ensure better performance of results. 

The improvement on the data can enhance prediction results. Results from 

different assemblies can be combined and compared to ascertain the 

performance of the components and engines with regards to the operating 

environment and for further investigative purposes. 

Within the framework, the procedures showed connected associations of relevant 

input to the processing and resulting output. The approach described each 

segment of the framework following the standard norm “input-process-output”. A 

data-driven approach uses LSM and MLE statistical techniques to estimate the 

two parameters of the Weibull distribution from the historical data. The renewal 

theory relates to the replacement for the rejections and the components to be 

reused. The process is iterative and recursive because of the re-application of 

the same equation at each population section for every overhaul state. The 

comparison of the predicted values and the observed values are calculated using 

mean absolute error equation. The scrapping of the components within an 

assembly is calculated if the cost of components at any one overhaul state is 

higher than the average cost of replacing the entire component assembly. The 

Weibull function is applied to produce probability of failure distribution. The 

probability of failure is converted to remaining useful life prediction. The 
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representation of the remaining useful life as a Weibull distribution is based on 

components renewals. 

The results from the WTTPM showed different rejections at each overhaul based 

on the MLE and LSM estimation techniques with same historical data. The overall 

total numbers of rejections on all six overhaul states were different. The η and β 

parameters played a significant role in the outcome of the predictive model. The 

predictive model can be used to forecast the R-Cube and determine the next 

planned visit of a system to an MRO shop floor. 

In industry, the entire NGV components in the assembly of a single stage turbine 

can be scrapped and replaced with either new or repaired components. The 

predictive model shows a typical operation of the engine for predictive 

maintenance from an industry perspective. However, in academia, there is a need 

to observe or monitor the behaviour of a mixture of both repaired and new 

components. It is obvious from the results that this complexity in the system can 

lead to a less efficient system operation when compared with only new 

replacement. The replacement intervals can increase, increase in system 

maintenance and increase in whole lifecycle costs. An assumption stipulates that 

the components renewals with new components follows the TPM phase in the 

WTPPM. The renewal of components in the assembly with repaired components 

follows the same pattern but the outcome varies. 

The through-life predictive model describes the number of components expected 

to degrade at each inspection time and the cumulative failure distribution. The 

through-life predictive model compares the behaviour of the through-life 

performance of components in the assembly. The through-life performance 

approach can help researchers and practitioners make informed choices of when 

to replace the entire components in the assembly instead of continually replacing 

components expected to fail at each overhaul inspection state. The framework 

applies to different applications such as railway, oil and gas, industrial machinery 

and marine because they contain concurrently working components. The 

modelling application depicts the way a real-world system could operate in its life 
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cycle. The human operating factor in terms of the technique used and the 

maintenance strategy might impact on the machine. The framework uses a 

discrete model application technique to help understand how a component in an 

assembly degrades over time. This research in its own right has a scope of 

remaining useful life of multi-component of an assembly by using only assembly 

level data, which describes the reason for scrap at each overhaul state.   
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 RUL techniques from Literature Review 

This appendix present the techniques for remaining useful life prediction 

extracted from reviewing literature. Samples of the analysis is described in this 

appendix. 

Machine remaining useful life prediction: An integrated adaptive neuro-

fuzzy and high-order particle filtering approach - (Chen, Vachtsevanos and 

Orchard, 2012). 

Input Techniques Output 

Time in 
seconds, 
prediction step, 
number of 
previous time 
steps, one-
step-ahead 
prediction, 
Threshold 
value. 

Nonlinear 
function is 
ANFIS 
predictor 

Number of 
variable  

Multiple 
samples used. 

Combined techniques: Bayesian, 
estimate, high order hidden Markov 
model, posterior pdf, ANFIS predictor 
(recursive method, least square 
method, gradient descent method, 
Fuzzy Sugeno model) with process 
noise as fault growth model and High-
order particle filtering 

Comparative study:  

Pre-analysis techniques: Bayesian, 
estimate, high order hidden Markov 
model, posterior pdf,  

Final prediction techniques: ANFIS 
integration with High-order particle 
filtering 

RUL of a gear 
plate 
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Total fatigue life prediction for Ti-alloys airframe structure based on 

durability and damage-tolerant design concept - (Zhang, Cheng and Li, 

2010). 

Input Techniques Output 

Effective mass 
intensity factor, 

Number of 
cycles, Stress 
ratio.  Long 
crack growth in 
mm, short 
crack growth, 
and crack 
initiation in 
mm. material 
constant 

Actual Cyclic 
number , 
constant 
amplitude 
cyclic number, 
k total number 
of discrete 
amplitude 
number 

 

S-N curve method 

Damage tolerance  

Miner’s rule predicts crack initiation life 

Plasticity induced crack closure model 
is used to predict short crack growth 

Combined techniques: long crack 
growth is presented first and  

Comparative study: crack initiation life, 
short crack growth and long crack 
growth based on constant and variable 
amplitude loading  

Pre-analysis techniques:  

Final prediction techniques:  

RUL of Titanium 
alloy airframe 

Unit in Cycles 
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Remaining Useful Life Prognosis of Bearing based on Gauss Process 

Regression - (Hong and Zhou, 2012). 

 Input Techniques Output 

Temp. Vibration 
Signal in kHz  

Sound  

Emission Signal 

Days (Time) 

Load in pound 

Rotation speed 
in RPM 

Inputs generated 
from degradation 
bearing data in 
run-to-failure  

4 hours of data 

1 data point = 20 
m 

Vibration data 
collected every 
20 Mins 

Data length 
20,480 points 

Combined techniques:  

Bayesian Machine Learning method 

is a Gaussian Process Regression 

for bearing Features tracking 

Functions: Covariance functions for 

bearing feature tracking are Squared 

Exponential, Matern covariance 

when trend of data is smooth and 

monotonic. Neural Network (NN) has 

good performance when data 

changes dramatically  

Kurtosis and RMS – Root Mean 

Square used to detect fault 

Comparative study:  

Pre-analysis techniques: 

Final prediction techniques: 

Kurtosis and RMS 

 

RUL of Bearing  

Measurement 

point in Mins 

Kurtosis 

RMS 
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Methodology and Framework for Predicting Helicopter Rolling Element 

Bearing Failure - (Siegel, Ly and Lee, 2012) 

Input Techniques Output 

Vibration, load 
in pound, 
acoustic 
emission 
signal, number 
of samples in 
Hz, weight, 
residual value, 
number of 
instance, Time 
in minutes 

Kurtosis and 
RMS 
Functions 

 

Combined techniques: Bayesian 
filtering techniques, usage based 
methods, times series prediction 
methods, Paris Law 

Signal Processing technique: 
Wavelet decomposition, Spectral 
Kurtosis, RMS, Time Synchronize 
Average 

Feature selection method: Expert 
selection, filter methods, Wrapper 
methods 

Health Assessment Method: 
Weighted sum of features, Distance 
from normal, Regression, Neural 
Network. 

Anomaly Detection Method:  Health 
Based threshold, One-class classifiers, 
Bayesian Filtering Approach  

Comparative study:  

Pre-analysis techniques: 

Final prediction techniques: 
Regression-based methods, Similarity-
based Prediction, Bayesian Filtering 
Approach 

RUL of Oil Cooler 
Bearings 

Can also be used 
for Shafts and 
gears  

 

RMS in g, Sample 
in Hz Load in lb, 
Envelope in g 

 

RUL in Minutes 
and Time in 
Minutes  
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Predicting the total fatigue life in metals -(Makkonen, 2009). 

Input Techniques Output 

Sample size, 
length depth, 
surface area, 
diameter, 

Lowest stress 
range in MPa, 
endurance limit 
in mm, stress 
amplitude in 
MPa, shape 
parameter, 
scale 
parameter,  

Sample test 50 

100 crack per 
mm2 

 

 

Real data type 

Paris’s law, SN Curve 

The distribution of maximum and 
minimum in a sample – nth order  

The generalised extreme value 
distribution - GEV 

Linear elastic fracture mechanics 

Crack initiation and stable crack growth 

Combined techniques: The 
distribution of maximum and minimum in 
a sample – nth order (cumulative 
distribution function for maximum value 
and probability density function for 
minimum value)  

Paris’s law and Crack initiation and 
stable crack growth 

Comparative study: The distribution of 
maximum and minimum in a sample – 
nth order 

The generalised extreme value 
distribution - GEV 

Pre-analysis techniques:  

Final prediction techniques: Paris’s 
law and stable crack growth 

RUL of a steel 
(metal) 

Probability 

Initiate Life  

Stress Cycle in 
MPa 

Fatigue crack 
initiation N 

Initial Life, 
Probability 
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Implication of Power “Power by the Hour” on Turbine Blade Lifing - (Bagnall, 

Shaw and Mason-Flucke, 2000). 

Input Techniques Output 

Damage 
incurred 

Temperature, 
stress  

material 

Creep damage: 

Low Cycles 
fatigue: 

Oxidation: 

 

Turbine Blade Lifing Methodology  

Database Lifing algorithm 

Weibull Statistical Estimate 

2D and 3D model 

Robinson rule to sum individual rating 
times 

Miner’s rule for total life at each point 

Combined techniques:  

Comparative study:  

Pre-analysis techniques:  

Final prediction techniques 

RUL of a 
specimen and 
blades 
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Prognosis of Remaining Bearing Life using Neural Networks -(Shao and 

Nezu, 2000). 

Input Techniques Output 

Sampling 
period, bearing 
condition set, 
warning limit  

Temperature, 
stress, 
stiffness. 

Measured 
vibration 
amplitude, 
frequency, the 
bearing load 
Kgf, unknown 
function, 
weights, 
rotating speed 
r/min 

Number of 
Output neurons 

 

Training 
samples 25 – 
80 patterns 

 

Neural network computation 

Progression based prediction model 

Statistical regression model - Linear, 
polynomial, exponential and compound 
models 

Moving-window method for building the 
prediction model 

Auto-Regression integrated moving 
average models are a method for time 
series approach to forecasting. 

Combined techniques: linear model, 
polynomial model, exponential model 
and compound model. Multi-layer 
network, back propagation and forward 
propagation 

Comparative study: Auto-Regression 
model and compound model of neural 
networks.  Compound model of Neural 
network and root mean square condition 
variables to forecast. 

Pre-analysis techniques: 
reoccurrence trace method used to 
remove disturbance and to improve the 
prediction accuracy 

Final prediction techniques: 3 layer 
network – back propagation (input lay, 
hidden layer and output layer 

Remaining Life of 
bearing 

 

 

Time in hours 
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Use of Paris Law for Prediction of Component Remaining Life - (Bechhoefer, 

Bernhard and He, 2008) 

Input Techniques Output 

Range of strain 
Material, 
Constant, 

Rate of change 
of the half 
crack length, 

Gross strain, 
geometric 
correction 
factor, 
exponent of 
crack growth 
equation, 
number of 
cycles. 

Vibration in 
inches per 
second 

Vector of CI, 
covariance 
critical value. 

Real data type 

 

Combined techniques:  

Paris Law, range of Strain, Kalman 
Filter-Kinetic model which a filter gain is 
set based on measurement and system 
variance. 

Nakagami probability distribution – 
multi dimensional hypothesis testing 

State Propagation, Predicted 
Covariance, Kalman gain, State 
Covariance, State Update and 
Jacobian equation 

Comparative study:  

Pre-analysis techniques: Nakagami 
probability distribution, Range of Strain, 
Kalman Filter-Kinetic 

Final prediction techniques: Paris 
Law 

RUL of Rotor 
Aircraft Bearing, 
shaft 

 

Flight hours 

Flight hour 
Remaining 

Health Index, half 
crack length in 
mm, cycles N in 
Millions, Cycles 
Remaining, 
Estimated D 
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Estimation of the Remaining Useful Life by using Wavelet Packet 

Decomposition and HMMs - (Tobon-Mejia et al., 2011) 

Input Techniques Output 

Number of 
states of 
model, number 
of distinct 
observations in 
each state, The 
state transition 
probability 
distribution 

The 
observation 
probability 
distribution, 

The initial state 
distribution 

Mean, 
standard 
deviation, 
mixture 
coefficient, 
mixture matrix, 
observation 
matrix, mixture 
in the state, log 
concave, 
mixture 
component in 
state, mean 
vector, time in 
hours, mins, 
and frequency 
in kHz 
observation 
vector.  

Data type: real, 
double 

Combined techniques: Wavelet 
Packet Decomposition, MoG-HMM. 

Comparative study: Wavelet Packet 
Decomposition and MoG-HMM 

Pre-analysis techniques: 

Wavelet Packet Decomposition extracts 
features of processed raw data 

MoG-HMM provide a flexible way of 
time frequency representation and 
filtering of a signal by allowing variable 
sized windows and different detail 
levels 

Parameters for each MoG-HMM are 
learned by using Baum-Welch 
Algorithm 

Viterbi algorithm is used to learn 
temporal parameters and for decoding 
final state 

Final prediction techniques: Wavelet 
Packet Decomposition  and MoG-HMM 

RUL of Bearings 

Time in minute, 

Error in % 

Failure in minutes 
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 Methods grouped based on types of data 

This appendix presents the methods for remaining useful life prediction 

Types of data include; 

i. Numerical data are quantitative – Discrete: can be counted fixed 

and finite or Continuous: measurement cannot be counted are 

described using interval and on the real numbers 

ii. Categorical data – qualitative yes/no, true or false 

iii. Ordinal data – mixture of categorical and numerical data.  For 

example: "Is the noise in the system poor, reasonable, good, or 

excellent?" responses may be represented as 1st, 2nd, 3rd, and 4th. 

Methods Numerical Data Categorical 
Data 

Ordinal 
Data 

 Discrete  Continuous   

Paris Law with Weibull 
distribution 

● ● ●  

Adaptive Neuro-Fuzzy 
Inference System ANFIS 

● ● ● ● 

Neural Network ● ●   

Auto Regressive Moving 
Average (ARMA) 

● ●   

Miner’s Linear Accumulative 
Damage model 

●    

Linear Elastic Fracture 
Mechanics 

●    

Plasticity-Induced crack-
closure model 

●    

Bayesian – Gaussian Process 
Regression 

● ●   

Regression based model ● ●   

Similarity-based prediction ● ●   

Bayesian Filtering Approach ● ●   

Wavelet Packet 
Decomposition 

● ●   

Mixture of Gaussian Hidden 
Markov Model 

● ●   

Paris Law ●    

Kalman Filter ●    

RVM Regression model ●    

Monte Carlo ●    

Inverse FORM ●    
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 Grouped approaches, techniques and 

methods for input data 
 
This appendix presents approaches, techniques and methods for input data 

Model-based: Basic science, physics and equation already established, and 

experiments 

Hybrid-based: A combination of different methods. 

Knowledge-based: Collection of information from subject matter experts and 

existing databases. Examples include expert systems, Fuzzy and experience. 

Data-Driven-based:  Understanding the system based on data available to apply 

techniques such as neural network and regression  

Approach Small Data Input Large Data Input 

Data-driven based Paris Law with 
Weibull distribution 

Auto Regressive 
Moving Average 
(ARMA) 

Dynamic Bayesian 
Network 

Inverse FORM (First 
Order Reliability 
Method) 

Bayesian Filtering 
Approach 

Bayesian – Gaussian 
Process Regression 

Adaptive Neuro-Fuzzy Inference 
System ANFIS 

Neural network 

Paris Law  

Regression based model 

Similarity-based prediction 

Wavelet Packet Decomposition 

Mixture of Gaussian Hidden 
Markov Model 

Particle filter approach with 
Bayesian updating 

RVM Regression model 

Model based Miner’s Linear 
Accumulative 
Damage model 

Linear Elastic 
Fracture Mechanics 

Plasticity-Induced 
crack-closure model 

Kalman Filter-Kinetic 
Model 

Paris Law 

Multi component equilibrium 
algorithm 

High-Schmidt number Brownian 
diffusion 

The distribution of maximum and 
minimum in a sample 

 

Knowledge based  Adaptive Neuro-Fuzzy Inference 
System ANFIS 

Hybrid based A combination of the model+data-driven; knowledge+data-
drive; model+knowledge; mode+knowledge+data-driven 
methodology 
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 Current Practice Historical Data 

This appendix describes the data analysed in the current practice for identification 

and retrieval of keywords for taxonomy in ontology. 

Current state of the deterioration process dataset “AS-IS” 

 

Updated state of the deterioration process datasets “AS-IS” 
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Future State of the deterioration process datasets “TO-BE” 
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 Degradation mechanism taxonomy 

This appendix presents predominant degradation mechanisms and their 

classification as captured during current practice investigation 

 

 

 

 

 

 

  

Deformation 
Deformed 

bent 

bowed 

buckled 

curled 

kinked 

bulged 

collapsed 

compressed 
elongated 

extruded 

flattened 

punctured 

shrunk 

twisted 

burred 
chipped 

dented 

depressed 

dimpled 

Nicked 

Gouged 

Scratched 
 
  
 

Wear 
Worn 

abraded 

Brinelled 

Chafed 

Eroded 

Frayed 

Fretted 

Galled 

Rubbed 

Burnished 

Lapped 

Pick up 

Pitted 

Scuffed 

Seized 

Plucked 

Spalled 

Peeled 
Flakes 
Lumps 
Chip like 
particle 
Fine 
particles 
Heavy 
tearing 
Scratches  
Plow 
Cut 
Fragment 

  

Fracture 
Cracked 

Ruptured 

Cut 

Disintegrated 

Broken 

Dislocated 

Split 

 

 

Corrosion 
blistered 

galvanic corrosion 

oxidised 

pitted - corrosion 

stress corrosion 

rusted 

sulphidated 
Flaked 
Uniform - corrosion 
Fraying  
Crevice  
Filiform 
Intergranular  
Exfoliation  
Corrosion fatigue 
Fretting corrosion 
Erosion 
Dealloy 
Hydrogen 
Concrete corrosion 
Microbial Corrosion 
Pitting-concentration cell 

 

Degradation Mechanism 
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Causes of the predominant deterioration – failure modes taxonomy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Deformation 
Creep 
Stretching 
Debris 
Foreign Object 
damage 
Hit 
Dead load 
Thin Cross 
section 
Stretching 

Wear 
Dust  
Dirt 
Lubricant 
High friction 
Vibration 
Misalignment 
Interference fit 
Direct contact  
Plastic 
deformation 
Material transfer 
Surface 
roughness 
Cyclic Loading 
Particle impact 

Fracture 

Overload 

Excessive 
manoeuvres 

Over speed 

Fatigue 

Over pressure 

Cyclic load 

Stretching 

Creep 
 

 

Corrosion 
Salt water or air 
Surface 
roughness 
Contaminants 
Fluid 
Fire 
Humidity 
Diffusion 
Moisture leakage 
Over heat 
Temperature 
Welding 
Adhesion 
Deposit of dirt 
Stationary fluid 
Quick motion 
Fast fluid flow 
Overpressure 
Gas bubbles 
Lubricant 

Deterioration Causes 
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 Master Index Representation 

This appendix presents the framework for analysing the textual data during the 

current practice to develop master index representation 
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The relationship of components, features and deterioration mechanisms 
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Pareto of the relationship of components, features and deterioration mechanisms 
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 Brainstorming Questionnaire  

This appendix presents the questionnaire for conducting the workshop to gather 

relevant requirements. Sample questionnaires with responses from participants 

are presented. 

Participant: 

Job Role: 

Experience: 

Please write out the event(s) for each category of levels in the table below.  

Level  Description Different events 

1 Events that determine 

the availability of the 

product for customer 

service  

E.g. Service Disruption, delivery, engine 

overhaul 

 

 

2 Non-standard or 

infrequent events with 

the potential to modify 

the products 

availability or 

functionality 

E.g. Borescope, inspection, oil change, 

 

 

 

3 Standard daily or 

weekly activities that 

maintain health status 

E.g. Engine health monitoring data 
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 Data dictionary 

This appendix presented the data dictionary for the timeline visualisation of the 

engine events. 

 

 

  

 Engine  

P/F Field Name Caption Data type 

Field 

Size Notes 

P 
EngineNo 

Engine 

Number Varchar 10  

 Model Model Varchar 20  

 
Name 

Name of 

Engine Text 20  

      

 Activity   

P ActivityID  Autonumber   

 StartDate Start Date Datetime 20  

 EndDate End Date Datetime 20  

F EngineNo 

Engine 

Number Varchar 20  

F EventType Type of Event Text 30  

 City City Text 30  

 Country Country Text 30  

 Comment Comment Text 30  

      

 Events   

P EventType Type of Events Text 30  

 
Description 

Event 

Description Text 30  

F LevelID Level ID Integer 2  

F colourcode Colour Code Varchar 10  

F groupEvent Group Event Text 30  

 
 

    

 Group   

P groupEvent Event Group Text 30  

 Description 

Event 

Description Text 30  

colourcode Colour Code 
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 Model Class Diagram  

This appendix presents the class diagram for the through-life performance 
prediction model 

 

+Display()

+EngineNo : string

+QtyScrapped : int

+QtyAtStart : int

Engine

+input()

+TimeSinceNew : int

+CyclesSinceNew : int

Overhaul

+input()

+CyclesSinceNew : int

ParameterEstimation

+Display()

+Eta : Single

+Beta : Single

ResultParameterEstimation

+input()

+Overhaul 1 : int

+Overhaul 2 : int

+Overhaul 3 : int

+Overhaul 4 : int

+Overhaul 5 : int

+Overhaul 6 : int

ModellingSimulation

+Display()

+Overhaul 1 PValues : int

+Overhaul 2 PValues : int

+Overhaul 3 PValues : int

+Overhaul 4 PValues : int

+Overhaul 5 PValues : int

+Overhaul 6 PValues : int

PredictedValues

+Display()

+Overhaul 1 ObValues : int

+Overhaul 2 ObValues : int

+Overhaul 3 ObValues : int

+Overhaul 4 ObValues : int

+Overhaul 5 ObValues : int

+Overhaul 6 ObValues : int

ObservedValues

+input()

+ThresholdCost : Single

+ComponentCost : Single

+OverallCost : Single

Cost

+input()

+Overhaul 1 ObValues : int

+Overhaul 2 ObValues : int

+Overhaul 3 ObValues : int

+Overhaul 4 ObValues : int

+Overhaul 5 ObValues : int

+Overhaul 6 ObValues : int

+Overhaul 1 PValues : int

+Overhaul 2 PValues : int

+Overhaul 3 PValues : int

+Overhaul 4 PValues : int

+Overhaul 5 PValues : int

+Overhaul 6 PValues : int

PerformanceMetrics

+input()

+LowEta : Single

+HighBeta : Single

+LowBeta : Single

+HighEta : Single

+Error1 : Single

+Error2 : Single

Optimisation

+Display()

+Eta : Single

+Beta : Single

+Error : Single

PredictedError

+WeibullDistribution()

+LowEta : Single

+HighBeta : Single

+LowBeta : Single

+HighEta : Single

+CyclesTime : Single

ProbabilityOfFailure

+SurvivavlWeibullDistribution()

+ProbabilityofFailure1 : Single

+ProbabilityofFailure2 : Single

ProbabilityOfSurvival

+Display()

+ProbabilityofSurvival1 : Single

+ProbabilityofSurvival2 : Single

RemainingUsefulLife

+Display()

+CyclesTime : Single

+Overhaul : Single

ResultCost

1..* 1..*

1..*
1..*

1..*

1..*

1..*

1..*

1..*

1..* 1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*
1..*

1..*

1..*

1..*

1..*

   



 

283 

 

 Flowchart for the Through-life model 

This appendix presents the flowchart for developing the through-life performance 

predictive model. 

Flowchart of modellingSimulation() Subroutine 

  

START

Assign data to temp variable

END

Get Parameters 

Assign data to focus variable

betaDelta = 1

etaDelta = 5000

Calculate maximum and minimum 

eta and beta 

Prepare return qpe

Prepare return OverhaulData 

value 

Prepare return Array

Return betamin, 

betamax, etamin, 

etamax as Zoom 

Prepare return outputRange

Return outputRange

Calculate result
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Flowchart of GetVarianceArray() Function 

  

START

Get Data MinEta, 

MaxEta, MinBeta, 

MaxBeta, qpe, 

ActualData()

No

Yes

x = x + 1

Calculate result 

i = i + 1 (ActualData,1)

Return 

GetVarianceArray

Calculate Deviation=

Deviation+Abs(result(i,1)-

ActualData(i,2))

i = 0

i = i + 1

OverhaulAges(i) = 

ActualData(i,1)?

Calculate betaDelta

Calculate etaDelta

Prepare return values eta, 

beta

Return value 

Output (x,0) 

Return value 

Output(0,y)

y = y + 1

No Yes

No

Yes

Deviation = 0

i = UBound 

(ActualData,1)?

No

Yes

Calculate values (x,y)=

0 - Deviation

Calculate value beta = 

beta + betaDelta

y = 21?

x = 0; y = 0

Return value 

beta 

Calculate value eta = 

eta + etaDelta

x = 21?

END
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Flowchart of RatePrediction() Function 

 

  
START

Assign Values to PartSets Array

PartSets=(0,0); PartSets=(0,1)

PartSets=(0,2); PartSets=(0,3)

Get Data qpe, eta, 

beta, OverhaulAges()

Assign Values to Output Array

Assign Array Values to Overhauls

Overhaul = Overhaul + Overhauls

Assign Values to PartSets Array

PartSets(Overhaul,0)

PartSets(Overhaul,1)

No

Yes

Subgroup = 0

Subgroup = Overhaul - 1

Overhaul > 0?

SubSetAge = OverhaulAges(Overhaul) - PartSets(Subgroup,1)

LastSubSetAge = 0

LastSubSetAge = 

OverhaulAges(Overhaul - 1) - PartSets(Subgroup,1)

Yes

No

Calculate RejectRateNow

Calculate RejectRatePrior

Calculate RejectedNow

Calculate RejectedPrior

Calculate Rejected

Calculate PartSets(Overhaul,3)

Calculate PartSets(Subgroup,3)

Overhaul = 

Overhauls?
Return the 

RatePredictions

Prepare return values  

PartSets(Overhaul, 2)

Output(Overhaul, 0)

Output(Overhaul, 1)

END
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Flowchart of getSelectedZoomInError() Function 

 

START

Assign data to temp variable

END

Get Parameters 

Assign data to focus variable

betaDelta = 1

etaDelta = 5000

Calculate maximum and minimum 

eta and beta 

Prepare return qpe

Prepare return OverhaulData 

value 

Prepare return Array

Return betamin, 

betamax, etamin, 

etamax as Zoom 

Prepare return outputRange

Return outputRange

Calculate result

Recalculate?

Yes

No
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Flowchart of getCellFromRange() Function 

 

  
START

Obtain selectedRange Object

Prepare Return Value Specified 

Range

Prepare Return Value 

Array of Cell address

Return 

getCellFromRange 

Solution

END

Prepare Return Split Value 

array

Prepare Return 

Selected.Address

Get Parameters 
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 Case Study Scenarios Results 

This appendix presents the results from the framework. The outcome presented 

illustrates the validation of the model when the minimisation of the error between 

the predicted and observed values equals zero. 

 

LSM single system: β = 1.6 with the same predicted and observed values 

Eta Beta Engine Overhaul

4353.8 1.6 10015 Shop Visit (SV)

New Overhaul 1 Overhaul 2 Overhaul 3 Overhaul 4 Overhaul 5 Overhaul 6

Cycles 0 1000 2500 3200 6000 8000 11000

Number Off 36 33 24 20 7 3 0

1000 2500 3200 6000 8000 11000

9% 34% 46% 81% 93% 99%

3 12 16 29 33 36

3 9 4 13 4 3

Number Off 3 3 2 1 0 0

1500 2200 5000 7000 10000

17% 29% 71% 88% 98%

0 1 2 3 3

0 1 1 1 0

Number Off 9 9 4 2 0

700 3500 5500 8500

5% 51% 77% 95%

0 5 7 9

0 5 2 2

` Number Off 5 3 2 0

2800 4800 7800

39% 69% 92%

2 3 5

2 1 2

Number Off 21 16 6

2000 5000

25% 71%

5 15

5 10

Number Off 13 7

3000

42%

6

6

Number Off 23

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 3 9 5 21 13 23

Scrap Rate 8% 25% 14% 58% 36% 64%

Underlying scrap rate 9% 34% 46% 81% 93% 99%

Observed scrap number 3 9 5 21 13 23

Observed scrap rate 8% 25% 14% 58% 36% 64%

Engine age at Overhaul 1000 2500 3200 6000 8000 11000

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Beta and Eta Parameters
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LSM single system: β = 1.6 with probability of Failure model 

 

 

 

LSM single system: β = 1.6 with error minimisation 
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LSM single system: β = 1.6 on 3D surface map 

 

LSM single system: β = 1.6 on Wireframe contour map 

-646.2000122
353.7999878

1353.800049
2353.800049

3353.800049
4353.799805

5353.799805
6353.799805

7353.799805
8353.799805
9353.799805

-160

-140

-120

-100

-80

-60

-40

-20

0

3D Surface Map

-160--140 -140--120 -120--100 -100--80 -80--60 -60--40 -40--20 -20-0

Eta
Beta

Er
ro

rs
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LSM single system: β = 1.6 with similar predicted and observed values 

 

LSM single system: β = 1.6 with similar predicted and observed values failure model 

Eta Beta Engine Overhaul

4353.8 1.6 10015 Shop Visit (SV)

New Overhaul 1 Overhaul 2 Overhaul 3 Overhaul 4 Overhaul 5 Overhaul 6

Cycles 0 1000 2500 3200 6000 8000 11000

Number Off 36 33 24 20 7 3 0

1000 2500 3200 6000 8000 11000

9% 34% 46% 81% 93% 99%

3 12 16 29 33 36

3 9 4 13 4 3

Number Off 3 3 2 1 0 0

1500 2200 5000 7000 10000

17% 29% 71% 88% 98%

0 1 2 3 3

0 1 1 1 0

Number Off 9 9 4 2 0

700 3500 5500 8500

5% 51% 77% 95%

0 5 7 9

0 5 2 2

` Number Off 5 3 2 0

2800 4800 7800

39% 69% 92%

2 3 5

2 1 2

Number Off 21 16 6

2000 5000

25% 71%

5 15

5 10

Number Off 13 7

3000

42%

6

6

Number Off 23

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 3 9 5 21 13 23

Scrap Rate 8% 25% 14% 58% 36% 64%

Underlying scrap rate 9% 34% 46% 81% 93% 99%

Observed scrap number 2 4 9 11 14 20

Observed scrap rate 6% 11% 25% 31% 39% 56%

Engine age at Overhaul 1000 2500 3200 6000 8000 11000

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Beta and Eta Parameters
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LSM single system: β = 1.6 with similar predicted and observed values, and error 

minimisation  

 

 

 

LSM single system: β = 1.6 with similar predicted and observed values, and error 

minimisation on 3D Surface map 
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LSM single system: β = 1.6 with similar predicted and observed values, and error 

minimisation on Wireframe contour maps 

 

 

 

LSM single system: β = 1.6 with similar predicted and observed values, and realistic η 

and β with errors  
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LSM single system: β = 1.6 with similar predicted and observed values, and realistic η 

and β with error values in 3D Surface map  

 

LSM single system: β = 1.6 with similar predicted and observed values, and realistic η 

and β with error values on Wireframe Contour map 
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LSM multiple systems: β = 1.6 with similar predicted and observed values, and error 

minimisation 

 

 

 

LSM multiple systems: β = 1.6 with similar predicted and observed values, error 

minimisation on 3D Surface map 
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LSM multiple systems: β = 1.6 with similar predicted and observed values, error 

minimisation on Wireframe contour maps 

 

 

LSM multiple systems: β = 1.6 with similar predicted and observed values, and realistic 

η and β with error minimisation 
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LSM multiple systems: β = 1.6 with similar predicted and observed values, and realistic 

η and β with errors values on 3D Surface map  

 

 

LSM multiple systems: β = 1.6 with similar predicted and observed values, and realistic 

η and β with errors Wireframe Contour map 
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MLE single system: β = 1.5 with similar predicted and observed values on Through-life 

prediction model  

 

 

MLE single system:  β = 1.5 with similar predicted and observed values on Probability 

of failure model 

Eta Beta Engine Overhaul

4523.5 1.5 10015 Shop Visit (SV)

New Overhaul 1 Overhaul 2 Overhaul 3 Overhaul 4 Overhaul 5 Overhaul 6

Cycles 0 1000 2500 3200 6000 8000 11000

Number Off 36 32 24 20 8 3 1

1000 2500 3200 6000 8000 11000

10% 34% 45% 78% 90% 98%

4 12 16 28 33 35

4 8 4 12 5 2

Number Off 4 3 3 1 1 0

1500 2200 5000 7000 10000

17% 29% 69% 85% 96%

1 1 3 3 4

1 0 2 0 1

Number Off 9 8 5 2 1
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6% 49% 74% 92%

1 4 7 8

1 3 3 1

` Number Off 5 3 2 1

2800 4800 7800

39% 66% 90%

2 3 4

2 1 1

Number Off 19 14 6

2000 5000

25% 69%

5 13

5 8

Number Off 14 8

3000

42%

6

6

Number Off 19

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 4 9 5 19 14 19

Scrap Rate 11% 25% 14% 53% 39% 53%

Underlying scrap rate 10% 34% 45% 78% 90% 98%

Observed scrap number 2 4 9 11 14 20

Observed scrap rate 6% 11% 25% 31% 39% 56%

Engine age at Overhaul 1000 2500 3200 6000 8000 11000

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Beta and Eta Parameters
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MLE single system:  β = 1.5 with similar predicted and observed values, and  error 

minimisation  

 

 

 

MLE single system: β = 1.6 with similar predicted and observed values, and error 

minimisation on 3D Surface map 

-476.5
523.5

1523.5
2523.5

3523.5
4523.5

5523.5
6523.5

7523.5
8523.5
9523.5

-160

-140

-120

-100

-80

-60

-40

-20

0

3D Surface Map

-160--140 -140--120 -120--100 -100--80 -80--60 -60--40 -40--20 -20-0

Eta
Beta

Er
ro

rs



 

300 

 

 

MLE single system: β = 1.5 with similar predicted and observed values, error 

minimisation on Wireframe Contour map 

 

 

MLE single system: β = 1.5 with similar predicted and observed values, and realistic η 

and β with error minimisation  
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MLE single system: β = 1.5 with similar predicted and observed values, and realistic η 

and β with errors minimisation on 3D surface map 

 

MLE single system: β = 1.6 with similar predicted and observed values, and realistic η 

and β with error minimisation on Wireframe Contour map  
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MLE multiple systems:  β = 1.5 with similar predicted and observed values, and error 

minimisation on Wireframe contour map 

 

MLE multiple systems: β = 1.5 with similar predicted and observed values, and realistic 

η and β with error values on Wireframe Contour map  
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Single stage turbine with new renewals of 6 overhauls for one engine 

 

LSM: Through-life model with overhaul times for the η and β parameters 

 

 

LSM: a range of error values for the estimated η and β parameters 

Eta Beta Engine Overhaul

6270 1.2 10015 Shop Visit (SV)

New Overhaul 1 Overhaul 2 Overhaul 3 Overhaul 4 Overhaul 5 Overhaul 6

Cycles 0 1000 2500 3200 6000 8000 11000

Number Off 36 32 26 23 14 9 5

1000 2500 3200 6000 8000 11000

10% 28% 36% 61% 74% 86%

4 10 13 22 27 31

4 6 3 9 5 4

Number Off 4 3 3 2 1 1

1500 2200 5000 7000 10000

16% 25% 53% 68% 83%

1 1 2 3 3

1 0 1 1 0

Number Off 7 7 4 3 2

700 3500 5500 8500

7% 39% 57% 76%

0 3 4 5

0 3 1 1

` Number Off 3 2 1 1

2800 4800 7800

32% 52% 73%

1 2 2

1 1 0

Number Off 14 11 7

2000 5000

22% 53%

3 7

3 4

Number Off 11 7

3000

34%

4

4

Number Off 13

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 4 7 3 14 11 13

Scrap Rate 11% 19% 8% 39% 31% 36%

Underlying scrap rate 10% 28% 36% 61% 74% 86%

Observed scrap number 2 4 9 11 14 20

Observed scrap rate 0.055555556 0.111111112 0.25 0.305555552 0.388888896 0.555555582

Engine age at Overhaul 1000 2500 3200 6000 8000 11000

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Error Values
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LSM: a range of error values for the estimated η and β parameters 

 

 

 

 

 

LSM: 3D surface map of error values of refined estimated parameters 
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Single stage turbine with new and repair renewals of 6 overhauls for one engine 

 

LSM: Through-life model with repaired component replacement 

 

 

 

 

 

 

 

Eta Beta Engine Overhaul

6270 1.2 10015 Shop Visit (SV)

4968 1.5

Repair 0.9 New Overhaul 1 Overhaul 2 Overhaul 3 Overhaul 4 Overhaul 5 Overhaul 6

Cycles 0 1000 2500 3200 6000 8000 11000

Number Off 36 32 26 23 14 9 5

1000 2500 3200 6000 8000 11000

10% 28% 36% 61% 74% 86%

4 10 13 22 27 31

4 6 3 9 5 4

Number Off 4 3 3 2 1 0

1350 1980 4500 6300 9000

13% 22% 58% 76% 91%

1 1 2 3 4

1 0 1 1 1

Number Off 7 7 4 3 1

630 3150 4950 7650

4% 40% 63% 85%

0 3 4 6

0 3 1 2

` Number Off 3 2 1 1

2520 4320 7020

30% 56% 81%

1 2 2

1 1 0

Number Off 14 11 6

1800 4500

20% 58%

3 8

3 5

Number Off 11 7

2700

33%

4

4

Number Off 16

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 4 7 3 14 11 16

Scrap Rate 11% 19% 8% 39% 31% 44%

Underlying scrap rate 10% 28% 36% 61% 74% 86%

Observed scrap number 4 7 3 14 11 13

Observed scrap rate 0.111111111 0.194444444 0.083333333 0.388888889 0.305555556 0.361

Engine age at Overhaul 1000 2500 3200 6000 8000 11000

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Error Values
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Multiple stages turbine with new renewals of 6 overhauls  

 

Through-life prediction model for a single row with a shape factor of 2.7 

 

 

Error values with a shape factor of 2.7 

Eta Beta Engine Overhaul

205 2.7 10015 Shop Visit (SV)

New Overhaul 1 Overhaul 2 Overhaul 3 Overhaul 4 Overhaul 5 Overhaul 6

Cycles 0 8 21 27 50 67 92

Number Off 36 36 36 36 35 34 32

8 21 27 50 67 92

0% 0% 0% 2% 5% 11%

0 0 0 1 2 4

0 0 0 1 1 2

Number Off 0 0 0 0 0 0

13 19 42 59 84

0% 0% 1% 3% 9%

0 0 0 0 0

0 0 0 0 0

Number Off 0 0 0 0 0

6 29 46 71
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` Number Off 0 0 0 0

23 40 65
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0 0 0

0 0 0

Number Off 1 1 1

17 42

0% 1%
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0 0

Number Off 1 1

25

0%

0

0

Number Off 2

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 0 0 0 1 1 2

Scrap Rate 0% 0% 0% 3% 3% 6%

Underlying scrap rate 0% 0% 0% 2% 5% 11%

Observed scrap number 2 4 9 11 14 20

Observed scrap rate 6% 11% 25% 31% 39% 56%

Engine age at Overhaul 8 21 27 50 67 92

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Beta and Eta Parameters
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Error values on 3D surface map with a shape factor of 2.7 

 

 

 

Cost threshold model for a single engine with a shape factor of 2.7 
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Through-life prediction model with a shape factor of 2.6 for row 2 blades 

 

 

Error values with a shape factor of 2.6 

 

 

Eta Beta Engine Overhaul

179 2.6 10015 Shop Visit (SV)
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Number Off 36 36 36 36 35 33 30
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0% 0% 1% 4% 7% 16%
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Number Off 0 0 0 0 0 0

13 19 42 59 84

0% 0% 2% 5% 13%
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0 0 0 0 0

Number Off 0 0 0 0 0

6 29 46 71

0% 1% 3% 9%

0 0 0 0

0 0 0 0

` Number Off 0 0 0 0
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0 0 0

0 0 0
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0
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Number Off 3

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 0 0 0 1 2 3

Scrap Rate 0% 0% 0% 3% 6% 8%

Underlying scrap rate 0% 0% 1% 4% 7% 16%

Observed scrap number 2 4 9 11 14 20

Observed scrap rate 6% 11% 25% 31% 39% 56%

Engine age at Overhaul 8 21 27 50 67 92

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Beta and Eta Parameters
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Error values on 3D surface map with a shape factor of 2.6 

 

 

Cost threshold model for a single engine with a shape factor of 2.6 
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Through-life prediction model for shape factor of 2.5 for row 3 blades 

 

 

 

Error values with a shape factor of 2.5 

 

Eta Beta Engine Overhaul
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Number Off 4

Cross check - number of 

parts fitted
36 36 36 36 36 36 36

Number of Failed Parts 0 0 0 2 2 4

Scrap Rate 0% 0% 0% 6% 6% 11%

Underlying scrap rate 0% 1% 1% 5% 10% 21%

Observed scrap number 2 4 9 11 14 20

Observed scrap rate 0.055555556 0.111111112 0.25 0.305555552 0.388888896 0.555555582

Engine age at Overhaul 8 21 27 50 67 92

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 0
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 1
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Beta and Eta Parameters
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Error values on 3D surface map with a shape factor of 2.5 

 

 

 

Cost threshold model for a single engine with a shape factor of 2.5 
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Through-life prediction model for shape factor of 2.4 for row 4 blades 

 

 

 

Error values with a shape factor of 2.4 
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Cross check - number of 

parts fitted
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Number of Failed Parts 0 0 1 1 2 4

Scrap Rate 0% 0% 3% 3% 6% 11%

Underlying scrap rate 0% 1% 1% 6% 12% 24%

Observed scrap number 2 4 9 11 14 20

Observed scrap rate 6% 11% 25% 31% 39% 56%

Engine age at Overhaul 8 21 27 50 67 92

The Underlying Scrap Data Available

The Observed Scrap Data Available

Population 4
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 5
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 2
Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 3
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% Failed

Number of Failed parts (cum)

Number of Failed parts (this)
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Overhaul Age

% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Population 1
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% Failed

Number of Failed parts (cum)

Number of Failed parts (this)

Predict Beta and Eta Parameters
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Error values on 3D surface map with a shape factor of 2.4 

 

 

 

Cost threshold model for a single engine with a shape factor of 2.4 
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Optimised error values with estimated parameters for all row blades with a 1.7 shape 

factor 
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 Validation and Verification of Technique 

This appendix presents the questionnaire for the validation and verification of the 

approach used in the framework development. 

Validation and Verification (V&V) of the Technique for the 
Part Deterioration and Remaining Useful Life Prediction Tool   

Project Title Part Deterioration and Remaining Useful Life of Gas Turbine 
Component 

Researcher Caxton Okoh 

Supervisors Prof Rajkumar Roy, Dr. Jorn Mehnen 

Industrial Supervisor Andrew Harrison 

Email {c.okoh, r.roy, j.mehnen}@cranfield.c.uk 

Address Building 30, Through-life Engineering Services, Manufacturing Department, 
School of Aerospace, Transport and Manufacturing, Cranfield University, 
Bedfordshire, MK43 0AL 

The research relates to the presence of assembly level failure data, with no trace of component 
level records. Designers assumed life at design stage and need realistic basis of their 
assumptions. The scope is to optimise a predictive maintenance strategy for part deterioration 
and remaining useful life of the gas turbine mechanical component. The tool aims to provide a 
predictive modelling of part deterioration and remaining useful prediction of reject, replace and 
reused of new and repaired Nozzle Guide Vanes (NGVs) of a single stage turbine. 

The objective of the tool is to estimate an average failure rate at component level, given only the 
failure at the assembly level 

The objectives of this validation and verification sheet are to ensure that the model: 
i. Meets the specifications and the purpose it was built; 
ii. Interpret the list of requirements and assumptions to accurately estimate remaining 

useful life; 
iii. Perform accurate under various types of gas turbine engine; 
iv. Meets the required usability level;  
v. The input data to the model were considered accurate, from valid and reliable sources. 

A. General:  

The following list of questions aims to ascertain the current level maturity of the tool. Please fill 
the heading with your personal information and then complete the questionnaire. This 
questionnaire will be anonymous. 

Date:          /      /        

Personal Information 

Name and Surname  

Company Name  

Industry Sector  

Job Role  

Years of Relevant Experience  

Email   
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B. Logic  
1. How logical is the predictive modelling considered in the framework (Put a tick in the suitable 
number)  

1 2 3 4 5 6 7 8 9 10 

Illogical Logical with major deficiencies Logical with minor deficiencies logical 

 
If any, please explain why 
…………………………………………………………………………………  
 
2. Is the framework logic suitable for predictive modelling of part deterioration?  

1 2 3 4 5 6 7 8 9 10 

Very 
Unsuitable 

Suitable with major deficiencies Suitable with minor deficiencies Very 
Suitable 

 
If any, please explain why 
…………………………………………………………………………………  
3. Can the framework be applied in another scenario for predictive modelling?   Yes No
  
If yes, please specify 
……………………...…………………………………………………………………  
 
C. Generality  
 
1. Please comment on the generality of this framework in the aerospace industry  
 
………………………………………………………………………………………………………………  
2. Please comment on the generality of this framework in other industries (e.g. Power 
generation)?  

……………………………………………………………………………………………………………... 
3. What other problem recognition is applicable to the types of similar applications (e.g. 
blades)?  

……………………………………………………………………………………………………………... 
D. Responsibility  
 
1. Who should use the framework within the industry? (E.g. Only policymakers, designers, 
manufacturers (OEM), or maintenance personnel) Why and How?  

……………………………………………………………………………………………………………... 
2. What team or department should have ownership or responsibility of the model within the 
organisation?  

……………………………………………………………………………………………………………... 
E. Benefits of using the framework  
 
1. How would the framework benefit the organisation?  

……………………………………………………………………………………………………………... 
F. Limitations of the framework  
 
1. What are the potential limitations in using and implementing this tool?  

……………………………………………………………………………………………………………... 
2. What are the potential limitations that may arise in using this software tool?  

……………………………………………………………………………………………………………... 
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3. How could the output of this tool be affected by the background of people putting the input?  

……………………………………………………………………………………………………………... 

G. Usability of the software prototype  

1. Assess the features in terms of usability of the tool  

a. What are the strongest features? Please suggest any possible improvement 

………………………………………………………………………………………………………………  

b. What are the weakest features? Please suggest any possible improvement 

……………………………………………………………………………………………………………… 

2. Does this tool offer an adequate level of information to guide a user? Yes / No  

If no, please explain: ………………………………………………………………………………………  

3. Assess this time required to populate the tool for implementation of a project  

……………………………………………………………………………………………………………… 

4. Please assess the following facets of the tool [1-5] 

a. Layout ………………………………….  b. Use of colour ...…………………...…………… 

c. Ease of navigation ...…………………  c. Level of awareness.…………………………
  

5. Is this tool flexible enough to be applied to different levels of information available?  

……………………………………………………………………………………………………………… 

H. Assessment of the framework  

Please assess the completeness/suitability of the framework using the following questions  
a. The presentation of the data for input  

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons…………………………………………………………………… 
b. The approach to parameter estimation of the failure time data   

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons: ………………………….…………………………………………  
c. The prognostic modelling and simulation of the estimated parameters with the failure 

time data   

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons: ……….…………………………………………………………  
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d. The comparison of the predicted data and the presented data in (a)  

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons: …….………………………………………………………………… 
e. The approach for realistic estimated parameters with errors in the prediction  

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons:.………………………………………… …………………………  
f. The conversion of the realistic predictions of unreliability distribution  

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons: …….…………………………………………………………………  
g. The transformation of the unreliability distribution to survival distribution 

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons: …….………………………………………………………………  
h. The prediction of the remaining useful life of components in an assembly using survival 

distribution 

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons: …….……………………………………………………………  
i. The use of cost to predict the overhaul stage to scrap an entire assembly 

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons:  ...……………………………………………………………………  
j. The iterative process to predict the number of rejections for a multiple stage turbine 

1 2 3 4 5 6 7 8 9 10 

Very 
incomprehensible 

Comprehensible with 
major deficiencies 

Comprehensible with 
minor deficiencies 

Very 
comprehensible 

If any, please explain the reasons…………………………………………………………………… 

I. Quality of the Results  

a. How realistic is the result after running this tool? 

1 2 3 4 5 6 7 8 9 10 

Very 
Unrealistic 

Realistic with major 
deficiencies 

Realistic with minor 
deficiencies 

Very 
Realistic 

If any, please explain the reasons: .………………………………………………………………… 
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b. How significant do the results compare to the understandings of similar components? 

1 2 3 4 5 6 7 8 9 10 

Very 
Insignificant 

Significant with major 
deficiencies 

Significant with minor 
deficiencies 

Very 
significant 

c. Please, state potential weakness of the results ……………………………………………… 

………………………………………………………………………………..…………………………  

d. Is the visual representation of the output of this tool clear?  Yes         No  

If no, please suggest improvements………………………………………………………………..  

………………………………………………………………………………..……………………………  

e. Please suggest any improvement on the overall framework...……………………….…  
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 User Manual  
 

User Manual of the Predictive Tool for Assessment and Simulation of the 

Part Deterioration and Remaining Useful Life 

Abstract 

This User Manual, produced by the TES centre for the project at Cranfield 

University, offers provision and the guidelines to use the Predictive Tool for 

Assessment and Simulation of the Part Deterioration and Remaining Useful Life. 

The tool has been designed and developed as a result of the challenges that are 

encountered with analysing historical data gathered from conventional 

maintenance to determine part deterioration and RUL. The focus of the tool 

forecast upcoming maintenance and the number of parts to be rejected, replace 

and reused. The key feature of the predictive tool includes data preparation, 

update failure data, single engine, multiple engine; through-life modelling and 

simulation, predicted rejection values, observed rejection values; back-fitting, 

Zoomin, Zoomout and resolve with low, medium and high sensitivity of the errors. 

The errors from the back-fitting of the Eta and Beta are simulated for decision 

making through Weibull distribution.  

 

Researcher Caxton Okoh 

Supervisors Professor Rajkumar Roy, Professor Jorn Mehnen 

Email {c.okoh, r.roy, j.mehnen}@cranfield.c.uk 

Address Building 30, Through-life Engineering Services, Manufacturing 
Department, School of Aerospace, Transport and 
Manufacturing, Cranfield University, Bedfordshire, MK43 0AL 
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Overview of Predictive Tool for Assessment and Simulation of the Part 
Deterioration and Remaining Useful Life 

The research tends to generate an approach to convert observed rejection 

historical data into an understanding of the underlying component degradation 

rate towards a rejection threshold by modelling the Through-life performance to 

forecast the rejections (number of degraded components), replacement (new 

components) and reuse (existing component) (R-Cube). An approach to 

automatically back-fitting an observed rejection rate that obtains an estimated 

underlying rejection rate, thereby predicting the remaining useful of the 

component was presented. 

The predictive tool is known as WTPPM described in Figure 1. This User Manual 

follows the architecture to cover the main features of the tool. 

 

Figure 1 Overview of the predictive modelling 

The data preparation module focuses on the type of data and format to produce 

the data.  

The parameter estimation concentrates on the calculating the two values required 

for the next stage. The modelling and simulation module focuses on the predictive 

analysis to forecast the component rejected, replace and reused. The error 

minimisation segment calls predicted and observed values based on the estimate 

from the initial parameters. The model evaluation module uses the Monte Carlo 

method to generate data to simulate the Weibull distribution function. 

 

Error Minimisation 
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To run the application, set the data into specified rows and columns, set design 

life, enter Eta and Beta parameters and adjust focus to either low, medium or 

high. Click Analyse Data to generate the Weibull distribution. 

 
Figure 2 performs the following in a data preparation module  
 

 

The structure of how the historical data should be presented as input. 
The engine number, the Time Since New, the Cycle Since New and 
the number of rejected parts 

 

The result of the number of engines, overhauls and components 
being analysed 

 

Update failure data checks and adds new data to 1. The Single 
engine splits the failure data based on the presented data in terms 
of engine and overhauls. The multiple engines send the entire data 
through the WTPPM 

 
 
 

 

Figure 2 Data presentation, Numbers of engines, overhauls and components 
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Split Failure Data into Individual Engine 
 

 

The function 4 in Figure 3 shows the input to solve through-life 

performance for a single engine. Enter the item number and click 

transfer data. The estimated parameters are used to calculate the 

number of rejections. 

 

 

Figure 3 Split data for Single engine 
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Through-life performance Model Analysis 

The through-life performance model analyses as seen in Figure 4 are presented 

with inputs, processes and outputs. 

 

The Eta and Beta are input parameters required for assessing 
the through-life performance of component degradation in an 
assembly 

 

The number of components starting at initiation e.g. 36. This is 
another input for the model 

 

Another input is the overhaul in cycles. The overhaul is a 
maximum of six stages 

 

The initial outputs are used as input in the further different stages 
of the population 

 

The outcome of the different stages of the entire Through-life 
performance model. The total number of the components at each 
stage and the scrap rate 

 

The cumulative failure rate is the underlying scrap rate across all 
six stages 

 

The observed scrap rate data from the historical data are required 
to compare with the outcome of the predicted rejections from 
number 9. 
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Figure 4 Through-life performance model 

 

The selection of low, medium and high 

 

The different buttons are used for single and multiple engines to 
drill-in or zoom-in. The zoom-in recalculates the shape factor and 
the characteristic life and represented the error values in Figure 
5. The Re-Solve recalculates the error anytime the focus is 
changed.  
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Figure 5 Estimated Eta and Beta to generate errors 

 

 

This is the single button that calculates and spools the outcome. 
When the button is pressed, the failure data are passed to the 
Through-life performance prediction model, back-fitting is solved 
and the output presented in Figure 6 

 

The Zoom-in estimated parameters are selected and 
recalculated. It shows the selected focus and the total 
Engines,overhauls stages and components being analysed. 

 

The x and y are the vertical and horizontal coordinate to depict 
the exact location of the values. 

 

Figure 6 Analyse Data 
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Through-life performance Output 

The output for the probability of failure, and remaining useful life are presented in 

Figure 7. 

 

Figure 7 Output for probability of failure and RUL 


