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Abstract 
 

Electrical contacts provide a well-proven solution to switching various loads in 

a wide variety of applications, such as power distribution, control applications, 

automotive and telecommunications. However, electrical contacts are known 

for limited reliability due to degradation effects upon the switching contacts due 

to arcing and fretting. Essentially, the life of the device may be determined by 

the limited life of the contacts.  Failure to trip, spurious tripping and contact 

welding can, in critical applications such as control systems for avionics and 

nuclear power application, cause significant costs due to downtime, as well as 

safety implications. 

Prognostics provides a way to assess the remaining useful life (RUL) of a 

component based on its current state of health and its anticipated future usage 

and operating conditions.  In this thesis, the effects of contact wear on a set of 

electromagnetic relays used in an avionic power controller is examined, and 

how contact resistance combined with a prognostic approach, can be used to 

ascertain the RUL of the device.   

Two methodologies are presented, firstly a Physics based Model (PbM) of the 

degradation using the predicted material loss due to arc damage. Secondly a 

computationally efficient technique using posterior degradation data to form a 

state space model in real time via a Sliding Window Recursive Least Squares 

(SWRLS) algorithm.  

Health monitoring using the presented techniques can provide knowledge of 

impending failure in high reliability applications where the risks associated with 

loss-of-functionality are too high to endure. The future states of the systems has 

been estimated based on a Particle and Kalman-filter projection of the models 

via a Bayesian framework. Performance of the prognostication health 

management algorithm during the contacts life has been quantified using 

performance evaluation metrics. Model predictions have been correlated with 

experimental data. Prognostic metrics including Prognostic Horizon (PH), 

alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the 

performance of the damage proxies and a comparison of the two models made. 
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 – Thesis Outline 

Introduction 
This chapter outlines the contents of the Thesis and why this work has come into 

fruition. This includes an overview of the background, aims and objectives of the study, 

as well as the contributions of the Thesis to new knowledge, the publications produced 

and finally an overview of the Thesis contents and layout. 

1.1 Background and Motivation 

In critical assets such as aerospace equipment, maintenance is a large expenditure 

for both the operator and the manufacturer, significant downtime causes a loss of 

business and ultimately money.  As aircraft manufacturers move towards increasing 

aeroplane lifetimes (in excess of 30 years), it is important to increase the operational 

reliability of the avionic systems. Traditionally maintenance has occupied two 

strategies, namely corrective (sometimes called reactive or unplanned) and 

preventative maintenance (Williams, 2006), (Janasak and Beshears, 2007), (Byer, 

Hess and Fila, 2001) & (Hess, Calvello and Dabney, 2004). 

Corrective maintenance is a remedial strategy and is carried out when a fault occurs 

and as far as possible is avoided within safety critical equipment such as avionics. 

Preventative maintenance is one such sub-group of proactive maintenance, where 

maintenance is performed on a periodical basis. Service periods are determined from 

the use of past historical data based on Mean Time Between Failures (MTBF) and not 

from any input from the machinery itself. The machinery is thus serviced at the 

scheduled period, whether it is necessary or not. Depending on the equipment, this 

can lead to improved system reliability, reduced cost of replacement, decreased 

system downtime and lead to a dedicated spares inventory. Generally, to make this 

viable, the components in question need to have an increasing failure rate throughout 

their lifetime, it should be noted that reliability is set at the design stage and 

degradation is a separate issue. The preventative cost needs to be less than the 

overall cost of a corrective action, at present this tends to suit high value assets, such 

as aerospace, defence etc.   

Manufacturers and operators are constantly looking for a way to reduce this cost and 

achieve increased availability and downtime.  Condition Based Monitoring (CBM) is a 
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maintenance program that recommends maintenance actions based on the 

information collected through condition monitoring of the component itself. CBM 

attempts to avoid unnecessary maintenance tasks by taking maintenance actions only 

when there is evidence of abnormal behaviours of a physical asset. A correctly and 

effectively implemented CBM program, can significantly reduce maintenance cost by 

reducing the number of unnecessary scheduled preventive maintenance operations 

and has started to see usage on equipment such as aero-engines. 

Future strategies to achieve an increased lifetime and maintainability of avionic 

systems will involve an intelligent prognostic capability implemented such that the 

ground crews are able to predict failures and the remaining service life of these 

systems and associated components. The aim is to build prognostics capability into 

avionic systems such that cost-effective, safe, reliable and robust systems can be built 

with a long service life. 

CBM and prognostics form part of a methodology called Integrated Vehicle Health 

Management (IVHM) (Jennions, 2011), which allows unified capability of systems to 

assess the current or future state of system health, and integrate that system health 

within a framework of available resources and operational demands. IVHM is 

particularly attractive in high unit and high maintenance cost platforms such as aircraft 

and spacecraft and consists of following sub-categories:-  

 Maintenance service offerings (e.g. CBM, Total Care, RCM)  

 Business (e.g. Business models, IVHM mapping)  

 System design  

 Architecture  

 Analytics (e.g. Diagnostics, Prognostics)  

 Technologies (e.g. Structural Health Management (SHM))  

 

IVHM enables many disciplines with an integrated framework.  

 



20 
 

1.2 Research Hypothesis 

The main objectives of this thesis is to examine feasibility for the use of condition 

based monitoring (CBM) and prognostic implementation in high value safety critical 

assets within the aerospace and defence domain.   

 The first objective in this thesis is therefore to examine the body of literature on CBM 

and prognostics already available and evaluate the various methodologies in terms of 

their applicability and accuracy for monitoring and prediction of component health and 

remaining useful life (RUL).   

 The second objective will devise experimental testing to enable real world data to be 

collected and thus replicate the conditions experienced from the component in 

operation.  This will result in any developed solutions having demonstrated capabilities 

and applicability to the conditions experienced in real world operation. 

 The third objective will be to evaluate and develop prognostic algorithms for the data 

collected.  This will involve an in depth study of the failure mode(s) in the monitored 

component and correlation between the data, algorithm and prediction. 

 The fourth objective is the development of tailored, real time prognostic algorithms 

that are implementable at system level will be trialled and benchmarked to assess their 

performance. 

The platform for the development of the work in this Thesis will be centred on the 

implementation of prognostics for relay outputs on the Full Authority Digital Controller 

(FADEC) for a range of aircraft currently being developed.  Within safety critical 

systems, relays are still favoured over their more reliable solid state counterparts due 

to their ability to completely isolate the circuitry they are switching, with no leakage 

current;  hence their continued usage within equipment that is deemed safety critical, 

such as aerospace, nuclear and rail signalling.  

The FADEC provides control and optimisation of the aircrafts engine performance by 

using a digital computer to analyse a multitude of operating parameters and cannot be 

manually overridden. The unit shown in figure 1.1 is airframe-mounted, performing 

pre-defined functions; including signal processing, communication, logic operation and 

built-in-test (BIT) and provides a dedicated interface between the engine and the 

aircraft. Being a redundant system, the board is replicated on two channels A and B.  
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The research carried out in this thesis is to investigate the viability of a prognostic 

implementation up to Technology Readiness Level 4 (TRL4), (NASA, 2015) within the 

FADEC.  The prognostic algorithm must be capable of being utilised within current 

embedded technology and all non-board sensors are to be non-intrusive to satisfy the 

CAA (Civil Aviation body). 

It is envisaged at this stage that the prognostic capability will focus on the area of 

monitoring the life of the relays providing the control output to the Full Authority Digital 

Engine (or electronics) Control (FADEC) and the Thrust Control Unit (TRCU). 

 

 

 

 

 

 

 

 

 

Figure 1.1. Overview of the FADEC layout 

1.3 Contributions of this Thesis 

The main contributions of this Thesis are outlined below and in the conclusion of each 

of the relevant chapters. 

 A method has been developed for the obtainment of real time measurements 

to assess the life of the relay using parameters such as contact resistance. 

 A data set has been produced that describes relay failure.  This has been 

broken down into sections to enable the construction of a visual analytics model 

to enable to application of prognostic methods. 

 The failure modes found within the relay have been structured into a flowchart 

and have been pictured as an early decision tool. 
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 The development of a model for the estimation of secondary parameters within 

the relay such as coil current, contact bounce and contact position. 

 A model to enable the primary effects from arcing damage to be examined.  The 

model incorporates the ability to look at heat flow through the contacts, 

electrical voltage across the contact due to heating and mass loss from the 

contact. 

 The mass loss estimation which contributes towards the development of a state 

space physics of failure model. 

 Estimation of RUL from this model. 

 The development and assessment of a real time Grey Model prediction 

algorithm for prognostics. 

 A novel and computationally efficient technique has been developed for real 

time monitoring based upon modelling of degradation using system 

identification techniques. 

1.4 Thesis Layout 

The organisation of this Thesis is as follows: 

Chapter 2 examines the primary failure modes in relays and then goes on to look at 

the mechanisms that cause the failure and useful parameters that may be used to 

develop prognostics. 

Chapter 3 provides a detailed literature review of maintenance, condition monitoring 

and prognostic strategies. The various prognostics approaches are examined in detail 

and initial conclusions are drawn on the suitability of methodologies for use in the 

application of relays. 

Chapter 4 focusses on the methodology used for the data extraction. The 

consideration of a suitable metric is first explored which reflects accurately the 

degradation of the relay contacts.  This is followed by a discussion of the experimental 

apparatus devised and constructed within the laboratory to collect the data. Analysis 

of the measurement and process noise within the data follows. Lastly, the raw data is 

discussed in terms of patterns and features that may be applicable for prognostics as 

well as filtering methodologies to assist with trend clarification. 

Chapter 5 develops a series of models for the development of a physics based model. 

Firstly, a model of the secondary characteristics such as coil current, contact bounce 
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and contact position is developed.  Secondly, an arcing model is developed and a 

numerical solution of the heat equation is used to explore temperature distribution and 

mass loss from the contact.  Finally in this chapter, a simple state space model is 

suggested and used to predict the RUL. 

Chapter 6 looks at using real time data driven methods and proposes a new approach 

for devising the prognostic model in real time, using a sliding window and modelling 

methodology based upon system identification. 

Chapter 7 presents the results from the models derived in chapters 5 and 6 

respectively.  The Physics Based Model is firstly analysed and discussed and then 

compared to the Data Driven model.  This chapter starts by outlining current prognostic 

metrics and the results are evaluated according to these metrics.  The chapter 

concludes by discussing the outcomes of the results. 

Chapter 8 concludes the Thesis by reviewing the results of the previous chapter and 

suggests future work based upon the outcomes. 
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 - Relay Failure Modes and Parameters 

Introduction 

In order to enable the development of a prognostic methodology for electromagnetic 

relays, a thorough understanding of the way the device degrades is essential. This 

chapter firstly examines the primary failure modes in relays. It then goes on to look at 

the mechanisms that cause the failure, also useful parameters that may be used to 

develop prognostics.   

The electromagnetic relay has been around for a very long time, approximately 160 

years and is essentially an electrically operated switch. The basic principle of most 

relays is to use an electromagnet to operate a mechanical switching mechanism; solid 

state versions of the device are also available, but will not be considered in any depth 

here. Relays are used for the control of circuits via a low power signal and offer 

complete isolation between the control and the controlled circuit. The other 

advantages are their ability to deal with high surge currents and high voltage spikes 

as well as having no leakage current.  However, their main disadvantage is the life 

expectancy, which is low, compared with their solid state counterpart etc. 

Relays have many applications, amongst the first uses were in telephony and 

telephone exchanges, as well as early computing.  Modern uses are still many and 

varied, with applications such as amplifying digital signals, switching a large amount 

of power with a small operating power; industrial control of machine tools, transfer 

machines, and other sequential control; detection and isolation of faults on 

transmission and distribution lines by opening and closing circuit breakers (protection 

relays); isolation of the control circuit from the controlled circuit and logic functions. 

Within safety critical systems, relays are still favoured over their more reliable solid 

state counterparts due to their ability to completely isolate the circuitry they are 

switching, with no leakage current;  hence their continued usage within equipment that 

is deemed safety critical, such as aerospace, nuclear and rail signalling. However, 

relays are known for limited reliability due to the mechanical wear of internal switching 

elements, and essentially the life of the relay, may be determined by the life of the 

contacts.  Failure to trip, spurious tripping and contact welding, can in safety critical 

applications such as control systems for avionics and nuclear power stations, as well 

as signaling in rail networks, cause significant costs due to downtime and safety 

implications.   
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The use of prognostics provides a way to assess the Remaining Useful Life (RUL) of 

an electromagnetic relay based on its current state of health and its anticipated future 

usage and operating conditions. However, the development of a methodology to 

enable this to be implemented is complex, due the nature of devices failure mode.  In 

order to progress, the physics of degradation needs to be understood.  

2.1 Relay Design and Operation 

The design of electromechanical power relays is basically the same regardless of 

whether it is a miniature PCB relay or an industrial power relay. The most important 

components are; the contacts, magnetic system and casing as pictured in figure 2.1 

and described below. 

 

Figure 2.1. Basic components of an electromagnetic relay (image from Omron Components, 1990) 
 

The contacts may be fixed or moving (contacts being moved by the magnetic system 

(motor) to switch the load circuit), and are usually mounted on contact springs (which 

hold the contacts but are sufficiently flexible to allow the contacts to move). 

A magnetic system which consists of; a coil (to generate the necessary magnetic field 

to actuate the armature and the contacts), a core, a yoke (to establish the magnetic 

circuit), an armature (the moving part of the magnetic system which closes and opens 

the magnetic circuit and acts via a comb or actuator on the moving relay contacts), 

and lastly the return spring (to establish a defined position of the magnetic and contact 

system in case the coil is not energized). 

Finally, the mechanical components, including a case, a base (to protect the relay 

against external influences and for protection against electric shock), insulation (within 
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the relay to separate the primary circuit from the secondary side and to provide the 

required insulation), an actuator (used in some relay designs to translate the motion 

of the magnetic system to the contact system (moving contacts)), pins or terminals (to 

connect between the contact system and the load) and lastly, a mounting device. 

2.2 Failure and Degradation Modes in Relays 

At a first glance, the relatively high component count may imply a large scope for 

failure, but years of development and design has ensured the overall reliability is high. 

Data sheets will allude to power and general relays having an electrical (contact) life 

expectancy usually in excess of 100,000 operational cycles minimum with a resistive 

loading, this decreases significantly if the loading is inductive. This may be compared 

to the mechanical life expectancy, which is in the order of one million and in some 

cases 10 and 100 million operations.   

The reason the electrical life is so low compared with the mechanical life is because 

the contact life is application dependent. The electrical rating applies to contacts 

switching at their rated loads (Slade, 2013). If however, a set of contacts is used to 

switch a load less than the rated value, the contact life again, may be significantly 

higher.  The rated electrical life also takes into account arc destruction of the contacts.  

Arc suppression may be used to lengthen the life of the contact. 

The attribution of failure in relays can be divided into two main areas, firstly from 

contamination and secondly the wear of internal switching elements. Failure due to 

contamination is due to numerous causes, but again may be divided into two main 

camps: metallic and non-metallic. Metallic contamination constitutes to unwanted 

foreign particles that may build up within the device during use.  It also takes into 

account chemicals that may be encountered during manufacture, all of which may 

impair normal mechanical device operation. Secondly, contamination may occur from 

non-metallic or gaseous deposits presenting as a film which creates open circuits 

when it periodically deposits itself on the contacts. 

The second major and more detrimental cause of premature early life relay failure is 

the electrical wear of internal switching elements. In fact, it may be said ‘the life of a 

relay is essentially determined by the life of its contacts.’  

High-sustained currents, high in-rush currents and voltage spikes lead to the 

degradation of the contacts.  The high currents and voltages sources tend to be load 
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dependent, with inductive loads creating the highest voltage and current spikes due to 

the low starting resistance compared to operating resistance. This is especially true 

for lamp filaments and motors, which is why de-rating is more severe for these types 

of loads. Degradation may be further accelerated if contamination or pitting is present 

on the contact.  

 

Figure 2.2. The effects of contact degradation 
 

Other elements within the relay may also suffer from physical wear. Springs, which 

are often present to provide mechanical return when a switching current is not applied, 

may lose their resilience over time.  The alignment of the contact can also be a cause 

of premature failure, as well is if the coil beaks down or goes open circuit.  

A summary of failure is presented below (Fujitsu Components, 2009). 

 

Parts Stress   Failure symptoms Failure Mode 

 Status Environment Duration   

Contact Voltage, Current, 

Surge voltage,  

Temperature, 

External 

Vibration, 

Humidity, 

External 

Shock,  

Dust, Gas 

Long 

duration 

without 

breaking, 

Intermittent 

Transfer and wear of contact 

material due to arc discharge, 

Weld and bridging of contact 

Sticking of contact 

Corrosion (oxidation, 

sulfurization etc.), Foreign 

matter, Deposits 

Poor release 

Poor contact 

Increased contact resistance 

Noise 

Change in operate/release 

time 

Poor dielectric strength 

 

Winding As above As above As above Corrosion 

Galvanic corrosion 

Foreign matter (dust etc.) 

Voltage fluctuation 

Vibration of lead wire 

Breakage of coil 

Burning of coil 

Poor working release 

operation 

Change in operate/release 

time 

Change in operate/release 

voltage 

Malfunction 

Structural 

parts 

As above As above 

Excessive 

external 

shock 

As above Slip-off and wear of contact 

piece, Fatigue and creep of 

spring, Abnormal wear and 

loosening, Seizure.  

Poor contact 

Poor release 

Change in operate/release 

time 
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Deterioration of organic 

material, Deposition of worn 

contact material powders, 

Corrosion and galvanic 

corrosion, Foreign matter 

(dust etc.) 

 

Change in operate/release 

voltage 

Insulation resistance 

Enclosure As above, 

Chemicals 

As above, 

chemicals 

As above Damage by external force 

Change in chemical 

properties 

Damage (cracks etc.) 

 

Table 2.1. A summary of failure symptoms and modes (Fujitsu Components, 2009). 

From the above discussion, one may conclude that the development of a prognostic 

model should be focused on the electrical life of the contacts, due to the life expectancy 

being in the order of magnitude of ten times less than the mechanical counterparts.  

This should not however exclude the effects of wear of the other components, in fact, 

parameters such as contact force, operation/release times and contact resistance will 

depend upon windings, structural parts, etc. 

2.3 Electrical Life of Contacts 

A look at a solid surface under a microscope will show that even the smoothest 

appearing surfaces are in fact rough.  The micro-surface will be composed of peaks 

and valleys, whose height variations, shape and other geometric considerations vary 

considerably. 

When a contact is made between two metals, surface asperities of the contacting 

members will penetrate the natural oxide and other surface contaminant films, 

establishing localized metallic contacts and, thus, conducting paths. As the force 

increases, the number and the area of these small metal to metal contact spots will 

increase as a result of the rupturing of the oxide film and extrusion of metal through 

the ruptures. These spots, termed a-spots, are small cold welds providing the only 

conducting paths for the transfer of electrical current. A direct consequence of this is 

a porous contact where infiltrating oxygen and other corrosive gases can enter to react 

with the exposed metal and reduce the metallic contact areas. This will eventually lead 

to disappearance of the electrical contact, although the mechanical contact between 

the oxidized surfaces may still be preserved (Braunovic et al., 2006).   

Current flowing in an electrical contact is funneled and channeled through the separate 

a-spots (see figure 2.3 below).  This constriction of the electric current by the a-spot 
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formation reduces the overall volume of material used for electrical conduction and 

this leads to increase in the electrical resistance.  The increase in resistance is defined 

as the constriction resistance of the contact interface. 

 

Figure 2.3. Illustrating the effect of constriction resistance on current flow 

2.4 Mechanics of a-spot Formation 

An electrical contact has a real contact area made up from the a-spots as opposed to 

the apparent contact surface which is made up of surface asperities and dirt (Holm, 

2000). A generalization to make calculations simpler is to assume that a-spots are 

circular in nature. The simplification is illustrated below in figure 2.4 below. 

Several references (Holm, 2000 & Smythe, 1968) treat the mathematical analysis of 

circular a-spot and the constriction of current flow and the results are summarized.   

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4. Representing the simplified depiction of a-spots and how the apparent contact radius is 
reduced 
 

The contact resistance 𝑅𝑐 of an a-Spot is represented as the sum of the constriction 

resistance 𝑅𝑠 and film resistance by using the following equation reported by (Holm, 

2000). 

Apparent contact 

area: Radius r 

a-spot radius: 

Radius a 
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𝑅𝑐 =
𝜌

2𝑎
+

𝜌𝑓𝑑

𝜋𝑎2         (1) 

where ρ indicates the resistivity of a contact material, a indicates a contact radius, ρf 

indicates the resistivity of a film, and d is the thickness of the film. It is reported that 

the constriction resistance in Ohms is dominant if the load is over 10 N (Saitoh et al. 

2007). 

An approximation to the above equation was also proposed by Holm for the contact 

resistance illustrated in the above figure 2.4.  

𝑅𝑐 =
𝜌

2𝑟
+

𝜌

2𝑛𝑎
         (2) 

where r indicates the radius of an apparent contact area, n indicates the number of a-

spots, and a indicates the radius of a-Spot. 

Greenwood released the following contact-resistance approximation for multiple 

contacts by considering the interaction between a-Spots (Greenwood 1966). 

𝑅𝑐 =
𝜌

2 ∑ 𝑎𝑖
+

𝜌

𝜋
(∑ ∑

𝑎𝑖𝑎𝑗

𝑆𝑖𝑗
𝑖≠𝑗 )

1

(∑ 𝑎𝑖)
2      (3) 

where Sij indicates the distance between a-spots, and ai, aj indicates the radius of a-

spot. 

The difference between the approximation in equation (2) and Greenwood’s equation 

(3) for the contact resistance as a function of the changing radius of the a-spots is 

illustrated below.  

 

Figure 2.5. Relationship between rate of contact resistance and rate of real contact area in apparent 

contact area. 

The horizontal axis of figure 2.5 indicates the rate of the real contact area in the 

apparent contact area, and the vertical axis indicates the rate of the contact resistance 

compared with that the rate of real contact area is 1 Ω. When the rate of the real 

contact area is above 0.2, the rate of contact resistance increases only about 1.14- 
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1.25 times. It may be assumed that the constriction resistance of apparent contact 

area is almost same as that of the real contact area presented by equation (2) and 

hence the following equation is a good approximation. 

𝑅𝑐 =
𝜌

2𝑎
         (4) 

The above equations are important in the design of electrical contacts and are true for 

monometallic contacts even when there are numerous clusters of a-spots that are not 

necessarily circular.  

The contact resistance 𝑅𝑐 between two conductors of resistivity ρ1 and ρ2, held 

together with a force F, is given as (Holm, 2000) as  

𝑅𝑐 =
𝜌1+𝜌2

4
√

𝜋𝐻

𝐹
        (5) 

where H again, is the Vickers' micro-hardness of the softer of the two materials and F 

is the contact force. Again, because the metals are not clean, the passage of electric 

current may be affected by thin oxide, sulphide, and other non-organic films usually 

present on metal surfaces. Consequently, the total contact resistance of a joint is a 

sum of the constriction resistance (Rs) and the resistance of the film (Rf). 

The contact resistance is the most important and universal characteristic of all 

electrical contacts and is always taken into account as an integral part of the overall 

circuit resistance of a device. Therefore, although it is significantly smaller as 

compared with the overall circuit resistance, the changes in the contact resistance can 

cause significant malfunctions of the device. This is because the contact resistance 

can vary significantly with the changes in the real contact area, contact pressure 

variations, resistive film non-uniformity, and other factors (Braunovic et al., 2006).  

2.4.1 Temperature of an Electrically Heated a-spot 

If the electrical current through the constriction of the a-spot is sufficiently small and 

the effect on contact resistance due to the heat generated is negligible, the definition 

of the constriction resistance presented in equation (4) is valid.  Observing these 

conditions, the voltage drop across the constriction produced by an electric current 𝐼 

is 

 𝑉 = 𝐼𝑅𝑐 = 𝐼𝜌/2𝑎          (6) 
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However, a thermal gradient is produced normal to the constriction when significant 

Joule heating is experienced through the a-spot due the crowding of current lines.  The 

gradient complicates the relationship between the dimension of the a-spot, electric 

current and the voltage drop across the contact. 

On passing an electric current, the temperature of an a-spot rises very quickly to near 

equilibrium temperature, this is given by a thermal transient time.  In slow moving and 

stationary contacts, the equilibrium temperature is generally only of interest.  Thermal 

transients are only taken into account in rapidly moving contact applications such as 

brush contacts, high-power and high-frequency electrical connections (Braunovic et 

al., 2006). 

2.4.2 Voltage-Temperature Relationship 

Assuming that the outer surfaces of the conductors are thermally insulated from the 

external environment, the heat produced within an a-spot can, thus, be dissipated only 

by conduction through the bodies in contact.  The electric and thermal current lines 

follow the same path under these conditions and hence the electric potential and 

isothermal surfaces within the conductor coincide (Kohlrausch, 1900), (Diesselhorst, 

1900), (Greenwood and Williamson, 1958). 

This unique relationship between electric and thermal current leads to the simple 

relationship between the voltage drop V across the contact and the maximum 

temperature Tm in the contact interface as 

𝑉 = {2 ∫ 𝜆1
𝑇𝑚

𝑇1
𝜌1𝑑𝑇}

1

2
+ {2 ∫ 𝜆2

𝑇𝑚

𝑇2
𝜌2𝑑𝑇}

1

2
     (7) 

where λ and ρ are respectively the thermal conductivity and electrical resistivity of the 

conductors, the subscript numbers refer to the two conductors in contact and T1 and 

T2 refer to the bulk temperatures of the contacting bodies (Slade, 2013). The quantities 

λ and ρ generally vary with temperature.  Due to the electric current flow lines being 

constricted the most within the confines of the a-spot and its immediate vicinity, the 

maximum temperature Tm occurs here.  For the case of monometallic contact where 

λ1= λ2= λ and ρ1=ρ2=ρ, Tm occurs precisely at the a-spot and the relationship in (7) 

reduces to 

𝑉 = 2 {2 ∫ 𝜆𝜌𝑑𝑇
𝑇𝑚

𝑇1
}

1

2
        (8) 
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In the temperature range where λ and ρ vary little with temperature, then the above 

equation reduces to a simpler form giving a relationship between the voltage and 

temperature (V-T) relationship for monometallic electrical contacts. 

  𝑇𝑚 − 𝑇1 =
𝑉2

8𝜆𝜌
        (9) 

The left hand side is the contact super-temperature, which reflects the deviation of the 

a-spot temperature 𝑇𝑚 from the bulk connector temperature 𝑇1.  This equation loses 

its validity when the super-temperature is large, in excess of several tens of degrees 

as it is based on the consistency of the electrical resistivity and thermal conductivity 

over a small range.  One important thing to observe about this equation is that it is 

independent of dimensional constraints such as size and shape and purely uses the 

material properties λ and ρ making it suitable for use with any thermal insulated body 

capable of passing an electrical current. 

As the above equation is only valid over a small temperature range, equation (7) can 

be expanded to incorporate the dependence of the thermal conductivity and electrical 

resistivity on temperature over a greater range by introducing the relationships 𝜆 =

𝜆0(1 − 𝛽𝑇) and 𝜌 = 𝜌0(1 + 𝛼𝑇) (Holm, 2000), (Greenwood and Williamson, 1958).  

The thermal conductivity of many metals usually decreases as the temperature 

increases, by using the values for β and α which are readily tabulated for many metals 

at 20 °C, equation (7) becomes (Slade, 2013).   

 

𝑉2 = 8𝜆0𝜌0 ({𝑇𝑚 − 𝑇1} +
{𝛼−𝛽}

2
{𝑇𝑚

2 − 𝑇1
2} −

𝛼𝛽

3
{𝑇𝑚

3 − 𝑇1
3})  (10) 

 

The above equation gives a method of calculating the voltage drop across the contact 

given the contact deviation due to heating.  In all cases the contact temperture deviates 

significantly from the bulk temperature only when the voltage drop across the contact 

exceeds aproximately 10 mV.  A potential drop exceeding in excess of 10 mV can lead 

to the production of temperatures that easily lead to softening and melting of the 

contact material. Table 2.2 below, gives the voltage temperature relationship for 

common electrical contact materials (Holm, 2000). The limitations of this equation 

were examined by (Timsit, 1983) experimentally and shown to be valid as long as the 

average diameter of the a-spot is larger than the mean free path of free electrons in 

the contacting bodies. 
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Material Heat Capacity (Jm-3C-1x106) Vs Softening (V) Vm Melting (V) 

Al 2.4 0.1 0.3 

Fe 3.6 0.19 0.19 

Ni 3.9 0.16 0.16 

Cu 3.4 0.12 0.43 

Zn  0.1 0.17 

Mo 2.6 at 20°C 0.25 0.75 

 3.4 at 1500°C   

Ag 2.5 0.09 0.37 

Cd 2   

Sn 1.65 0.07 0.13 

Au 2.5 0.08 0.43 

W 2.7 at 20°C 0.4 1.1 

 3.5 at 1400°C   

 3.9 at 2100°C   

Pt 2.8 0.25 0.65 

Pd 2.7  0.57 

Pb  0.12 0.19 

60Cu, 40Zn 3.2  0.2 

60Cu, 40Sn 3  0.15 

Stainless Steel 3.9 0.27 0.55 

WC 3 0.6  

Table 2.2 Voltage for softening (Vs) and Melting (Vm) of Common Electrical Contact Materials (Holm, 

2000) 

2.4.3 The Wiedemann-Franz Law 

Equation (10) above, although an accurate representation of the V-T relationship over 

which the resistivity and thermal conductivity varies linearly with temperature is 

somewhat cumbersome to use.  The Wiedeman-Franz law states that the variations 

with temperature of the thermal conductivity and electrical resistivity of metals are such 

that λ and ρ are related by the expression 

 𝜆𝜌 = 𝐿𝑇         (11) 

where L is the Lorentz constant (2.45 x 10-8 V2K-2) and T is the absolute temperature. 

The above equation is valid if thermal conduction and electrical resistivity arise from 

electronic transport in the metals.  If the relationship in (9) holds, then equation (8) 

gives the V-T relation as  

 𝑉2 = 4𝐿(𝑇𝑚
2 − 𝑇1

2)        (12) 
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which is independent of the material in the contact.  The super-temperature (𝑇𝑚−𝑇1) in 

equation (12) however cannot be evaluated from the voltage drop. Therefore, by 

redefinition and rearrangement of the terms in equation (12), the equation may be 

reduced to the form of equation (9).  Defining 
(𝑇𝑚−𝑇1)

2
 as the average temperature 𝑇 in 

the contact, equation (12) can be written as  

 𝜆𝜌 =
𝐿{𝑇𝑚+𝑇1}

2
         (13) 

It follows that {𝑇𝑚
2 − 𝑇1

2} = {𝑇𝑚 − 𝑇1} × {𝑇𝑚 + 𝑇1}2𝜆𝑎𝑣𝑔𝜌𝑎𝑣𝑔/𝐿. Substituting into the 

equation (9) gives 

𝑇𝑚 − 𝑇1 =
𝑉2

8𝜆𝑎𝑣𝑔𝜌𝑎𝑣𝑔
        (14) 

now with the V-T relation recovered in terms of the physical parameters λ and ρ 

evaluated at the average connector temperature (Slade, 2013). 

2.4.4 Temperature Distribution in the Vicinity of an a-spot 

The Wiedeman-Franz law does not necessarily apply that the maximum contact 

temperature occurs at the location of the physical interface. 

The calculation of the temperature distribution within an a-spot depends upon the 

geometrical coincidence of the equipotential and isothermal surfaces within the 

volumes of the conductors.  Work carried out by (Holm, 2000) and (Greenwood and 

Williamson, 1958) found that the maximum contact temperature 𝑇𝑚 and the current I 

are related by the expression 

𝑅𝑐𝐼 = 𝜌0,1 ∫ {2 ∫ 𝜆1𝜌1
𝑇𝑚

𝑇
𝑑𝑇}

−
1

2
+ 𝜆1

𝑇𝑚

𝑇1
𝑑𝑇 + 𝜌0,2 ∫ {2 ∫ 𝜆2𝜌2

𝑇𝑚

𝑇
𝑑𝑇}

−
1

2
𝜆2𝑑𝑇

𝑇𝑚

𝑇2
 

          (15) 

where 𝑇1 and 𝑇2 are the bulk temperatures of the materials 1 and 2 respectively, 𝑅𝑐 is 

the 'cold' contact resistance, 𝜌1,0and 𝜌2,0 are the cold resistivity's of materials 1 and 2 

defined through the dependence on temperature of electrical resistivity, e.g. 

𝜌0(1 + 𝛼𝑇), and 𝜆1and 𝜆2 are the thermal conductivities of the materials respectively. 

Equation 12 shows the maximum temperature developed in a contact is related to the 

voltage drop developed by the same current, if the identical contact had remained 

cold, since 𝑅𝑐𝐼 is the 'cold' voltage drop. 
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Equation (15) can be approximated by again using the temperature dependence 𝜆 =

𝜆0(1 − 𝛽𝑇), and if 𝛽 is sufficiently smaller than 𝛼 (e.g. β~α/20 for copper), the integral 

in (14) is given approximately by 

 ∫ {2 ∫ 𝜆𝜌𝑑𝑇
𝑇𝑚

𝑇
}
−

1

2𝑇𝑚

𝑇1
𝜆𝑑𝑇′ = (

𝜆0

{𝛼−𝛽}𝜌0
)

1

2
{

𝛼

𝛼−𝛽
} 𝑐𝑜𝑠−1 (

1+{𝛼−𝛽}𝑇1

1+{𝛼−𝛽}𝑇𝑚
)  (16) 

For a monometallic junction and bulk temperatures 𝑇1 and 𝑇2 of 0 ℃, 𝑅𝑐 is given as 

𝜌0/2𝑎, equation (16) now becomes 

 𝐼 = 4𝑎 (
𝜆0

{𝛼−𝛽}𝜌0
)

1

2
{

𝛼

𝛼−𝛽
} 𝑐𝑜𝑠−1 (

1

1+{𝛼−𝛽}𝑇𝑚
)     (17) 

An equipotential surface at temperature T and located at a fixed axial distance μ from 

the constriction, RC can be given as (𝜌0/𝜋𝑎)𝑡𝑎𝑛−1(𝜇/𝑎), then equation (17) becomes 

(Slade, 2013)  & (Greenwood and Williamson, 1958). 

 𝐼 =
2𝜋𝑎

𝑡𝑎𝑛−1{
𝜇

𝑎
}
(

𝜆0

{𝛼−𝛽}𝜌0
)

1

2
{

𝛼

𝛼−𝛽
} 𝑐𝑜𝑠−1 (

1+{𝛼−𝛽}𝑇

1+{𝛼−𝛽}𝑇𝑚
)    (18) 

Equating equations 17 and 18 gives the dependence of the temperature T at the 

isothermal surface located at a distance μ from the constriction and is given by 

 𝑐𝑜𝑠−1 (
1+{𝛼−𝛽}𝑇

1+{𝛼−𝛽}𝑇𝑚
) =

2

𝜋
𝑡𝑎𝑛−1 {

𝜇

𝑎
} 𝑐𝑜𝑠−1 (

1

1+{𝛼−𝛽}𝑇𝑚
)   (19) 

2.5 Electrical Arcing 

An arc is produced from stored energy in a circuit due to the inductance 𝐿.  If the 

current was suddenly to drop to zero in a circuit by the parting of the electrical contacts, 

then the stored energy in circuit inductance would result in large over voltages given 

by 

 𝑉 = −𝐿
𝑑𝐼

𝑑𝑡
         (20) 

In a DC circuit the duration of the arcing time is related to the magnitude of the arc 

voltage 𝑈𝐴 compared with the circuit voltage 𝑈𝐶.  When 𝑈𝐴 > 𝑈𝐶  a finite time is required 

to dissipate the 
1

2
𝐿𝐼2 energy stored in the circuit inductance.  

Electric arcs, although destructive, are necessary; they allow the smooth transition of 

current in a circuit to go steadily to zero. The designers of switching equipment have 

to incorporate into their design measures to handle these high voltages, the presence 

of arcing however, for the most part limits the values of these back emf’s to a maximum 

of two times the circuit voltage. As well as the control of the dissipation of energy, 



37 
 

arcing can be useful in some contact designs to clear organic matter and corrosive 

oxides from the mating faces. 

To allow the development of a state model for contact degradation, a clear 

understanding of arc formation is needed. The study of arcing in contacts from 

literature will be beneficial in forming an overall model that relates the excess circuit 

energy into arcing, into heat and finally into the degradation of the contact overall. 

Different materials will have different arc voltages and currents, the arc will ignite if 

both the minimum arc voltage and current are exceeded. Table 2.3 shows these 

voltages and currents for several different materials (Slade, 2013).  The melt voltage 

is also shown for the material due to arcing.  Arcing should, as much as possible, be 

suppressed due to the damage it causes, however, it can be necessary to allow some 

arcing as a method to remove sulfidation, oxidation and contaminates from the contact 

surface in some materials. 

As well as arcing, sparking may cause damage at voltages and currents less than 

those required for arc ignition.  The spark is due to capacitive discharge, and compared 

to an arc is weak, and contributes less to the damage of the contact. 

 

Material Electrical 

Conductivity %IACS 

Melt Voltage Arc Voltage Arc Current 

Cadmium 24 - 10 0.5 

Copper 100 0.43 13 0.43 

Gold 77 0.43 15 0.38 

Nickle 25 0.65 14 0.5 

Palladium 16 0.57 15 0.5 

Silver, fine 105 0.37 12 0.4 

Tungsten 31 0.75 15 1.0 

Table 2.3. Characteristics of Various Contact Materials (Slade, 2013) 

Contact life is deemed to have reached failure when the contacts stick or weld 

together, or if excessive material transfer has taken place to either one of both contacts 

and a good electrical contact make is no longer possible. These failure modes are due 

to successive switching operations and of material loss due to splattering. 

The material transfer takes place as a result of joule heating.  As the contact area 

separates, the area of the contacts diminishes.  The load current is then forced to flow 

through an ever more constricted area, and this causes a build-up of heat, which 

reaches such a point where the contact material is melted and then boils.  With a dc 
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load, this liquefied material tends to deposit on the cathode of the contact, simply due 

to the fact that it is cooler than the anode.  Material transfer also occurs as a result of 

arcing, with the transfer being opposite to above and depositing the molten metal on 

the anode of the contact. 

Material loss due to boiling and arcing is from vaporization and splattering respectively, 

during contact bounce on the closure of the contacts. Although the amount of material 

loss is minuscule, over tens or hundreds of thousands of operations it becomes 

significant. 

2.5.1 Contact Bouncing 

The making of the contacts is not usually finished at first touch, but as a consequence 

of bouncing the members make and break their contact several times before they 

reach a permanent state of contact. This can have implications due to the many 

disturbances bouncing brings.  The exactitude of contact make is lost, and the material 

transfer by arcs and bridges is increased, since each bounce is the same as a new 

switch operation.  A contact is particularly vulnerable to damage by re-bounce when 

the current begins with a high inrush as in the case of inductive loads, such loads may 

result in current in excess of eight times the normal operating current. (Mcbride, 1989) 

& (Mcbride, 1991). 

2.5.2 The Formation of the Electric Arc 

The formation of electric arcs can happen both when the contacts are opening and 

closing.  The more destructive of the two scenarios, is when the contacts are opening 

and this will be addressed first. 

2.5.3 The Formation of the Electric Arc during the Opening of Contacts 

An arc will always form between opening contacts if the circuit current and the voltage 

that appears across the contacts is greater than a minimum value. The arc formation 

depends entirely upon the properties of the contact material and the arc always 

initiates in the metal vapour from the contacts themselves (Slade, 2013).   

From equation (5) the contact resistance 𝑅𝐶  is given by  

𝑅𝑐 =
𝜌

2𝑎
=

𝜌

2
√

𝜋𝐻

𝐹
        (21) 
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where again, a is the radius of the real area of contact, H is the material or Vickers 

hardness, ρ is the resistivity and F is the force holding the contacts together. 

As the contacts separate, the holding force F → 0 and therefore the area of contact  

a → 0, producing an increase in the contact resistance 𝑅𝑐.  This increase in the contact 

resistance 𝑅𝑐 leads to the voltage drop 𝑈𝑐across the contact also increasing. 

 𝑈𝑐 = 𝐼𝑅         (22)  

From 2.4.3 above the relationship between voltage and temperature has been 

discussed, an approximation to this can be represented by the temperature of the 

contact 𝑇𝑐 being given by  

 𝑇𝑐
2 = 𝑇0

2 + 𝑈𝑐
2 × 107 K       (23) 

where 𝑇0 is the ambient temperature.  Work carried out by (Wakatsuki, 2008) shows a 

stage will be reached when the temperature of the contact spot will equal to the melting 

point 𝑇𝑚 of the contact material.  

The values from table 2.4 below and calculated values from equation (23) are depicted 

in figure 2.6 below for a wide range of contact materials and shows the correlation 

between results.   

 

Figure 2.6. Showing the relationship between the calculated and measured melting temperature and 

the measure voltage drop across the contact (Wakatsuki, 2008). 

When a contact reaches this melting stage and the contact pairs continue to draw 

apart, a molten bridge is formed between them, this happens at low currents (Utsumi, 

1969), (Miyajima, 1998) and (Ishida, 2004), slow (Mcbride, 2012) and high speed 

opening contacts (Slade, 1971), (Koren, 1975) and (Slade, 1972) and even in a 

vacuum (Slade, 2008).  This molten bridge continues to form and is drawn until it 

ruptures due to instability.  After this rupture of the molten metal bridge, an arc forms 
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in its vicinity.  A typical change in the initial voltage drop across the contacts is shown 

in Figure 2.7 (Slade, 2013).  

 

Figure 2.7. Showing the change in the initial voltage drop across the contacts as the arc develops 

(Slade. 2013). 

These voltage characteristics can be described using the four stages shown in figure 

2.8 (Haug, 1990) & (Slade, 2010): 

 

Figure 2.8. The four stages of molten metal bridge rupture and metal phase arc formation. 

Stage (a): Once the molten metal bridge has formed its rate of change of voltage is 

about 2 × 103 Vs–1. As the contacts continue to open and the bridge is drawn further it 

becomes unstable. There are a number of physical reasons for this instability, 

including surface tension effects, boiling of the highest temperature region, convective 

flows of molten metal resulting from the temperature variation between the bridge roots 

and the high-temperature region.  

The bridge will eventually rupture, releasing metal vapour into the contact gap when 

the voltage across it, Ub, is close to the calculated boiling voltage Ub1 of the contact 

materials, i.e.: 

 𝑈𝑏 = √𝐿(𝑇𝑏1
2 + 𝑇0

2)        (24) 
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where L is the Lorenz constant and 𝑇𝑏1 K is the boiling temperature as in the table 2.4 

below. 

Metal Breaking Voltage(Ub) Calculated Boiling Voltage(Ub1) Boiling 

Temperature(Tb1) K 

Ag 0.75 0.77 2485 

Cu 0.8 0.89 2870 

W 1.7 1.82 5800 

Au 0.9 0.97 3090 

Ni 1.2 0.97 3140 

Sn 0.7 0.87 2780 

Table 2.4. Showing the Boiling Voltage (Ub1) with the Break Voltage (Ub) for Various Metals (Slade, 

2013) 

Stage (b): Once the bridge ruptures the voltage across the contacts rises very rapidly 

without a discontinuity from about 103 Vs–1 to about 109 Vs–1 

This rate of rise of the voltage will depend upon the dimensions of the molten metal 

bridge just before its rupture. After the bridge rupture a very high pressure, perhaps 

as high as 100 atmospheres (Haug, 1990) & (Slade, 2010), very low electrical 

conductivity, metal vapour exists between the contacts. This region can then be 

considered to be a capacitor with a very small capacitance. Because the circuit’s 

inductance prevents a rapid change in current charge flows from the circuit inductance 

into this small capacitor causing the very high dV/dt. The metal vapour volume 

expands rapidly into the surrounding lower pressure ambient and as it does its 

pressure also decreases rapidly. When the pressure of the metal vapour decreases to 

3–6 atmospheres conduction is initiated with a voltage across the contacts of a few 

10’s of volts. 

At these pressures the discharge that forms is the “pseudo arc” (Puchkarev, 1997), 

(Ebling, 1991) where the current is conducted by ions. During this stage the electrons 

required for charge neutrality will be introduced into the discharge from secondary 

emission resulting from ion impact at the cathode. As the original molten metal bridge 

will have material from both the cathode and the anode, net transfer of material from 

the anode to the cathode is expected and is indeed observed (Haug, 1990) & (Slade, 

2010). 
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Figure 2.9. The transition from molten metal bridge to the metal phase arc (Haug, 1990): (a) Voltage, 

neutral copper radiation (Cu I), Cu contacts, 50 A, 100 V and (b) voltage, ionized copper radiation (Cu 

II), Cu contacts, 50 A, 100 V. 

Stage (c): As the pressure of the metal vapour continues to decrease to about 1–2 

atmospheres, the pseudo arc transitions into the usual arc discharge with an arc 

voltage impressed across the contacts whose value is about that of the minimum arc 

voltage expected for an arc operating in the contacts’ metal vapour (i.e., 𝑈𝑚𝑖𝑛 ≈ 10 −

20 V). Here again net material transfer will be from anode to cathode. It is only in a 

vacuum ambient that the arc continues to operate in metal vapour evaporated from 

the contacts themselves (Slade 1972), (Slade, 2008) & (Slade, 2008b). In order to 

sustain this arc a minimum arc current is also required. 

Stage (d): At this stage as the contacts continue to open and the arc between them 

gradually transitions from the metallic phase arc to the ambient, gaseous phase arc 

with most of the current now carried by electrons. The whole sequence is illustrated in 

Figure 2.10 (Slade, 2013). As the contacts continue to open this metallic phase arc 

transitions into an arc operating in the ambient atmosphere.  
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Figure 2.10. Showing the opening sequence of an electrical contact; the formation of the molten bridge; 

its rupture and arc formation (Slade 2010). 

2.6 Arcing in a DC Circuit and Material Transfer  

One of the most important consequences of arcing is the effect that the arc has on the 

erosion of the contact material.  The erosion of contacts occurs because both the 

cathode and the anode under the roots of the stationary arcs can be heated to the 

boiling point of the contact material.  Even when the arc moves rapidly across a contact 

surface the arc roots still melt the contact surface directly under them.  (Slade, 2013) 

summarises the erosion parameters. As the amount of erosion per operation of the 

contact depends upon many parameters as shown below: 

 

Fig 2.11. Energy balance at the contacts from the arc and the effect on contact erosion. 

1. The circuit current 

2. The circuit resistance, inductance and capacitance 

3. The arcing time 

4. The contact material 

5. The structure of the contact material 

Contact 

material 

redeposit 

Molten metal 

Anode 

Metal Vapour 

Cathode 

Radiated and thermal 

conduction from arc 

Particle ejection 
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6. The shape and size of the contact 

7. The contact’s attachment 

8. The opening velocity of the contact 

9. The bounce on making contact 

10. The open contact gap 

11. Motion of the arc on the contacts 

12. The design of the arc chamber 

(a) Gas flow 

(b) Insulating materials used 

 

Contact erosion is further complicated by mechanical stresses on the contact as a 

result of the impact on closing. These stresses caused by the switch mechanism affect 

the contact materials in widely different ways which depend upon the material and the 

manufacturing process. In principle the mass lost per operation of the contact should 

be given by  

Mass loss = f (total power input into the contacts) (Slade, 2013).   

However, both sides of this equation present complexities that prevent it from being 

established let alone solved. For example, Slade asks the question what is meant by 

the mass loss. The total mass loss from a contact is a mixture of the following 

components: 

• Metal vapor evaporated from the arc roots + 

• Metal droplets ejected from the arc roots – 

• Metal re-deposited back onto the contact faces – 

• Metal deposited from the opposite contact 

The actual erosion products are difficult to predict from a given switching event even 

when the parameters are carefully controlled (Slade, 2008), (Puchkarev,1997) & 

(Ebling, 1991) 

The modeling of the total power input into the contacts also presents problems. First 

of all, for most designers of switches, it is only possible to measure the current in the 

circuit 𝐼(𝑡) and also perhaps the arc voltage 𝑈𝐴(𝑡)across the contacts during the 

arcing. If we take some of the power input components at the cathode, 

• Power input from ions = 𝑓1(𝐼 × 𝐶𝑎𝑡ℎ𝑜𝑑𝑒 𝑓𝑎𝑙𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) 

• Power input from radiation = 𝑓2(𝐼 × 𝑈𝐴) 
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• Power input from neutral atoms = 𝑓3(𝐼 × 𝑈𝐴) 

• Joule-heating of contact = 𝑓4(𝐼
2) 

As well as the mass loss, calculation of the total power input into the contacts can be 

difficult, in terms of measurement of arc voltage 𝑈𝐴 and circuit current 𝐼𝐶. 

Hence, calculation of contact erosion is still a topic of research, there is a great deal 

of literature on contact erosion, but it tends to be application specific and subject to 

guidance when used for design. 

Conclusion 

This chapter started by exploring the constituent components that make up the relay 

and put together a framework which enables failure modes to be clearly identified.  

This chapter provides the following conclusions 

 Electrical wear of the contacts was identified as the primary mode of failure, 

due to Joule heating and erosion of the surface to arcing, contamination and 

corrosion. 

 The physics of electrical contacts was examined from reviewing present 

literature and the constriction (contact) resistance was deemed to be an 

important metric in determining how the condition of the contact may be 

determined, as well as its importance in the development of failure.  Joule 

heating was explored, as the relationship between temperature and 

constriction resistance and voltage was identified via the Wiedeman-Franz law. 

 Lastly the formation of an arc between the contacts was discussed and how 

this erodes the surface of the contact due to material loss and mass transfer, 

this is scenario dependant. It was noted a degree of arcing can be useful to 

remove oxides and film that collect on the contacts of the relay, but excessive 

arcing causes reduced life and whereas arcing suppression is recommended 

by manufactures (CR and snubber circuitry), it cannot be eliminated altogether 

and influences the prediction of how long the relay contacts will last. 
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 – Condition Based Monitoring (CBM) and 
Prognostics Literature Review 
 

As the Thesis is concerned with the implementation of Condition Based Monitoring 

(CBM) and Prognostics, the primary aim of this chapter is to provide a detailed 

literature review of these topics, along with a review of maintenance strategies. The 

various prognostics approaches are examined in detail and initial conclusions are 

drawn on the suitability of methodologies for use in the application of relays. 

3.1 Maintenance Evolution 

Traditionally, maintenance has fallen into two philosophies, namely 

1. Reactive maintenance (sometimes called unplanned) 

- Whereby corrective maintenance is carried out when a fault occurs 

2. Proactive maintenance (sometimes called pre-planned) 

- Whereby preventative maintenance in undertaken 

- Also predictive maintenance is employed 

Until the advent of the Second World War, machinery was relatively simple in terms of 

control and instrumentation, slow running, with a rugged build quality. Production 

demands were not so severe, thus downtime due to breakdown was not so 

detrimental, and hence machinery was maintained on a breakdown by breakdown 

basis. 

After the war, with the rebuilding of Germany and Japan, a much more competitive 

marketplace was formed and an intolerance of downtime became much more 

apparent. Labour costs grew, resulting in a greater attraction to mechanisation and 

automation. Machinery too, was lighter in construction, as well as being greater in 

complexity with higher running speeds, resulting in a perceived reduction in reliability.  

The solution to this was to implement proactive maintenance (Brown and Sondalini, 

2014). 

Preventative maintenance is one such sub-group of proactive maintenance, where 

maintenance is performed on a periodical basis. Service periods are determined from 

the use of past historical data based on Mean Time Between Failures (MTBF) and not 

from any input from the machinery itself. The machinery is thus serviced at the 
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scheduled period, whether it is necessary or not. This sort of maintenance is still 

adopted, with routine examinations, replacement of lubrications, filters and component 

overhauls. Typical examples are in automotive and aviation. However, reactive and 

preventative maintenance both have safety and financial implications associated with 

them. 

The 1960s resulted in the aviation industry carrying out effectiveness studies on the 

then current maintenance strategies which assumed “the older equipment gets the 

more likely it is to fail”. The results apportioned out of the six failure modes identified, 

only three modes where attributed to age related failure and of these three modes, 

11% were age related. This highlighted an open ended, constant probability of failure, 

but however by monitoring the change of a suitable parameter, gave the ability to 

monitor a change in condition. The study resulted in massive reduction in maintenance 

hours (30:1), but equally there was a dramatic increase in safety as well. This 

approach led to the foundations of Reliability Centred Maintenance (RCM), RCM 

performs two tasks: firstly, to analyse and categorise failure modes (e.g. FMEA) and 

secondly, assess the impact of maintenance schedules on system reliability 

(Kothamasu et al., 2006). 

The 1980s’ heralded more increasingly complex plant and systems being introduced, 

the competiveness of competing marketplaces meant downtime became more 

intolerable and added to this, maintenance costs based on preventative maintenance 

began to spiral.  Industry looked to a more predictive maintenance methodology, RCM 

employing manual inspections and simple data trending, awareness of failure 

processes, improved management techniques and new technologies allowed greater 

understanding of machine and component health. 

The 1990s’ saw maintenance strategies starting to embrace other issues such as risk, 

with environmental and safety becoming paramount. New concepts had been 

developed; expert systems, just in time manufacturing, quality standards and condition 

based monitoring (CBM) which will be discussed in more detail later in this chapter. 

New concepts were proposed in the 21st century; Prognostics, Integrated Vehicle 

Health Management (IVHM) and Integrated System Health Monitoring (ISHM) are all 

developmental techniques that are well founded in literature. 
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In conclusion, system reliability and availability, with minimised downtime and failure 

are the goals for many industries.  Maintenance strategies have moved from reactive 

to a proactive stance, as systems and equipment become more complex and 

expensive, and increasing competition drives industries to become more lean and 

efficient, industrial and military communities are becoming increasingly concerned 

about system reliability and availability (Vachtsevanos et al., 2006). In many industries 

using complex machinery, the need to reduce maintenance costs, minimise the risk of 

catastrophic failures, and maximise system availability is leading a drive toward a new 

maintenance philosophy. 

3.2 Integrated Vehicle Health Management (IVHM) 

Integrated Vehicle Health Management (IVHM) or Integrated System Health 

Management (ISHM) is the unified capability of systems to assess the current or future 

state of the member systems health and integrate that picture of system health within 

a framework of available resources and operational demand (Jennions, 2011).   

IVHM was born as a concept from taking the proven aviation maintenance methods 

already in existence and forms the next step from condition based maintenance.  As 

technology such as sensors and data processing improved as well as the 

understanding of the systems concerned grew, it became possible to not just detect 

failure but also to predict it. IVHM is particularly attractive in high unit cost and high 

maintenance cost platforms such as aircraft and spacecraft. NASA was one of the first 

organisations to use the name IVHM to describe how they wanted to approach 

maintenance of spacecraft in the future. 

(Jennions, 2011) documents the generic IVHM taxonomy consisting of following sub-

categories:  

 Maintenance service offerings (e.g. CBM, Total Care, RCM)  

 Business (e.g. Business models, IVHM mapping)  

 System design  

 Architecture  

 Analytics (e.g. Diagnostics, Prognostics)  

 Technologies (e.g. Structural Health Management (SHM))  
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IVHM enables many disciplines with an integrated framework. CBM, Health and Usage 

Monitoring Systems (HUMS), and RCM are some of the maintenance strategies 

offered under IVHM, where diagnostics and prognostics are considered under the 

analytics category.  

This Thesis is concerned with the analytics shown in the framework above, in 

particular, the application of prognostics to systems and develops solutions to fulfil 

this. 

3.3 Condition Based Monitoring (CBM) 

CBM is a maintenance program that recommends maintenance actions based on the 

information collected through condition monitoring and forms a key component of the 

IVHM framework. CBM attempts to avoid unnecessary maintenance tasks by taking 

maintenance actions only when there is evidence of abnormal behaviours of a physical 

asset. A CBM program, if properly established and effectively implemented, can 

significantly reduce maintenance cost by reducing the number of unnecessary 

scheduled preventive maintenance operations, (Jardine et al., 2006). 

A CBM program consists of three key steps, (Lee et al., 2004). 

1. Data Acquisition step (information collecting), to obtain data relevant to system 

health. 

2. Data Processing step (information handling), to handle and analyse the data or 

signals collected in step 1 for better understanding and interpretation of the data. 

3. Maintenance Decision-Making step (decision-making), to recommend efficient 

maintenance policies. 

 

 

 

 

 

3.3.1 Data Acquisition 

The data acquisition step involves collecting and storing useful information about the 

asset that will enable CBM.  There are two main classes of data that are collected, 

event based and condition based data.  The event based data may contain information 
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that would be found in logs, e.g., when the machine/component was installed, 

breakdowns, overhauls, causes, and/or what was done to rectify the problem (e.g. 

preventative maintenance, lubricant changes, replacement parts, modifications etc.).  

Condition monitoring data is measurement based and relates to ascertaining the 

health condition/state of the physical asset. 

Event data is usually entered into the system manually once a maintenance action has 

been completed, and Computerised Maintenance Management Systems (CMMS), 

(Davies, 2000), have been developed to handle the management of such data.  

The types of measurements that may be used to gather condition based monitoring 

data is based on largely sensor availability, the range of data that may be monitored 

is ever growing as sensor technology develops. As well as parameters such as 

vibration, acoustics, oil analysis, environmental, ultrasonic etc., new sensors are being 

developed to collect data such as vibration inside a gas turbine whilst in use (Kirianaki, 

2002), (Senesky, 2009). 

Wireless technologies, such as Bluetooth, have provided an alternative solution to 

cost-effective data communication. There may also be constraints to how condition 

based data is collected, the Civil Aviation Authority (CAA) for example, dictate that 

measurements must be non-invasive. 

3.3.2 Data processing  

The data that is collected will need to be cleaned.  Data cleaning is important for both 

event based and conditioned based data.  Data entered manually, which is usually the 

case with event based data, is often subject to errors as it involves a human element. 

Condition based data is subject to measurements from instrumentation and will incur 

a degree of measurement error; sensor faults and interference can also cause data 

error. 

The next step of data processing is data analysis. A variety of models, algorithms and 

tools are available in the literature to analyse data for better understanding and 

interpretation of data. The models, algorithms and tools used for data analysis depend 

mainly on the types of data collected. (Jardine et al., 2006) state condition monitoring 

data collected from the data acquisition step are versatile. It falls into three categories: 

Value type: Data collected at a specific time epoch for a condition monitoring variable 

are a single value. For example, oil analysis data, temperature, pressure and humidity 

are all value type data. 
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Waveform type: Data collected at a specific time epoch for a condition monitoring 

variable are a time series, which is often called time waveform. For example, vibration 

data and acoustic data are waveform type. 

Multidimensional type: Data collected at a specific time epoch for a condition 

monitoring variable are multidimensional. The most common multidimensional data 

are image data such as infrared thermographs, X-ray images, visual images, etc. 

The way each type of data set is processed is the subject of many papers in literature, 

a variety of tools, algorithms and models are available to deal with the interpretation 

and extraction of features from each type of raw data. Waveforms and 

multidimensional data are subject to signal processing techniques.  

Multidimensional data such as raw images are usually very complicated and 

immediate information for fault detection is unavailable. In these cases, image 

processing techniques are powerful tools to extract useful features from raw images 

for fault diagnosis (Nixon, 2002). Examples of where image processing techniques 

have been used for condition based monitoring and fault diagnosis are (Wang et al., 

1993) and (Utsumi et al., 2001). 

For waveform data analysis there are three main categories of analysis; time-domain, 

frequency-domain and time-frequency domain analysis.   

Time-frequency domain methods are based upon the time waveform itself and include 

analysing the waveform in term of its descriptive statistics. Mean, standard deviation, 

peak-to-peak interval, crest factor as well as higher order statistical characterisations 

such as root mean square, kurtosis and skewness. 

Time series modelling is an approach that is based on fitting the waveform data to a 

parametric time series model. Popular models in literature are Auto Regressive (AR) 

and Auto Regressive Moving Average (ARMA). (Isermann, 2011), (Pham, 2010) & 

(Carden, 2004). 

Frequency-domain analysis is based on the transformed signal in frequency domain.  

The advantage of frequency-domain analysis over time-domain analysis is its ability 

to easily identify and isolate certain frequency components of interest. Fourier 

transform spectrum analysis techniques by means of a Fast Fourier Transform (FFT) 

are used to look at either components of interests within a frequency band or the whole 

spectrum and extract features of interests. (Lu et al., 2009), (Hameed et al., 2009), 

(Nandi et al., 2005). 
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The Cepstrum, defined as the power spectrum of the logarithm of the power spectrum 

has the capability to detect harmonics and sideband patterns in power spectrum. High-

order spectrum, i.e., bi-spectrum or tri-spectrum, can provide more diagnostic 

information than power spectrum for non-Gaussian signals. 

There are two main classes of approaches for power spectrum estimation, namely the 

non-parametric approaches that estimate the autocorrelation sequence of the signal 

and then applies a Fourier transform to the estimated autocorrelation sequence. 

Secondly, the parametric approach that build a parametric model for the signal and 

then estimate power spectrum based on the fitted model. Among them, AR spectrum 

(Dron, 1998), (Stack, 2004) and ARMA spectrum (Salami, 2001) based on AR model 

and ARMA model, respectively, are the two most commonly used parametric spectra 

in machinery fault diagnostics. 

Time-frequency analysis may a have significant advantage if the signal being 

monitored is non-stationary, which is common in moving machinery faults. Time-

frequency analysis has the ability to analyse waveforms in both the time and the 

frequency domain and has been developed for non-stationary signal investigation. 

Traditional time–frequency analysis uses time–frequency distributions, which 

represent the energy or power of waveform signals in two-dimensional functions of 

both time and frequency to better reveal fault patterns for more accurate diagnostics. 

Examples include spectrograms and Wigner–Ville distributions. 

Wavelets present a time-frequency analysis transform, which differs to the time-

frequency approach by using a time-scale representation of a signal.  Wavelets have 

been applied across numerous condition monitoring applications (Peng, 2004), (Zhu, 

2009) and (Watson et al., 2010). 

Traditionally, reliability analysis was carried out by fitting the event data to a time 

between events by a probability distribution, then this distribution was used for further 

analysis.  CBM gives additional data and it is beneficial to use both the event and 

condition monitoring data together. From this combined analysis mathematical models 

can be built that properly describes the underlying mechanism of a fault or failure. The 

models built based on both event and condition monitoring data is the basis for 

maintenance decision support—diagnostics and prognostics (Jardine et al., 2006). 
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Models include time-dependent Proportional Hazards Models (PHM); a commonly 

used parametric baseline hazard function is the Weibull hazard function, which is the 

hazard function of the Weibull distribution.  

The concept know as potential-to-functional failure interval (P-F) is used in (RCM), the 

P-F describes failure patterns in condition monitoring. The P-F, is the time between a 

potential failure (P), which is some indicator of condition and the actual functional 

failure (F). Although difficult to quantify in real applications, the P-F interval offers a 

useful metric in condition monitoring. 

The Hidden Markov model (HMM), (Rabiner, 1989), (Elliot, 1995), is another 

appropriate model for analysing event and condition monitoring data together. An 

HMM consists of two stochastic processes: a Markov chain with finite number of states 

describing an underlying mechanism and an observation process depending on the 

hidden state. A discrete-time HMM is defined by 

 

 𝑿𝑘+1 = 𝑨𝑿𝑘 + 𝑉𝑘+1        (25) 

 𝒀𝑘 = 𝑪𝑿𝑘 + 𝑊𝑘        (26) 

 

where Xk and Yk denote the hidden process and the observation process, respectively, 

Vk and Wk are noise terms with martingale increments, and A and C are parameters. 

Event data and condition monitoring data are used to train the HMM, i.e., to estimate 

model parameters. (Bunks et al., 2000) and (Lee et al., 2004) 

3.4 Maintenance Decision Support 

Within the maintenance decision making step, there are two important aspects in a 

CBM program, namely, diagnostics and prognostics. Diagnostics deals with fault 

detection, isolation and identification, when it occurs. Fault detection is a task to 

indicate whether something is going wrong in the monitored system; fault isolation is 

a task to locate the component that is faulty; and fault identification is a task to 

determine the nature of the fault when it is detected. Up to now, diagnosis has been 

used within safety critical equipment to alert the operator of a fault with the 

electromagnetic relay e.g. operational failure, via systems such as Built in Test (BIT) 

as used in the FADEC. 
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Prognostics deals with fault prediction before it occurs. Fault prediction is a task to 

determine whether a fault is impending and estimate how soon and how likely a fault 

will occur. Diagnostics is posterior event analysis and prognostics is prior event 

analysis. Prognostics is much more efficient than diagnostics to achieve zero-

downtime performance. After a brief look at diagnostics, prognostics will be the subject 

of the rest of this chapter. 

3.4.1 Diagnostics 

Diagnostics, is required when fault prediction of prognostics fails and a fault occurs. A 

CBM program can be used to carry out diagnostics or prognostics, or both. No matter 

what the objective of a CBM program is, however, the three CBM steps are followed 

as in the diagram. 

Fault diagnostics is primarily involved with the mapping of the information gained from 

the machine measurements or features in the features space to the actual machine 

faults in the fault space. This process is also called pattern recognition (Jardine et al., 

2006).  In the past this was a skilled task carried out by experience personnel utilising 

the data gained from data processing. As the development of machine learning 

techniques has become prevalent and reliable over the last few years, this is 

increasingly being done automatically using statistical approaches and artificial 

intelligent approaches.   

3.4.2 Statistical Methods 

Statistical methods attempt to determine whether a specific fault is present or not 

based upon the data from condition monitoring, and typically uses hypothesis testing 

to indicate if a fault is present.  Statistical distributions or specific models of the fault 

are tested against distributions or models of the test data and the hypothesis is either 

true or false (Sohn et al., 2002). 

In another approach, Statistical Process Control (SPC) has been widely used in 

condition monitoring for fault detection and diagnostics.  The deviation from a 

reference signal which represents the normal operation is monitored.  Boundaries are 

then used to determine if the measured signal deviates from the reference signal by a 

certain amount that determines impending failure. The technique has been used by 
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(Lee, 2004) for individual component identification and (Fugate, 2001) for vibration 

based damage detection. 

Cluster analysis, as a multivariate statistical analysis method, is a statistical 

classification approach that groups signals into different fault categories on the basis 

of the similarity of the characteristics or features they possess. It seeks to minimise 

within-group variance and maximise between-group variance. The result of cluster 

analysis is a number of heterogeneous groups with homogeneous contents: There are 

substantial differences between the groups, but the signals within a single group are 

similar (Jardine et al., 2006). Distance measurements are commonly used to group 

signals based on the similarity between two signals (Skormin, 1999), (Artes, 2003). 

Euclidean distance, Mahalanobis distance, Kullback–Leibler distance and Bayesian 

distance are all measurements that have been explored in literature. 

3.4.3 Artificial Intelligence 

Artificial Intelligence techniques are increasingly being used, and the results in 

literature have shown good performance.  AI require training and specific knowledge 

which can be hard to obtain.  Artificial Neural Networks (ANNs), Expert Systems (ES), 

Fuzzy Logic, Fuzzy Neural Networks, Neural-Fuzzy systems and evolutionary 

algorithms (EAs) have all been used, (Rafiee, et al 2007) & (Saxena, 2007). 

3.4.4 Model-Based Approaches 

Model-based approaches for machine fault diagnosis have also been utilised.  These 

approaches use the physical attributes to produce an explicit mathematical model of 

the equipment being monitored. This model may then be used with residual generation 

methods such as parameter estimation (or system identification), Kalman Filtering and 

parity relations to generate signals, called residuals, which are indicative of fault 

presence in the machine (Jardine et al., 2006). Finally, the residuals are evaluated to 

arrive at fault detection, isolation and identification. (Simani, 2003). 

3.5 Prognostics 

Unlike diagnostics, which has started to become an established practise, prognostics 

is still a large area of research and is subject to changing standards. Within literature, 

different definitions of prognostics include; “prognostics is, or should be, performed at 
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the component or sub-component level”; “prognostics involves predicting the time 

progression of a specific failure mode from its incipience to the time of component 

failure”; “an appreciation of future component operation is required”; “prognostics is 

related to, but not the same as, diagnostics.” (Sikorska et al., 2011). 

A definition by the ISO 13381-1 standard gives the definition of prognostics as ‘an 

estimation of time to failure and risk for one or more existing and future failure modes’, 

(ISO 13381-1, 2004). Certainly as the technologies mature, the definitions will become 

more standardised, however, at present the majority of work done within the field is of 

a theoretical nature, with few published examples of prognostic models being applied 

in real scenarios, under a normal range of operating conditions and how this may 

impact on business models.  

Without doubt, the potential advantages of prognostics is great, compared with just 

using diagnostics as part of a CBM system; as only the downtime due to the actual 

maintenance action becomes relevant.  The ability to plan and schedule maintenance 

whilst the system is up and running offers significant savings in cost, logistics, 

maintenance downtime and life cycle costs. System design and development, 

reliability, safety can also be added to this list (Sun, Bo, et al., 2010). Example of these 

potential cost savings are given by (Hecht, 2006) for aviation assets, where 

maintenance and re-test can be pre-planned prior, yielding a saving of maintainer time 

and significant reduction in its variability. 

In published literature that relates to prognostics, it can be seen that there is a strong 

correlation between and the high reliance on diagnostics. However the boundary 

between the two is somewhat blurred.  Certainly the damage that has occurred needs 

to be identified and quantified as a starting point for applying prognostics, this is a 

retrospective activity, while prognostics is concerned with trying to predict the damage 

that is yet to occur. Although diagnostics may provide useful business outputs on its 

own, prognostics relies on diagnostic outputs (e.g. fault indicators, degradation rates 

etc.) and therefore cannot be done in isolation. (Sikorska et al., 2011). Detection of 

failure progression is more valuable compared to the detection of failure once it has 

reached a severe point. Furthermore, it is a prerequisite for prognostics (Xiong et al., 

2008). 
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The process of prognostics involves two main stages, firstly the current health status 

of the system/component must be determined and this stage may considered under 

the heading of diagnostics. Other terms used in literature to describe this stage are; 

degradation identification and health assessment. Various methods may be used to 

fulfil this task, but as discussed above in section 3.4 the process tends to be carried 

out automatously, mainly by Bayesian methods and AI, utilising such techniques as 

pattern recognition by clustering and classification. Both of these techniques have 

advantages and disadvantage associated with them. The former generally requiring a 

model of the degradation, this involves an understanding of the physical process that 

accounts for the degradation and can be very difficult, if not almost impossible to 

determine. Where in the latter techniques, to infer an accurate degradation pattern 

model from an A.I based approach can utilise a large amount of failure data. This data 

may be difficult to obtain in large quantities, as in general, systems are not run to failure 

and in some systems this may take months/years to evolve. 

The second stage of the prognostic is the estimation of the RUL by prediction of the 

degradation trend. Prognostics implies forecasting of the systems/components future 

health level by propagating the current health level until a failure threshold. Terms 

used for describing this phase are extrapolation, propagation of fault, trending, tracking 

and time series analysis. 

The range of possible prognostic approaches and their applicability for different 

system in terms of increasing accuracy and cost is shown in figure 3.1 below 

(Vachtsevanos et al., 2006). It can be seen that experienced based prognostics is the 

cheapest option and its range of system applicability is diverse, consisting of statistical 

(e.g. Weibull) and knowledge based models (e.g. fault log data), however in terms of 

accuracy, it falls short of Physics of Failure (PoF) and Data Driven techniques which 

form the middle section of the pyramid. Model-based prognostics, at the top of the 

pyramid, are the most accurate but difficult and costly to develop, but are expected to 

take prognostics into the future.  
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Figure 3.1. Possible prognostic approaches and their applicability for different system in terms of 

increasing accuracy and cost (Vachtsevanos et al., 2006) 

Prognostic technologies typically use measured or inferred features, in combination 

with data-driven and/or physics-based models, to predict the condition of the system 

at some future time. Prognostic techniques combining data-driven and physics-based 

models are sometimes referred to as ‘hybrid’ prognostics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Main categorisation of model for RUL prediction (Sikorska et al., 2011), 
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In the figure below, the main categories of prognostics techniques for remaining useful 

life prediction used in literature are presented.  The next section will look at the majority 

of these techniques in the form of literature review to enable the best solution for the 

problem to be proposed. 

3.6 Review of Prognostic Techniques 

3.6.1 Model Based Prognostic Techniques 

Model-based prognostic schemes include those that employ a dynamic model of the 

process being predicted. These can include physics-based models, autoregressive 

moving-average (ARMA) techniques, Kalman/Particle filtering, and empirical-based 

methods. 

In engineering, the development of a model has been used traditionally to understand 

component failure mode progression.  The development of a Physics of Failure (PoF) 

or Physics based models (PbM), (the two names will be used interchangeably 

throughout this Thesis), that incorporates the ability to assess damage to a 

component, taking into account operating conditions and gives a cumulative damage 

assessment provides a basis to evaluate the distribution of RUL. The results from such 

model may be used as a basis for real-time failure prognostic predictions with specified 

confidence bounds. These confidence bounds may be the result of statistical 

representations of historical operational profiles.  

The actual availability of physics of failure models is limited.  A model that incorporates 

the ability to predict damage parameters with an acceptable confidence boundary over 

steady-state and transient loads, temperatures and other variables are still quite few.  

PoF models are implemented in three different ways (Sikorska et al., 2011); firstly, 

dynamic ordinary or partial differential equations that can be solved with approximation 

approaches (e.g. Lagrangian or Hamiltonian dynamics), secondly, state-space 

methods (systems of first order differential equations) and thirdly, simulation methods. 

One such model that has found prevalence in prognostic literature is the Paris Law for 

crack propagation (Zhao et al, 2013), (Zhao et al, 2015). 

 

𝑑𝛼

𝑑𝑁
= 𝐶0(∆𝐾)𝑛        (27) 

 

where α = instantaneous length of dominant crack 
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             N = running cycles 

            𝐶0, 𝑛 = material dependant constants 

            ΔK = range of stress-intensity factor over one loading cycle 

 

The crack growth process was simulated to yield normally distributed crack lengths, 

which were used within a Bayesian framework to update the parameters of the 

degradation model (e.g., Paris’ law). The degradation model was initially fed by the 

results of a stress analysis from a gear dynamic model or finite element model. The 

distributions of the uncertainty factors were updated via Bayesian Inference using the 

condition monitoring data (simulated crack lengths), and an estimation of the RUL 

based on the degradation model was provided. 

In terms of electronics, (Kulkarni, Chetan S., et al., 2012) proposes first principles 

based modeling and prognostics approach for electrolytic capacitors. Electrolytic 

capacitors and MOSFETs are the two major components, which cause degradations 

and failures in DC-DC converters. The paper studies the effects of accelerated ageing 

due to thermal stress on sets of capacitors, with the focus on deriving first principles 

degradation models for thermal stress conditions. The degradation data forms the 

basis for developing the model based remaining life prediction algorithm. Finally the 

data is used to derive accurate models of capacitor degradation, and use them to 

predict performance changes in DC-DC converters. 

(Fan,et al., 2011) looked at how to accurately predict the reliability of LED lighting. In 

this paper, after analyzing the materials and geometries for high-power white LED 

lighting at all levels, i.e., chip, package and system; Failure Mode Mechanisms and 

Effects Analysis (FMMEA) was used in the PoF-based PHM approach to identify and 

rank the potential failures emerging from the design process. The second step in this 

paper was to establish the appropriate PoF-based damage models for identified failure 

mechanisms that carry a high risk. 

A PoF based prognostic method for power electronic modules was proposed by (Yin, 

C. Y., et al., 2008). This method allowed the reliability performance of power modules 

to be assessed in real time. A compact thermal model was firstly constructed to 

investigate the relationship between the power dissipation and the temperature in the 

power module. Such relationship can be used for fast calculation of junction 

temperature and the temperatures at each interface inside power modules. The 

predicted temperature profile was then analyzed using a rainflow counting method so 
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that the number of thermal cycles with different temperature ranges can be calculated. 

A reduced order thermo-mechanical model was also constructed to enable a fast 

calculation of the accumulated plastic strain in the solder material under different 

loading conditions. The information of plastic strains was then used in the lifetime 

prediction model to predict the reliability of the solder interconnect under each regular 

loading condition.  

Prognosis with physics-based models are best performed based on an operational 

profile prediction which must be developed using the steady-state and transient loads, 

temperatures, or other online measurements. Probabilistic critical-component models 

then can be ‘‘run into the future’’ by creating statistical simulations of future operating 

profiles from the statistics of past operational profiles or expected future operating 

profiles (Vachtsevanos, 2006). Unfortunately, physics of failure models are few and 

far between, as well as being for more complex processes very difficult and costly to 

develop. In this case, models are often estimated using system identification 

techniques, usually via a non-linear least square regression method with a forgetting 

factor (Ljung, 1999). 

Model-based approaches to prognosis differ from feature-based approaches in that 

they can make RUL estimates in the absence of any measurable events, but when 

related diagnostic information is present, the model often can be calibrated based on 

this new information. 

A fusion of the feature-based and model-based approaches provides full prognostic 

ability over the entire life of the component. While failure modes may be unique from 

component to component, this combined model-based and feature-based 

methodology can remain consistent across different types of critical components or 

LRUs. 

(Baraldi et al., 2012) propose a prognostic method which predicts the RUL of a 

degrading system by means of an ensemble of empirical models. RUL predictions of 

the individual models are aggregated through a Kalman filter (KF)-based algorithm. 

The method is applied to the prediction of the RUL of turbine blades affected by a 

developing creep. The Kalman filter assumes that the system must be linear, and the 

process and measurement noise must be white Gaussian and independent, although 

non-linearity has been dealt with by the Extended Kalman filter (EFK) and Unscented 

(UFK). 
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An Unscented Kalman Filter (UKF) approach is proposed for the purpose of damage 

tracking and remaining useful life (RUL) prediction of a Polymer electrolyte membrane 

fuel cells by (Zhang, Xian, and Pierluigi Pisu, 2012). A physics-based, prognostic-

oriented catalyst degradation model is developed to characterize the fuel cell damage 

that establishes the relationship between the operating conditions and the degradation 

rate of the electro-chemical surface area. 

3.6.2 Kalman Filtering 

Kalman filtering provides a robust solution that has been successfully applied to a 

variety of applications like ball gate array solder joints, bearings, batteries, material 

crack growth, electrolytic capacitors, etc. (Kulkarni, et al., 2012), (Singleton et al., 

2015), (Ompusunggu et al., 2015) and (Lall, 2012). Empirical or physics-based 

degradation models are fused with measurement data within the framework in order 

to improve the RUL estimation.  

 

 

 

 

 

 

 

Figure 3.3. Baysian Framework 

For linear systems, perturbed by Gaussian white noise, the Kalman filter is an optimal 

filter. Due to its recursive structure, the filter is also computationally efficient, which is 

an important consideration in the proposed application. As well as the ability to 

recursively update model parameters as measurement data becomes progressively 

available, another attribute of the filter is the ability to estimate model parameters 

values in the absence of new data.  
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In the framework proposed in figure (3.3), an ARMA model of the feature vector, 

replaces the traditional empirical or physics-based degradation models in this Thesis. 

This is used in conjunction with the Kalman filter and measurement data to enable an 

estimation of the feature vector to be made up to the failure threshold. 

 𝑿𝑘 = 𝑨𝑋𝑘−1 + 𝑩𝑈𝑘−1 + 𝑮𝑊𝑘−1      (28) 

 𝒀𝑘 = 𝑯𝑋𝑘 + 𝑽𝑘        (29) 

The system is corrupted by an additive vector of random noise signals 𝑾𝑘, 

representing all system disturbances, modelling errors etc., and the output is corrupted 

by another vector of random signals 𝑽𝑘, representing measurement noise, 

discretization errors etc. 

The process noise 𝑾𝑘  is a vector of zero-mean independent and identically distributed 

(iid) random variables (RVs), G is the stochastic input matrix and 𝔼{𝑾𝑗𝑾𝑘
𝑇} is the 

covariance matrix of the stochastic disturbance processes such that:  

𝔼{𝑾𝑗𝑾𝑘
𝑇} = {

𝑸𝑊  for 𝑗 = 𝑘
0 for 𝑗 ≠ 𝑘 

} 

Where 𝔼{. } is the expectation operator and 𝑸𝑊is a positive-semidefinite matrix.  The 

measurement noise 𝑽𝑘 is assumed to be composed of Gaussian random variables 

and its covariance matrix is represented by 𝑹 =  𝔼{𝑽𝑗𝑽𝑘
𝑇}.The (auto) covariance of a 

multidimensional random variable Z is expressed as Cov(𝒁) = 𝔼{(𝒁 − 𝔼{𝒁})(𝒁 −

𝔼{𝒁})𝑇} but in the case of zero-mean variable it reduces to Cov(𝒁) = 𝔼{𝒁𝑗𝒁𝑘
𝑇}. The 

Kalman filter aims at providing  

1) 𝑿̂𝑘 = 𝔼{𝑿𝑘 𝑿1:𝑘}estimate of the true state mean at any time 𝑡𝑘 > 𝑡0 given all the 

previous measurements 𝒀𝑖, i = 1,…k; 

2) Cov(𝑿𝑘 − 𝑿̂𝑘) is an estimate of of the state error covariance given all previous 

measurements. 

If the random processes 𝑾𝑘 and 𝑽𝑘 have a Gaussian distribution, then the conditional 

state distribution: 

  𝑝(𝑿𝑘 𝒀1:𝑘)~𝒩(𝔼{𝑿𝑘 𝒀1:𝑘}, Cov(𝑿𝑘 − 𝑿̂𝑘)) 



64 
 

The Kalman filter uses two sources of information: (1) a dynamic model expressing 

the way the system evolves over time and (2) sensory data (measurements). The 

information from these sources is fused in order to infer an optimal state estimate at 

every time step. 

The Kalman filter algorithm may be broken down into four main stages as shown in 

the diagram below (Grewal, Mohinder, 2011), (Simon, 2006) & (Kim, 2011). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Kalman filtering algorithm 

It can be seen from the above, that the Kalman filter receives a input in the form of a 

measurement 𝒛𝒌 and returns an estimate of the output 𝒙̂𝑘. The internal process is 

carried out using four steps.  The Kalman filtering algorithm is carried out recursively, 

hence the subscript k and the subscript '-', means the variable has been predicted. 

Measurement 

𝒛𝑘 

Estimate 

𝒙̂𝑘 

4. Compute the error covariance: 

𝑷𝑘 = 𝑷𝑘
− − 𝑲𝑘𝑯𝑷𝑘

− 

3. Compute the estimate: 

𝒙̂𝑘 = 𝒙̂𝑘
− + 𝑲𝑘(𝒛𝑘 − 𝑯𝒙̂𝑘

−) 

2. Compute the Kalman gain: 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑇(𝑯𝑷𝑘

−𝑯𝑇 + 𝑹)−1 

1. Predict the state & error covariance 

𝒙̂𝑘
− = 𝑨𝒙̂𝑘−1 

𝑷𝑘
− = 𝑨𝑷𝑘−1𝑨𝑇 + 𝑸 

 

0. Set initial values: 

𝑥 0, 𝑃0 
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The first step is for prediction, the two variables 𝒙̂𝑘
− and 𝑷𝑘

−, which will be used in the 

steps 2 through to 4, are computed in this step. It can be seen that the prediction steps  

𝒙̂𝑘
− and 𝑷𝑘

− have a very close relationship with the system model A and will be 

discussed more later on. 

In step 2, the Kalman gain (𝑲𝑘) is computed.  It can be seen that the previously 

computed variable 𝑷𝑘
− is used.  H and R are values set outside the Kalman filter and 

are based on process noise and measurement noise defined for the system. 

In step 3, an estimate is computed from a measurement given as an input 𝒛𝑘, the 

formula in this step is very closely related to a low-pass filter and the variable 𝒙̂𝑘
− is the 

one calculated above in step 1. 

In step 4, the error covariance is computed.  Error covariance is a measure indicating 

how accurate the estimate is. This forms the basis of the decision making used to trust 

and use or discard the estimate computed in the previous step. 

The Kalman filter algorithm can be summarised into two parts, the prediction process 

and the estimation process.  Where the estimate and error covariance from the 

previous time point (𝒙̂𝑘−1 and 𝑷𝑘−1, respectively) are used as input and prediction of 

these two at the current time point (𝒙̂𝑘
− and 𝑷𝑘

−, respectively) are returned as a final 

result.  It is these results that are used for the estimation process. The parameters 

used in the prediction process A and Q are the system model. 

3.6.2.1 Estimation Process 

The estimation process may be examined in more detail. From the above diagram and 

description, the estimation process is carried out in steps 2 to 4 and the goal is to 

compute an estimate, which is the final product of the Kalman filter. In the equation 

𝒙̂𝑘 = 𝒙̂𝑘
− + 𝑲𝑘(𝒛𝑘 − 𝑯𝒙𝑘

−)       (30)  

first of all a prediction 𝒙̂𝑘
− and a new measurement 𝒛𝑘 are required, this is due to the 

Kalman filter being recursive.  The measurement 𝒛𝑘is given as an input, for the 

prediction process, a value is passed from the prediction process (discussed next).  

H is a matrix related to the system model so this is already known.  The variable 𝑲𝑘 
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is the Kalman gain, and if the value of this variable is known, a new estimate can be 

produced. The Kalman gain 𝑲𝑘 is computed from  

 𝑲𝑘 = 𝑷𝑘
−𝑯𝑇(𝑯𝑷𝑘

−𝑯𝑇 + 𝑹)−1       (31) 

and forms the weighting process which allows step 3 to perform an estimate. In the 

Kalman filter, the weighting 𝑲𝑘used in the computation of the estimate is calculated 

every step and it is deemed to be adaptive. 

3.6.2.2 Error Covariance 

Step 4 in the algorithm, calculates the error covariance. 

 𝑷𝑘 = 𝑷𝑘
− − 𝑲𝑘𝑯𝑷𝑘

−        (32) 

The error covariance is used to indicate the difference between the estimate from the 

Kalman filter and the true but unknown value.  It gives the degree of accuracy of the 

estimate.  If 𝑷𝑘is large, the error of the estimate is large and if 𝑷𝑘is small, the error of 

the estimate is small.  The relationship between 𝒙𝑘 and its estimate 𝒙̂𝑘 and the error 

covariance is the normal distribution 

 𝒙𝑘~𝑁(𝒙𝑘, 𝑷𝑘)         (33) 

which means the variable 𝒙𝑘 follows a normal distribution with mean 𝒙̂𝑘 and covariance 

𝑷𝑘. The Kalman filter computes the probability distribution of the estimate of the 

variable 𝒙𝑘 and selects the highest value probability as an estimate.  Error covariance 

can more be more formal defined mathematically as: 

 𝑷𝑘 = 𝔼{(𝒙𝑘 − 𝒙𝑘)(𝒙𝑘 − 𝒙̂𝑘)𝑇}      (34) 

and is basically the mean square of the error of the estimate, hence the size of the 

error covariance is proportional to the error of the estimate. 

3.6.2.3 Prediction Process 

The last step of the Kalman filtering processing is the prediction procedure and relates 

to step one in the flowchart.  The prediction process is concerned with how the 

estimate 𝒙̂𝑘 will vary when time changes from 𝑡𝑘 to 𝑡𝑘+1 is predicted.  The equations 

are repeated below 
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 𝒙̂𝑘+1
− = 𝑨𝒙𝑘                  (35) 

         𝑷𝑘+1
− = 𝑨𝑷𝑘𝑨𝑇 + 𝑸            (36) 

where the first equation predicts the estimate and the second equation predicts the 

error covariance.  𝒙𝑘 and 𝑷𝑘 are the values calculated from steps 3 and 4 respectively, 

A and Q are already defined by the system model.  The notation used in the subscript, 

'k+1' and '-' are the value at time  𝑡𝑘+1 and that it is a prediction, respectively. 

𝒙̂𝑘 Estimate of the state variable 

𝒙̂𝑘
− Prediction of the state variable 

𝑷𝑘 Estimate of the error covariance 

𝑷𝑘
− Prediction of the error covariance 

 

In the Kalman filter the estimate is performed by  

  𝒙̂𝑘 = 𝒙̂𝑘
− + 𝑲𝑘(𝒛𝑘 − 𝑯𝒙̂𝑘

−)       (37) 

the estimate from the previous time point (𝒙̂𝑘−1) can not been seen in this equation, 

but the prediction of the current time point (𝒙̂𝑘
−) is presented instead. This prediction is 

obtained by using the estimate from the previous time point. The prediction is 

calculated from the following 

  𝒙̂𝑘
− = 𝑨𝒙̂𝑘−1         (38) 

by substituting this into the expression above, the estimate can be calculated. 

𝒙̂𝑘 = 𝒙̂𝑘
− + 𝑲𝑘(𝒛𝑘 − 𝑯𝒙𝑘

−)   

 𝑨𝒙̂𝑘−1 + 𝑲𝑘(𝒛𝑘 − 𝑯𝒙̂𝑘
−)       (39) 

This enables the estimate to be formed from the previous time step. Sometimes the 

prediction is referred to as a priori estimate and the estimate is called a 

posteriestimate. 

3.6.3 Particle Filters 

Particle filters were proposed for RUL prediction by (Orchard ME, Vachtsevanos, 

2009) and (Saha, Bhaskar, et al. 2009), and have the advantage of not being bound 
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by the linear system or Gaussian noise assumption. (Zio and Peloni, 2011) proposes 

a methodology for the estimation of the remaining useful life of components based on 

particle filtering. The approach employs Monte Carlo simulation of a state dynamic 

model and a measurement model for estimating the posterior probability density 

function of the state of a degrading component at future times, in other words for 

predicting the time evolution of the growing fault or damage state. The proposed 

approach is applied to a crack fault, with satisfactory results. 

(An, Dawn, Joo-Ho, and Nam, 2013) present a Matlab-based tutorial for model-based 

prognostics, which combines a physical model with observed data to identify model 

parameters, from which the RUL can be predicted. The particle filter is used in this 

tutorial for parameter estimation of damage or a degradation model. As examples, a 

battery degradation model and a crack growth model are used to explain the updating 

process of model parameters, damage progression, and RUL prediction.  

(Daigle and Goebel, 2010) overcame the problem of limited sensor data by applying 

a model-based prognostics approach using particle filters with application on solenoid 

valves. (Daigle and Goebel, 2010) also presented a detailed model of the solenoid 

valve and extended it according to the damage evolving during the valve’s lifetime. 

The measurement models, which establish the mapping from measurement to the 

internal system state, were the system states themselves, plus measurement noise.  

(Lall, Lowe and Goebel, 2010) extended their work on structural damage to Ball Grid 

Array (BGA) interconnects. In this paper, the effectiveness of the proposed particle 

filter and resistance spectroscopy based approach in a Prognostic Health 

Management (PHM) framework has been demonstrated for electronics. The 

measured state variable has been related to the underlying damage state using non-

linear finite element analysis. With the particle filter being used to estimate the state 

variable, rate of change of the state variable, acceleration of the state variable and 

construct a feature vector. The estimated state-space parameters have been used to 

extrapolate the feature vector into the future and predict the time-to-failure at which 

the feature vector will cross the failure threshold. RUL has been calculated based on 

the evolution of the state space feature vector. 
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3.6.3.1. Particle Filter Implementation 

The finalised state model needs to be projected until the failure threshold is reached, 

the particle filter is a powerful and emerging tool for sequential signal processing that 

is finding application in many engineering and science problems (Arulampalam, 

Maskell, Gordon, and Clapp, 2002), (Zio and Maio, 2010), (Zio and Peloni, 2011), (An, 

2013) and (Saha, 2011) and is used here to determine the RUL due to the ability to 

add non-linear components to the model if necessary. 

The framework below gives a conceptual schematic of a particle-filtering framework 

for addressing the fault prognosis problem. System sensors and the feature 

extraction module provide the sequential observation (or measurement) data of the 

fault growth process 𝑧𝑘  at time instant k.  The fault progression can be explained 

through the state-evolution model and the measurement mode 

 

𝒙𝒌 = 𝒇𝒌(𝒙𝒌−𝟏, 𝝎𝒌) ↔ 𝒑(𝒙𝒌 𝒙𝒌−𝟏) 

𝒛𝒌 = 𝒉𝒌(𝒙𝒌, 𝒗𝒌) ↔ 𝒑(𝒛𝒌 𝒙𝒌) 

 

 

  

 

 

  

 

 

 

  

 

 

Figure 3.5. Particle filtering schematic    

where 𝒙𝑘 is the state of the fault dimension (such as the contact resistance), the 

changing environment parameters that affect fault growth, 𝜔𝑘 and 𝑣𝑘, are the non-

Gaussian noises, and 𝑓𝑘 and ℎ𝑘 are nonlinear functions. 
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The object of non-linear filtering is to recursively estimate 𝒙𝑘 which in this case 

includes a set of parameters that define the evolution of the fault condition in time from 

measurements 𝒛𝑘 ∈ 𝑅𝑛𝑥.  The measurements are related to the target state via the 

measurement equation 𝒛𝑘 = ℎ𝑘(𝒙𝑘, 𝑣𝑘) where ℎ𝑘 is a known, possibly nonlinear 

function and 𝑣𝑘 is a measurement noise sequence.  The noise sequences 𝑣𝑘 and 𝜔𝑘−1 

will assumed to be white, with a known probability density function and mutually 

independent. 

The particle filter exists in various forms, however, in terms of usage in literature for 

prognostics, the Sampling Importance Re-sampling (SIR) concept is the most 

prominent.  The SIR algorithm proposes a posterior filtering distribution denoted as 

𝜋(𝑥) = 𝑝(𝒙𝑘 𝒛𝑘) is approximated by a set of N weighted particles {〈𝒙𝑘
𝑖 , 𝑤𝑘

𝑖 〉; 𝑖 = 1, … , 𝑁} 

sampled from  an arbitrarily proposed distribution q(x) that is somewhat similar to 𝜋(𝑥) 

(e.g., 𝜋(𝑥) > 0 → 𝑞(𝑥) > 0 for all 𝒙 ∈ 𝑅𝑛𝑥.  The importance weights 𝑤𝑘
𝑖  are proportional 

to the likelihood p(𝒛𝑘 𝒙𝑘
𝑖 ) associated to the sample 𝒙𝑘

𝑖  and this is then normalised to 

give the following 

    𝑤𝑘
𝑖 =

𝜋(𝒙𝑘
𝑖 )/𝑞(𝒙𝑘

𝑖 )

∑ 𝜋(𝒙𝑘
𝑗
)/𝑞(𝒙𝑘

𝑗
)𝑁

𝑗=1

     (40) 

such that ∑ 𝑤𝑘
𝑖𝑁

𝑗=1 = 1  and the posterior distribution (which is essentially the target 

distribution) can be approximated as 

    𝑝(𝒙𝑘 𝒛𝑘) = ∑ 𝑤𝑘
𝑖𝑁

𝑗=1 𝛿(𝒙𝑘 − 𝒙𝑘
𝑖 )   (41) 

As with any process that uses a Bayesian update, the filtering step consists of two 

stages, firstly the production of a priori state density estimate which is the prediction 

step and secondly a update of the estimation according to the new measurement 

information. 

The prediction step is given by  

 

                 𝑝(𝒙𝑘 𝒛𝑘−1) ≈ ∑ 𝑤𝑘−1
𝑖 𝛿(𝒙𝑘 − 𝑓𝑘−1(𝒙𝑘−1

𝑖 ) − 𝜔𝑘−1
𝑖 )𝑁

𝑖=1  (42) 

 

and the update step is used to modify the particle weights according to the relation 

 

𝑤̅𝑘
𝑖 = 𝑤𝑘−1

𝑖
𝑝(𝒛𝑘 𝒙𝑘

𝑖 )𝑝(𝒙𝑘
𝑖  𝒙𝑘−1

𝑖 )

𝑞(𝒙𝑘
𝑖  𝒙𝑘−1

𝑖 , 𝒛𝑘)
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     𝑤𝑘
𝑖 =

𝑤̅𝑘
𝑖

∑ 𝑤̅𝑘
𝑗𝑁

𝑗=1

    (43) 

Re-sampling may be used if the weights degenerate such that they are close to zero, 

as this can occur if the system state is poorly represented, it also wastes computing 

resources on superfluous calculations.  

 

To enable the particle filter to be used for prognosis, a particle filtering based 

prognostics approach needs to project the current PDF estimate of the damage state 

in time.  The simplest implementation that can be used to solve this problem uses the 

damage state equation recursively to propagate the posterior PDF estimate defined 

by {〈𝒙𝑝
𝑖 , 𝑤𝑝

𝑖 〉; 𝑖 = 1, … , 𝑁} in time until 𝒙𝑝
𝑖  fails to no longer meet the system failure 

criteria at some time 𝑡𝐸𝑂𝐿
𝑖 . Therefore, the RUL PDF is the distribution of 𝑝(𝑡𝐸𝑂𝐿

𝑖 − 𝑡𝑝) 

given by the distribution of 𝑤𝑝
𝑖 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Particle filtering flowchart. 
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Fig 3.7. Particle filter for RUL prediction flowchart (Saha, 2011) 

3.7 Data Driven Techniques 
 

Data-driven models rely only on previously observed data to predict the projection of 

a system’s state or to match similar patterns in the history to infer RUL (Liao and Kottig, 

2014). In a lot of cases, historical fault/failure data in terms of time plots of various 

signals leading up to failure, or statistical data sets may be available.   

The derivation of any sort of prediction model may, however be difficult to obtain. In 

such situations, the use of nonlinear network approximations that are based upon 

using well-established formal algorithms can be used to provide desired outputs 

directly in terms of the data. Non-linear networks include the concept of artificial neural 

networks, fuzzy-logic systems and other computation intelligence methods which are 

based on the linguistic and reasoning abilities of humans. The techniques provide 

structured nonlinear function mapping with very desirable properties between the 

available data and the desired outputs (Vachtsevanos, 2006). 

In prediction, Artificial Neural Networks (ANNs), Fuzzy Systems, and other 

computational intelligence methods have provided an alternative tool for both 

forecasting researchers and practitioners (Sharda, Ramesh, 1994). 

 

Start Prediction at 𝑡𝑝 
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3.7.1 Statistical Models 

(Si et al., 2011) produced a comprehensive study on statistical data-driven models for 

RUL estimation.  Two categories of statistical model were identified based upon the 

CBM data used. The two identified categories of CBM data are firstly; direct CBM data, 

which indicates the health level of the system directly (e.g. wear level, crack length) 

and secondly indirect CBM data, which reflects the underlying state of the system 

health (e.g. contact resistance, temperature, pressure, moisture, humidity, loading, 

speed and environmental data).  

Under the first category, techniques that have been utilised are Regression-based 

models, Gamma and Weiner based processes and Markovian-based models.  

Whereas the second category consists of stochastic filtering-based models, covariate-

based hazard models and Hidden Markov Model (HMM) and Hidden Semi-Markov 

Models (HSMM). 

Brownian motion (or Wiener Processes) use a Probability density function (PDF) which 

is an inverse Gaussian function to produce a continuous state data driven prognostic. 

By using only the current health state PDF the process does not need posterior data. 

(Wang and Carr, 2010) used a stochastic degradation model based upon an improved 

version of Brownian motion to predict the RUL of monitored plants.  Using a Kalman 

filter the parameters where drifted in the Brownian motion model up to a failure 

distribution threshold as opposed to a constant threshold. 

In some case the degradation processes are monotonic and evolving only in one 

direction, such as wear processes or fatigue crack propagation for example. A Gamma 

process is a natural model for the degradation processes in which the deterioration is 

supposed to take place gradually over time in a sequence of tiny positive increments 

(Si et al., 2011). A Gamma process was used by (Lawless and Crowder, 2004) in 

determining the optimal inspection and maintenance decisions for crack growth based 

data. (Kuniewslci et al. 2009) combined a Gamma process with a Poisson process for 

modelling the degradation and the initial defect in order to determine the lifetime 

distribution. 

The underlying assumptions of Markovian-based models are twofold. One is that the 

future degradation state of the item depends only on the current degradation state, 
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which is often termed as being memoryless. The other is that the system’s state can 

be revealed directly by the observed CBM information, (Si et al., 2011). 

(Zhang, et al., 2005) presented an integrated fault diagnostic and prognostic approach 

for bearing health monitoring and condition-based maintenance. The proposed 

scheme consisted of three main components, Principal Component Analysis (PCA), 

Hidden Markov Model (HMM) and an adaptive stochastic fault prediction model. The 

principal signal features extracted by PCA are utilized by HMM to generate a 

component health/degradation index, which is the input to an adaptive prognostics 

component for on-line remaining useful life prediction. 

Fault classification and prognostics applications were proposed by (Dong et al., 2006), 

(Dong and He, 2007b), (Dong and He, 2007a) using several Hidden Semi-Markov 

Model (HSMM) for the Blackhawk UH-60A main transmission.  Within the planetary 

carriers, the HSMMs are used to generate observations and estimate the maintenance 

durations from the acquired training data.  This differs from the use of HMMs and can 

only produce a single observation for each state in turn. 

(Alireza, et al. 2015) presented a computationally efficient prognostic methodology for 

an isolated-gate bipolar transistor (IGBT). The proposed approach is developed by 

analysing failure mechanisms and statistics of IGBT degradation data obtained from 

an accelerated aging experiment. The approach explores various probability 

distributions for modelling discrete degradation profiles of the IGBT component. This 

allows the stochastic degradation model to be efficiently simulated, in this particular 

example∼1000 times more efficiently than Markov approaches. 

Statistical reliability or usage-based prognostic approach may be a viable approach in 

situations where a viable prognostic model is unavailable or cannot be utilised (this 

may be due to cost, low failure rate or perhaps the poor availability of sensor networks 

within the equipment).  Of all the prognostic algorithm approaches this is least complex 

and requires only that a history of component failure or operational usage profile data 

is available. One typical approach would be to fit a Weibull distribution (or other 

statistical failure distribution) to such failure or inspection data (Groer, 2000) and 

(Schomig and Rose, 2003). 

This approach obviously suffers from a lack of information that is present in model and 

data driven techniques (condition based techniques), but can still be used to good 

effect to drive an interval-based maintenance schedule (several commercial packages 
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are available that use this type of approach).  The update being performed by revising 

the information obtained from maintenance and hence this technique is reliant upon a 

regular updated maintenance database. 

Weibull distributions are a class of reliability functions that have been used for data-

driven prognostics. A three-parameter Weibull failure rate function for wind turbine 

reliability assessment was presented by (Guo, Watson, Tavner, and Xiang, 2009). The 

proposed model dealt better with incomplete field failure data than the traditional 

Weibull model, which in fact is a special case of the introduced three-parameter model. 

An approach for deriving and using accurate Weibull distributions was presented by 

(Sutherland et al. 2003) for the means of identification of subpopulations of related 

systems in the maintenance database for condition-based maintenance of motors. 

A Weibull distribution was used to model the time-to failure for the RUL prediction 

using a statistical model for an application of pumps in a hot strip steel mill by (Goode 

et al., 2000). 

Combining vibration data with reliability data, RUL was calculated during the potential 

failure to functional failure interval.  

The reliability functions, which require data associated with individual failure mode(s), 

can be developed with sufficient historical data. The method incorporates system age 

and independent hazards into RUL prediction. It is easy to build a statistically adequate 

model; however, the model may not follow the underlying degradation process. The 

parameters are often selected by experts, and that process is time consuming. The 

reliability function may require assumptions such as the times to failure must be 

independent and identical distributed, all covariates that affect the hazard rate must 

be included in the model, and the effect of covariates is statistically time dependent 

(Liao and Kottig, 2014). 

Autoregressive moving average (ARMA), Autoregressive integrated moving average 

(ARIMA) and ARMAX models are widely used for modelling and forecasting time 

series data (Box and Jenkins, 1976). The future value is assumed to be a linear 

function of past observations and random errors and each of the three types of 

autoregressive models vary slightly in the linear equation used to relate inputs, outputs 

and noise. ARMA and ARMAX models can remove temporal trends, they should only 

be used for stationary data. A time series is designated to be (weakly) stationary if its 

first two moments (mean and variance) are time-invariant under translation (Tsay, 

2000). The autocorrelation also needs to be independent of time. Consequently, a 
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trend test should be performed prior to modelling to verify whether a stationarity 

assumption is appropriate. ARIMA models overcome this weakness by enforcing 

integration and thus are useful in describing systems with low frequency disturbances 

(i.e. trends), (Sikorska, Hodkiewicz and Ma, 2011).  

Autoregressive models are developed in three recursive steps, (Sikorska, Hodkiewicz 

and Ma, 2011):  

(i) Model identification: Using a set of time series data, values for the orders of 

the autoregressive and moving average parts of the ARMA/ARIMA 

equations are proposed, as well as the regular-difference parts for the 

ARIMA model.  

(ii) Parameter estimation: Using non-linear optimization techniques (e.g. least-

squares method), parameters of the ARMA/ARIMA equations are calculated 

to minimise the overall error between the model output and observed input-

output data.  

(iii) Model validation: A number of standard diagnostic checks can be employed 

to verify the adequacy of ARMA/ARMAX models. (Wu, 2007) options 

include the following: examining standardized residuals, autocorrelation of 

residuals, final prediction error (FPE), Akaike Information criterion (AIC), 

and Bayesian Information Criterion (BIC). 

(Lee, Jay, et al., 2006) predicted the behaviour of machining process spindle load 

signatures using ARMA modelling techniques. Load sensor readings from a boring 

machine spindle were remotely collected and processed into joint time-frequency (TF) 

distributions. Performance related signatures were extracted from the TF distributions 

using the TF moments and Principal Component Analysis. ARMA modelling 

techniques were then utilized to predict the behaviour of the extracted principal 

components. 

(Guclu, Adem, et al., 2010) Presented an ARMA based prognostics solution for railway 

turnouts. The model is applied to data collected from real turnout systems and the 

failure progression is obtained manually using the exponential degradation model. 

RUL of ten turnout systems were reported and results looked promising. 

(Saha, 2009) made a comparison of prognostic algorithms for estimating RUL of 

batteries.  An ARIMA model was compared to other models such as Particle filtering 

and it was concluded that being a purely data-driven method, does not incorporate 
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any physics of the process into the computation, and hence ends up with wide 

uncertainty margins that make it unsuitable for long term predictions. 

3.7.2 Damage Modelling With ARMA Series 

The ability to build the state space model from prior measurement data as the system 

degrades allows complex processes such as relay contacts to be modelled more 

accurately and incorporates adaptation to the uncertainties described in chapter 2.  

A dynamic system with stochastic properties described in the discrete linear form as  

 𝑿𝑘 = 𝑨𝑋𝑘−1 + 𝑩𝑈𝑘−1 + 𝑮𝑊𝑘−1      (44) 

  𝒀𝑘 = 𝑯𝑋𝑘 + 𝑽𝑘       (45) 

is called the state transition equation. This equation determines how each element of 

the state vector evolves over time. In the discrete linear case each element of the state 

vector at time index k+1 is expressed as a linear combination of all the elements of 

the state vector at time k plus some linear combination of the elements of an input 

vector Uk where k represents the time index. The matrix A is called state transition 

matrix and the matrix B is called input matrix. Because in general the states 

themselves are not directly measurable, Eq. (45) indicates how the measurements are 

linked to the system states. More precisely this equation expresses each element of 

the measurement vector Y as a function of the state vector elements plus some input. 

This is a static equation. The matrix H is called measurement (or output) matrix.  

The relationship between the input and output is given by  

 𝑌(𝑧) = 𝐻(𝑧𝑰 − 𝑨)−1𝑩𝑈(𝑧) = 𝐻(𝑧)𝑈(𝑧)     (46) 

i.e. where H(z) is the transfer function with numerator and denominator are 

represented by polynomials 

 𝐻(𝑧) =
𝑧𝑑 ∑ 𝑏𝑖𝑧

𝑚−𝑙𝑚
𝑙=0

𝑧𝑛+∑ 𝑎𝑖
𝑛
𝑖=1 𝑧𝑛−𝑖 𝑧

𝑑       (47) 

where the denominator degree is n, the numerator degree is m ≤ n, and the relative 

degree is n - m. This can be written in autoregressive moving-average (ARMA) form 

as 



78 
 

𝑦𝑘 = −𝑎1𝑦𝑘−1 − ⋯ 𝑎𝑛𝑦𝑘−𝑛 + 𝑏0𝑢𝑘−𝑑 + 𝑏1𝑢𝑘−𝑑−1 + ⋯ + 𝑏𝑚𝑢𝑘−𝑑−𝑚 

 𝑦𝑘 = − ∑ 𝑎𝑖𝑦𝑘−𝑖
𝑛
𝑖=1 + ∑ 𝑏𝑖

𝑚
𝑖=0 𝑢𝑘−𝑖−𝑑     (48) 

The system delay is d = n-m.   

In order to determine the system degree the input to the system, 𝑈𝑘 must excite all 

modes of the unknown system. It can be shown that one can solve for the n+m+1 

unknown ARMA parameters if 𝑈𝑘 is Persistently Exciting (PE) of order n+m+1 

(Marafioti et al., 2014). 

For the relay, a square wave representing the switching input was used as the 

excitation signal 𝑈𝑘 and a (2,1) ARMA series was found to be adequate to model the 

contact degradation. 

To determine the unknown parameters, the general ARMA form is written as 

𝑦𝑘 = [−𝑦𝑘−1 − 𝑦𝑘−2 … − 𝑦𝑘−𝑛 𝑢𝑘−𝑑 … 𝑢𝑘−𝑑−𝑚]

[
 
 
 
 
 
 
𝑎1

𝑎2

⋮
𝑎𝑛

𝑏0

⋮
𝑏𝑚]

 
 
 
 
 
 

+ 𝑣𝑘 

or 𝑦𝑘 = 𝒉𝑘
𝑇𝜽 + 𝑣𝑘        (49) 

where the unknown system parameter vector is 

 𝜽 = [𝑎1 ⋯ 𝑎𝑛 𝑏0  ⋯ 𝑏𝑚]𝑇       (50) 

and the known regression matrix is given in terms of previous outputs and inputs by 

 𝒉𝑘
𝑇 = [−𝑦𝑘−1 − 𝑦𝑘−2 … − 𝑦𝑘−𝑛 𝑢𝑘−𝑑 … 𝑢𝑘−𝑑−𝑚]    (51) 

and 𝑣𝑘is the measurement noise. 

By using regression based methods the parameter of 𝜽 may be estimated. Since there 

are n + m +1 parameters to estimate, one needs n previous output values and m +1 

previous input values.  
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If 𝑦(𝑛) and ℎ1(𝑛), ℎ2(𝑛)… ℎ𝑘(𝑛) are the observation sequences of previous outputs 

and inputs of y and h at 𝑡1, 𝑡2 … 𝑡𝑚 then the relationship between y and h and the 

unknown system parameters can be expressed as 

[

𝑦(1)

𝑦(2)
⋮

𝑦(𝑛)

] =

[
 
 
 
ℎ1(1) ⋯ ℎ𝑘(1)

ℎ1(2) ⋯ ℎ𝑘(2)

⋮
ℎ1(𝑛) ⋯ ℎ𝑘(𝑛)]

 
 
 
[

𝜃1

𝜃2

⋮
𝜃𝑛

], or y = 𝑯𝜽 

gives the estimate 

 𝜽̂ = 𝑯−1𝒚         (52) 

where 𝜽̂ is the parameter estimation and 𝑯−1is the inverse of the H matrix. 

 𝜺 = 𝑦 − 𝑯𝜽         (53) 

Where 𝜺 = (𝜀1, 𝜀2 ⋯ 𝜀𝑚)𝑇 is the error vector. Hence for a cost function 

 𝑱 = ∑ 𝜀𝑖
2𝑚

𝑖=1 = 𝜺𝑇𝜺        (54) 

 𝜽̂ = (𝑯𝑇𝑯)−1𝑯𝑇𝑦        (55) 

The Recursive Least Square Estimation (RLS) is one such regression based method 

that may be used for the parameter estimation (Ljung, 1999.).  In the following equation 

one must know the system degree and delay in order to construct the regression vector 

ℎ𝑛 in equation (51).   

The general form of a recursive algorithm is 

 𝜽̂(𝑛) = 𝜽̂(𝑛 − 1) + 𝑲(𝑛)𝜺(𝑛)      (56) 

Using n-1 groups of data the least square estimation is show as follows: 

 𝜽̂ = (𝑯𝑛−1
𝑇 𝑯𝑛−1)

−1𝑯𝑛−1
𝑇 𝒀𝑛−1      (57) 

The data at n is given by 

 𝒀𝑛 = 𝑯𝑛𝜽(𝑛)         (58) 

where 
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 𝒀𝑛

[
 
 
 
 

𝑦(1)
⋮

𝑦(𝑛 − 1)
⋯

𝑦(𝑛) ]
 
 
 
 

= [
𝒀𝑚

⋯
𝑦(𝑛)

]       (59) 

 𝑯𝑛 =

[
 
 
 
 

ℎ1(1) ⋯ ℎ𝑘(1)
⋮ ⋯ ⋮

ℎ1(𝑛 − 1) ⋯ ℎ𝑘(𝑛 − 1)
⋯ ⋯ ⋯

ℎ1(𝑛) ⋯ ℎ𝑘(𝑛) ]
 
 
 
 

= [
𝑯𝑛

⋯
ℎ𝑇(𝑛)

]    (60)  

The new least square estimation is given as follows: 

 𝜽̂(𝑛) = (𝑯𝑛
𝑇𝑯𝑛)−1𝑯𝑛

𝑇𝒀𝑛       (61) 

The recursive solution of this equation is well documented (Haykin, 2013) 

 𝜺(𝑛) = 𝑦(𝑛) − ℎ𝑇(𝑛)𝜽̂(𝑛 − 1)      (62a) 

 𝑷(𝑛) = (𝑷−1(𝑛 − 1) + ℎ(𝑛)ℎ𝑇(𝑛))−1     (62b) 

 𝑲(𝑛) = 𝑷(𝑛)ℎ(𝑛)        (62c) 

 𝜽̂(𝑛) = 𝜽̂(𝑛 − 1) + 𝑲(𝑛)𝜀(𝑛)      (62d) 

However a matrix inverse is still required in equation (62b), this can be avoided by 

employing the matrix lemma. 

If A, C, BCD are non-singular square matrices, then  

 [𝑨 + 𝑩𝑪𝑫]−1 = 𝑨−1 − 𝑨−1𝑩[𝑪−1 + 𝑫𝑨−1𝑩]−1𝑫𝑨−1   (63) 

With     𝑨 = 𝑷−1(𝑛 − 1), 𝑩 = ℎ(𝑛), C=1, and 𝑫 = ℎ𝑇(𝑛) 

𝑷(𝑛) = (𝑷−1(𝑛 − 1) + ℎ(𝑛)ℎ𝑇(𝑛))−1 

𝑷(𝑛) = 𝑨−1 − 𝑨−1𝑩[𝑪−1 + 𝑫𝑨−1𝑩]−1𝑫𝑨−1      

𝑷(𝑛) =  𝑷(𝑛 − 1) −
𝑷(𝑛−1)ℎ(𝑛)ℎ𝑇(𝑛)𝑷(𝑛−1)

[1+ℎ𝑇(𝑛)𝑷(𝑛−1)ℎ(𝑛)]
      (64) 

Where equation (62b) can be replaced with equation (64) a recursive update of the 

covariance 𝑷(𝑛). 
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3.7.2.1 Sliding Window Recursive Least Square ARMA Parameter Estimation 

The RLS algorithm has been used for system identification and time-series analysis 

(Ljung, 1999). However, the RLS algorithm has infinite memory, in the sense that all 

the data from time n=0, will affect the coefficients of 𝑦𝑘, thus becoming computationally 

inefficient. For a non-stationary process, whose statistics are changing in time, several 

options exist, firstly, is the use of an exponentially weighted factor which gradually 

reduces the importance of past data (Haykin, 2013), (Astrom and Wittenmark, 1995). 

The second option is to use to minimise the sum of squares error over a finite window. 

The sliding window RLS algorithm benefits from only an incremental amount of 

computation being needed at each time step in which the estimate is a function of data 

over a rectangular window of length 𝑛: {𝑦(𝑛 − 𝐿 + ) … , 𝑦(𝑛)}. Where  is the step size 

(Mulgrew and Cowan, 2012), (Zhao et al. 1994), (Jiang and Zhang, 2004), (Belge and 

Miller, 2000). From the diagram below, the procedure is to choose an observation 

period of L samples which, is accurate enough give an estimate of desired accuracy.  

Typically this may involve looking at the error covariance matrix obtained for n samples  

𝑃𝑛 = 𝜎2𝑃𝑛  is satisfied to a degree of acceptability. 

 

 

 

 

The sliding window algorithm consists of two distinct steps.  Firstly, a new data point 

y(L+) is added.  Then an old data point y(n-L+) is discarded, thus keeping the 

number of active points equal to n. 

Letting 𝑷(𝑛) = (𝑯𝑛
𝑇𝑯𝑛)−1, 𝜽̂(𝑛) = 𝑷(𝑛)𝑯𝑛

𝑇𝒀𝑛 for the parameter estimation given by 

(ℎ(𝑘), 𝑦(𝑘), 𝑘 = 1,2, … , 𝑛 

Where 

 𝑯𝑛 =

[
 
 
 

ℎ𝑇(1)

ℎ𝑇(2)
⋮

ℎ𝑇(𝑛 − 1)]
 
 
 
, 𝒀𝑛 = [

𝑦(1)
𝑦(2)

⋮
𝑦(𝑛 − 1)

]     (65) 

n-L  n-L+ 

W
in

d
o

w
in

g 

Ef
fe

ct
 

n  
 

Number of 

Samples 

n-L  n-L+ 

W
in

d
o

w
in

g 

Ef
fe

ct
 

n  
 

Number of 

Samples 
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If the data group is increased to ℎ(𝑛), 𝑦(𝑛) then the parameter estimation is given by  

 𝜽̅(𝑛) = (𝑯𝑛
𝑇𝑯𝑛)−1𝑯𝑛

𝑇𝒀𝑛        

Using the matrix inversion lemma (63). 

 𝜽̅(𝑛) = 𝜽̂(𝑛 − 1) +
𝑷(𝑛−1)ℎ(𝑛)[𝑦(𝑛)−ℎ𝑇(𝑛)𝜽̂(𝑛−1)]

1+ℎ𝑇(𝑛)𝑷(𝑛−1)ℎ(𝑛)
    (66) 

Again, using the matrix inversion lemma (63). 

 𝑷̅(𝑛) = (𝑯𝑛
𝑇𝑯𝑛)−1  

 𝑷̅(𝑛) =  𝑷(𝑛 − 1) −
𝑷(𝑛−1)ℎ(𝑛)ℎ𝑇(𝑛)𝑷(𝑛−1)

1+ℎ𝑇(𝑛)𝑷(𝑛−1)ℎ(𝑛)
     (67) 

Where  

 𝑯𝑛 =

[
 
 
 
 

ℎ𝑇(1)

ℎ𝑇(2)
⋮

ℎ𝑇(𝑛 − 1)

ℎ𝑇(𝑛) ]
 
 
 
 

         𝒀𝑛 =

[
 
 
 
 

𝑦(1)
𝑦(2)

⋮
𝑦(𝑛 − 1)

𝑦(𝑛) ]
 
 
 
 

     (68) 

Therefore, 𝑯𝑛 = [ℎ
𝑇(1)
𝑯

] 

If the first group of data ℎ(𝑛),  𝑦(𝑛) is eliminated and the parameter estimation 

becomes  

 𝑷(𝑛) = (𝑯𝑇𝑯)−1, 𝑯 = [

ℎ𝑇(2)
⋮

ℎ𝑇(𝑛 − 1)

ℎ𝑇(𝑛)

] ′       

𝑯𝑛
𝑇𝑯𝑛 = 𝑯𝑇𝑯 + ℎ(1)ℎ𝑇(1), 

𝑷(𝑛) = (𝑯𝑛
𝑇𝑯𝑛 − ℎ(1)ℎ𝑇(1))−1 

𝑷(𝑛) = ((𝑷̅(𝑛))−1 −  ℎ(1)ℎ𝑇(1))−1      (69) 

Again employing the matrix lemma (63) 

𝑷(𝑛) = 𝑷̅(𝑛) −
𝑷̅(𝑛)(−ℎ(1))ℎ𝑇(1)𝑷̅(𝑛)

1 + ℎ𝑇(1)𝑷̅(𝑛)(−ℎ(1))
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𝑷(𝑛) = 𝑷̅(𝑛) +
𝑷̅(𝑛)ℎ(1)ℎ𝑇(1)𝑷̅(𝑛)

1−ℎ𝑇(1)ℎ(1)𝑷̅(𝑛)
      (70) 

The parameter estimation is therefore given by  

 𝜽̂(𝑛) = (𝑯𝑇𝑯)−1𝑯𝑇𝒀 = 𝑷(𝑛)𝑯𝑇𝒀      (71) 

Where 

(ℎ(𝑘), 𝑦(𝑘)), 𝑘 = 2, … , 𝑛,         

𝒀 = [

𝑦(2)
⋮

𝑦(𝑛 − 1)
𝑦(𝑛)

]        (72) 

𝑯𝑛
𝑇𝒀𝑛 = 𝑯𝑇𝒀 + 𝑦(1)ℎ(1)       (73a) 

𝜽̂(𝑛) = 𝑷(𝑛) (𝑯𝑛
𝑇𝒀𝑛 − 𝑦(1)ℎ(1))      (73b) 

= 𝑷̅(𝑛) +
𝑷̅(𝑛)ℎ(1)ℎ𝑇(1)𝑷̅(𝑛)

1 − ℎ𝑇(1)ℎ(1)𝑷̅(𝑛)
 

= 𝑷̅(𝑛)𝑯𝑛
𝑇𝒀𝑛 −

𝑦(1)𝑷̅(𝑛)ℎ(1)ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)

1−ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)
− 𝑦(1)𝑷̅(𝑛)ℎ(1) +

𝑷̅(𝑛)ℎ(1)ℎ𝑇(1)𝑷̅(𝑛)𝑯𝑛
𝑇𝒀𝑛

1−ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)
   

= 𝜽̅(𝑛) −
𝑦(1)𝑷̅(𝑛)ℎ(1)

1 − ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)
× (ℎ𝑇(1)𝑷̅(𝑛)ℎ(1) + 1 − ℎ𝑇(1)𝑷̅(𝑛)ℎ(1))

+
𝑷̅(𝑛)ℎ(1)

1 − ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)
× ℎ𝑇(1)𝜽̅(𝑛

= 𝜽̅(𝑛) −
𝑦(1)𝑷̅(𝑛)ℎ(1)

1 − ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)
+

𝑷̅(𝑛)ℎ(1)ℎ𝑇(1)𝜽̅(𝑛)

1 − ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)
 

𝜽̂(𝑛) = 𝜽̅(𝑛) +
𝑷̅(𝑛)ℎ(1)(ℎ𝑇(1)𝜽̅(𝑛)−𝑦(1))

1−ℎ𝑇(1)𝑷̅(𝑛)ℎ(1)
     (74) 

Therefore, at any point n, window length L and =1 

𝜽̂(𝑛) = 𝜽̅(𝑛) +
𝑷̅(𝑛)ℎ(𝑛−𝐿+1)ℎ𝑇(𝑛−𝐿+1)𝜽̅(𝑛)−𝑦(𝑛−𝐿+1)

1−ℎ𝑇(𝑛−𝐿+1)𝑷̅(𝑛)ℎ(𝑛−𝐿+1)
    (75) 

𝑷(𝑛) = 𝑷̅(𝑛) +
𝑷̅(𝑛)ℎ(𝑛−𝐿+1)𝑷̅(𝑛)ℎ𝑇(𝑛−𝐿+1)

1−ℎ𝑇(𝑛−𝐿+1)𝑷̅(𝑛)ℎ(𝑛−𝐿+1)
     (76) 
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The parameter estimation is related to the current n data samples, with the past data 

having no effect.  The computation is double that of the standard RLS algorithm, but 

still allows efficient speeds of calculation to be obtained and limits the computation in 

terms of data size, all of which is desirable when dealing with large data sets and 

limited on board processing. The estimated parameters within the sliding window 

𝜽̂(𝑛 − 𝐿 + 1) are then used to form the state space model. 

𝑥𝑘+1 = 𝑨𝑥𝑘 + 𝑩𝑢𝑘        (77) 

𝒙𝑘+1 = [

𝒙1(𝑘+1)

𝒙2(𝑘+1)

⋮
𝒙𝑛(𝑘+1)

] 

=

[
 
 
 
 
0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1
𝑎0 𝑎1 𝑎2 𝑎3 ⋯ 𝑎𝑛−1]

 
 
 
 

[
 
 
 
 
𝒙1(𝑘)

𝒙2(𝑘)

⋮
⋮

𝒙𝑛(𝑘)]
 
 
 
 

+

[
 
 
 
 
0
0
⋮
⋮

𝑏0]
 
 
 
 

𝑢𝑘    (78) 

The SWRLS ARMA models fit to the Median filtered data is shown below in figure 3.8, 

as is evident, a (2,1) ARMA model forms a good fit to the data. 

The magnitude of error squared between the estimated and actual data in the window 

may be calculated, as shown in figure 3.9. The original and the estimated data set are 

overlaid with an error magnitude of the order of 10-9. The accuracy of the model is 

important in the next stage, where Kalman filtering is used to extrapolate the current 

measurement and the model at time n, up to the threshold of failure. 
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Figure 3.8. ARMA model fit to a section of median filtered data 

Figure 3.9. ARMA model fit squared error 

3.7.2 Artificial Intelligence-Based Models 

(Werbos, 1988) first reported that Artificial Neural Networks (ANNs) trained with the 

back propagation algorithm outperform traditional statistical methods such as 

regression and Box-Jenkins approaches. Pursuing literature, ANNs are maybe the 

most popular machine learning based methodology used for prognostics.  The idea of 

ANNs is to mimic the neural structure of the human brain by using input, hidden and 

output layers that interact with one another via weighted connections.  They may be 

divided into two main classes; namely, those which use supervised learning and those 
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which use unsupervised learning, in both cases, they may be thought of non-linear 

black box function approximators, with multiple input/outputs. Condition monitoring 

data is used with target data e.g. health states/indicators in order to train the network 

in supervised learning.  Whereas the unsupervised approach employs learning models 

in the form of algorithms (e.g. SOM and K-means) to find hidden structure in the data. 

Unlike the traditional model-based methods, ANNs are data-driven and self-adaptive, 

and they make very few assumptions about the models for problems under study. 

ANNs learn from examples and attempt to capture the subtle functional relationship 

among the data. Thus, ANNs are well suited for practical problems, where it is easier 

to have data than knowledge governing the underlying system being studied. 

Generally, they can be viewed as one of many multivariate nonlinear and 

nonparametric statistical methods (Cheng, Bing, and Titterington, 1994). 

The main problem of ANNs is that their decisions are not always evident and the 

training time can be somewhat dependent upon the quantity of the data. Nevertheless, 

they provide a feasible tool for practical prediction problems. Data-driven approaches 

to failure prognosis also take advantage of recurrent neural networks, dynamic wavelet 

neural networks, neuro-fuzzy systems, and a variety of statistical tools. For training 

and validation, they use the current and past history of input data and feedback outputs 

via unit delay lines.  

Network architectures that are used for RUL estimation can be classified as being 

either (i) feedforward (static) networks in which the inputs to a particular layer depend 

upon the output of the preceding layer. Or (ii) dynamic networks, which the inputs to a 

particular layer are dependent on the outputs of the proceeding nodes as well as 

preceding iteration of the network itself. Static networks provide only one set of outputs 

from the model and their response to a set of inputs is independent of the previous 

model state (i.e. its last set of outputs). Most prognostic RUL models developed to 

date have been based on these static networks, with the multilayer perceptron being 

the most popular architecture (Sikorska, Hodkiewicz and Ma, 2011). 

(Huang, Runqing, et al., 2007) used back propagation (BP) neural network methods 

for the prediction of a ball bearing's remaining useful life based on self-organizing map 

(SOM). 

BP was also utilised with a grey model for predicting the machine health condition by 

(Dong et al., 2004). Time Delay Neural Networks are used for the prognosis of crack 
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propagation through aluminium by (Khan, Faisal, et al., 2015), with training data 

provided from a Virkler data set. 

(Malhi, Yan, and Gao, 2011). Presented a competitive learning-based approach to 

long-term prognosis of machine health status. Specifically, vibration signals from a 

defect-seeded rolling bearing are pre-processed using Continuous Wavelet Transform 

(CWT). Statistical parameters computed from both the raw data and the pre-processed 

data were then utilized as candidate inputs to a Recurrent Neural Network (RNN). 

Based on the principle of competitive learning, input data were clustered for effective 

representation of similar stages of defect propagation of the bearing being monitored.  

(Peel, 2008) won the IEEE GOLD category of the PHM psila08 Data Challenge. The 

task was to estimate the remaining useable life left of an unspecified complex system 

using a purely data driven approach. The method was based on the construction of 

Multi-Layer Perceptron and Radial Basis Function networks for regression. A Kalman 

filter provided a mechanism for fusing multiple neural network model predictions over 

time.  A genetic algorithm was integrated to train ANN for predicting wind power under 

high uncertainty conditions (Ak et al., 2013).  Feed-Forward Neural Networks (FFNN) 

were used to predict RUL for a bearing failure by (Mahamad et al., 2010). 

3.8 Knowledge Based Models 

The development of a mathematical model can be difficult to obtain in real-world 

situations due to limitations in the collected data or the complexity of the process.  

However, there may considerable statistical historical failure information available and 

from this knowledge-based models (KbM) or experience based prognostic approaches 

are often the simplest and cost effective method for the prediction of the RUL 

(Vachtsevanos et al., 2006). 

Knowledge based models correlate the similarity between an observed situation and 

a databank of previously defined failures and deduce the life expectancy from previous 

events and replicates the way in which human expert solves problems. Sub-categories 

include the following: a. Expert systems. b. Fuzzy systems. 
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3.8.1 Expert systems 

An expert system is a software program (or set of programs) consisting of a knowledge 

base containing accumulated experience from subject matter experts and a rule base 

for applying that knowledge to particular problems known to the software system. 

Rules are formulated as precise IF-THEN statements; these are often based on 

heuristic facts acquired by one or more experts over a number of years (Sikorska et 

al., 2011). To be useful, a knowledge base must be as complete and exact as possible 

(Biagetti and Sciubba, 2004).  

Expert system suffer from certain disadvantages; firstly the system itself is only as 

good as the experts developing the rule base, secondly there is no ability for the 

system to provide confidence limits, thirdly as the rule base increases, so does the 

computational complexity (e.g. combinational explosion problem) and lastly, the 

system’s ability to handle new situations that are not defined in the rule base. 

Furthermore, being determined by a discrete set of rules, production of a continuous 

variable prediction is unfeasible and limits the usefulness of RUL estimation directly. 

However, using the rules, an expert may be able to infer discrete RUL estimations in 

terms of days, week etc. 

An expert system was presented by (Biagetti and Sciubba, 2004) that incorporated a 

knowledge base, which was able to predict both faults and perform both diagnostics 

and prognostics for energy conversion plant. Although unable to predict an RUL, IF-

THEN rules were defined with estimated fault indicators, and Fuzzy representation 

was used for fault diagnosis. Prognostics was performed by projecting the future state 

based on the present state and foreseen operative conditions. 

3.8.2 Fuzzy systems 

Expert systems use classic predicate logic, a statement can be either true or false; 

data can thus be included or excluded from a set. It is not always easy however to 

define sets and associated membership so precisely. Fuzzy set theory overcomes this 

deficiency by allowing partial set membership based on a variable’s ‘degree of truth’. 

As in expert systems, fuzzy logic systems consists of a knowledge-base, fuzzy rules 

and implementation algorithms. These rules are descriptive but unlike expert systems, 

they are intentionally imprecise. A typical fuzzy process logic statement may look like 
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‘IF (process is too hot) AND (process is heating rapidly) THEN (cool the process 

quickly)’ (Sikorska et al., 2011). Other methodologies such as neural networks (NN) 

or expert systems are usually used in conjunction with Fuzzy logic systems within 

literature. 

(Choi et al., 1995) used an on-line fuzzy expert system, called alarm filtering and 

diagnostic system (AFDS), to provide the operator with clean alarm pictures and 

system-wide failure information during abnormal states through alarm filtering and 

diagnosis. In addition, it carries out alarm prognosis to warn the operator of process 

abnormalities.  

(Amin et al., 2005) used an in-line health monitoring system developed for hydraulic 

pumps that utilize feature extraction, fuzzy inference systems, and knowledge fusion. 

These techniques were applied to hydraulic pump diagnostics in order to create a 

robust system for the determination and classification of pump degradation. 

(Chinnam et al., 2004) propose in the absence of degradation and/or adequate failure 

data, domain experts with strong experiential knowledge, can be used to establish 

fuzzy inference models for failure definition. The paper presents a neuro-fuzzy 

approach for performing prognostics under such circumstances. The proposed 

approach is evaluated on a cutting tool monitoring problem.  

The generalised advantages and disadvantages of the main prognostics techniques 

e.g. PoF, data driven and Knowledge based approaches investigated from the 

literature review above are presented in table 3.1.  (Sikorska et al., 2011) presents a 

much more comprehensive overview of each technique breaking down within these 

main headings. 

 Advantages Disadvantages 

Model Based (Physics of 

failure) 

Estimates are the most accurate and 

precise of all modelling techniques. 

Provides confidence boundaries. 

Easy to understand outputs. 

Dynamics of the states can be 

estimated and predicted at each time  

 

Expensive to develop 

Complete and high level of knowledge 

of the component behaviour needed 

Often uses experimental data to 

develop a model, which depends upon 

conditions such as environmental or 

material 

Can be component or system specific 
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Data Driven Lower cost 

Greater tolerance to changes in 

environmental, material, usage  

Can be implemented at all system 

levels 

Easier to construct and generally 

simpler 

Flexibility in adaptation. 

Well established techniques 

Highly reliant upon the data, particularly 

run to failure data, which is not always 

available. 

Failure thresholds may be hard to 

establish. 

High computational loading may be 

required (e.g. NN). 

Large data sets may be needed for 

training. 

Less precise 

Knowledge Based Simple, but can be time consuming to 

develop. 

Easy to understand 

Fewer rules required than for expert 

systems (Fuzzy) 

Inputs may be imprecise, noisy or 

incomplete (Fuzzy) 

Confidence limits can be provided on 

the output with some types of models 

(Fuzzy). 

Domain experts required to develop 

rules 

Large number of rules required.  

Discrete outputs only (Expert) 

Significant management overhead to 

keep Knowledge base up to date. 

Precise inputs required.  

No confidence limits supplied.  

Not feasible to provide exact RUL 

output. 

Table 3.1. Outlining advantages and disadvantages of the main prognostic techniques (Sikorska, 

Hodkiewicz and Ma, 2011). 

3.8.3 Hybrid Prognostic Models 

Hybrid prognostic approaches attempt to utilise the advantages from a combination of 

the three main prognostic approaches discussed above to enhance prognostic results.  

In all reality, it is quite rare that an individual prognostics approach will be entirely data-

driven, model-based or knowledge based.  For example, a model-based approach will 

incorporate some aspects of data-driven approaches; e.g. in the tuning of the model 

using actual condition data and data-driven approaches will often make use of model 

derived data. 

As well as hybrid; fusion, combination and integration are all term banded in literature 

to represent this approach.  Hybrid techniques, although starting to appear in literature 

with more prevalence, are relatively new, but show increasingly promising results for 

prognostics.  The permutations are large and the main combinations with relevant 

examples are looked at below. 

(Liao and Kottig, 2014) have produced a comprehensive review on some of the state-

of-the-art techniques appearing in literature. The review below attempts to build upon 

this, especially looking for suitability for the applicability for relay health monitoring. 
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According to the findings, the hybrid approaches may be categorised into the following 

five types: 

 H1 –Knowledge-based model + data-driven model 

 H2 – Knowledge-based model + physics-based model 

 H3 – Data-driven model + data driven model 

 H4 – Data-driven model + physics-based model 

 H5 – Knowledge-based model + data-driven model + physics-based model 

The way the three categories combine is summarised in figure 3.10 below. 

 

 

 

 

 

 

 

Figure 3.10. Hybrid model combinations (Liao and Kottig, 2014). 

3.8.4 Knowledge-based model + data-driven model 

From table 3.1 above, experience-based models alone using domain knowledge have 

the disadvantage of generally outputting discrete events and therefore cannot deal 

with continuous variables. This means that RUL predictions are very limited or 

restricted to discrete events. Fuzzy logic has the enhanced ability to deal with 

continuous variables via fuzzification using appropriately designed membership 

functions. Outputs can be converted into a numerical result, again using a 

corresponding set of membership functions. However, an expert is still relied upon to 

develop the underlying system on which the fuzzy representation is based upon. 

Data-driven models however, can handle continuous data and have the ability to learn 

the structure and pattern from only the data. Therefore, H1 models have the 

advantages of integrating expert knowledge into data-driven models, thus allowing for 

system state estimation and prediction of RUL. 

Prognostics Model 

Knowledge-

Based Model 

Data-Driven 

Model 

Physics-Based 

Model 

H1 H2 H3 H4 H5 
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The data-driven component is usually achieved by the use of artificial neural networks 

ANNs which are combined either with the expert system of fuzzy logic system.  A 

neurofuzzy (NN & FL) combination was applied to a gas turbine engine by (Brotherton 

et al., 2000).  (Zhao et al., 2009) verified the effectiveness of the neuro-fuzzy model in 

predicting the health condition of bearings. Simulation and an experiment were carried 

out to verify the model, with results showing that the neuro-fuzzy model is a reliable 

and robust forecasting tool, and more accurate than a radial basis function network 

alone.  (Wang et al., 2004) compared Recurrent Neural Networks (RNNs) and Neuro-

Fuzzy (NF) systems. The performance of these two types of predictors is evaluated 

using two benchmark data sets. Through comparison it is found that if an NF system 

is properly trained, it performs better than RNNs in both forecasting accuracy and 

training efficiency. Accordingly, a NF system was adopted to develop an on-line 

machine fault prognostic system. (Gaga, 2001) used a hybrid reasoning approach that 

is capable of integrating domain knowledge and test and operational data from the 

machine. This approach was illustrated with an industrial gearbox example. In this 

approach explicit domain knowledge was expressed as a rule-base and used to train 

a feedforward NN.  (Satish and Sarma, 2005) combined Neural Networks and Fuzzy 

Logic and formed a Fuzzy Back Propagation (Fuzzy BP) network for identifying the 

present condition of the bearing and estimate the remaining useful time of the motor. 

3.8.5 Knowledge-based model + physics-based model 

The integration of knowledge-based models and physics-based models is often based 

on the knowledge-based model being used to enhance the performance of the 

physics-based model. 

Signal processing and neural network tracking techniques, along with automated 

reasoning, classification, knowledge fusion, and probabilistic failure mode progression 

algorithms was used by (Byington, 2004) to predict the health of aircraft actuator 

components. The level of damage (damage index) was quantised by a fuzzy logic 

implementation utilising a predefined set of rules tailored from knowledge of the 

system and engineering judgment. Kalman filtering was then applied to predict the 

progression of the damage. 

Crack growth in tension steels bands was looked at by (Swanson, 2001), who 

developed a prognostics methodology with a Kalman filter and fuzzy logic. Using 

vibration mode frequencies as responsive fault features, the Kalman filter performed 
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feature tracking and forecasting, and the remaining useful life was estimated using 

Newton’s method. Fuzzy logic was used to adapt failure thresholds to the operational 

conditions. 

3.8.6 Multiple data driven models 

This category consists mainly of two main approaches. Firstly, the systems 

degradation state is estimated by one data-driven model and the future RUL by is then 

determined by another data-driven model. Or secondly, multiple, competing data-

driven models may be used to predict RUL and their results are then aggregated to 

improve the prediction performance by fusion. 

(Liu, 2012) presented an approach which combined least squares support vector 

regression (LSSVR) with hidden Markov models (HMMs) for bearing remaining useful 

life prediction.  

(Huang et al., 2007) predicted the remaining useful life of bearings combining two 

data-driven approaches. The systems degradation was calculated by the minimum 

quantization error (MQE) of the established baseline self-organizing maps trained with 

vibration features which established the health index for the system. The health index 

was then used as input to back propagation neural networks for remaining useful life 

prediction.  

The tool wear condition in drilling operations was estimated by (Yan and Lee, 2007) 

via logistic regression analysis combined with a maximum likelihood technique (for 

parameter estimation), based on features extracted from vibration signals using 

wavelet packet decomposition. Another data-driven model, which was an 

autoregressive moving average (ARMA) model, was applied to predict the remaining 

useful life based on the estimated tool wear condition. 

3.8.7 Data-driven model and physics-based model 

Approaches combining data-driven and physics-based models have been studied 

extensively in literature with the enhancement of prediction performance. 

The use of a data-driven model to infer a measurement model, with a physics of failure 

model to predict remaining life has been used extensively to provide remaining useful 

life estimates for electronics systems by CALCE (Kumar, Torres, Chan, and Pecht, 

2008), (Zhang, Kang, and Pecht, 2009), (Patil, Das, Yin, Lu, Bailey, and Pecht, 2009), 

(Cheng and Pecht, 2009), (Pecht and Jaai, 2010) and (Xing, Williard, Tsui, and Pecht, 
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2011). In these papers the data-driven model is used to estimate the system state and 

by using a healthy state reference, system anomalies are detected by comparison 

techniques such as Mahalanobis distance.  Physics-based methods are then used to 

perform RUL prediction by projection using techniques such as Kalman and Particle 

filtering. 

(Mohanty et al., 2008). Used a hybrid prognostics model which combines the 

information from off-line data-driven and physics-based, and on-line system 

identification-based predictive models. The model was built for real-time remaining 

useful life estimation of metallic aircraft structural components. 

Many other papers have been produced by using a data-driven model to infer the 

measurement model, the measurement model is used for mapping the sensory data 

to underlying system state, which is not measured and a physical model is used to 

predict RUL. (Orchard and Vachtsevanos, 2007), (Rosunally et al., 2009), (Peng et 

al., 2012), (Saha et al., 2007), (Baraldi et al., 2012.).  

One Data-driven model and physics-based model that has particular relevance to this 

body of work is on structural damage to BGA interconnects incurred during vibration 

testing has been monitored in the pre-failure space using resistance spectroscopy 

based on state space vectors, rate of change of the state variable, and acceleration of 

the state variable by (Lall, Lowe and Goebel, 2010). The future state of the system 

has been estimated based on a second order Kalman Filter model and a Bayesian 

Framework. The technique was extended by using a non-linear model of degradation 

and the future state of the system has been estimated based using a second order 

Extended Kalman Filter model and a Bayesian Framework (Lall, Lowe, and Goebel, 

2012).  Extended and Unscented Kalman filters allow the extension of the traditional 

Kalman filter to be able to deal with systems that are not bounded by the constraints 

of linearity. In the case of the Extended Kalman filter by linearizing about an estimate 

of the current mean and covariance and for the Unscented Kalman filter by 

approximating the probability distribution by a deterministic sampling of points which 

represent the underlying distribution as Gaussian. A nonlinear transformation of these 

points is used as an estimation of the posterior distribution, from which the moments 

can be derived. 

A data-driven model may be used to replace a system model in a physics-based 

model. The lack of an analytical degradation model can be compensated by replacing 

this model with a data-driven technique, where there is not an explicit analytical 
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equation for modelling of the physics.  The parameter estimation process is similar to 

the framework of the filtering method (e.g., Kalman filter, particle filter), (Liao and 

Kottig, 2014). 

In the paper by (Chen et al., 2011) the physic-based model usually used to model the 

degradation in the prognostics approach was replaced by an Adaptive Neuro Fuzzy 

Inference System (ANFIS) which was trained with historical data to model the 

degradation process.  The technique was used for the prognostics of crack growth in 

helicopter gear plate and bearings.  The trained ANFIS was used to construct an nth 

order hidden Markov model within a high-order particle filter approach. The particle 

filter carried out n-step ahead predictions to extrapolate the system fault indicator and 

remaining useful life probability density functions. 

A third method in this category is the use of data-driven models to predict future 

measurements, and use a physics-based model (PbM) to predict RUL. PbMs are often 

used conjunction with Baysian update methods to update the current model with new 

measurements. When generating n-step ahead predictions for RUL estimation, using 

particle filter as an example, acquisition of new measurement is not available. This 

can lead to low prediction accuracy in many applications because the identified model 

during the state estimation period may not be accurate and robust. 

(Liu et al., 2012) used a Physics based Particle filter for system state prediction 

together with an integrated data-driven prognostic. The particle filter handled system 

state estimation and parameter identification based upon Bayesian learning.  A data 

driven predictor (ANN based) was used to predict the future measurements and this 

was incorporated into the particle filters learning structure. This prediction formed the 

new measurement to update the weights of the particle filter, thus improving the long 

term remaining useful life estimation. This approach was used in comparison with a 

single prognostic approaches of a particle filter alone and data driven predictor to 

demonstrate its enhanced accuracy in RUL prediction of Lithium-ion battery discharge. 

Lastly within data-driven and physics-based models is the fusion of their results.  This 

type of hybrid approach simultaneously predicts a system’s RUL with two prognostics 

models, i.e., a data-driven model and a physics-based model. The final RUL prediction 

result is calculated by fusing the results of the two prognostics models. It can improve 

the prediction accuracy, and narrow the confidence boundaries, (Liao and Kottig, 

2014). 
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(Goebel et al., 2006) used a fusion methodology for the prognostics of bearings.  A 

physics based model of the underlying system in this case bearing spall growth was 

fused with pairs of data measurements from speed and load data and health states 

for learning a spall length model. The predictions of both estimators and their results 

are then combined in order to improve the RUL prediction. This work was continued 

to employ Dempster-Shafer regression to negotiate the different damage estimate 

(Goebel et al., 2007.) 

3.8.8 Experience-Based Models, Data-Driven Models and Physics-Based 
Models 

Prognostics strategies in this category may be extremely difficult and impractical to 

implement due to the difficulty that might be encountered by each type of model 

(experience-based, physics-based, or data-driven models). The benefits however are 

potentially huge, with the ability to take all the strengths of the previously discussed 

techniques and fuse all types of information (e.g., domain knowledge, maintenance 

feedback, and condition data and physics), (Liao and Kottig, 2014). A lot of problems 

still revolve around how to incorporate results and fuse together each type of model.   

A prognostic fusion model built upon an optimal linear combination of the RUL 

estimates of single prognostic algorithms by using the absolute value and prediction 

error as the index of prognostic precision was presented by (Xu and Xu, 2011). 

(Gola and Nystad, 2011) presented a diagnostic and prognostic scheme for assessing 

the health state of a choke valve under erosion, and estimating its remaining useful 

life and (Orsagh et al., 2003) used model-based information to predict the reaming 

useful life of bearings with bearing spall initiation and propagation models. 

3.9 Condition Based Monitoring for Electrical Contacts 

Analysis of electrical contact wear has been the subject of research for many years; 

however over the last eight years, research has started to appear on the condition 

monitoring within relay contacts.  A brief review of prior work is summarised below. 

In the work carried by (Yao, Fang, et al., 2006) on the dynamic contact resistance, 

measurement devices and test methods are firstly introduced. Secondly, the main 

factor of analysis is reviewed and three diagnostic parameters are extracted. Thirdly, 

both statistics analysis and sequence analysis are looked at. The analysis of the 
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results indicates that the statistical characteristics and sequence tendency can predict 

the electrical contact reliability. A Fuzzy Overall Evaluation model of the electrical 

contact reliability is developed in the light of the fuzzy theory. By the model produced, 

the electrical contact reliability can be evaluated and predicted. 

(Yu, Qiong, et al. 2009). Relates how the electrical life is an important index to evaluate 

the reliability of relay, and it is closely related with many characteristic parameters of 

the relay such as contact resistance, pick-up time, over-travel time, etc. By using a 

time series analysis and by taking some characteristic parameters as predicted 

variables, the life of relay can be obtained by the life prediction which is a non-

destructive and short-cycling life test method. However, the paper shows the predicted 

accuracy is greatly influenced by the complex variations of characteristic parameters, 

and as a result it sometimes becomes too low to be accepted. For the purpose of 

improving the predicted accuracy, a life prediction method for space relays based on 

wavelet transform and ARMA (auto-regression moving average) time series is 

proposed.  Taking the pick-up time of a relay (which can be regarded as a non-

stationary time series) as an example, and by dividing it into three parts; trend term, 

cyclic term and stochastic term by adopting wavelet decomposition and reconstruction, 

the authors show models of each term can be built with different methods and then 

they are employed to predict the future values, respectively. Finally, the predicted 

results of the original time series are obtained by superimposing the respective 

prediction of each term. 

The comparison between the method used in this paper and the conventional 

regression analysis method indicates that the former has higher predicted accuracy. 

(Xuerong et al., 2010) states the traditional reliability assessment methods for 

electromagnetic relay are based on censored failure time data and provides very little 

reliability information. Furthermore, this method may be unavailable in applications 

with few or no failures. Actually, many time parameters of electromagnetic relay, such 

as closing time, over-travel time provide an obvious degradation process during the 

life test. 

By testing time parameters of electromagnetic relay during its life circle, this paper 

presents a novel reliability assessment method of electromagnetic relays based on 

multiple time parameters degradation and multiple failure mechanism. Considering the 

difference of electromagnetic relay degradation, regression analysis method and time 
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series method are employed to build the degradation model of time parameters for the 

electromagnetic relay.  

Multiple degradation parameters form a reliability assessment model which can 

evaluate the reliability of all failure mechanisms, which is developed with stochastic 

theory. By analysing the failure mechanisms of the electromagnetic relay, this paper 

presents a novel reliability assessment method of electromagnetic relay based on 

multi-time parameters degradation and multi-failure mechanism. The degradation 

process of electromagnetic relay is described with a two dimensional stochastic 

method, and the electromagnetic relay reliability assessment under material loss 

failure mode, gap bridging failure mode and insulation contamination failure mode is 

achieved. Compared with present reliability estimate method, the method proposed in 

this paper takes parameters interaction and detail degradation into account. So, it is a 

more reasonable method for electromagnetic relay reliability assessment, as well as 

the reliability assessment of some other components. 

(Xuerong, Ye, et al., 2012).  Considers the effect of the environment on the reliability 

prediction, stating post-analysis methods do not consider the influence of different 

application environments on electromagnetic relays, only using coefficients to revise 

the prediction results. In fact, the failure process and failure mechanisms of 

electromagnetic relay may totally change along with the environment. The paper 

collects the failure process data of electromagnetic relays, and studies the degradation 

characteristics under different failure modes, finally establishing and proposing the 

regression degradation model and the failure physical degradation model of relay 

contacts respectively, and verifies the accuracy through the life prediction based on 

the model.   

The conclusion drawn from this paper, show further studies on the establishment of a 

more accurate regression degradation model that takes into account physical 

degradation.  A physical degradation model of the abrasion failure, as well as the 

bridging failure and the contamination failure, and a method of the parameter 

estimation are then used to predict and value the life of the electromagnetic relay 

samples in four steps. 

Firstly, analysis of the sensitivity of the different degradation parameters to the contact 

performance under different failure mechanisms, the over travel time and the rebound 
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duration, the over travel time, the fluctuation coefficient respectively as the predicted 

variables of the abrasion failure, the bridging failure and the contamination failure.  

Secondly, the proposal of the pre-processing method of how to deal with the predicted 

variables based on the wavelet transform and the stationary time series analysis.  

Thirdly, it takes advantage of the linear regression analysis method, to establish the 

linear degradation model which regards the operation time as the independent variable 

and the predicted variables of the failure mechanisms as the dependent variable. This 

is used to derive the equation for the life prediction, the accuracy of the predicted 

results, and the reliability evaluation. 

Lastly, from the influence factors of the material transfer to the contact gap, the 

combined influence of the arc energy the contact surface morphology to the 

degradation rate of the contact gap, and use of fatigue cumulative damage theory is 

used to establish the failure physical degradation model of the electromagnetic relay 

contacts. This model can efficiently characterize the influence of the environment 

condition and the product structure to the degradation process of the electromagnetic 

relay contact performance. 

The work carried out in (Yao, Fang, et al., 2012) proposes the analyses of the 

uncertainty of bounce time of contacts for relay and its use in predicting operating 

reliability. It changes the bounce time series into symbolic series according to the 

threshold function given in the paper. By means of the coding symbolic series and 

probability statistical analysis, the use of a concept named series entropy, which is a 

suitable Eigen-value for temporal schema and helps to find the time-change law of 

uncertainty of bounce time series. The analysis indicates that series entropy of bounce 

time for bad contacts descend as time goes on. The law can be used to predict the 

operating reliability. 

The sequence of symbols is applied to describe the uncertainty of bounce time of the 

electromagnetic relay in the closing process. According to the entropy Hs which is 

obtained from the symbol sequence, the state of the electromagnetic relay can be 

assessed. For the chaotic or stochastic data, sequence entropy will tend to be 1 or 

has waves with ups and downs around a high level; for the deterministic data, 

sequence entropy will tend to be zero or has a persistent downtrend till to failure; 
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Although the value of the sequence entropy which ranges from 0 to 1 is indeterminate 

and uncertain, there is a definite tendency just before its failure.  

3.9.1 Prognostic and Reliability for Electrical Contacts 

A prognostic model for separable electrical contacts is considered by (Ostendorf, 

2014). The paper examines providing reliability to separable electrical contacts and 

looks at the mandatory measures for the discrete nature of the contact interface as 

well as the necessity of fulfilling a broad variety of product requirements. The paper 

also examines the formation of real and conductive contact area controls for the 

reliability and efficiency of an electrical contact. These processes depend on a great 

number of independent or interrelated factors. The variety of these factors can be 

divided into (a) performance factors governed by the operating conditions and (b) 

design-technological factors determined by fabrication characteristics of the contact 

unit. The paper derives a model to determine the influences of the design technological 

factors based on the reliability and quality of electrical contacts. The consideration of 

mathematical models for reliability and failure such as Weibull, Arrehenius, Hallburg-

Peck and Coffin-Manson. Together with the lifetime tests and their statistical 

evaluation it is possible to deduce fault rates combined with the probability of failure 

and reliability for a newly designed contact unit. Furthermore detailed surface 

analytical investigations of the contact zone were performed to identify the occurrence 

of physical and chemical processes which are influencing the state of the contact 

interface and finally, the contact resistance and reliability.  

A considerable body of work has been directed around the failure of electrical 

connectors used in integrated circuits and associated static connections subject to 

temperature and environmental stresses such vibration.  

(Lopez et al., 2008) presents a methodology based on the physics of failure and the 

sequential probability ratio test, for modelling and monitoring electrical interconnects 

in health monitoring, and electronic prognostic applications.  The resistance behaviour 

of an electrical contact was characterized as a function of temperature.  The physics 

of failure of the contact technology was analysed. A contact resistance model was 

selected based on the a-spot radius and a function of temperature. The parameters 

are estimated as a power law and were fitted using the temperature characterization 

data using linear regression.  
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The physics of failure model was evaluated with a reliability application (temperature 

cycle test), and was found to produce estimation errors of < 1 m Ohm during a training 

period. The temperature and resistance of ten sample contacts were continuously 

monitored during the temperature cycle test, identifying the maximum temperature and 

resistances for each cycle. Using the physics of failure model, maximum resistance 

estimates were generated for each test sample. The residual between the monitored 

and estimated resistance values was evaluated with the sequential probability ratio 

test. The method was shown to overcome the issues of traditional threshold-based 

monitoring approaches, providing accurate resistance estimates, and allowing the 

detection of abnormal resistance behaviour with low false alarm and missed alarm 

probabilities. 

In (Lall, et al. 2012), again the leading indicators of failure has been developed to 

monitor the progression of fretting corrosion in electrical connectors and prognosticate 

remaining useful life. Connectors subjected to harsh environments may experience 

vibration resulting in fretting corrosion and degradation in contact resistance over time. 

Tin coated, rectangular-pin and socket electrical connectors have been studied. In this 

paper, a random vibration test profile has been used to stimulate the contact 

resistance degradation due to connector fretting corrosion. The contact resistance has 

been measured in situ using the resistance spectroscopy method in conjunction with 

phase sensitive detection. It has been shown that precise resistance spectroscopy 

and phase measurements can provide a leading indicator of failure significantly prior 

to the traditional definition of failure.  

The prognostic approach here accepts the inputs to the system are not measureable 

and using the resistance measurement creates a feature vector model based on the 

resistance spectroscopy.  The resistance change of 0.3 Ω has been used as a leading 

indicator of failure for the electrical connector prior to the traditional deformation of 

failure caused by fretting degradation. A Kalman filter was used as a recursive 

algorithm to estimate the true state of the electrical connector. 

A technique has been developed for monitoring the structural damage accrued in ball 

grid array interconnects during operation in vibration environments (Lall, 2012). The 

technique uses resistance spectroscopy based state space vectors, rate of change of 

the state variable, and acceleration of the state variable in conjunction with Extended 
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Kalman filter, and is intended for the pre-failure time-history of the component. 

Condition monitoring using the presented technique can provide knowledge of 

impending failure in high reliability applications where the risks associated with loss-

of-functionality are too high to bear.  

The future state of the system has been estimated based on a second order extended 

Kalman filter model and a Bayesian Framework. The measured state variable has 

been related to the underlying interconnect damage using plastic strain. The 

performance of the prognostication health management algorithm during the vibration 

test has been quantified using performance evaluation metrics. Model predictions 

have been correlated with experimental data. The presented approach is applicable 

to functional systems where corner interconnects in area-array packages may be often 

redundant. 

From the literature search it can be seen quite a large body of work has been 

developed on ascertaining the reliability of relays via various methods, however, little 

work has been carried out so far in producing a prognostic solution to switching contact 

failure. This research proposes to remedy this, by suggesting a model based 

prognostic solution of the most common failure mechanism within the relay, namely, 

the electrical contacts. 

3.10 State of the Art 

 
From the Literature Review it can be appreciated that there is a large and growing 

body of literature on CBM and Prognostics. Methodologies produced so far however, 

seem to be application specific, for example PbMs to determine crack extension, or 

DD methods from specific data sets.  The successful applications of prognostics to 

complex engineering systems is still within its infancy; problems of how to model the 

high non-linearity and stochastic behaviour which contribute to degradation is still a  

major problem, however, this is steadily being resolved. 

The application of prognostics to electrical contacts is still to a large extent driven by 

knowledge based model assumptions.  Statistical and sequence based models are 

used in numerous reports to infer statements of lifetime and the reliability of the 

electrical contact.  These statements must in turn be replaced or described with 

statements on their probability. 
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This approach is the simplest, the process of deriving complex models, is replaced 

by knowledge based assumptions founded upon historical data for RUL prediction 

and is commonly used by manufactures to give an indication of failure time.  The 

most recent application of this to prognostics is the approach by (Ostendorf, Wielsch, 

and Reiniger, 2014) in which, together with lifetime tests and their statistical 

evaluation, it was found to be possible to deduce fault rates combined with the 

probability of failure and reliability for a newly designed contact unit.  This approach 

was developed from knowledge based applications from FMEA on comparable 

products as well as experience from the development process. The compilation of all 

potential damage patterns for all of the constituent components leads to an 

assessment of which fault is likely to occur based on experience.  From this 

assessment, distributions can be derived and along with stress failures that are also 

taken into account, their influences are quantified in terms of an increased theoretical 

error resulting in the previously defined damage causes. 

Mathematical models are used as descriptors for the reliability, namely Weilbull. The 

stresses being modelled by Arrhenius, Coffin-Manson and Hallberg-Peck, with 

accelerated testing being used to derive the parameters for these models. The final 

prognosis of error and failure rates were ascertained with the aid of Weibull 

parameters, which were determined beforehand in experiments, in consideration of 

the acceleration factors. 

Where this approach offers a simplified methodology, it relies heavily upon expert 

system knowledge, and with the models being defined from past data, potential new 

situations could pose problems, for example changes in the operating environment. 

 

Data driven methodologies in summary utilise regularly collected condition monitoring 

data to produce a system model instead of physics based or expert knowledge.  Both 

statistical and machine learning (A.I) techniques are headed under this category.  A.I 

based techniques attempt to recognise complex patterns in the data and utilise them 

to make intelligible decisions; where in statistical based methodologies, models are 

constructed by fitting a probabilistic model to the available data. One noted problem 

from the literature review is that to infer an accurate degradation pattern model from 

an A.I based approach can utilise a large amount of failure data. This data may be 

difficult to obtain in large quantities, as in general, systems are not run to failure and 

in some systems this may take months/years to evolve. This leads on to the problem 
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of determining failure thresholds, as within the data, it may not be apparent what the 

overall failure mechanism consists of.  

The work done by (Yu, Qiong, et al. 2009), forms a basis for using time series analysis, 

utilising characteristic parameters as predicted variables in electrical contacts. The life 

prediction method for space relays based on wavelet transform and ARMA (auto-

regression moving average) time series proposed, offers a statistical DD methodology.  

This method however still utilises past data and does not have the ability to adapt to 

online changes to condition monitoring data from unforeseen events.  The use of the 

ARMA model is however an attractive solution due to its low computational overhead 

and comparisons between the ARMA method and conventional regression analysis 

(Xuerong et al., 2010).  (Xuerong, Ye, et al., 2012) indicates that the former also has 

a higher predicted accuracy. It is noted that work above is more of a reliability 

prediction tool, as it offers no way of predicting impending operating environment, 

future load profile uncertainties and input data uncertainties such as the initial state of 

the system, variability in material properties and manufacturing variability. Also no 

metrics are provided in order to bench mark the techniques in terms of RUL prediction. 

 

The use of physics based models in prognostics for electrical contacts is small and 

this is perhaps due in part to the complexity of the physical process relating to the 

system degradation. The need for failure based degradation data is less important in 

physics based models, however an understanding of the physical process that 

accounts for the degradation is essential and can be very difficult, if not almost 

impossible to determine.  Physic based modelling constitutes two phases, the first 

being to obtain the residuals that represent the deviation of measurements from the 

expected values for a healthy system and secondly the mathematical modelling of 

the failure degradation.  The challenges that arise from physics based approaches 

incorporate the need for a knowledge of the physics that cause the degradation, as 

well as a thorough understanding of the component/systems and how environmental 

and operational conditions could play a significant part/dimension.  

One such use of a simplified physics model was made by (Lall, et al. 2012) in 

monitoring the progression of fretting corrosion in electrical connectors. State space 

vectors, incorporating rate of change of the state variable, and acceleration of the 

state variable was used as a recursive algorithm to estimate the true state of the 
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electrical connector. The future state of the system has been estimated based on a 

second order extended Kalman filter model and a Bayesian Framework. 

In terms of a PbM, work by (Lopez et al., 2008) presents a methodology based on the 

physics of failure. A contact resistance model was selected based on the a-spot radius 

and a function of temperature. 

3.11 Research Gap 

This chapter provides the following conclusions: 

The State of the Art methodologies in prognostics for electrical contacts are still very 

much based around knowledge based techniques such as mathematical model 

descriptors for the reliability, namely Weibull or regression based. 

Due to the nature of the problem outlined in Chapter 2, relay failure modes are 

extremely complex, consisting of multiple parameters which superpose together. 

Ideally, a physics based model would be the perfect solution, being able to account 

for all eventualities such as, operating environment, future load profile uncertainties 

and input data uncertainties such as the initial state of the system, variability in material 

properties, manufacturing variability, etc. 

On the other hand, one of the problems exhibited with data driven methods is the need 

for training data in the case of ANNs and statistical data to infer behaviour from.  This 

may not always be available, and to develop a realistic model for a complex system, 

a great deal of different data would be needed. 

Hence, a gap appears for a methodology that can develop a model from the data in 

real time and be able to produce prognostic prediction of RUL. This would enable the 

operating environment, future load profile and input data uncertainties to be catered 

for based on recent data history and the formation of a model that corresponds 

accordingly.  

3.12 Contribution of this Thesis to knowledge 
 

This PhD research contributes to literature by forming an accurate experimental 

data set for an electromagnetic relay contact extracted from accurate 

measurements of an attributed failure metric, namely contact resistance.  This 
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benchmark data set is sufficient in size to allow a data driven approach to be 

applied.   

The development of a real time data driven prognostic approach based upon 

modelling of degradation using system identification techniques is exploited. A 

sliding window recursive least squares approach is proposed that is able to 

adapt to operating environments, future load profile uncertainties and input data 

uncertainties, such as the initial state of the system, variability in material 

properties, manufacturing variability and component replacement. This 

prognostic has been benchmarked to enable an assessment of effectiveness to 

be ascertained. 

In addition, a simple physics based model (PbM) based upon arc erosion of the 

contact and its effect on the contact resistance due to the reduction of contact 

surface area is derived.  

The PbM of the arcing and the erosion process has been developed to enable 

mass loss to be calculated, the results are used in a state space model. This 

model enables the primary effects from arcing damage to be examined. The 

model incorporates the ability to look at heat flow through the contact, voltage 

across the contact due to heating and mass loss from the contact. The 

development of a model for the estimation of secondary parameters within the 

relay such as coil current, contact bounce and contact position has also been 

established. This state model was then used with particle filtering to enable a 

prediction of the RUL to be estimated.  
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Chapter 4 - Contact Resistance Data Acquisition  

Introduction 

This chapter focusses on the methodology used for the data extraction of a suitable 

feature vector for condition based monitoring (CBM) as well as the development and 

proving of a prognostics solution. The consideration of a suitable metric is first 

explored which reflects accurately the degradation of the relay contacts. This is 

followed by a discussion of the experimental apparatus devised and constructed within 

the laboratory to collect the data, including the quantification of measurement and 

process noise.  Lastly, the raw data is discussed in terms of patterns and features that 

may be applicable for prognostics as well as filtering methodologies to assist with trend 

clarification. 

4.1 Experimental Derivation  

From Chapter 2 it becomes apparent that contact failure is the primary failure mode 

and is in the main part due to arc erosion and material transfer between one contact 

and another.  This is due to the discharge of the arc causing contact surface damage, 

degradation of the performance, as well as eventual total failure of the contact.  Failure 

modes may be dependent upon numerous factors; including the arcing time, loading, 

contact material, bounce and atmosphere and thus affects the amount of material 

transfer, shape and direction. 

Three main categories of contact failures can be identified; failure from material loss, 

insulation contamination failure and gap bridging (Balme, 1990), the failure mode is 

also related to changes in contact gap. Contact surfaces are, relatively speaking 

smooth to the naked eye when under normal conditions and the contact gap travel is 

consistent.  Once material transfer starts to occur, there is a loss of material from one 

contact causing the surface to be eroded, with material being deposited onto the 

opposite contact over a wide area. This may now cause an increase in the contact 

resistance as well as the size of the contact gap, which inevitably leads to reduction in 

the over travel time. (Morin, Laurent, et al., 2000), (Morin and Laurent, 2000). 

Eventually, a point is reached where the over travel time becomes zero and the pair 

of contacts hardly touch one another, resulting in failure due to non-closing caused by 

the material loss. This mode of failure is defined as material loss failure. The other 
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extent of this is where the material transfer is concentrated over a small area as 

opposed to the whole contact, resulting in the formation of a small pip in one contact 

(usually the anode).  This leads to the gap between the contacts eventually becoming 

zero and causes a failure mode known as bridging, where the contacts remain 

electrically closed even when opening. 

In the third case, the situation may occur where the pip and the corresponding crater 

due to the material removal are more or less axially symmetrical and therefore the 

contact is gaining material at the same extent that its counterpart is losing material.  

This results in the equal shifting of the contact surfaces and thus the over travel 

distance remains constant. (Leung et al., 1991) 

Lastly, a failure mode called insulation contamination failure can also occur. Contact 

resistance as the surface insulation contamination due to arc erosion increases also 

increase and can cause non-closing failure. The complexity of the how the contacts 

fail presents the question of what is the best degradation parameter to use in order to 

provide a reliable feature vector for condition monitoring. Numerous authors have 

examined various strategies which will be described below.  

(Hammerschmidt et al., 2004) looked at the interaction between material transfer and 

contact kinetics yielding actual switching failures. This paper suggested that detailed 

information about the development of failure processes caused by material transfer 

may be gained by measuring the contact force in relays during life-tests. However, to 

measure contact forces the relay has to be modified, e.g. the fixed contact has to be 

removed and mounted on a movable force sensor. No modification is required if 

merely the values of both opening time and closing time are measured. 

Arc duration and subsequent erosion measurements for contacts made of pure silver, 

silver alloys (AgNi, AgCu), and silver metal-oxides (AgCdO, AgSnOa) were carried out 

by (Jemaa, 1996) for switches and relays connected to complex circuits (motor, 

resistance, and lamp) used in automobile field. The actual parameters of the 

experiments such as the contact material, the environment, voltage and current (50 V, 

0.1-3 A DC) and mechanics (opening speed) were controlled. The accurate voltage 

values of the consecutive arc plateaus included in arc phases are determined by 

statistical measurements and voltage histogram drawings. 
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The contact voltage drop, closing time and opening time were monitored by (Li, Kui, 

et al., 2000). In the end of test, the reliability of relay was estimated according to test 

data and the failure mode analysed.  

Other measurements looked at are over-travel and contact gap (Xuerong et al. 2010), 

which was deemed extremely difficult to measure at present during the life of the test. 

The degradation and failure mechanism could only be analysed by testing time 

parameters of contacts, such as over-travel time and rebound duration. According to 

above mentioned analysis, different failure mechanisms will lead to different trends of 

contact gap and over-travel. The paper integrates over-travel time and rebound 

duration together to describe the degradation of contacts performance. 

The most universally used metric for contact degradation in literature is contact 

resistance.  This is also adopted by the manufacturers who often quote a contact 

resistance figure in their literature for a healthy contact and one deemed to have 

reached a point where failure is impending. This is useful, as it gives a threshold that 

may be used when a prognostic solution is proposed. 

(Zhai, 2006) states contact resistance is an important parameter that directly reflects 

relay performance and it is also a basic datum to evaluate relay reliability. Based on 

theories of electromagnetic field, kinetics, contact force and electric contact, a full 

simulation analysis scheme of relay dynamic characteristics was presented by using 

the method of coupling finite element analysis and kinetic computation. 

(Rieder and Strof., 1991) stated modern reliability requirements for relays cannot be 

satisfied unless the contact resistance is measured after each operation of the life test. 

A test device was developed to execute these measurements, and a special method 

was applied to reduce the resulting amount of data effectively without losing 

information. Commercial relays were investigated at intermediate and low power 

levels. Characteristic contact resistance patterns during the life of a relay were 

recorded depending on both the contact material and the electrical stress. Typical 

statistical patterns characterizing homogeneous and heterogeneous materials, 

erosion of contact plating, contact contamination were examined. (Chen, 1993), 

examined the contact morphology, surface composition, and contact resistance of DC 

relay contacts for two levels of low-current (less than 1 A) arc has shown that a similar 

contact erosion mechanism and similar contact resistance degradation exist for 0.5 A 
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and 0.75 A switching a resistive load. Material transfer is attributed to ion sputtering 

during arcing, as is the degradation of contact resistance determined at different 

operating cycles, which appears to be influenced by both the contact morphology and 

surface contamination. A simple model is introduced and used to explain the process 

of arc erosion and contact resistance degradation during testing. 

4.2 Measurement of Contact Resistance 

From the survey of literature, contact resistance is the most universal metric in 

assessing how contacts degrade and although it is a secondary measurement, it takes 

into account the multiple failure modes discussed above, in 4.1. Although it is 

significantly smaller as compared with the overall circuit resistance, the changes in the 

contact resistance can cause significant malfunction of the device. This is because the 

contact resistance can vary significantly with the changes in the real contact area, 

contact pressure variations, resistive film non-uniformity, and other factors. 

The work in this Thesis requires a solution to allow measurements to be taken in situ 

e.g. within the FADEC unit, and hence contact resistance offers a viable metric for on-

board prognostics via non-invasive measurement (CAA directives). 

The contact resistance to be measured is extremely small, a perusal of manufacturer’s 

data sheets shows the contact resistance to be of the magnitude of a few milliohms.  

This means to accurately measure the changes, the sensitivity of the instrument needs 

to be in excess of measurement magnitude. 

One way to do this is to use a Kelvin (four wire) resistance measurement, figure 4.1.  

In a normal resistance measurement, the effect of the leads that are in circuit loop 

becomes part of the measurement, so as well as the contact resistance, the lead 

measurement is added. 

The four wire measurement uses an ammeter and voltmeter to measure the current 

through the contacts and the voltage across them, a simple application of Ohms law 

then gives the contact resistance.  

𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝑉𝑜𝑙𝑡𝑚𝑒𝑡𝑒𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔

𝐴𝑚𝑚𝑒𝑡𝑒𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔
      (79) 

Because the sense current to the voltage meter is so small, in the range of pA, the 

resistance of the measurement leads is negligible in the final result. 
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Figure 4.1. Showing the set-up of a four wire measurement. 

The measurement of the contact resistance for this application needs to be taken when 

all the bounce has subsided, this is known as a static measurement as opposed to 

measuring the dynamic contact resistance which has been used be some authors, 

(Chen, Peng, et al., 2005). 

4.2 Test Sample 

Accelerated life testing is the process of testing a product by subjecting it to conditions 

(stress, strain, temperatures, voltage, vibration rate, pressure etc.) in excess of its 

normal service parameters in an effort to uncover faults and potential modes of failure 

in a shortened amount of time, (Wayne, 1980).   

In order to accelerate the relay testing, various parameters were explored; in the end, 

it was decided to test the device at full voltage and current, ambient room temperature 

and maximum switching cycle specified for the device. This still resulted in test times 

in excess of two weeks in some cases. The test conditions that were used, tried to 

invoke as much as possible the actual in-use conditions for the relay. The notion to 

use inductive loading, that would have sped up the degradation process was initially 

revoked, as most relays are implemented with some degree of arc suppression.  By 

using a resistive load, a benchmark may be established from which a comparison of 

contact life from inductive loading and increased arcing may be examined.  

The relays specification is documented in table 4-1 below.   From the table, the life of 

the relay contacts is in excess of 105 cycles with a resistive load and the mechanical 

components of the order of 2 × 106, initial contact resistance is below 100 mΩ (this 

takes into account the oxide that may be present on the contacts due to prolonged 
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storage or from manufacturing debris, hence the high initial value) and the maximum 

operating speed is 20 times/minute. 

Characteristics Item Specifications 

Contact Arrangement 1 Form A 

 Contact resistance (Initial) Max. 100 mΩ (By voltage drop 6 V DC 

1A) 

 Contact material AgSnO2 type 

Rating Nominal switching capacity 

(resistive load) 

16 A 277 V AC 

 Max. switching power (resistive 

load) 

4,432 VA 

 Max. switching voltage 277V AC 

 Max. switching current 16 A 

 Nominal operating power 400 mW (Standard type) 

 Min. switching capacity  100 mA, 5 V DC 

Electrical 

characteristics 

Insulation resistance (Initial) Min. 1,000 MΩ (at 500 V DC) 

Measurement at same location as 

“Breakdown voltage” section. 

 Breakdown 

voltage 

(Initial) 

Between open 

contacts 

1,000 Vrms for 1 min. (Detection current: 

10 mA) 

Between 

contact and 

coil 

4,000 Vrms for 1 min.  

 Temperature rise (coil) Max. 55°C 131°F, Max. 45°C 113°F (200 

mW type) (By resistive method, nominal 

coil voltage applied to the coil; contact 

carrying current: 16 A, at 20°C 68°F) 

 Surge breakdown voltage 

(Between contact and coil) (Initial) 

10,000 V 

 Operate time (at nominal voltage) 

(at 20°C 68°F) 

Max. 20 ms (excluding contact bounce 

time.) 

 Release time (at nominal voltage) 

(at 20°C 68°F) 

Max. 20 ms, Max. 25 ms (200 mW type) 

(excluding contact bounce time) (With 

diode) 

Mechanical 

characteristics 

Shock 

resistance 

Functional 200 m/s2  

Destructive 1,000 m/s2 

Vibration 

resistance 

Functional 10 to 55 Hz at double amplitude of 1.5 

mm 

Destructive 10 to 55 Hz at double amplitude of 1.5 

mm 

Expected life Mechanical (at 180 times/min.) Min. 2×106 

Electrical (at 20 times/min.) Min. 105 (at resistive load) 

Conditions Conditions for operation, transport 

and storage 

Ambient temperature: –40°C to +85°C –

40°F to +185°F; Humidity: 5 to 85% R.H.  

Max. operating speed 20 times/min. (at nominal switching 

capacity) 

Table 4.1. Relay specification 
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The measurements of contact resistance were generated from an in-house developed 

test bed at Cranfield University.  The test bed in figure 4.2 has been designed to allow 

continual cyclic testing of a relay at various currents and voltages, with the ability to 

vary the switching time. In-situ measurements of currents, voltages, temperature, pick-

up time, over-travel time, the rebound duration, closing time and contact resistance 

are available for algorithm development. The test rig consists of the following major 

components: 1000 W resistive load, 50 A solid state relay, 16 A 30 V relay, bread 

board, data acquisition system connected to a computer. The prognostic rig is 

designed so that no other component will deteriorate quicker than the relay during the 

test. Each component is discussed below. 

 

 Figure 4.2. Relay test rig 

Solid state relay:  In order to allow a continuous current through the load in the test 

circuit and switch this current during testing, a 50 A solid state relay was applied due 

to its reliability under continuous operation.  This was coupled with a heat sink to allow 

the dissipation of heat from the device.   

Resistive load: In order to load the device in the test circuit, a suitable load needed to 

be employed. A ceramic bodied 1000 W, 1 Ω load was used to enable the current from 

the power supply to be directly proportional to that being switched be the relay under 

test.   

Test Circuit Relay: a standard relay was used for switching the test circuit for the 

measurement.  This relay allows the 6 V, 1 A test current to be switched in whilst the 

load current is switched out. 
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Bread board: The relay under test was mounted in rigid bread board as the 

connections are PCB type.  As well as being PCB mountable, the relay also has TMP 

spade terminals.  This allowed connection of the load circuit through the terminals and 

the voltage measurement to be taken as near to the contacts as possible on the bread 

board. 

 

Figure 4.3. Picture of the test relay showing the TMP terminals. 

Data Acquisition: National Instruments LabView® was used for the control of the test 

and data acquisition.  The data collection was conducted with a NI 9219 Universal 

Analog Input, 24-Bit module and the outputs used for control of the test circuit, load 

circuit and relay under test was via a NI 9472 card which are connected to an NI cDAQ-

9174 4-slot USB chassis. 

For safety reasons due to the long periods the test rig would be left unattended and 

the potential burn hazard from the 1 Ω load, the whole unit was mounted on a PVC 

board and housed within a steel cabinet. 

 

Figure 4.4. Test circuit for relay. 
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4.3 Test rig operation 

The circuit diagram for the test rig is shown in figure 4.4 above. The main circuit 

consists of the load resistor connected to a power supply through the solid state relay 

and the relay under test.  Across the relay under test, a second circuit containing a 

manufacturers specified test current of 1 A at 6 V is connected in series with a relay, 

this is the measurement circuit. The actual voltage reading is taken across the contacts 

of the relay under test.  

The operation is as follows; the cycle time and number of cycles until test are entered 

into the LabView® display panel in figure 4.5. When the program is started, the load 

circuit is switched in via the solid state relay, the relay under test is operated at the 

required cycle time for the desired number of cycles, before a measurement is taken. 

Upon reaching this, the relay under test coil is kept energised, the load circuit is 

switched out and the measurement circuit is switched in.  The relay under test, now 

has a 1 A current through the contacts and the voltage across the contacts is taken 

via the NI 9219. Because the current is 1 A, the voltage across the contacts is 

proportional to the contact resistance and this measurement is stored and plotted on 

the display. 

 

 

 

Figure 4.5. Labview display 

A sample of seven relays were tested at their full load current and voltage within the 

same experimental conditions, and a reading of the static contact resistance every 

100 cycles was taken until the End of Life (EoL). The EoL in each of the test samples, 
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resulted in a sudden failure due to the contacts no longer being able to separate 

(contact welding), and in each case occurred well past the manufactures stated 

operated point. The variation of the contact resistance between samples was 

interesting.  

4.4 Measurement Uncertainty within the Results 

In any set of experimental measurements, the reliability of the results will be influenced 

by uncertainties. The mathematical analysis of these uncertainties within a system and 

the variability of its parameters is given to an area of study called Uncertainty Analysis.  

The variability of these system parameters may be attributed to sources inherent to 

the system or from external disturbances and need to be quantified in any measured 

experimental results before solid conclusions can be drawn from the data. 

A system is said to be linear if the corresponding values of its inputs (I) and outputs 

(O) lie on a straight line, such that 

𝑂𝑖𝑑𝑒𝑎𝑙 = 𝐾𝐼 + 𝑎        (80) 

where K is the slope and a is the intercept of straight line. In most cases the linear 

relationship is not obeyed causing non-linearity N(I). The system will also be 

influenced by variability arising from noise sources that are present in all systems, as 

well as noise added during measurement, for example the discretisation of the 

measured variables. These are referred to in measurement standards as Type A 

uncertainty errors that can be statistically evaluated from the set of measurement data 

(often considered as random uncertainty).  

In general, the output (O) depends not only upon the input (I), but on external 

influences governed by environmental factors. Again in measurement standards, this 

is referred to as Type B error estimates influencing the measurements that are not 

directly observed from the measurement data (often considered as systematic 

uncertainty). These uncertainties on the system will be dependent on factors such as 

temperature, atmospheric pressure, power supply variation, vibration and humidity 

etc., which will all cause changes over time.  

There are two main types of environmental effects or process noise as it often referred 

to. A modifying input causes the linear sensitivity of the element to change, the 

deviation 𝐼𝑀 from I in a modifying environmental input causes a change in the linear 
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sensitivity from 𝐾 to 𝐾 + 𝐾𝑀𝐼𝑀. Likewise, an interfering input 𝐼𝐼causes the intercept or 

zero bias of an element to change. If 𝐼𝐼 is the deviation in an interfering environmental 

input from 𝐼𝐼 in normal conditions, then this produces a change in zero bias from a to 

𝑎 + 𝐾𝐼𝐼𝐼. The constants 𝐾𝑀, 𝐾𝐼 are referred to in literature as environmental coupling 

constants or sensitivities. 

Other parameters that are often considered within the systematic characteristics are 

hysteresis, resolution as well as wear and ageing. If the effects of hysteresis and 

resolution are deemed not to be present, then the input and output relationship can be 

assumed to be comprised of non-linear and environmental influences which may be 

represented by the general equation 

𝑂 = 𝐾𝐼 + 𝑎 + 𝑁(𝐼) + 𝐾𝑀𝐼𝑀𝐼 +, 𝐾𝐼𝐼𝐼      (81) 

Therefore, the aim of uncertainty analysis is to quantify, evaluate and combine all the 

various sources of uncertainty to produce a combined estimate of all the individual A 

and B type uncertainties within the system. This combined uncertainty 𝑈𝑐is estimated 

by a residual sum of squares (RSS) which gives a basic estimate, representing one 

standard deviation.  

𝑈𝑐 = √𝑈1
2 + 𝑈2

2 + 𝑈3
2 + ⋯ + 𝑈𝑛

2      (82) 

The combination of uncertainties by the RSS technique assumes a standard 

relationship which is statistically independent. It is usually required for the above 

calculation to cover a larger population or condition, commonly 95% or 99% instead 

of the 68% pertained; therefore, scaling is employed to cover this larger population 𝑈𝑚. 

𝑈𝑚 = 𝑘𝑈𝑐         (83) 

A type A uncertainty is determined by the statistical analysis of a series of observations 

(measurements) and will consist of uncertainties; including effects from variation of 

multiple repeated readings from the unit under test, effects of system noise and noise 

and short term variation of the standard used. In literature, this is deemed forward 

uncertainty propagation as opposed to inverse uncertainty quantification of the input 

(I) and model parameters based on a set of measurements of the output (O), an 

example of this being the comparison of a mathematical model with experimental 

output measurements. 
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4.4.1 Type A Measurement Quantification 

In order to quantify the measurement error, a series of measurements were taken from 

a high accuracy voltage source, this being a Fluke 5700A multifunctional calibrator as 

recommended by National Instruments. This device is capable of delivering a low 

noise voltage output at within a range of 48 – 0.1 V with noise levels of ≤ 5 m𝑉𝑝𝑘−𝑝𝑘 

and ≤ 5 μ𝑉𝑝𝑘−𝑝𝑘 respectively. In carrying out the measurements, connections to the 

device are kept to the minimum length and tight, with a temperature of 23 ± 0.5 ºC and 

a relative humidity below 80 %.  The NI 9219 is set up as in figure 4.6 below 

 

Figure 4.6. Calibration set-up 

For each of the measurement values in table 4.2 below, 20 readings were taken and 

then averaged. This average is recorded as 𝑉𝑐ℎ𝑎𝑛𝑛𝑒𝑙, and the deviation from the 

average for each measurement is then calculated. 

Measurement 

Type 

Max (v) 

Voltage 3.2 

 0.8 

 0.1 

 

Table 4.2. Calibration voltages 

 

Figures (4.7), (4.8) and (4.9) show the distributions of the measurements for the 20 

measurements taken at 3.2, 0.8 and 0.1 V respectively. 
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Figure 4.7. Voltage measurement distribution at 3.2 Volts 

 

Figure 4.8. Voltage measurement distribution at 0.8 Volts 

 

Figure 4.9. Voltage measurement distribution at 0.1 Volts 

The uncertainty is statistically analysed from the measurement data series using the 

experimental standard deviation S. 
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 𝑆 = √
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

(𝑛−1)
        (84) 

Where 𝑥𝑖 is the reading and 𝑥̅ is the mean of all the readings. In order to gain the best 

estimate of uncertainty for a normally distributed population, the experimental standard 

deviation of the mean is used. 

 𝑈1 =
𝑆

√𝑛
           (85) 

where 𝑈1 is the estimated standard uncertainty for the measurement set.  

In order to gauge if the standard deviation is a small or large quantity when compared 

to the mean for data set the relative standard deviation (RSD) may be calculated from  

𝑅𝑆𝐷(%) =
𝑆

𝑥̅
× 100        (86) 

 

Figure 4.10. Relative standard deviation of measurements 

To complete the analysis, numerous other considerations have to be taken into 

account. The first of these being how the data is distributed, for example, is the data 

Gaussian, Uniformly or Triangularly distributed. The degree of freedom, which is 

essentially a value relating to the amount of information that was employed in making 

the estimate.  This is usually taken for type A uncertainties as being the sample size 

minus one (n-1), but is often considered infinite for parameters such as the 

manufactures specification. Lastly, the sensitivity coefficient is defined as the change 

in measurement response divided by the corresponding change in stimulus and 

defines how influential the measurement is.  

In this case, from the Q-Q plots of the data (see section 4.4.2), the distribution is largely 

Gaussian in nature. This is a reasonable assumption, as most uncertainties, given a 
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large enough sample size from a population with a finite variance; as the mean of all 

samples from the same population will be approximately equal to the mean of the 

population, this being the Central Limit Theorem. 

For the sample size, this was simply equal to the number of samples taken for each 

measurement, in this case 20. This sensitivity is in this case taken to be 1. 

For each calibration point, the Type A estimated standard uncertainty is calculated 

using equation (85). 

Calibration point (V) Estimated Standard Uncertainty 𝑼𝟏 

0.1 5.52 × 10−6 
 

0.8 18.9 × 10−6 
 

3.2 408 × 10−6 

 

Table 4.3. Showing the Estimated Standard Uncertainty for each calibration voltage 

The Type B uncertainties need to be taken into account which cannot be determined 

statistically during the measurement process and include the error or inaccuracy of the 

calibrator, measurement error to the resolution of the NI9219 card, as well as lead 

effects, loading and thermal effects.  A degree of judgement needs to take place and 

these estimates are expressed as one standard deviation for each of the different 

uncertainties. 

The first Type B uncertainty due to the calibrator error 𝑈2 estimates ± one standard 

deviation and is gained from the manufacturers recommended specification at the test 

point. For the voltage range being used, 𝑈2 is ± 0.03%.  The maximum instrument 

error per manufacturer’s error at the point of test is (± 0.03 of the measured voltage). 

This measurement is based upon a normally distributed 99% confidence interval, 

hence to convert to ± one standard deviation, 

𝑈2𝑠𝑡𝑑 =
𝑈2

2.58
         (87) 

Lastly, the uncertainty pertained to the measurement limitation include error due to the 

resolution of the NI9219, this is perceived to be half of the least significant digit (LSD). 

To calculate the LSD for the NI9219, the measurement range divided by the number 

of bits used in the analogue to digital conversion, in this case 24 bits. The distribution 

is assumed to be rectangular in line with probability distributions for ADC in literature. 

𝐿𝑆𝐷 =
𝑉𝑟𝑒𝑓(+)−𝑉𝑟𝑒𝑓(−)

2𝑁         (88) 

The standard uncertainty related to one LSD is then given by 
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𝑈3 =
0.5×𝐿𝑆𝐷

√3
         (89) 

Combining the uncertainties 𝑈1, 𝑈2 and 𝑈3 with equation (82) gives the overall standard 

combined uncertainty 𝑈𝑐 for the measurements to one standard deviation. 

Tables (4.4, 4.5 & 4.6) below summarise the stages in calculating the uncertainties.  

Source of 

Uncertainty 

Type 𝑼𝒊 Uncertainty 

Value (v) 

Sensitivity 

Coefficient 

Probability 

Distribution 

Coverage 

Factor 

Standard 

Uncertainty 

Degrees 

of 

Freedom 

Repeatability A 𝑈1 408 × 10−6 
 

1 Normal 1 408 × 10−6 
 

19 

Calibrator B 𝑈2 960 × 10−6 1 Normal 2.58 372 × 10−6 ∞ 

Resolution B 𝑈3 381.5 × 10−9 1 Rectangular √3 110 × 10−9 
 

∞ 

Voltage 

Measurement 

Combined 𝑈𝑐 - - Assumed 

Normal 

- 780 × 10−6 253.8 

Voltage 

Measurement 

Expanded 𝑈𝑚 1.53 × 10−3 - Assumed 

Normal 

1.96 - 253.8 

Table 4.4. showing the uncertainty analysis for the 3.2V measurements 

 

Source of 

Uncertainty 

Type 𝑼𝒊 Uncertainty 

Value (v) 

Sensitivity 

Coefficient 

Probability 

Distribution 

Coverage 

Factor 

Standard 

Uncertainty 

Degrees 

of 

Freedom 

Repeatability A 𝑈1 18.9 × 10−6 
 

1 Normal 1 18.9 × 10−6 
 

19 

Calibrator B 𝑈2 240 × 10−6 1 Normal 2.58 93 × 10−6 ∞ 

Resolution B 𝑈3 95.4 × 10−9 1 Rectangular √3 55.1 × 10−9 
 

∞ 

Voltage 

Measurement 

Combined 𝑈𝑐 - - Assumed 

Normal 

- 112 × 10−6 23423 

Voltage 

Measurement 

Expanded 𝑈𝑚 219.5 × 10−6 - Assumed 

Normal 

1.96 - 23423 

Table 4.5. showing the uncertainty analysis for the 0.8V measurements 

 

Source of 

Uncertainty 

Type 𝑼𝒊 Uncertainty 

Value (v) 

Sensitivity 

Coefficient 

Probability 

Distribution 

Coverage 

Factor 

Standard 

Uncertainty 

Degrees 

of 

Freedom 

Repeatability A 𝑈1 5.52 × 10−6 
 

1 Normal 1 5.52 × 10−6 
 

19 

Calibrator B 𝑈2 30 × 10−6 1 Normal 2.58 11.6 × 10−6 ∞ 

Resolution B 𝑈3 11.92 × 10−9 1 Rectangular √3 6.9 × 10−9 
 

∞ 

Voltage 

Measurement 

Combined 𝑈𝑐 - - Assumed 

Normal 

- 17.1 × 10−6 1750 

Voltage 

Measurement 

Expanded 𝑈𝑚 33.6 × 10−6 - Assumed 

Normal 

1.96 - 1750 

Table 4.6. showing the uncertainty analysis for the 0.1V measurements 

The overall degree of freedom 𝑣𝑒𝑓𝑓 for the combined uncertainty has been calculated 

from the Welch-Satterthwaite formula, which considers each uncertainty 𝑈𝑖, each 
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sensitivity coefficient 𝐶𝑖 and each uncertainty’s specific value 𝑣𝑖 for degrees of 

freedom to calculate 𝑣𝑒𝑓𝑓 

 

𝑣𝑒𝑓𝑓 =
𝑈𝑐

4(𝑦)

(∑
𝐶𝑖

4𝑈𝑖
4(𝑥𝑖)
𝑣𝑖

𝑁
𝑖=1 )

=
(780 × 10−6)4

1 × (408 × 10−6)4

19 +
1(372 × 10−6)4

∞ +
1(110 × 10−9)4

∞

 

           (90) 
𝑣𝑒𝑓𝑓 = 253.8 

The expanded uncertainty can be calculated to give an overall confidence with the 

measurement result by expressing the uncertainty from a single standard deviation.  

This overall uncertainty is given by equation (83), repeated here for convenience. 

𝑈𝑚 = 𝑘𝑈𝑐 

Where k is coverage factor which may be adjusted by the use of students’ t distribution 

tables if the degree of freedom is small.  Usually, a coverage factor of 1.96 is used, 

pertaining to a 95% coverage. Hence the overall 𝑈𝑚 = 1.96 × 780 × 10−6 = 1.53 𝑚𝑉 

Finally, a measurement value including the quantified measurement uncertainties may 

be given for the NI9219. The voltage measurement will be 𝑉 = 𝑉𝑎𝑣𝑔 ± 𝑈𝑚. 

Hence, for example, at 3.8 V, the maximum range of the calibration, the measurement 

will be 3.8 ± 1.53 𝑚𝑉 at a confidence level of 95%. 

 
Figure 4.11. Voltage measurement against calibration voltage showing the error bars depicting the 

uncertainty error 
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4.4.2 Uncertainty within the Measured Data Analysis 

In order to quantify the type of noise within the data an initial estimate may be gained 

from the statistical properties. The noise perturbed on the discrete measurement 

sequence forms a random distribution. Hence in a similar context, by treating the 

output contact resistance as a discrete sequence with noise from various sources 

superimposed upon it, the noise/uncertainty may be analysed and correlated to certain 

statistical distributions. 

Probability distributions can be used to infer a degree of insight to the behaviour and 

nature of the random variables in the measurement sequence. A Q-Q (Quantile-

Quantile) similar to P-P (Probability-Probability) plot provides graphical “goodness of 

fit” of the distribution of the data. By definition, a quantile is a class of variate that 

divides all the samples of a distribution into equal proportions. Generally, a normal Q-

Q plot is widely used to estimate normality of the data. However, various other 

theoretical distributions can also be used to predict the distribution of the data set. In 

this case, the Q-Q plot compares data quantiles of the measured data set to quantiles 

of a known standard theoretical distribution. 

From the Q-Q plots for each data set in figure (4.12), it can be seen that there is a 

strong Normal and Uniform component within the data sets. The process of 

quantisation is often assumed to be uniformly distributed, whereas thermal noise is 

assumed to be a normally distributed. For the sum of two or more independent and 

identically-distributed random noise variables they would lie more or less upon on each 

other, in this case there is a slight offset between each distribution.  

Where the data points fall along a line in the middle of the graph, but curve off in the 

extremities the data exhibits more extreme values that would be expected if they truly 

came from a Normal or Uniform distribution. Hence, there is another underlying noise 

distribution present, which may be attributed to the process itself. 

Where the Q-Q plot gives a useful insight into the nature of the distribution of the data, 

it lacks a rigorous quantitative measure of the type of uncertainty in the data. More 

analysis needs to be carried out to quantify the nature of the noise sources. 
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Figure 4.12. Q-Q plots of measured contact resistance (Green represents Uniform distribution, Black 

represents Normal distribution and the dashed red line represents the theoretical distribution.) 

4.4.2.1 Noise Spectral Density 

In order to try and gain a further insight into the noise within the measured data a 

spectral density analysis was carried out. The resulting spectral analysis occurred in 

the 0.1 V calibration range, as the signal to noise ratio is the lowest in this range. Noise 

spectral density is the average noise power per unit of bandwidth (dB/Hz) and is 

extracted by the use of a FFT on single measured data set. In order to eliminate 

biasing in the results, which may occur at lower frequencies due to the noise not being 

constant/flat, the root mean square (RMS) of the individual spectral densities is 
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calculated. The total noise spectral density may then be expressed over N acquisitions 

in terms of  

𝜎𝑣𝑜
= √

1

𝑛
∑ (𝜎𝑣𝑜𝑛

)
2

𝑁
𝑛=1        (91) 

and is expressed in 𝑑𝐵𝑉/√𝐻𝑧. 

From the results in figure (4.13) below, two inferences may be made. Firstly, the 

majority of the power spectrum is focused in the 100 Hz – 1000 Hz range and is 

typically flat with average noise spectral density concurring with the values of the 

variance of the measurement noise taken at across the measurement range.  This is 

likely to be due to quantisation noise Therefore, the assumption is the noise is 

Gaussian in distribution throughout this range, backing up the assumption from the Q-

Q plots. 

Secondly, from 10 Hz there is a linearly decreasing flat noise source with a corner 

frequency of approximately 100 Hz, this from literature implies flicker noise. Flicker 

noise has a 1/f power spectral density and is often referred to as ‘pink noise’, it occurs 

in almost all electronic devices.  In voltage measurements the 1/f noise is related to a 

direct current, the fluctuations in resistance are transformed into voltage fluctuations, 

this may also occur in resistances with no DC passing through them, and is a function 

of the temperature fluctuation modulating the resistance (Voss, Clarke, 1976).  

 

Figure 4.13. Noise spectral density for the experimental data 
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4.4.3 Theoretical Calculation of Noise in the Measurement 

In order to further quantify the hypothesis that the noise in the measurement is due 

mainly to the quantisation, a theoretical analysis is undertaken. 

4.4.3.1 Quantisation Noise Analysis  

When digitising an analogue an ideal N-bit quantiser introduces a maximum error of 

±
1

2
𝐿𝑆𝐵 (where LSB is the least significant bit), 1 LSB or quantisation level ∆ is defined 

as 

 ∆= 
𝑉𝑚𝑎𝑥− 𝑉𝑚𝑖𝑛

2𝑁−1                 (92) 

where 𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛 represents the full-scale amplitude of the analogue signal.  

The non-linear quantisation noise due to rounding has a zero mean with average noise 

power (Vaseghi, 2008) 

𝜇𝑄𝑅 =  0 ; 𝜎𝑄𝑅
2 = 

∆2

12
 (93) 

  

The truncation error has a non-zero mean with average noise power described by  

𝜇𝑄𝑇 = 
∆

2
 ;    𝜎𝑄𝑇

2 =  
∆2

3
 (94) 

If it is assumed that the total quantisation noise is due only to rounding, which is valid 

for most ADC, the quantisation noise can be modelled as an additive, signal-

independent, white noise uniformly distributed over the interval [−
∆

2
, +

∆

2
] with variance 

defined (Proakis, 1996) by  

𝜎𝑇
2 = 

∆2

12
 (95) 

where 𝜎𝑇
2 is the variance of the quantisation noise. The power spectral density of the 

quantisation noise over the flat and uniformly distributed region can be defined as 

𝑆(𝑓) =  
𝜎𝑇

2

(
𝐹𝑠

2⁄ )
=  

∆2

6 𝐹𝑠
 (96) 

Hence for the spectrum above, the PSD can be calculated as 9.93 × 10−7 dB/Hz. 
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4.4.3.2 Flicker Noise Model 

The flicker power function 𝑆𝑛𝑓(𝑓) (in W/Hz) is inversely proportional to the frequency 

𝑆𝑛𝑓(𝑓) =
𝑘

𝑓
           (97) 

The constant k is arbitrary at this point. 

The mean square voltage and current are proportional to their corresponding power, 

that is 𝑉𝑛(𝑓)2 = 𝑆𝑛(𝑓)𝑅, then 

𝑉𝑓𝑛
2 =

𝑘𝑅

𝑓
         (98) 

It is common to relate flicker noise to the characteristic white noise at a frequency 

where both are equal called the noise corner frequency, 𝑓𝑛𝑐 

𝑘 =
𝑉𝑤𝑛

2 (𝑓)×𝑓𝑛𝑐

𝑅
         (99) 

equation (98) now becomes 

𝑉𝑓𝑛
2 (𝑓) =

𝑉𝑤𝑛
2 (𝑓)×𝑓𝑛𝑐

𝑓
        (100) 

𝑉𝑤𝑛
2 (𝑓)here represents the Gaussian noise specified V/√Hz. 

Integrating the 1/f function through the range of frequencies representing bandwidth 

gives the corresponding total mean square flicker noise  

𝑉𝑓𝑛−𝑡𝑜𝑡𝑎𝑙
2 (𝑓1, 𝑓2) = ∫

𝑉𝑤𝑛
2 (𝑓)×𝑓𝑛𝑐

𝑓
𝑑𝑓

𝑓2

𝑓1
      (101) 

Integrating, gives the following result 

𝑉𝑓𝑛−𝑡𝑜𝑡𝑎𝑙
2 (𝑓1, 𝑓2) =  𝑉𝑤𝑛

2 (𝑓) × 𝑓𝑛𝑐 × ln (
𝑓2

𝑓1
)     (102) 

𝑉𝑓𝑛−𝑡𝑜𝑡𝑎𝑙(𝑓1, 𝑓2) =  √𝑉𝑤𝑛
2 (𝑓) × 𝑓𝑛𝑐 × ln (

𝑓2

𝑓1
)     (103) 

Using the noise approximation for the Gaussian white noise, and for a bandwidth of 

90 Hz and a corner frequency of 100 Hz the flicker noise was approximated to be 14.9 

μV. 
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The total noise power in the measurement therefore may be approximated by the 

combination of the quantisation noise and the flicker noise 

σ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 = √σ(Quantisation)
2 + σ(Flicker)

2      (104) 

The noise overall was approximated to be 15.1 μV, which equates with the standard 

uncertainty measured at 0.1 Volts in table. 

4.4 Median Filtering 

A median filter is a non-linear class of filter and is particularly good for removing 

impulsive type noise from a signal (Qiu, 1994). The non-linear function of the median 

filter can be expressed as  

y(n) = med[u(n − k), u(n − k + 1), . . . ,  u(n), . . . , u(n + k − 1), u(n + k)]   

where y(n) and u(n) are the output and input signals respectively. The filter “collects” 

a window containing N =2(k +1) samples of the input signal and then performs the 

median operator on this set of samples.  An important property of median filters is that 

they preserve edges, both positive and negative or stepwise discontinuities in the 

signal. The filtering results are shown in figure 4.14 below, showing the original noisy 

signal and the median filtered signal which replicates the original. 

 

Figure 4.14. Median filtering of data 

The filtered tests results of seven samples of contact resistance are shown below.  

The x-axis measurements are shown as number of cycles ×100, as the measurement 

was taken every 100 cycles. 
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Figure 4.15. Sample 1  

 

Figure 4.16. Sample 2  
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Figure 4.17. Sample 3  

 

Figure 4.18. Sample 4 

 

Figure 4.19. Sample 5 
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Figure 4.20. Sample 6 

 

Figure 4.21. Sample 7 

4.5 Test Results 

The results show a general structure and certain boundaries may be categorised in 

Figure 4.22, showing the ensemble of test results.  Firstly at a, for high voltage and 

currents (in excess of 1 A), the initial contact resistance will in most cases be high.  

This is due in part to the build-up of oxides and deposits on the surface of the contacts 

during manufacture and within storage/non-operation.  This initial high resistance is 

quickly reduced by the effect of electrical cleaning due to fretting and the thermal 

destruction of the oxide layers, which sees the contact resistance drop back to a 

normal range. Hence manufacturers often give a value of maximum contact resistance 
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when the device is new, this is often way in excess to the normal operating contact 

resistance until the device has bedded in. 

Section b depicts the climb in contact resistance up to the threshold of 100,000 cycles, 

this is the minimum number of cycles the manufacturer states contacts will operate for 

under a resistive loading.  In general, a steady climb in the contact resistance may be 

observed up to this point. The effects of wear due to the physical effects discussed in 

chapter 2 become more apparent as the cycles increase.   

The contact it makes is subject to bounce causing multiple interruption of the current 

which leads to erosion on the contact surface.   

 

 

Figure 4.22. Montage of results, showing the various identified sections of contact degradation. 

This severity of the contact erosion and how much material is transferred is dependent 

upon the load, current level, voltage, contact material, surface condition and bounce 

characteristics such as the gap, frequency, duration and timing.  When this bounce 

subsides and tends to zero, the contacts close onto a molten liquid spot and weld 

together (known as dynamic welding). 

The second part of the effects occur in section c when the contacts breaks. The 

moving contact opens to interrupt the current flow and when the contacts separate a 

sequence of two events occur on the surface contact.  High current density heating of 

localized spots, spot melting, metal bridge transfer, formation of metal vapour arc and 

gaseous arc, arc transfer of contact material and finally arc extinction.  This break 

a b d c 
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erosion depends on device characterisation, arc time and arc voltage and contact 

material, (Leung and Lee, 1991). 

Section b & c therefore is made up of the superposition of both effects and gradual 

degradation of the contact will occur.  In section c the damage becomes a lot more 

apparent, with the surface damage causing greater changes in contact resistance.  

However the underlying trend, despite the oscillating peaks and troughs is an increase 

in general and to some extent this may be characterised as fitting a linear best fit. 

In section d, the eventual failure of all the relays under test was due to the contacts no 

longer opening due to welding.  The oscillations in the resistance are more 

pronounced, with the eventual failure happening in most cases as the contact 

resistance takes a downturn. Failure is sudden and total, with complete loss of 

functionality.  It can be seen from the number of cycles however, this failure is in all 

cases at least twice that of the stated minimum specified by the manufactures. 

This coincides with the processes described in literature. The arc melts the surface of 

the contact for a period of time and after that the process of solidification begins, this 

can cause changes in the surface topography.  (Leung, 2006) shows the effects for 

the arc in atmospheric air for Ag–SnO2 and Ag–SnO2–InO2. 

For contacts opening in air, the various gases present can make the change in surface 

structure very complex, this is in part due to the reaction permutations between the 

arc, the contacts surfaces and the constitute chemicals in the air.  This may lead to 

the formation of oxides, nitrides and carbonates. Additional complication may arise 

due to additional pollutants such as dust, oils and greases, sulphides and chlorides 

that are present. 

This change of surface topology shows as a change in the contact resistance. The 

resistance may increase, decrease or remain the same depending on the contact 

material, arc characteristics, atmosphere and mechanics, such as force on the 

contacts and if there is enough pressure or sliding action to rupture the surface film.  

The above failure modes due to impurities may be reduced by using hermetically 

sealed relay cases, filled with an inert gas such as helium or argon. 

Even with hermetically sealed contacts, erosion however is still present, depending on 

the arc varicosity on the surface, this erosion may reveal new, un-oxidized material on 

each operation, and this will cause the contact resistance to remain at a low value.  As 
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soon as a film forms, the closed contact will exhibit an increased temperature, leading 

to additional film formation.  The process is summarized in figure 4.23 below. 

In the above results, this becomes particularly evident, where as one may expect a 

general exponential rise to the end of life, the reality is far from this and can be 

explained from the above discussion as well as the section by section discussion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23. Summarizing the variation in Rc in an electrical contact. 

4.6 Process Noise Effects on Contact Resistance Measurements 

The factors governing the reliable operation of any electrical contact may be based 

on a great deal of interrelated and independent parameters. These parameters can 

be sub-divided into two elementary groups: Those which are internally occurring and 

subsequently, those which are externally occurring.  

The category of internal factors represents the influence of mechanical effects, such 

as contact loading, sliding velocity and reciprocation and characteristics of motion, 

are commonly grouped under the term ‘fretting’. As well as electrical based factors, 

such as the type and strength of current and the operating voltage. 
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External based factors are representative of environmental effects and are often 

uncontrollable; effects such as time-temperature variation, humidity, atmospheric 

pressure as well as contaminants from air board particles.   

These factors affect the performance of the contact by changing the properties of the 

contact material and depositing surface films.  This in turn leads to physical and 

chemical changes in the contact, resulting in the build-up of wear with a subsequent 

effect of degradation of the contact interface, increase in contact resistance and 

eventual failure.  

Relating these and previously discussed effects from arcing allows the quantification 

of process and measurement noise in the experimental results which are essential 

later on in the prediction process. 

4.6.1 Fretting 

A material that is subjected to small oscillatory movements at the interface of 

contacting materials can suffer from accelerated surface damage, this process is 

known as ‘fretting’.  A unified model to explain the fretting process remains 

unfounded, however, the effect is dependent on numerous factors and many 

theories have been proposed, each is plausible to the exclusion of any other.  The 

main factors that contribute to fretting can be roughly categorised as a) contact 

conditions b) environmental conditions and c) the properties and behaviour of the 

contact material, respectively.  This may be summarised in figure 4.24 below. 

An absence in literature of the effects of failure due to fretting is not without reason.  

As fretting is a time related process, the effects only become noticeable after long 

periods of time due to the build-up in the contact zone of wear based debris.  As well 

as this, the destruction of the contact zone due to arcing and melting can shield the 

observer from any recognisable effects, especially at early stages. 
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Figure 4.24 showing the effects contributing to process noise in measurements. 

A few authors have carried out work into trying to measure the effects of fretting. The 

effects of fretting on the contact resistance of different contact plating materials and 

aluminum–tin-plated-copper and aluminum–copper was explored by Antler and 

Sproles, 1982; and Braunovic´, 1992. The results which are show in figure 4.25 a&b 

below. 
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Figure 4.25 a&b, showing the effects of fretting on the contact resistance of different contact plating 

materials; aluminum–tin-plated-copper and aluminum–copper. Antler, M. and Sproles, E. S., IEEE 

Trans. CHMT, 5(1),158–166, and 1982; Braunovic´, M., IEEE Trans. CHMT, 15, 204–214, 1992. 

The loading on the contact also exhibits considerable significance on the contact 

resistance due to fretting conditions.  A small contact force can result in larger 

asperities in the measured contact resistance and even result in eventual open 

circuit.  This result may be intuitive, as a greater loading results in less movement 

and hence less fretting. 

At loads less than 1 N, when contacts are made, the surface asperities of harder 

materials penetrate the oxide films naturally present on the material establishing 

localized metallic contacts and setting up conducting paths. Fretting causes the 

shearing of these metallic bridges which in turn causes the formation of wear 

products. Interestingly, a small fraction of these will oxidise, however, the majority 

will remain as metallic particles; thus a good metallic contact between the conducting 

surfaces is established. This effect is manifested by a decrease in contact 

resistance. This process is cyclic, and the temporary rupture of the insulating layer 

and appearance of localized metallic contacts and conductive paths is soon 

eradicated.  Oxidation due to high current density will quickly eliminate the 

conducting paths resulting in a rapid rise in contact resistance.  This effect is 

associated with low contact force only. 

Hence contact force becomes important and subsequent decline within the 

components of the relay, such as the electromagnetic field in the coil and wear to 

associated mechanical components will mean force is also reduced further.       
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Other effects that can increase fretting are the frequency. The rate of fretting is 

shown to be dependent on the oscillation frequency. Oxidation will occur at lower 

frequency as the process is time dependant, hence, a decrease in the number of 

conduction paths and again an increase in contact resistance.   

Environmental effects can cause changes in chemical reaction rates. Moisture can 

cause changes which affect the physical characteristics such as collection of debris 

and the surface mechanical properties of the contact material may be attributed to 

relative humidity.  Related to this is the effect of temperature on the fretting process.  

The rate at which a chemical reaction takes place, such as oxidation and corrosion 

and the subsequent damage resulting, is in part, temperature governed. 

4.6.2 Effect of Current 

The effect of current across the contact interface has already been discussed in the 

literature review.  Changes attributed to surface film formation and contact face 

asperities can cause localised heating and structural changes, resulting in changes 

in the contact resistance.  Subsequently, the effect of current on the contact 

resistance behaviour of tin-plated copper contacts under fretting corrosion conditions 

was investigated in detail by (Lee and Mamrick, 1988). 
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Figure 4.26 a&b. Lee, A., Mao, A., and Mamrick, M. S., Proceedings of 34th IEEE Holm Conference 
on Electrical Contacts, San Francisco, 87–91, 1988. 

 

The results shown in Figure 4.26 a&b depict the contact resistance (a) and contact 

voltage (b) as a function of fretting cycles and electrical current. The conclusions 

drawn are that contact resistance behaviour can be explained by the presence of 

resistance plateaus that fluctuate delaying a further resistance rise. As the applied 

voltage and current are increased, it was found that the resistance plateaus become 

lower and longer. 

To obtain a physical understanding of these resistant plateaus, the current through the 

contact constriction as discussed in (Chapter 2) causes the contact spot to thermally 

runaway until the melting of the material occurs (this constitutes the first plateau).  

Further damage to the contact in the form of corrosion gives higher resistance and 

more heating, the temperature can rise further to the melting, sublimation, and 

decomposition of the oxides, and even up to the vaporization of the material, 

collectively forming the second contact resistance or voltage plateau. 

4.7 Threshold Determination 

Investigation after testing deemed all failure was due to the contacts welding. 

Therefore, a threshold for failure was determined by calculating the theoretical contact 

resistance where a weld would occur given the type of contact material. 

Contact welding can occur if a high enough current passes through closed contacts 

and causes the contact spot to melt. Welding can also occur after an arc is initiated 
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between contacts as they close. This arc can result from the electrical breakdown of 

the closing contact gap and it can also be continued by the contacts bouncing open 

once they have initially touched (Chen, 2010).  Welding occurs when the contact area 

reaches the melting temperature Tm, then the voltage 𝑉𝑚 across the closed contacts 

when they weld will be 

𝑉𝑚 = (10−7{𝑇𝑚
2 − 𝑇0

2})
1

2⁄        (105)  

Where T0 is the ambient temperature.  Equation (105) is a simplified version of the 

Wiedemann–Franz Law, which relates the ratio of the electronic contribution of the 

thermal conductivity (K) to the electrical conductivity (σ) of a metal, and is proportional 

to the temperature (T). 

 𝑉𝑚 = 𝐼𝑤𝑒𝑙𝑑 × 𝑅𝑐        (106) 

          

Where 𝐼𝑤𝑒𝑙𝑑, is in amperes and 𝑅𝑐 is the contact resistance in ohms. From the above, 

an estimation of the threshold where welding can occur may be calculated.  Using 

equation () this may be written as 

𝐼𝑤𝑒𝑙𝑑 =
1

9𝜌
√

𝐹

𝐻
{(10−7{𝑇𝑚

2 − 𝑇0
2})

1
2⁄ }      (107)  

Where the conductivity ρ is in Ω cm, Hardness H in 𝑘𝑔𝑓/𝑚𝑚−2 and F in Newtons. This 

equation for the weld current in terms of a function of temperature, force, hardness 

and conductivity, may then be used to give an approximation of the failure threshold 

by resubstituting and rearranging for 𝑅𝑐. 

Conclusion 

The analysis of the data poses several problems, firstly how and where to set the 

threshold of impending and total failure.  This is problematic; where there is in general 

an upward trend in contact resistance and increased oscillations in all the results, there 

is however little correlation between them.  This is despite the same controlled test 

conditions being applied, which illustrates the overall complexity of the combined 

failure process. An approximation to this has been proposed, however this is still quite 

abstract, with welding occurring when not expected.   



142 
 

The second problem is the choice of prognostic approach, which again is subject to 

difficulties again due to the failure pattern. The next two chapters will propose solutions 

to solve this problem by looking at a physics based and data driven solutions 

respectively and compare their respective effectiveness. 

This chapter provides the following conclusions and contributions 

 A method has been developed for the obtainment of real time measurements 

to assess the life of the relay using contact resistance. 

 A data set has been produced that describes relay failure. This has been broken 

down into sections to enable the construction of a visual analytics model to 

enable to application of prognostic methods. 

 The failure modes have been pictured as an early decision tool. 

 The measurement noise within the data has been quantified. 

 The process noise that leads to anomalies within the results has been 

explained. 
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Chapter 5 - Physics of Failure Damage Model Development 
for Relays 

Introduction 

From the literature review in Chapter 3, Physics Based Models (PbM) tend to provide 

the most accurate and precise solutions for prognostics, as well as providing 

confidence boundaries when projected with Particle and Kalman filtering, the 

dynamics of the states can also be estimated and predicted at each time interval. 

However it is also recognised that these type of models require a high level of 

knowledge of the component behaviour to form a complete model and often use 

experimental data to develop a model, which depends upon conditions such as 

environmental or material. 

From the review of relay reliability in Chapter 2, there are essentially three constituent 

parts to the development of a model for the prognostics of relays; firstly, there are the 

components of the coil e.g. the windings and the associated structural parts such as 

the spring, sliding parts and insulation. Secondly, there are the contacts and the 

transfer of energy through them, this will cause heating due to Joule losses and arcing.  

Thirdly, there is the degradation of the contacts, which has been discussed in prior 

chapters. The primary failure mode due to transfer and wear of contact material is due 

to arcing, welding and bridging of the contacts, sticking, corrosion and foreign matter. 

It has already been stated, that failure due to the contacts is many magnitudes more 

likely than that from the coil and associated components according to literature and 

manufactures test data. Therefore, concentrating on a prognostic for the contact 

seems a more proactive option, however, some metrics of wear may involve the use 

of measured parameters associated with the coil, e.g. pick up and release times, 

current through the coil, force on the contacts, arcing time and the contact position 

with time.   

The making and breaking of the contacts incurs damage to the surface, primarily due 

to arcing.  Thus a suitable model of the energy transferred by arcing into the contact 

is needed that reflects the damage from the excessive temperatures imposed by the 

arc. This energy transferred by the arc into the surface of the contact will cause a rapid 
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rise of the temperature of the contact that will be conducted in the form of heat and 

ultimately melting of the contact.   

The losses of material incurred will be due to vaporization of the contact material, this 

may be viewed as being accumulative over time, causing a reduction in the affective 

contact area and change in the relative contact resistivity.  This accumulative material 

loss from the surface due to the arc area will form the basis of the loss model, which 

will be in the form of a state equation and will be used for a prognostic prediction of 

RUL. 

5.1 Development of Physics Based Model of Relay Contact 

Degradation 

Initial work looked into the development of a physics based model to enable the 

degradation of the relay contacts to be estimated and the possibility for model based 

prognosis.  A complete model would need to take into account the effects of contact 

breaking, bounce and travel position; thermal heating of the contact due to arcing and 

lastly material loss and the effect on contact resistance. 

The proposed method is to construct an initial physical model of the relay body and 

use this to calculate the first three parameters, namely coil current, bounce and force, 

in which additional parameters may be estimated, such as arcing time, contact force, 

opening/closing time and contact position. The DC power from a simple arc model 

would then be used to estimate the power into the contact face.  Thermal effects would 

be modelled by a heat equation and this would be used to estimate mass loss.  The 

mass loss then is used in the contact resistance equation (4) outlined in Chapter 2 to 

estimate the RUL of the equation. 

 

 

 

 

Figure 5.1. Block diagram showing each stage of model derivation 
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5.1.1 Derivation of a State-Space model for an Electromagnetic Relay 

The Electromagnetic relay in its basic form can be broken down into a number of 

elementary components, namely; a coil formed from a number of turns of wire wound 

on a ferrite former with some associated resistance and inductance; a set of contacts 

which are connected via a pivoted lever with a return spring and a degree of 

dampening.  This may be modelled as shown in figure 5.2 below where U represents 

the driving signal to the relay, 𝑅𝑐𝑜𝑖𝑙 is the resistance of the coil windings, F represents 

the electro-magnetic force in Newton's, k is the spring constant in N/m and b is the 

damping coefficient of the spring and pivoted arm.  The distance x in metres represents 

the position the contacts from open to closed. 

 

5.1.2 Lagrange Equations 

In order to model such a system which contains a large number of lumped components 

which are both electrical and mechanical, the use of Lagrangian Mechanics (Dutton, 

Thompson and Barraclough, 1997) is used. 

The Lagrange equations for determining the equations of motion of a dynamic system 

based on Hamilton principles may be stated as 'For a dynamic system in which the 

work of all forces is accounted for in the Lagrangian, an admissible motion between 

specific configurations of the system at the times t1 and t2 is a natural motion if, and 

only if, the energy of the system remains constant.' 

This is applicable to both forces and motions as well as electrical systems in terms of 

voltages and currents. For a conservative system subject to external forces (neglecting 

energy losses), Lagranges equation may be written as: 
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𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0        (108) 

Where 𝐿 = 𝑇 − 𝑉 is the Lagrangian (T and V are the kinetic and potential energy in the 

system) and 𝑞𝑖 represents generalised coordinates. 

For more general systems (that is, ones including power dissipation), Lagranges 

equation may be written as: 

 
𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
+

𝜕𝑃

𝜕𝑞̇𝑖
= 𝑄𝑖       (109) 

where 𝑃 is the power function, describing the dissipation of energy by the system and 

𝑄𝑖 are the generalised external forces acting on the system. 

'The number of degrees of freedom of a body is the number of independent quantities 

that must be specified if the position of the body is to be specified (uniquely defined).  

Any unique set of such quantities is referred to as a set of generalised coordinated for 

the systems.' 

Energy forms for linear mechanical and electrical elements can be represented as in 

table 5.1 below (Dutton, Thompson, and Barraclough, 1997). 

Energy Type Mechanical Electrical 

Kinetic Energy 

𝑇 

Mass M 

𝑇 =
1

2
𝑚𝑥̇2 

Inductor L 

𝑇 =
1

2
𝐿𝑞̇2 

 

Potential Energy 

𝑉 

 

- 

Spring K 

𝑉 =
1

2
𝑘𝑥2 

Gravitational M 

𝑉 = 𝑚𝑔ℎ 

Capacitor C 

𝑉 =
1

2
𝐶𝑣2 =

1

2𝐶
𝑞2 

 

- 

Dissipative Energy 

𝑃 

Damper b 

𝑃 =
1

2
𝑏𝑥̇2 

Resistor R 

𝑃 =
1

2
𝑅𝑞̇2 

 

Table 5.1 Energy forms for linear mechanical and electrical elements 



147 
 

note: current 𝑖 is expressed in terms of charge q as 𝑖 =
𝑑𝑞

𝑑𝑡
= 𝑞̇ and linear velocity v is 

expressed in terms of displacement x as 𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑥̇ 

5.1.3 Derivation of Relay State Equations  

The Lagrangian equations discussed above may now be used to form a model for the 

electro-mechanical relay.  Starting with the Lagrange equation for a non-conservative 

system, equation (109),  
𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
+

𝜕𝑃

𝜕𝑞̇𝑖
= 𝑄𝑖  

The Lagrangian L may be written as: 𝐿 = 𝑇 + 𝑊𝑒 + 𝑊𝑚 − 𝑉 

where T is the Kinetic energy, in this case  due to the mass 𝑇 =
1

2
𝑚𝑥̇2 and the electrical 

energy 𝑊𝑒 = 0, and for the magnetic energy 𝑊𝑚 =
1

2
𝐿(𝑥)𝑞̇2.  For the potential energy, 

in this case stored by the spring 𝑉 =
1

2
𝑘𝑥2, and also due to the mass 𝑉 = 𝑚𝑔ℎ. 

The power dissipation in the system is due to the damping of the arm and the 

resistance of the coil in the relay, 𝑃 =
1

2
𝑏𝑥̇2 and 𝑃 =

1

2
𝑅𝑞̇2 respectively. 

Hence, substituting into equation (109) leads to the following equation for the relay. 

 𝐿 =
1

2
𝑚𝑥̇2 +

1

2
𝐿(𝑥)𝑞̇2 −

1

2
𝑘𝑥2 − 𝑚𝑔ℎ     (110) 

The relay has two degrees of freedom e.g. independent quantities that must be 

specified if the position of the body is to be specified, namely due to the position of the 

contacts in terms of the displacement in the x plane and also due energy in terms of 

the magnetic force due to the coil. Hence these parameters need to be used for the 

quantities in the generalised coordinates for specifying the system. 

Firstly, solving for the x coordinates, and making use of the Lagrange equation for a 

conservative system, equation (108) gives, 

 
𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0        (111) 

Defining each differential gives: 

𝜕𝐿

𝜕𝑥̇
= 𝑚𝑥̇,

𝜕𝐿

𝜕𝑥
=

1

2

𝜕𝐿(𝑥)

𝜕𝑥
𝑞̇2 + 𝑘𝑥 + 𝑚𝑔,

𝜕𝑃

𝜕𝑥̇
= 𝑏𝑥̇ 
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Substituting into equation (108) above and rearranging gives 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 + 𝑚𝑔 −
1

2

𝜕𝐿(𝑥)

𝜕𝑥
𝑞̇2 = 0      (112) 

secondly for the q coordinates we make use of the equation for a non-conservative 

system, equation (107). 

 
𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
+

𝜕𝑃

𝜕𝑞̇𝑖
= 𝑈  

where U is the voltage applied to the relay coil. 

The energies may be defined as  

𝑇 =
1

2
𝐿(𝑥)𝑞̇2, 𝐿 =

1

2
𝐿(𝑥)𝑞̇2 +

1

2
𝑅𝑞̇2 

Differentiating gives  

𝜕𝐿

𝜕𝑞
= 0,

𝜕𝐿

𝜕𝑞̇
= 𝐿(𝑥)𝑞,̇

𝜕𝑃

𝜕𝑞̇
= 𝑅𝑞̇ 

Substituting into equation (107) gives 

𝐿(𝑥)𝑞̈ + 𝑅𝑞̇ = 𝑈         (113) 

Substituting into equation (108) and (109) and making use of the fact 𝑞̇ =
𝑑𝑞

𝑑𝑡
= 𝑖 the 

equations may be written as: 

 𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 + 𝑚𝑔 −
1

2

𝑑𝐿(𝑥)

𝑑𝑥
𝑖2 = 0     (114) 

 𝐿(𝑥)
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑈        (115) 

The inductance of a coil 𝐿(𝑥) may be stated as  

 𝐿(𝑥) =
𝑁2𝜇0𝐴

𝑥
  and  

𝑑𝐿(𝑥)

𝑑𝑥
= −

𝑁2𝜇0𝐴𝑖

𝑥2
      (116) 

where N is the number of turns on the coil, 𝜇0 is the permeability 4𝜋 × 10−7𝑁𝐴−2, 𝑖 is 

the current in Amps and 𝑥 is the length of the coil. 
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The flux linkage 𝜑 of a coil can be defined as: 𝜑 =  𝐿(𝑥)𝑖 and the magnetic energy 

stored in the coil is given by 𝑊𝑚(𝜑, 𝑥) = ∫
𝜑

𝐿(𝑥)
𝜕𝜑 =

𝜑2

2𝐿(𝑥)

𝜑

0
 

The current in the coil can be defined as the rate of change of magnetic energy with 

respect to the flux linkage hence 𝑖 =
𝜕𝑊𝑚

𝜕𝜑
 and the force from the coil can be defined as 

the rate of change of magnetic energy over the distance the contact moves through. 

 𝐹 =
𝜕𝑊𝑚

𝜕𝑥
= −

𝜑𝐿(𝑥̇)

2𝐿2  

The rate of change of flux linkage can now be defined as  

 𝐿(𝑥)
𝑑𝑖

𝑑𝑡
=

𝜕𝜑

𝜕𝑡
−

𝑑𝐿(𝑋)

𝑑𝑥
𝑖

𝑑𝑥

𝑑𝑡
       (117) 

We can now use the results (116) & (117) to redefine equations (114 and 115). 

 𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 + 𝑚𝑔 −
𝜑2𝑖

2𝑁2𝜇0𝐴
= 0      (118) 

Therefore equation (113) may be defined as  

 
𝜕𝜑

𝜕𝑡
−

𝜑

2𝑁2𝜇0𝐴

𝑑𝑥

𝑑𝑡
+ 𝑖𝑅 = 𝑈       (119) 

putting 𝑎 = 𝑁2𝜇0𝐴 and using 𝑖 =
𝜑

𝐿(𝑥)
 and where 𝐿(𝑥) =

𝑎

𝑥
 the above equations (118) 

and (119) can now be simplified. 

The final equations are written as  

 
𝜕𝜑

𝜕𝑡
−

𝜑2

2𝑎

𝑑𝑥

𝑑𝑡
+

𝜑𝑥

𝑎
𝑅 = 𝑈       (120) 

 𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑏
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 +

𝜑3

2𝑎2 = 0       (121)  

as the component due to gravity has little or no effect 

The above equations represent the electromagnetic and mechanical system and can 

be put into a state space format for easier computation. 

Putting   

𝑥1 = 𝜑, 𝑥2 = 𝑥, 𝑥3 = 𝑥̇  equations (120 and 121) can be written as 
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 𝑥̇1 =
𝑥1

2𝑥3

2𝑎
−

𝑥1𝑥2𝑅

𝑎
+ 𝑈 

 𝑥̇2 = 𝑥3 

 𝑥̇3 = −
𝑏

𝑚
𝑥3 −

𝑘

𝑚
𝑥2 −

𝑥1
3𝑥2

2𝑎2𝑚
       (122) 

The form of the state equations are non-linear and to assist analysis, need linearising 

around an operating point. 

5.1.4 Linearisation Procedure and Results 

Given a non-linear function𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑛) the operating condition need to 

be defined which will produce a linear model.  This condition is often found by setting 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑢1, 𝑢2, … , 𝑢𝑛) = 0 and considering the resulting values of 𝑥1, 𝑥2, … , 𝑥𝑛 for 

a set of input values 𝑢1, 𝑢2, … , 𝑢𝑛. 

Partial differentiation is used to find the linear coefficients and evaluate these at the 

defined operating points.  This may written in matrix form, firstly values for the various 

constants are substituted. Matlab™ was used to simulate the equations based on the 

following parameters 

𝜇0 = 4𝜋 × 10−7𝑁𝐴−2, N=1000  Area = 0.001 m2 hence 𝑎 = 𝑁2𝜇0𝐴 

a = 7.9 x 10-4 , b =0.9, m = 0.01 kg, k = 10, R = 10 Ω 

The graph in figure 5.3 shows the current through the coil which rises exponentially 

according to the equation 𝑖 = 𝐼0(1 − 𝑒−
𝑅𝑡

𝐿 ) where 𝐼0, is the initial coil current, R is the 

resistance and L is the inductance of the coil, respectively. 

Contact position, contact bounce and settling time is shown in figure 5.4. The initial 

position is shown at t = 0, where the contact first closes, here the contact face is 

displaced by 0.3 mm due to bouncing, and then over 50 mS, subsequent exponential 

decaying in the bouncing occurs until the contact faces come together with a 

displacement of 0 mm. 
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Figure 5.3. Showing simulated coil current with time 

 

Figure 5.4. Showing simulated contact position with time including the bounce time. 
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5.2 Heat Model and Mass Loss Estimate 

The second stage in the model development is to gain an idea of the energy dissipated 

through the contact due to arcing and the subsequent heating and resulting damage 

through material vaporization. The procedure follows the work done on mass loss by 

(Swingler and McBride, 1996), by developing a model of the arc energy transfer and 

the heat flow through the contact.  From this, vaporization of material may be estimated 

and subsequent mass loss. 

5.2.1 Calculation of Arc Energy 

The physics of arcing is extremely complex and not fully understood.  Over the years 

numerous models have been proposed in literature to enable the effect of arcing in 

power systems to be simulated and understood. A great deal of the early work revolved 

around defining the volt-ampere characteristics of the arc experimentally and was 

dependent upon the test conditions, gap width and current magnitude.   

A low current, well stabilized arc can be constrained as a cylindrical shape and would 

look similar to geometry in Figure 5.5 below, in higher current arcs, the convection of 

heat forces the arc to bow upwards, an attribute that lends itself to the name ‘arcing’. 

The arc is made up of three main regions; the anode, the plasma column and the 

cathode region.  The anode and cathode regions are commonly known as the 

electrodes where the solid metal regions transpires into a gaseous plasma.   

 

 

 

 

 

 

 

 

Figure 5.5. Showing the approximate geometry of a low current arc and associate fall in voltage. 

Between these electrodes, a voltage drop or gradient, which is dependent upon the 

arc length, develops (Ammerman, 2010).  Due to the complexity and nature of how 

the arc behaves, theoretical models become very difficult to develop that accurately 

describe the physics of the arcing process.  This leads to most models resembling a 

‘black box’ approach.  Equations over the years have been developed by (Nottingham, 

Anode Cathode 

IArc 

Anode Region Cathode Region 

VArc 
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1926), (Ayrton, 1902), (Steinmetz, 1906), (Nottingham, 1923), (Van and Warrington, 

1931), (Miller and Hildenbrand, 1973), (Hall, 1978), (Myers, Vilicheck, Stokes and 

Oppenlander, 1991), that approximates the fall in voltage between the anode and 

cathode. 

5.2.2 Energy Transferred by Arcing 

The energy released during arcing is subject to the law of energy conservation, and 

hence the electrical energy input is equal to losses encountered in the form of heat, 

light, pressure, sound and electromagnetic radiation.  This led to the development of 

arc-resistance models that take into account the above to form an estimate of the 

electrical energy delivered during arcing (Gammon and Matthews, 2003). 

For steady state dc power systems, power is defined as  

𝑃 = 𝑉𝑑𝑐𝐼𝑑𝑐         (123) 

and the power for dc and single phase ac arcs can be described as  

𝑃𝐴𝑟𝑐 = 𝑉𝐴𝑟𝑐𝐼𝐴𝑟𝑐 = 𝐼𝐴𝑟𝑐
2 𝑅𝐴𝑟𝑐        (124) 

as energy is a function of time, the energy associated with arcing can be approximated 

by  

𝐸𝐴𝑟𝑐 ≈ 𝐼𝐴𝑟𝑐
2 𝑅𝐴𝑟𝑐𝑡𝐴𝑟𝑐         (125) 

Where time is measured in seconds. 

An arc model therefore needs to incorporate the fall in voltage between the anode and 

cathode of the contacts, and from this, along with the power, an estimate of the energy 

transferred can be approximated. 

(Swingler and McBride, 1996) provided a model to estimate the amount of energy 

brought by the electrical arc to the electrode surface under study for each time t of the 

breaking process under DC conditions. The input parameters such as current intensity, 

circuit voltage and opening velocity related to experimental conditions are used.  From 

this, the power flux density through the arc is used to produce the output which will be 

used as the input to the thermal model used later on. 

The anode region, the plasma region and the cathode region are modelled in terms of 

the arc energy transport regions. 
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Figure 5.6. Illustrating the anode, plasma and cathode transport regions 

Within each of these three regions, the power dissipation is computed from the current 

through the region and the voltage drop across it. 

The power dissipation from the anode, through the arc region to the cathode surface 

is calculated by considering the two ways of energy transport processes that 

encompass all the mechanisms involved at a microscopic scale in the energy transport 

process: radial and channel transport processes. The Radial transport processes 

represent the processes which radiate energy equally in all directions such as thermal 

energy from random bombardment of particles, radiation from de-excitation of 

particles, etc. The channel transport processes account for mechanisms which 

transport energy (channel energy) toward the cathode or anode. The energy is 

channelled to neighbouring regions by, for instance, positive ion or electron 

bombardment as they are accelerated through the electric field.  

This leads to the amount of energy being available from any arc region at a given time 

t being equal to the energy transported from any neighbouring regions by the transport 

processes plus the energy generated within that region itself. The power flux density 

out of the plasma region transporting energy towards the cathode is then given by 

(Swingler and McBride, 1996): 

 

𝑞𝑘 =
(𝑃𝑝𝑙𝑎𝑠𝑚𝑎+𝑃𝑎)

𝜋𝑟2
× (𝑘1

𝑟

2√𝑟2+𝑟𝑥
2
+ 𝑘2)     (126) 

Where: 

qk is the power flux density out of any particular region transporting energy    

towards the cathode 

Power flux through 

radius of 𝑟𝑎 

ra 

Pa 

 

Plasma region 

 

Cathode 

 

Anode 

Px 

rx 
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K1 is the proportion of energy radially dissipated 

 K2 is the channel transport process and is assumed to be 50% 

 Pa is the power input at the anode region 

 Pplasma is the power dissipated in the plasma region 

 ra is the radius of the arc to the axis 

 rx is the distance between the point source and the plasma boundaries 

Instead of K2, another control term may be inserted, K3, which allows the power flux 

density out of the plasma region transporting energy towards the anode to be found. 

5.3 Heat flow, Contact Temperature and Material Erosion 

In order to model the heat flow in the contact, a model of the contact is developed 

using the heat equation with the power input Q(r,t) given by equation (126) above. 

 

 

 

 

 

 

 

 

 

Figure 5.7. Shows the direction of heat flow Q and temperature T through the contact. 

The heat equation is used to model the flow of heat from a hot to a cold area by the 

process of conduction, where the temperature satisfies the following equation 

(James, 2011). 

1

𝛼

𝜕𝑇

𝜕𝑡
= ∇2𝑢          (127) 

The Fourier law for the conduction of heat states that the heat transferred across unit 

area is proportional to the temperature gradient.  The equation (126) may be written 

in terms of a cylindrical coordinate system. 

r 

Depth 

Power Input 

Q(r,t) 

Heat 

Q(r+∆𝑟, 𝑡) 

T(+∆𝑟, 𝑡) T(r, 𝑡) 

r+∆𝑟, 𝑡 r 
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1

𝛼

𝜕𝑇

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2

𝜕2𝑇

𝜕∅2
+

𝜕2𝑇

𝜕𝑧2
+

𝑞̇𝑎

𝑘
      (128) 

The heat flow in a cylindrical shape is only in the radial direction, hence the 

temperature distribution through the contact becomes 𝑇 = 𝑇(𝑟, 𝑡) and the above 

equation (128) reduces to  

1

𝛼

𝜕𝑇

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

𝑞̇𝑎

𝑘
       (129) 

Where  𝛼 =
𝑘

𝜌×𝑐
 , k is the conductivity, ρ is the density and c is the specific heat capacity 

of the material respectively and is often referred to as the thermal diffusivity. 

5.3.1 Numerical Solution 

For most problems, unless they are simple, the heat equations solution needs to revert 

to a numerical solution. For modelling the heat flow through the contact a numerical 

solution will be adopted in the form of a finite difference solution. 

 

 

 

 

 

Figure 5.8. Showing the node for the finite difference solution 

The radius can be determined by the index i, where 𝑟𝑖 = (𝑖 − 1)∆𝑟, i=1,2…N and angle 

𝜃 is determined by the index j, where 𝜃𝑗 = (𝑗 − 1)∆𝜃, j=1,2…M.  For time varying 

problems m is used to denote time, t=m∆𝑑𝑡 where m = 0,1,… for a unit length in the z 

direction, the area of control volume normal to the radial direction is (𝑟 −
∆𝑟

2
) ∆𝜃 at the 

inner surface and (𝑟 +
∆𝑟

2
) ∆𝜃 at the outer surface.  The area normal to the 

circumferential direction is ∆𝑟. 

The distance between the nodes is  

(𝑖, 𝑗) 𝑡𝑜 (𝑖 ± 1, 𝑗): ∆𝑟 

(𝑖, 𝑗) 𝑡𝑜 (𝑖, 𝑗 ± 1): ∆𝑟 

∆𝑟 

𝑗 + 1 

𝑗 

𝑗 − 1 
𝑖 + 1 

𝑖 

𝑖 − 1 
∆𝜃 
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The difference equation can be derived from the heat equation above by considering 

the energy balance in the heat equation. 

The heat conducted into the face between (i,j) and (i,j-1) is given by 

= 𝑘∆𝑟
𝑇𝑖,𝑗+1,𝑚 − 𝑇𝑖,𝑗,𝑚

𝑟∆𝜃
 

The heat conducted into the face between (i,j) and (i,j+1) is given by 

= 𝑘∆𝑟
𝑇𝑖,𝑗+1,𝑚 − 𝑇𝑖,𝑗,𝑚

𝑟∆𝜃
 

The heat conducted into the face between (i,j) and (i-1,j) is given by  

= 𝑘(𝑟 −
∆𝑟

2
)∆𝜃

𝑇𝑖−1,𝑗,𝑚 − 𝑇𝑖,𝑗,𝑚

∆𝑟
 

The heat conducted into the face between (i,j) and (i+1,j) is given by  

= 𝑘(𝑟 +
∆𝑟

2
)∆𝜃

𝑇𝑖+1,𝑗,𝑚 − 𝑇𝑖,𝑗,𝑚

∆𝑟
 

The rate at which energy is stored in the control volume is  

= 𝜌𝑐𝑟∆𝑟∆𝜃
𝑇𝑖,𝑗,𝑚+1 − 𝑇𝑖,𝑗,𝑚

∆𝑡
 

If the heat generation is non-zero, (𝑞̇𝐺 ≠ 0), then the rate of heat generation inside the 

control volume is 𝑞̇𝐺 , 𝑖, 𝑗, 𝑚 𝑟∆𝜃∆𝑟. 

The resulting equation is  

𝜌𝑐𝑟∆𝑟∆𝜃
𝑇𝑖,𝑗,𝑚+1−𝑇𝑖,𝑗,𝑚

∆𝑡
= 𝑘 {

∆𝑟

𝑟∆𝜃
(𝑇𝑖,𝑗+1,𝑚 − 2𝑇𝑖,𝑗,𝑚 + 𝑇𝑖,𝑗−1,𝑚) +

𝑟∆𝜃

∆𝑟
(𝑇𝑖+1,𝑗,𝑚 − 2𝑇𝑖,𝑗𝑚 +

𝑇𝑖−1,𝑗,𝑚) +
∆𝜃

2
(𝑇𝑖+1,𝑗,𝑚 − 𝑇𝑖−1,𝑗,𝑚)} + 𝑞̇𝐺,𝑖,𝑗,𝑚 𝑟∆𝜃∆𝑟    (130) 

The equation was solved using Matlab subject to the following boundary conditions. 

5.3.2 Boundary Conditions 

In specifying the boundary conditions using Fourier’s Law for heat conduction. 

𝑞̈1 + 𝑞̇𝐺,1∆𝑥 = −𝑘
𝑇2−𝑇1

∆𝑧
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The above equation says rate of heat conduction into the control volume combined 

with the rate of heat generation inside the control volume is equal to the rate of 

conduction out of the control volume combined with the rate storage inside the control 

volume. 

The heat flow through the contact is subject to boundary conditions depending upon 

known heat flux (T∞) or convection (h) conditions. For the simulation it is assumed 

that some convection from the wall of the contact is present. 

The initial and boundary conditions are defined as: 

𝑘
𝜕𝑇(𝑟)

𝜕𝑟
+ ℎ𝑏𝑇(𝑟) = ℎ𝑏𝑇∞,𝑏 = 𝑘𝑛𝑜𝑤𝑛 𝑎𝑡 𝑟 = 𝑏 

−𝑘
𝜕𝑇

𝜕𝑧
= 𝑞𝑎(𝑟, 𝑡),                   𝑧 = 0 

𝜕𝑇

𝜕𝑧
= 0,                                     𝑟 = 𝑅 

𝑇 = 𝑇0,                                      𝑍 = 𝑍0 

𝑇(𝑟, 𝑧, 0) = 𝑇0,                        𝑡 = 0 

5.4 Results from Model 

Figure 5.9 below, shows the results of the heat flow through the contact for an arc 

duration of 10ms and 5ms, with an arc temperature of 5368.15 K. The time was 

predicted from the contact model in section 5.1 and the arc power was calculated using 

equation (124) above. 

As well as the heat flow through the contact, the difference in the heat at the centre 

and surface of the contact due to convection is shown, the voltage distribution across 

the contact is also depicted using equation (12), the theoretical loss of material due to 

vaporization and the mass loss as a function of time. 

Where the solution of the PDE is subject to fast changes, such as the temperature 

rise from a short arcing duration, the mesh size must be closely spaced in order to 

reflect the changes. To apply the finite difference method, the spatial domain is 

divided into M radial nodes [0, 𝑟 ] each of length  ∆𝑟 =  
𝑟

𝑀
, and the time domain [0, 𝑇] 

is divided into N segments, each of duration ∆𝑡 =  
𝑇

𝑁
.  To ensure stability(s) in the 
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solution 𝑆 =  𝛼
∆𝑡

∆𝑟2
≤

1

2
, where α is the constant relating conductivity, specific heat 

capacity and thermal diffusivity respectively.  This implies that as the radial spatial 

interval ∆𝑟 is decreased for increased accuracy, the time step ∆𝑡 must be decreased 

at the cost of more computations or else there is a risk of instability. The mesh size 

was made equal to the radius of the contact divided by the radius nodes, and the 

time step selected to satisfy the condition S.   

The results from the model are shown in figures 5.9 – 5.18, respectively.  Figures 5.9 

and 5.14 shows the cylindrical shaped contact with section taken parallel to its axis. 

The heat distribution of the initial arc temperature on the face of the contact is plotted 

in the z direction with respect to time. As may be expected, the temperature is 

greater as the time is increased, representing more power being coupled into the 

contact through the energy from the arc. 

As convection losses were also modelled, the temperature at the centre of the 

contact and surface is also shown in the graphs of 5.10 and 5.15 where there is a 

substantial differential at the initial time when the arc is applied.  This temperature 

difference narrows quickly as the heat starts to distribute through the contact, hence 

there is a higher localised temperature towards the centre of the contact and greater 

material loss is liable to take place within this region. 

The voltage temperature relationship given by the Wiedemann-Franz law is shown in 

figures 5.11 and 5.16, showing the relationship between the temperature and the 

voltage across the contact. The graphs concur the higher the temperature the more 

voltage is present. 

The last two sets of figures show the estimations of mass losses due to the 

vaporisation process due to enthalpy from self-diffusion. In figures 5.12 and 5.17, the 

estimated segment of mass loss against time is shown. In each case the initial 

estimate is based upon the mass of the contact from the dimension and density of 

the material.  The process is iterative, with the mass loss due to vaporisation being 

calculated for each step, along with temperature at that step, and an update of the 

contact mass and thermal properties. This was not available in commercial software 

at the time of writing and was the reason for writing a program to model the heat flow 

in the contact. The results show the loss of material over time in figures 5.13 and 

5.18, the value equates well with the estimations of (Rieder and Weichsler, 1992) 

discussed in section 5.6.  
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Figure 5.9. Showing the heat distribution through the contact at a time of 10ms. 

 

Figure 5.10. Showing the temperature at the center and surface differential due to convection at 10ms. 
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Figure 5.11. Illustrating the voltage-temperature relationship corresponding to the Wiedemann–Franz 

Law. 

 

Figure 5.12 Material loss visualization due to vaporization of the contact surface. 
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Figure 5.13. Material loss from contact for 10 ms Arc. 

 

Figure 5.14. Showing the heat distribution through the contact at a time of 5ms. 
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Figure 5.15. Showing the temperature at the center and surface differential due to convection at 5ms. 

 

Figure 5.16. Illustrating the voltage-temperature relationship corresponding to the Wiedemann–Franz 

Law. 
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Figure 5.17. Material loss visualization due to vaporization of the contact surface. 

 

Figure 5.18. Material loss from contact for 5 ms Arc. 
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5.5 Mass Loss 

One parameter that affects the rate of erosion is the conduction of heat away from the 

contact surface. The dimensions of the contact e.g. area, length, breadth and 

thickness all play an important role in the rate of erosion assessment. 

Mass loss estimation from the contact surface has tended to be by experimental 

observation (Mcbride, 2000), (Swingler, 2010), a lot of work was done in the pre digital 

1950s and 60s when telephone exchanges used relays.  

Tables are available giving constant values (Holm, 2000), for mean values of 

coefficients characterizing the arc material transfer on making or breaking contact 

during a long series of operations, ranging from 0.03 to 1.1.  For the relay being used 

in this work, the contact material is a silver alloy consisting of Silver (Ag) and tin oxide 

(SnO2). Hence from the table a material transfer rate 𝛾𝑝 = 0.6 and the loss due to 

evaporation from arcing is β = 0.8. 

Other assessments of mass loss come from (Rieder and Weichsler, 1992), who plotted 

the make and break Mass loss/arcing time, mg.s–1 in AC contacts against number of 

operations. (Turner & Turner, 1966 & 1968) extrapolated their results for various 

contact materials to come up with the following equation 

𝑑𝜔

𝑑𝑡
= 𝑘1𝐼

1.6 μg.s–1 

Where DEC is the Discontinuous Erosion Current, the parameter 𝑘1 may be estimated 

from:- 

Contact K 

(I<DEC) 

K 

(I>DEC) 

Ag 0.8 25 

Cu 2.4 36 

AgCdO 0.4 6 

 

Where the discontinuous erosion current is either above 1000 A or below 1000 A. 

Mass loss in this model is due to vaporization of the contact surface from the arc and 

hence the mass loss is assumed to be due to diffused metal. The coefficient for any 

given metal shows the Arrhenius temperature dependence and may be written as a 

function of temperature according to the equation (Alcock, 2000). 

𝐷 = 𝐷0exp (−
∆𝐻∗

𝑅𝑇
)        (131) 
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Where D0 is a constant for the contact material, and ∆𝐻∗is called, by analogy with the 

Arrhenius equation for gas reaction kinetics, the ‘activation energy’, in this case it is 

the vaporization energy for the contact material, R is the universal gas constant and T 

is the temperature respectively.  The pre-exponential term has a fairly constant range 

of values for most metals of approximately 0.1 to 1, and the activation energies follow 

the same trend as the heats of vaporization (Alcock, 2000).  The vaporization causes 

vacancy migration due to the diffusion and the activation enthalpy for self-diffusion 

∆𝐻∗is made up from sum of the energy to form a vacancy ∆𝐻𝑉𝑎𝑐 and the energy to 

move the vacancy ∆𝐻𝐷𝑖𝑓𝑓.  

The initial mass is calculated for the dimensions of the contact and this is updated at 

each iteration, via recalculation of the mass due to loss, as well as the effective heat 

capacity and thermal conductivity.  Therefore the thermal effects and mass loss are 

representative as time progresses. 

5.5.1 Model of Contact Degradation Based on a Feature Vector Failure 
Parameter 

In order to represent the damage as it evolves, a mathematical model is needed.  The 

process is deemed to be Markovian in nature, each damage state evolving from the 

previous damage incurred.  In this case, one approach is to take a measurable feature 

that represents the damage occurring, e.g. the contact resistance, and propagate this 

in terms of how the 'feature of the damage grows'. Figure 5.19 below shows the 

methodology in the prediction of the RUL.  The accelerated aging experiment is used 

to degrade a parameter, in this case the contact resistance. The parameters 

degradation is modelled, this model is formed from the work done from the above to 

extract the mass loss and will be related to the contact resistance by using the equation 

𝑅𝑐 =
𝜌

2𝑎
  this describes the relation between the apparent surface area of the contact 

and the resistivity of the material.  Finally the model will be used to produce an 

estimation of the RUL of the contact and compared to the actual degradation data 

extracted experimentally. The above process is summerised in the diagram below. 
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Figure 5.19.  The processes of forming a PoF model for estimation of RUL. 

5.6 Physics Based State Space Model 

In determining a physics based model and due to the multi-faceted failure mode, the 

assumed dominant parameter, in this case arcing has been used.  The model is 

centered on arc erosion and mass loss from the contact volume.  This mass loss will 

affect the effective surface area of the contact, decreasing the apparent area between 

the two contacts and hence increasing the contact resistance. 

The volume of the contact is equal to 

 𝑉𝑐 = 𝜋𝑟2ℎ𝑐          (132) 

where r is the contact radius and ℎ𝑐 is the height of the contact. 

At any time the change in volume of the contact may be related to mass loss of the 

contact where the mass loss is due to 𝐴𝑠 × 𝜔 × 𝑉𝑚 × 𝑡 

Where:   As is the Holm surface area (𝑚2) 

   𝜔 is the rate of mass loss which is equal to 
𝑚𝑎𝑠𝑠 𝑙𝑜𝑠𝑠

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 ×𝑡𝑖𝑚𝑒
 (Kg𝑚−2𝑠−1) 

   𝑉𝑚 is the volume of contact material molecule (𝑚3/𝑚𝑜𝑙) 

    t is the time of the arc duration (s) 

Hence,  

 𝑉𝑐(𝑡) = 𝐴𝑠 × 𝜔 × 𝑉𝑚 × 𝑡       (133) 

The effective area of the surface can be represented to good approximation by the 

Holm radius (i.e., the Holm circle) of the area over which electrical contact occurs 
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(Holm, 2000). This results suggest that the details of the number and spatial 

distribution of the a-spots are not important to the evaluation of contact resistance in 

many practical applications where electrical contact occurs reasonably uniformly over 

the nominal contact area, that is, in the absence of electrically insulating surface films. 

As a first approximation, the Holm radius may be estimated from the true area of 

contact, A, as [
𝐴

𝜋
]
1/2

(Slade, 2013). 

 

Figure 5.20. Regular array of a-spots; the shaded area is the single continuous contact with the same 

resistance; the outer circle is the Holm radius of the cluster. 

From Chapter 2, the contact resistance can be approximated by 𝑅𝑐 =
𝜌

2𝑎
 where ρ is 

the effective resistivity (Ωm) and a is the diameter of the a-spot. 

Replacing a in 𝑅𝑐 =
𝜌

2𝑎
  above gives the contact resistance in terms of the effective 

area. 

𝑅𝑐 =
𝜌

2 [
𝐴𝑠
𝜋

]
1/2         (134) 

From equation (131) above 𝐴𝑠 may be replaced  

𝑅𝑐(𝑡) =
𝜌

2 [

𝑉𝑐(𝑡)
𝜔 × 𝑉𝑚 × 𝑡

𝜋 ]

1/2
=

𝜌

2 [
𝑉𝑐(𝑡)𝜋

𝜔 × 𝑉𝑚 × 𝑡]
1/2

 

5.6.1 Dynamic Model Development 

The volume of the contact may also be represented by 𝑉𝑐 = 𝐴𝑠 × ℎ𝑚, hence the contact 

surface area can be represented by the volume of the contact and the height of the 

contact material removed ℎ𝑚. 

𝐴𝑠 =
𝑉𝑐

ℎ𝑚
         (135) 
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Therefore,  

 𝑅𝐾 =
𝜌

2𝑉𝑐
ℎ𝑚

=
𝜌ℎ𝑚

2𝑉𝑐
        (136) 

The first order discrete approximation for change in contact volume can be given by 

 

 
𝑑𝑉𝑐

𝑑𝑡
= 𝐴𝑠 × 𝜔 × 𝑉𝑚 

 𝑉𝑐(𝑘+1) = 𝑉𝑐(𝑘) +
𝑑𝑉𝑐

𝑑𝑡
∆𝑡 

 𝑉𝑐(𝑘+1) = 𝑉𝑐(𝑘) + 𝐴𝑠 × 𝜔 × 𝑉𝑚 × ∆𝑡      (137) 

From equation (137) we have 

𝑉𝑐(𝑘) =
𝜌ℎ𝑚

2𝑅𝑐(𝑘)
 

Putting 𝛼 =
𝜌ℎ𝑚

2
 gives  

𝑉𝑐(𝑘) =
𝛼

𝑅𝑐(𝑘)
 

Hence, equation (137) may be rewritten as, 

𝛼

𝑅𝑐(𝑘+1)
=

𝛼

𝑅𝑐(𝑘)
+

𝑑𝑅𝑐(𝑘)

𝑑𝑡
∆𝑡 

𝛼

𝑅𝑐(𝑘+1)
=

𝛼

𝑅𝑐(𝑘)
+ 𝐴𝑠 × 𝜔 × 𝑉𝑚 × ∆𝑡 

Rearranging and inverting, 

𝑅𝑐(𝑘+1) = 𝑅𝑐(𝑘) +
𝛼

𝐴𝑠×𝜔×𝑉𝑚
× ∆𝑡      (138) 

Replacing 𝐴𝑠 by [
𝐴𝑠

𝜋
]
1/2

and 𝛼 

The complete discrete time dynamic model for contact resistance degradation can be 

summarized as the following linear state model: 

 

𝑅𝑐(𝑘+1) = 𝑅𝑐(𝑘) +
𝜌ℎ𝑚

2

[
𝐴𝑠
𝜋

]
1/2

×𝜔×𝑉𝑚

× ∆𝑡      (139) 
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The results from the model are projected using a Particle filter (see section 3.6.3) along 

with employing prognostic metrics, discussed below to assess the effectiveness of the 

model with the different data sets. 

5.7 Prognostics Performance Metrics 

The task of prognostics is to provide an estimate of the time from the current state, to 

the point of failure. This prognosis also needs to take into account the operating 

conditions and how the system is to be used in the future in order to give a RUL 

prediction and user beneficial information that allows decisions to be made based on 

safety and cost, depending on the priority of the operational use. 

This prediction is typically carried out once the component or system has deteriorated 

to a point where a defined failure threshold is reached.  This however, does not mean 

that failure has occurred, but the system or component is deviating from its normal 

operating range or specification, and this damage often grows into a complete failure 

under future operating conditions. Continuous monitoring of the feature vector may be 

achieved by the comparison of the current measurement with a threshold defining the 

onset of failure within the normal band of operation as in figure 5.21.  

How accurate this prediction is has started to be addressed; in the absence of defined 

metrics for assessing prognostic performance, new methodologies have started to be 

developed (Saxena, 2008). However, at present the performance evaluation methods 

are based around off-line performance, and hence are applicable for where run-to-

failure data and true End-of-Life (EoL) is known in advance.  Whereas on-line metrics 

are in development, they are still very much in their infancy. Therefore, off-line 

methods at present are used for verification and can, during the algorithm 

development phase, be useful to fine-tune prognostic algorithms. 

5.8 Prognostic Categorisation 

5.8.1 Metrics for Prognostic Applications  

There are numerous metrics in which the performance of a prognostic methodology 

may be categorised (Saxena, 2010); namely certification metrics, cost benefit metrics, 

Mean time before failure MTBF to mean time before usage replacement MTBUR ratio, 

Life Cycle Cost (LCC), Return on Investment (ROI), Technical Value and Total Value.  
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As well as the above, which are mainly cost based performance metrics, performance 

based metrics such as computational performance and metrics for reliability analysis 

have also been implemented in literature (Saxena, 2008).  

 

 

 

  Threshold of failure 

 

 

 

 

 

 

 

 

 

Figure 5.21. The prognostic framework 

5.9 Metrics for Prognostics Algorithm Performance 

Uncertainties arise from various sources in a PHM system (Coppe, 2009), (Hastings 

and Mcmanus, 2004) & (Orchard et al., 2008). Some of these sources include:  

• Model uncertainties (errors in the representation and parameters of both the system 

model and fault propagation model),  

• Measurement uncertainties (these arise from sensor noise, ability of sensor to detect 

and disambiguate between various fault modes, loss of information due to data pre-

processing, approximations and simplifications),  

• Operating environment uncertainties,  

• Future load profile uncertainties (arising from unforeseen future and variability in 

usage history data),  
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• Input data uncertainties (estimate of initial state of the system, variability in material 

properties, manufacturing variability), etc.  

Performance metrics for prognostics can be classified into accuracy, precision, and 

robustness. The definition of accuracy is the degree of closeness of the prediction to 

the actual failure time.  Where the precision is defined as the spread of prediction 

performed at the same time and the robustness is the sensitivity of the predictions 

changes of algorithm parameter variations or external disturbances. A comprehensive 

list of performance metrics, is given by (Saxena, et al., 2008), (Saxena, et al., 2009) & 

(Saxena, et al., 2009) of which the most prevalent are discussed below. 

5.9.1 Performance Metrics 

Over the years, various metrics have been developed for the measure of accuracy, 

namely; Average Bias, Mean Square Error (MSE), Root Mean Squared Error (RMSE) 

and Median absolute percentage error (MdAPE). 

Average bias is a conventional metric that has been used in many ways as a measure 

of accuracy as well as standard deviation which allows the dispersion/spread of the 

error with respect to the sample mean of the error to be realised. However, simple 

average bias metric suffers from the fact that negative and positive errors cancel each 

other and high variance may not be reflected in the metric. Therefore, MSE averages 

the squared prediction error for all predictions and encapsulates both accuracy and 

precision. A derivative of MSE, often used, is Root Mean Squared Error (RMSE). 

MAPE weighs errors with RULs and averages the absolute percentage errors in the 

multiple predictions. For prediction applications it is important to differentiate between 

errors observed far away from the EoL and those that are observed close to EoL. 

Smaller errors are desirable as EoL approaches.   

𝑀𝑆𝐸 =
1

𝑙
∑ ∆(𝑦𝑖 − 𝑓𝑖)

2𝑙
𝑖=1         (140) 

 𝑀𝐴𝑃𝐸 =
1

𝑙
∑ |

100∆(𝑦𝑖−𝑓𝑖)

𝑛𝑦𝑖
|𝑙

𝑖=1                 (141) 

 

Where  𝑦𝑖 : is the actual RUL value at time point ‘𝑖’ 

  𝑓𝑖 : is the predicted RUL value at time point ‘𝑖’ 

  n :The number of prediction time points 
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One of the major downfalls of the above metrics is that they are not designed for 

applications where RULs are continuously updated as more data is available. It is 

desirable to have metrics that can characterize improvement in the performance of a 

prognostic algorithm as time approaches near end-of-life. The next section describes 

the work of the extensive studies carried out by the NASA IVHM research group to 

solve this problem. 

5.9.2 Prognostic Horizon (PH) 

The Prognostic Horizon is defined as the range between the points where the 

predictions fall under the allowable error bound (α) for the first time and the end-of-life 

time point. This metric basically shows that the predicted estimates are within specified 

limits around the actual EoL and may be considered trust worthy within these bounds. 

While comparing algorithms, an algorithm with longer prediction horizon would be 

preferred. 

           𝐻 = 𝐸𝑜𝑃 − 𝑖         (142) 

where 𝑖 = 𝑚𝑖𝑛 {𝑗|(𝑗 ∈ 𝑙)⋀(𝑟∗(1 − 𝛼) ≤ 𝑟𝑙(𝑗) ≤ 𝑟∗(1 + 𝛼))} 

𝑖  : The first time index when predictions satisfy 𝛼-bounds 

𝛼  : Accuracy modifier  

𝐸𝑜𝐿  : The ground truth end-of-life  

ℓ  : Set of all RUL estimation point time indexes  

𝑙  : Test sample or specimen number  

𝑟∗  : Actual RUL 

(𝑗)  : Predicted RUL at time instance ‘𝑗’ for the test sample number ‘𝑙’ (i.e. can be 

mean or median of prediction RUL distribution). 

For instance, a PH with error bound of α = 20% identifies when a given algorithm starts 

predicting estimates that are within 20 % of the actual EoL.  

5.9.3 α-λ Accuracy 

It may be of interest whether the prediction is within a specified accuracy level at a 

particular time, this metric provides a way to quantify the prediction at certain time 

instances. For example it may be required that a prediction falls within 20% accuracy 

(i.e., α=0.2) halfway to failure from the time the first prediction is made (i.e., λ=0.5).  
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λ is the time and may be specified as the percentage of total remaining life from the 

point the first prediction is made or a given absolute time interval before EoL is 

reached. For the tests carried out in this thesis, α-λ accuracy is defined as the 

prediction accuracy to be within α*100% of the actual RUL at specific time instance tλ 

expressed as a fraction of time between the point when an algorithm starts predicting 

and the actual failure. For example, 

[1 − 𝛼]𝑟∗(𝑡) ≤ 𝑟𝑙(𝑡𝜆) ≤ [1 + 𝛼]𝑟∗(𝑡)      (143) 

 

where α  :accuracy modifier 

 λ  :time window modifier 

 𝑡𝜆 = 𝑡𝑝 + 𝜆(𝐸𝑂𝐿 − 𝑡𝑝) 

𝜆  : Time window modifier  

𝑡𝑝  : Prediction time 

The higher the percentage the better the ability of the algorithm is at prognosis. 

5.9.4 Relative Accuracy (RA) 

Relative Accuracy is similar to the α-λ accuracy metric. However, instead of finding 

out whether the predictions fall within a given accuracy levels at a given time instant, 

the accuracy level is measured. The time instant is again described as a fraction of 

actual remaining useful life from the point when the first prediction is made. An 

algorithm with higher relative accuracy is desirable. 

𝑅𝐴𝜆 = 1 −
 𝑟∗(𝑡𝜆)−𝑟𝑙(𝑡𝜆) 

𝑟∗(𝑡𝜆)
        (144) 

where 𝑡𝜆 = 𝑡𝑝 + 𝜆(𝐸𝑂𝐿 − 𝑡𝑝) 
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5.10 Physics Based Model Results 

Sample 1 

  

 

 

Figure 5.22. Illustrating the particle filter projection at 300, 1100 and 1700 cycles respectively and the 

RUL histograms in sample 1. 
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Figure 5.23. Sample 1. RUL, alpha-lambda and relative accuracy respectively, for sample 1. 

 

Sample 2 
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Figure 5.24. Sample 2. RUL, alpha-lambda and relative accuracy respectively, for sample 2. 

 

Sample 3 

  

 

 

 

 

 

 

 

 

Figure 5.25. Sample 3. RUL, alpha-lambda and relative accuracy respectively, for sample 3. 
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Sample 4 

 

 

 

  

 

Figure 5.26. Illustrating the particle filter projection at 1100, 2200 and 2700 cycles respectively and the 

RUL histograms in sample 4. 
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Figure 5.27. Sample 4. RUL, alpha-lambda and relative accuracy respectively, for sample 4. 

 

Sample 5 
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Figure 5.28. Sample 5. RUL, alpha-lambda and relative accuracy respectively, for sample 5. 

 

Sample 6 

 

 

 

Figure 5.29. Sample 6. RUL, alpha-lambda and relative accuracy respectively, for sample 6. 
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Conclusion 

This chapter has developed a simple physics based model based upon arc erosion of 

the contact and its effect on the contact resistance due to the reduction of contact 

surface area.  A physics based model of the arcing and the erosion process has been 

developed to enable mass loss to be calculated, the results are used in a state space 

model.  This model was then used with particle filtering to enable a prediction of the 

RUL to be estimated.   

Although the model stands up to the prognostic metrics used to bench mark the 

effectiveness, it still has considerable shortfalls.  Any alterations to the model material 

loss parameter need to be gained from the arc model and heat equation, hence the 

model is not a true physics based model in the sense that it may adapt to changes in 

conditions such as loading, environmental or material deviations.  Other flaws include 

the considerable computation power needed when using the particle filter, to get a 

reasonable estimate, 3000 particles where used, this evoked a great deal of 

processing time even on a Core i5 machine. The average time of one iteration was 

taken from Matlab™’s timing function and was found to be 29.91mS. A trade-off 

between iteration time and accuracy can be made. Reducing the amount of particles 

reduces the iteration time but also the accuracy of the prediction, whereas increasing 

the particle count increases the accuracy, but at the cost of time. 

This chapter provides the following conclusions and contributions 

 The development of a model for the estimation of secondary parameters within 

the relay such as coil current, contact bounce and contact position. 

 A model to enable the primary effects from arcing damage to be examined.  The 

model incorporates the ability to look at heat flow through the contacts, 

electrical voltage across the contact due to heating and mass loss from the 

contact. 

 The mass loss estimation which contributes towards the development of a state 

space physics of failure model. 

 Estimation of RUL from this model. 
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Chapter 6 - Data Driven Model Parameter Identification 

Introduction 

The physics of failure model developed in Chapter 5, was unsatisfactory in a number 

of areas; the models material loss parameter needed to be gained from the arc model 

and heat equation and adaption to changes in conditions such as loading, 

environmental or material deviations where limited.  As well as this, the computational 

power needed when using the particle filter was found to be excessive.  

One of the original objectives of this research was to look into a methodology for on-

board, real time prognostics, hence this chapter considers a different approach based 

upon the contact resistance failure data to develop the model in real time and then use 

this model to form a prognostic.  

The literature review in Chapter 3 reports numerous data driven methodologies. The 

methods reported tended to fall into the classes of statistical or stochastic based 

models and artificial intelligence based. Both methodologies tend to require a 

considerable amount of data to either infer a model or learn patterns from.  Due to the 

considerable time taken to fail a relay, even through the use of accelerated testing this 

still amounted to a period of around two weeks, masses of data were not available.   

Hence a new approach for devising the prognostic model in real time is proposed, 

using a sliding window and modelling methodology based upon system identification. 

6.1 System Identification 

From the work carried out in Chapter 5, an accurate, dynamic model based upon all 

the physical parameters involved is very difficult to infer. System identification is a 

technique which uses the input and output signals measured from a system to 

estimate the values of adjustable parameters in a given model structure.  Obtaining a 

good model of the system depends on how well the measured data reflects the 

behaviour of the system.   

System Identification requires a model structure. A model structure is a mathematical 

relationship between input and output variables that contains unknown parameters. 

Examples of model structures are transfer functions with adjustable poles and zeros, 

state space equations with unknown system matrices, and nonlinear parameterized 

functions (Ljung, 1999). 
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Black-box modelling is useful when the primary interest is in fitting the data regardless 

of a particular mathematical structure of the model. Black-box modelling is usually a 

trial-and-error process, where estimates of the parameters of various structures are 

produced and the results are compared.  A simple linear model structure may first be 

tried, with progression to more complex structures as the need arises. The model 

structure may be chosen due to familiarity with this structure or because of specific 

application needs.  Examples of Black Box modelling include ARMA, ARMAX, and 

ARIMA methods (Ljung, 1999). 

An alternative method called Grey-Box modelling uses a model structure that can be 

deduced from physical principles. For example, the mathematical relationship 

between the input force 𝐹(𝑡) and the resulting mass displacement in the mass-spring-

damper system is well known. In state-space form, the model is given by: 

 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥(𝑡) + 𝐵𝐹(𝑡)  

𝑦(𝑡) = 𝐶𝑥(𝑡) 

 

where 𝑥(𝑡) = [𝑦(𝑡); 𝑉(𝑡)] are the state vectors.  The coefficients A, B, and C are 

functions of the model parameters. 

Here, the model structure is fully known but the values of its parameters e.g. mass, 

damping and spring constant are unknown.  In the grey-box approach, the data is used 

to estimate the values of the unknown parameters of the model structure. 

In general, grey-box models are built by: 

1. Creating a template model structure. 

2. Configuring the model parameters with initial values and constraints (if any). 

3. Applying an estimation method to the model structure and computing the model 

parameter values. 

The process of model selection assumes that a series of experiments is designed so 

that a sufficient data set can be obtained to fit a model of the system. The classic 

system identification loop is depicted in Fig (6.1) (Ljung, 1999). 
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Figure 6.1. Depicting the classic system identification design loop. 

6.1.2 Model Uncertainty 

There will always be some uncertainty from estimating the model parameters from 

data and their nominal values will be accurate within a confidence region. The 

magnitude of this region is determined by the values of the parameter uncertainties 

computed during estimation. The magnitude of the uncertainties provide a measure of 

the reliability of the model. Large uncertainties in parameters can result from 

unnecessarily high model orders, inadequate excitation levels in the input data, and 

poor signal-to-noise ratio in measured data (Ljung, 1999). 

6.1.3 Development of Models 

From the literature review, various authors have proposed data driven approaches for 

relay reliability assessment. (Fang et al., 2006) studied traditional reliability 

assessment methods for electromagnetic relays that are based on censored failure 

time data; and concluded that they provided very little reliability information. (Qiong et 

al. & Xuerong et al., 2010) stated that in order to predict the life of the relay, a metric 

of degradation needed to be defined, methods explored include dynamic contact 
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resistance, pick-up time, over-travel time, the rebound duration, closing time, the 

fluctuation coefficient respectively as the predicted variables of the  abrasion failure, 

bridging failure and the contamination failure (Qiong et al., 2010) showed by using 

time series analysis and by measuring characteristic parameters as predicted 

variables, the life of relay can be obtained. However, the conclusions showed the 

predicted accuracy is greatly influenced by the complex variations of characteristic 

parameters, and as a result it sometimes becomes too low to be accepted. Life 

prediction based on wavelet transform and ARMA (auto-regression moving average) 

time series was proposed to improve this (Yu, 2009).   

A linear regression analysis method was proposed by (Xuerong et al., 2012) and has 

been used to establish the linear degradation model which regards the operation time 

as the independent variable and the predicted variables of the failure mechanisms as 

the dependent variable.   

In this chapter, two novel methods based upon series identification methods will be 

looked at and evaluated in terms their effectiveness.   

1) Grey System Models from time series data 

2) Sliding Window Recursive Least Square, ARMA model. 

6.2 Grey System Model for Time Series Prognostics 

Grey theory (Deng, 1982) offers a truly multidisciplinary approach to dealing with 

systems that are characterized by poor information and/or where information is 

missing.  Literature reports the theory’s use in a multitude of fields, including data 

processing, modelling, system analysis, decision making and control.  Potential 

attributes of Grey theory include the assumptions regarding the statistical 

distributions of the data are unnecessary, coupled with advantage of not having the 

cost/time in developing a physical model. Therefore given a time series relating to a 

failure parameter of a complex system that is particularly difficult to model or 

accurately predict, the Grey series becomes an attractive solution. It is for this 

reason that its feasibility for predicting the RUL is explored. 

The measurement of contact resistance form a time series which is a collection of data 

points which are generally sampled equally in time intervals. Time series prediction 

refers to the process by which the future values of a system is forecast based on the 

information obtained from past and current data points. Generally, a pre-defined 
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mathematical model is used to make accurate predictions. Grey theory has become 

quite popular with its ability to deal with the systems that have partially unknown 

parameters. As an improvement on conventional statistical models, Grey models 

require only a limited amount of data to estimate the behaviour of unknown systems 

(Deng, 1989). The application of the grey prediction model was investigated for the 

failure prognostics of ball gate arrays in electronics by (Gu, Jie, et al., 2010).  The grey 

prediction demonstrated a higher level of accuracy when dealing with small sample 

size of data. 

6.2.1 Fundamental Principles of Grey System Model 

GM(1,1) is a special case of GM(1,N) in which N=1, that is, the differential equation 

model of grey system theory of one variable of one order.  

Establishment of GM(1,1) only requires a progression x(0), with a basic equation as 

follows: 

GM(1,1) Model 

𝑥(0) = 𝑥(0)(1), 𝑥(0)(2),… 𝑥(0)(𝑛)      (145) 

AGO is the accumulated generating operation, and is given by 

𝐴𝐺𝑂, 𝑥(1)(𝑘) = ∑ 𝑥(0)(𝑚)𝑘
𝑚=1       (146) 

𝑥(1) = (𝑥(1)(1), 𝑥(1)(2),… 𝑥(1)(𝑛 − 1) + 𝑥(0)(𝑛))    (147) 

= (𝑥(0)(1), 𝑥(1)(1) + 𝑥(0)(2), … , 𝑥(1)(𝑛 − 1) + 𝑥(0)(𝑛))   (148) 

The GM(1,1) model uses a first-order differential equation. 

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑢        (149) 

with the parameter series 𝑎 = [
𝑎

𝑢
] and is given by a least squares estimation 

𝑎 = (𝐵𝑇 ∗ 𝐵)−1 ∗ 𝐵𝑇 ∗ 𝑦𝑛       (150) 
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where 𝐵 =

[
 
 
 
 
 −

1

2
[𝑥(1)(1) + 𝑥(1)(2)] 1

−
1

2
[𝑥(1)(2) + 𝑥(1)(3)] 1

⋮ ⋮

−
1

2
[𝑥(1)(𝑛 − 1) + 𝑥(1)(𝑛)] 1]

 
 
 
 
 

     (151) 

and    𝑦𝑛 =

[
 
 
 
𝑥(0)(2)

𝑥(0)(3)
⋮

𝑥(0)(𝑛)]
 
 
 

         (152) 

Solution of the differential equation is then: 

𝑥(1)(𝑘 + 1) = [𝑥(0)(1) −
𝑢

𝑎
] 𝑒−𝑎𝑘 +

𝑢

𝑎
     (153) 

Then, the Inverse Accumulated Generating Operation (IAGO) can be used to obtain 

the inverse data series from the AGO. It is then used to transform the forecasted AGO 

data back into the original time series and is achieved by the following equation: 

𝑥(0)(𝑘 + 1) = 𝑥(1)(𝑘 + 1) − 𝑋(1)(𝑘)     (154) 

where 𝑥(0) is the predicted original series. Combining equations (153) and (154), we 

can get equation (155) as follows: 

𝑥(0)(𝑘 + 1) = (𝑥(0)(1) −
𝑢

𝑎
) (𝑒−𝑎𝑘 − 𝑒−(𝑘−1))    (155)  

In order to optimise the processing of the data, which may be in the order of hundreds 

of thousands of samples and may take a considerable time to process to find the best-

fit parameters, a sliding window approach is employed.  

  

 

 

Figure 6.2. Sliding window implementation. 

Damage may not be significant or vary very slowly, hence resulting in very small 

changes.  However, at some point, the damage will start to change quickly, hence 

producing a steeper slope within the model.  The other advantage of this method is 

the potential sensitivity to small parameter changes in the contact resistance as they 

x

n-(N-1) k n 
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develop due to dynamic factors like temperature, variation in loading (reactive 

parameters), environment, vibration, voltage and current. 

The results are based on two sets of contact resistance data from the experimental 

work carried out in Chapter 4. Figures 6.3 and 6.4. The threshold was calculated for 

both data sets based upon the welding threshold described in Chapter 4. It can be 

seen that the prediction of RUL for the first dataset in Figure 6.3 set is a good 

approximation of where it failed. This is in turn due to the steady upward increase in 

the contact resistance. However, in the data from Figure 6.4, the RUL is drastically cut 

short due to high level of overshoot within the data, which one may expect intuitively 

to cause a failure.  

 

Figure 6.3. RUL-based upon steady contact resistance increase. 

 

 

Figure 6.4. RUL prediction based upon high levels of overshoot in the contact resistance 
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The Grey Model approach was found to be suitable for estimating systems that have 

partially unknown parameters, but has downfalls in that the correction terms are not 

estimated in a learning paradigm to improve the accuracy and precision of the 

algorithm for long-term prediction. The way a fault or fault indicator evolves over time 

entails a large amount of uncertainty.  To enable the accurate and precise prediction 

of the time to failure for the relay, the critical degradation variable such as the contact 

resistance must be considered as a random variable with an associated probability 

distribution vector. By obtaining the probability distribution of the failure, confidence 

intervals and other important attributes may be computed.  This however is not 

obtainable with the Grey model. 

Bayesian estimation techniques employ a state dynamic model and a measurement 

model to predict the posterior probability density function of the state, that is, to predict 

the time evolution of a fault or fatigue damage and are finding application domains in 

machinery fault diagnosis and prognosis of the remaining useful life of a failing 

component/subsystem (Orchard, 2009). The work done in Chapter 5 has already 

made use of such a technique, allowing a prognosis to be based on recursive Bayesian 

estimation technique that used information from a physic based model. Prognosis or 

long-term prediction for the failure evolution is based on both an accurate estimation 

of the current state and a model describing the fault progression.  

If the incipient failure is detected and isolated at the early stages of the fault initiation, 

it is reasonable to assume that sensor data will be available for a certain time window 

allowing for corrective measures to be taken, that is, improvements in model 

parameter estimates so that prognosis will provide accurate and precise prediction of 

the time to failure. At the end of the observation window, the prediction outcome is 

passed on to the user (operator, maintainer), and additional adjustments are not 

feasible because corrective action must be taken to avoid a catastrophic event 

(Orchard, Wu and Vachtsevanos, 2005). 

Figure 6.5 below shows a model-based prognostic scheme. Input from the diagnostic 

block is combined with stress profiles and feeds into the fault growth model. An 

estimation method (such as Kalman or Particle filtering) is called upon to propagate 

the fault model initially, one step at a time, while model parameters are updated online 

in real time as new sensor data become available (Vachtsevanos, 2006). 
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Figure 6.5. A model-based prognostic scheme. 

Eventually, the model is allowed to perform long-term prognosis of the remaining 

useful life of the failing component/system with confidence bounds. The fault model 

PDF is convolved with the hazard zone PDF when the former reaches the threshold 

bounds and the resultant PDF is projected along the time axis (which is usually 

measured in “cycles” of operation) depicting the system’s remaining life statistics. 

As seen in Chapter 3, physics-based models provide a means to calculate the damage 

to critical components as a function of operating conditions and assess the cumulative 

effects in terms of component life usage. However, an accurate physics based model 

of the process is often difficult to achieve.  In the next section the physics based model 

will be replaced with an ARMA based state model whose coefficients are estimated 

from the degradation data by a Recursive Least Square (RLS) sliding window 

algorithm. The ARMA state model will then be integrated with stochastic modelling 

techniques, the model can be used to evaluate the distribution of remaining useful life 

as a function of uncertainties in component strength/stress properties and loading 

conditions for a particular fault. Bayesian estimation techniques will be used to satisfy 

these requirements in the form of Kalman filtering.  In the framework proposed in 

Figure 3.3, an ARMA model of the feature vector, replaces the traditional empirical or 

physics-based degradation models. This is used in conjunction with the Kalman filter 

 

Future Time 

Expected 

Load 

Environmental Stress Conditions 

Expected Load Vs. Time 

Real Time Fault 

Dimension Estimation 

Diagnosis (In real time) 

 
Fault Growth Model 

Particle Filter / Kalman 

Filter 

● Uncertainty Management 

● Real-Time State Estimation PDF 

● Real-Time Model Parameter 

Update 

 

Model-Based Prognosis Block 

Damage 

Progression & 

RUL Estimate  

with 

Confidence 

Bounds 

Uncertainty 



191 
 

and measurement data to enable an estimation of the feature vector to be made up to 

the failure threshold. 

Algorithm: SWRLS Parameter Estimation, Filtering and RUL prediction 

For n < 0: h = 0,𝜽̂−1 = 0, 𝜽̅−1 = 0, 𝑷−1 =
1

𝛿
𝐼𝑁 , 𝑷̅−1 =

1

𝛿
𝐼𝑁 

For data sequence at n = 0,1,… 

1. Estimation of parameters from new data at nth instant 

𝜽̅𝑛 = 𝜽̂𝑛−1 + 𝑲𝑛{ 𝑦𝑛 − ℎ𝑛
𝑇𝜽̂𝑛−1} 

2. Calculate Kalman gain 

𝑲𝑛 = 
𝑷𝒏−𝟏ℎ𝑛

1 + ℎ𝑛
𝑇𝑷𝒏−𝟏ℎ𝑛

 

3. Calculate covariance 

𝑷̅𝑛 = 𝑷𝒏−𝟏 − 𝑲𝑛 ℎ𝑛
𝑇𝑷𝑛−1 

For  

𝑈𝑛  ≤ 𝑈𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

Where 𝑈𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 is the point of where the component is deemed to start failing 

then 13.  

Else 

The Kalman filtering algorithm consists of the following steps: 

4. Initialize variables at time step 

 𝑷0 = 𝑷𝑥0, 𝑥 0 = 𝑥̅0;. 

For k = n, k is fixed and the prediction N is projected e.g. N = 1,2,3,…to threshold U 

5. Project state at the next time step, where A & B are the 𝜃̂ estimates and u is taken at n + L, 

𝑿̂(𝑘 + 𝑁 𝑘) = 𝑨(𝑘 + 𝑁 𝑘)𝑿̂(𝑘 𝑘) + 𝑩𝑘𝑢𝑘 

6.Take measurement, 𝑧𝑘 = 𝑯𝑥𝑘 + 𝑣𝑘 

7. Calculate error covariance before update, 𝑷(𝑘 + 𝑁 𝑘) = 𝑨(𝑘+𝑁,𝑘)𝑷(𝑘 𝑘)𝑨(𝑘+𝑁,𝑘)
𝑇 + 𝑸(𝑘+𝑁,𝑘) 

8. Calculate the Kalman gain, 𝑲𝑘 = 𝑷𝑘𝑯𝑘
𝑇𝑹𝑘

−1 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)−1 

9. Update estimate with measurement, 𝑥 𝑘+1 = 𝑥 𝑘+1
− + 𝑲𝑘+1(𝑧𝑘+1 − 𝑯𝑘+1𝑥 𝑘+1

− ) 

10. Calculate error covariance after measurement update, 𝑷𝑘+1 + [(𝑷𝑘+1
− )−1 + 𝑯𝑘+1

𝑇 𝑹𝑘+1
−1 𝑯𝑘+1]

−1 

11. Repeat 5 to 10 until extrapolated to threshold value, 

12. Report predicted RUL (and uncertainty). 

13. Removal of data from window received at (n−L+)th instant 

𝜽̂𝑛 = 𝜽̅𝑛 + 𝑲𝑛{ 𝑦𝑛−𝐿+ ℎ𝑛−𝐿+
𝑇  𝜽̅𝑛−1} 

14. Calculation of Kalman gain at n-L+ where  is step size. 

𝑲𝑛 =
−𝑷̅𝑛ℎ𝑛−𝐿+

1 + ℎ𝑛−𝐿+
𝑇  𝑷̅𝑛ℎ𝑛−𝐿+
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15. Recalculation of Covariance 

𝑷𝑛 = 𝑷̅𝑛 − 𝑲𝑛ℎ𝑛−𝐿+
𝑇  𝑷̅𝑛 

16. Return to step 1. 

 

The complete algorithm is documented above and explained here. The initial 

parameters are set up for n < 0 and in 1 to 3, the RLS sliding window is set up and 

used in the estimation of parameters and ARMA state model formation from the new 

data at nth instant.  Next, because a prediction of RUL may not be relevant until a 

threshold is recognised, then the option to go from condition monitoring to prognosis 

is provided.  Once the threshold of impending failure is met, then the Kalman filter is 

used in 4 to 10 to extrapolate the ARMA state model until the threshold of failure is 

met.  From this a prediction of the RUL is given from the current measurement to the 

threshold.   Lastly, is the removal of data from the window received at (n−L+)th instant 

and the recalculation of the Kalman gain as well as the covariance at n-L+ where  

is the step size.  The processes is then started again, with the next data measurement. 

One of the main advantages of this method apart from not having to have a physical 

model of the degradation processes is the noted computationally efficiency compared 

with that of the particle filter.  Also, due to being able to quantify the model in terms of 

its fit to the data with an error measurement gives rise to the potential development of 

an on-line prognostic metric. 

6.3 Kalman Filter for Prediction 

In Chapter 3, the general operation of the Kalman Filter was outlined, based upon 

the justification of the process noise being additive white Gaussian for the 𝑤𝑘 

sequence on the process model.  The Kalman Filter was used in this context as a 

one step ahead prediction, however for prognostics, a N step ahead prediction of the 

current measurement is required and this is can be implemented using the same 

identical methodology. 

The equations (35) & (36) for N-step ahead prediction are modified to be: 

𝑿̂(𝑘 + 𝑁 𝑘) = 𝑨(𝑘 + 𝑁 𝑘)𝑿̂(𝑘 𝑘) + 𝑩𝑘𝑢𝑘 

𝑷(𝑘 + 𝑁 𝑘) = 𝑨(𝑘+𝑁,𝑘)𝑷(𝑘 𝑘)𝑨(𝑘+𝑁,𝑘)
𝑇 + 𝑸(𝑘+𝑁,𝑘) 

Where  
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𝑿̂(𝑘 𝑘) = updated filter estimate at time 𝑡𝑘 

 

𝑿̂(𝑘 + 𝑁 𝑘) = predictive estimate of X at time 𝑡𝑘+𝑁 given all the measurement 

through 𝑡𝑘 
 

 𝑷(𝑘 𝑘) = error covariance associated with the filter estimate 𝑿̂𝑘
− 

 
𝑷(𝑘 + 𝑁 𝑘) = error covariance associated with the predicted estimate  

 

𝑨(𝑘+𝑁,𝑘) = transition matrix from step k to k + N 

 

𝑸(𝑘+𝑁,𝑘) = covariance of the cumulative effect of white noise inputs from step 

k to step k + N 
 
From the above, there are two scenarios that may be considered. Firstly, N is fixed 

and k is allowed to evolve in integer time steps similar to a filter problem.  The 

predictor may be thought of as an external element, in this case to the filter loop that 

is updated.  For off-line analysis work, this may be used as a tool for giving a 

measure of the quality of the predictive state estimate by using the major diagonal 

of 𝑷(𝑘 + 𝑁 𝑘). Where online prediction is required it is 𝑿̂(𝑘 + 𝑁 𝑘) that becomes of 

interest and it should be noted that it is not necessary to calculate 𝑷(𝑘 + 𝑁 𝑘) in 

order to get an estimate of 𝑿̂(𝑘 + 𝑁 𝑘). 

Secondly, k may be fixed, and then 𝑿̂(𝑘 + 𝑁 𝑘)can be iterated along with its error 

covariance for 1 to N steps ahead utilising the Kalman gain and current 

measurement.  In this case, the error covariance becomes extremely useful, 

especially for prognostics, as it offers a metric that allows the quality of the predictive 

estimate to be assessed, as the prediction is made up to the threshold of failure. It is 

this second scenario that is of interest in this Thesis. 

Although the Kalman filter offers the optimum solution to state estimation for a linear 

model in additive Gaussian white noise, it is only as good as the information that is 

provided.  The characteristics of the measurement noise and model are not 

evaluated as the Kalman filter operates and therefore it is has no way of knowing 

what is really the correct signal and what is unwanted noise.  The only information 

the Kalman filter has on the noise processes is that which is specified in the Q and R 

covariance matrices which must be specified in advance.  These matrices 

completely determine the action of the Kalman gain matrix and the final estimation of 
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the error covariance matrices, therefore as the component wears over time the 

characteristics of the noise signals may change and these will not be altered unless 

new values are assigned to the Q and R matrices.   

As well as the filters performance in terms of the estimation accuracy being heavily 

reliant upon Q and R, the state matrix A, input matrix B and H giving the ideal 

(noiseless) connection between the measurement and the state vector also needs to 

be accurate. 

The covariance matrix R has been already been quantified in Chapter 4 for the 

measurement noise v, and will consist of the uncertainty value which was found to 

consist mainly of normally distributed quantisation and flicker noise. 

The process noise w, however is harder to quantify, although it assumed to be 

Gaussian white noise, in reality it should cover all disturbances including; steps, 

spikes, coloured noise and modelling errors as well as external factors 

representative of environmental effects.  From the ARMA model, one parameter that 

may be measured is the model accuracy, however other parameters can only be 

intelligently estimated.  The noise elements of the matrix Q, again like R, are 

assumed to be uncorrelated and form the diagonal.  

In reality, often the only way of setting the values of Q is by assigning variables at 

random and then ‘tuning’ them to reach the optimum performance in simulation 

studies. This can becomes increasingly time consuming when higher order systems 

are invoked containing many disturbance signals.  The Kalman filter itself may also 

be of help in the ‘tuning’ of Q and R by observing the characteristics of the outputs. If 

the elements of Q are decreased in magnitude, or the elements of R increased in 

magnitude, this implies than there is relatively more noise on the measured signal 

than the states.  This causes the Kalman filter to make the assumption that the 

prediction made by the state estimates from the model, are more reliable than the 

measurements, thus an emphasis is placed on prediction and less so on the 

measurement. 

Conversely, if the elements of the Q matrix are increased in magnitude or the 

elements of R decreased, this implies there is less noise on the measured signal 

relative to the state model. The assumption is then made that the generated state 

estimate is less reliable than that of the measurement, thus requiring more 
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correction, causing the magnitude of the elements in the Kalman gain matrix to 

increase accordingly.  

The final estimated error in the covariance matrix P, should be small and relatively 

symmetrical, in general, small elements in P implies that Kalman filter has a high 

degree of trust in the prediction, conversely, high P elements indicate distrust. 

6.4 Results from SWRLS ARMA Model 

Sample 1 – 200 
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Figures 6.6. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 1 with 200 

window. 

Sample 1 – 100 
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Figures 6.7. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 1 with 100 

window. 

Sample 2 - 200 
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Figures 6.8. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 2 with 200 

window. 

Sample 2 -100 
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Figures 6.9. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 2 with 100 

window. 

Sample 3 – 200 
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Figures 6.10. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 3 with 200 

window. 

Sample 3 -100 
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Figures 6.11. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 3 with 100 

window. 

Sample 4 - 200  
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Figures 6.12. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 4 with 200 

window. 

Sample 4 -100 
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Figures 6.13. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 4 with 100 

window. 

Sample 5– 200 
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Figures 6.14. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 5 with 200 

window. 

Sample 5 – 100 
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Figures 6.15. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 5 with 100 

window. 

Sample 6 – 200 
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Figures 6.16. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 6 with 200 

window. 

Sample 6 – 100 
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Figures 6.17. Showing ARMA fit, Error, RUL, 𝛼 − 𝜆 at 20%, 𝛼 − 𝜆 at 10% and RA for sample 6 with 100 

window. 

Conclusion 

A computationally efficient, technique has been developed for real time monitoring of 

accrued damage in electrical contacts within safety critical applications. The technique 

utilizes Recursive Least Squares parameter identification via a sliding window and a 

Bayesian PHM framework in the form of a Kalman-filter for state variable evolution. 

The estimated state-space parameters were used to extrapolate the feature vector 

into the future, and predict the time-to-failure at which the feature vector will cross the 

failure threshold. This procedure was repeated recursively until the component failed. 

Remaining useful life was calculated based on the evolution of the state space feature 

vector. Standard prognostic health management metrics are used in chapter seven to 

quantify the performance of the algorithm against the actual remaining useful life. 

This chapter provides the following conclusions and contributions 

 The development and assessment of a real time Grey Model prediction 

algorithm for prognostics. 

 A novel and computationally efficient technique has been developed for real 

time monitoring based upon modelling of degradation using system 

identification techniques. 

 Recursive Least Square (sliding window) for state variable extraction 

 Bayesian Methods (Kalman filter) for prediction of RUL 
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Chapter 7 - Results from PoF and SWRLS ARMA Models 

Introduction 

This chapter presents the results from the models derived in chapters 5 and 6 

respectively. The Physics Based Model is firstly analysed and discussed and then 

compared to the Data Driven model.  In order to make the comparison between the 

two models, a form of metric is required to enable benchmarking to be carried out.  

This chapter starts by outlining current prognostic metrics and the results are 

evaluated according to these metrics.  The chapter concludes by discussing the 

outcomes of the results. 

7.1 Physics Based Modelling 

The detailed discussion of the methodology and derivation of the physics of failure 

based model is documented in Chapter 5.  This chapter outlines the results of the 

Remaining Useful Life (RUL) assessment based on this model, including the use of 

the metrics discussed above in benchmarking the prognostic performance of the 

model. Six sample data sets were used in the proving the model, the data was 

obtained from the experimental methodology discussed in Chapter 4. 

7.1.1. Model  

The state model representing the degradation of the relay contact resistance over time 

is combined with a Particle filter to project the degradation into the future in order to 

form an estimate of the RUL. To help visualise the process, the output from the Particle 

filter illustrated in figure 7.1, along with the histogram representation of RUL and the 

actual data superimposed in the background. The current measurement value along 

with auxiliary parameters such as measurement error are tracked as part of the 

learning process and updated. Starting from the RUL estimation point, where the 

measurement input ends, the model parameters are extrapolated into the future up to 

the maximum contact resistance threshold using the discretised contact resistance 

state equation via Monte Carlo simulation. 

From this projection, the RUL distribution at the specified threshold point is obtained 

by calculating the difference between the time of the last measurement (RUL 

estimation start point time) and the time where the projected trajectory hits the 
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threshold, this distribution will be equal to the number of particles at that threshold. 

The blue line in Figure 7.1 represents the mean value of the distribution, where the 

red boundaries represent a confidence encapsulation of 95% of the distribution, 

forming a confidence boundary. 

 

Figure 7.1 The Particle filter projection against the actual measured data and histogram representation 

of RUL. 

For each sample, the RUL estimation was performed at every 5000 cycles.  The RUL 

is shown for each sample below along with the alpha-lambda and relative accuracy 

projections. To help the visualisation of the models RUL and alpha-lambda metrics a 

shrinking alpha cone visual comparison, recommended by (Saxena et al., 2010) is 

used. The results from the model should stay within the 20% error bound 

predominantly throughout the degradation process.  

The standard deviation value for the measurements ‘𝜎𝑣’ in the Particle filter was 0.003 

and in each sample, the number of particles employed in the filtering was three 

thousand respectively. 
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The results for samples one to six are shown below with their respective RUL, alpha-

lambda and relative accuracy plots as well as the Particle filter prediction and 

histograms of RUL for samples 1, 4 and 6 to help visualize the prediction process. 

7.1.2 Physic of Failure Model Discussion 

The output from the model is linear in nature, and although it is not an exact fit to the 

data, the estimation is, within most cases 20% accurate, if not better.  This becomes 

apparent if a best fit line is drawn though the data sets up to the threshold of failure, if 

one neglects the deviations in contact resistance due to the film formation and rupture 

and material transfer as discussed in Chapter 4, the degradation data for the most part 

approximates to a first order polynomial. Figure 7.1 above, illustrates the Particle filters 

approximation to a set of data, with a histogram of RUL.   

From the results in Chapter 5, samples 1 and 4, the Particle filter shows the prediction 

at various cycles and shows the projection up to the threshold of failure. Generally, the 

first 100,000 cycles will consist of a period where the contact resistance will either 

slightly decrease or remain steady for the first few tens of thousand cycles and then 

linearly increase; in sample 1 there is a rise up to 50,000 and then a subsequent drop.  

This outlines the problem of developing a physics model that encompasses all 

scenarios likely to be encountered when the failure mode is complex and consists of 

multiple degradation parameters.  Usually, physics based models may be bolstered 

with empiric data gathered from experiment results, however even that is of little use 

here.  So a projection up to the failure threshold using the predominant failure mode 

was deemed to be the best fit for the data.   

Not being able to represent the model accurately at all stages will inevitability impact 

upon the performance of the prognostic. Samples 1 and 6 show the initial 

representation is quite good, well within the 20% tolerance band, this is due in part to 

the linear nature of the data up to this point and to ability of the particle filter to adapt 

very quickly to the data from the simplistic nature of the model.  From the RUL and α-

λ plots, the prediction starts to fall out around half way along, this correspond to where 

the measurement data fluctuates considerably and the linear model can no longer 

make an accurate estimate, which is also depicted in the RA graphs. 



223 
 

The results from samples 2, 3 and 4 are a great deal better due to the data not being 

so volatile and the model fitting with a great deal more confidence.  This is reflected in 

the metrics, as most of the data is within the 20% cones in both the RUL and α-λ plots 

throughout, the RA is considerably higher throughout. 

The conclusion may be drawn that to represent the degradation accurately, the data 

needs to be a relatively good linear approximation, and the small anomalies due to 

variation in measurement will be handled by the Particle filter.  However, where large 

variations outside the linearity of the model take place, accuracy is affected 

considerably, which would be a cause for concern in general use. The possibility of 

introducing a non-linear component into the model may help to solve this, for instance 

the second term in equation (1) representing the surface film formation. 

𝑅𝑐 =
𝜌

2𝑎
+

𝜌𝑓𝑑

𝜋𝑎2
 

7.2 Data Driven Model Results 

A prognostic model can be deemed to be acausal in its properties as its outputs and 

internal states depend upon future input values.  One can attempt to define a model if 

operational conditions and load profiles are known, although as seen from the physics 

based model it is not always easy.  To handle these uncertainties, Chapter 6 outlined 

a new type of data driven methodology that devises the model from the present and 

past operational and load profiles in order to infer a prediction of future events. 

The results for the sliding window RLS derived model from Chapter 6 are shown below.  

The graphs feature the ARMA model upon the data, both in terms of the actual fit to 

the data and also the Mean Squared Error (MSE).  This ability to know how accurate 

the model fit is to the present data alludes to a new ‘on-line’ prognostic metric. The 

MSE gives an indication of how good the prediction will be, and this can be seen in 

the results. Again, as before, the Prognostic Horizon (PH), alpha-lambda (α-λ) and 

Relative Accuracy (RA) metrics again are used to bench-mark the algorithm.   

The difference in the window size to the overall prediction will play a part in the models 

accuracy, in the results, two window sizes are considered, 100 and 200 samples, 

respectively.  It should be also noted that in the PH and α-λ plots there is an absence 

of data for the first 100 or 200 cycles (depending on the window), this is not a mistake, 
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the first prognosis may not be made until the window has made the first estimate based 

upon the window length. 

The process of the estimation is illustrated in Figures 7.2 and 7.3, for measurements 

at 43000 and 83000 cycles respectively. Also, the estimated feature vector with error 

bounds that is extrapolated via the Kalman-filter from the ARMA model derived from 

the last 𝐿 measurements within the window, until the threshold of failure is shown.  It 

can be seen that the estimated feature vector has predicted the path of the 

measurements with a high degree of accuracy compared to the Particle filter, despite 

the variation of the data. Again the RUL is denoted as the distance between the 

current measurement and the failure threshold, a confidence boundary is present, 

although difficult to see due to the accuracy of the model.

 

 Figure 7.2. Remaining useful life after 40000 measurements 

 

Figure 7.3. Remaining useful life after 80000 measurements 
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The RLS ARMA model for the six samples gives a promising result and are discussed 

briefly (the plots may be found in Chapter 6).  Sample 1 is a complex data set, with 

large variations within the data and little upwards variation to the point of failure. This 

can be seen from the data and subsequent errors present in fitting the model to the 

data, errors in the order of 0.5 - 1x10-9, are present throughout.  Around 700,000 cycles 

these errors manifest themselves in the RUL and α-λ plots as well as the RA prediction 

after 0.8λ. The RUL α-λ predictions are within 20% with a majority of the prediction 

being within 10%, with the RA being high initially, but falling off at 0.8λ. The window 

size being reduced by 50%, appears to have a small effect on the model, there is a 

noticeable reduction in the error plot which moves to 0.2 - 0.6 x10-9 in magnitude.  

However, the overall predictions are unaltered, a still remain within 10% for the 

majority of the plots. 

Sample 2 does not contain so much variation in the data and there is a clear increment 

to the threshold. The prediction as may be expected, is better.  The overall error settles 

around 1x10-8, and there are less sharp spikes present, which is a reflection of the 

data.  This can be seen in the metrics as well, the RUL and α-λ being within 10% and 

the RA is good until 0.8λ.  Again the 100 sample window produces similar results, with 

little difference. 

Sample 3 is again well defined and increases in a upward pattern towards the 

threshold, however, this time there is quite a lot of variation in the data, resulting in 

spikes of error around 1 - 4 x10-9.  Again the RUL and α-λ accuracy is quite good, 

there is significant amount of the prediction within 10% and the RA is good up to 0.9 

λ. 

Sample 4 again is made up of clearly defined, upwards trending data. One noticeable 

abnormality is the presence of a large spike at 79,000 cycles in the data which also 

clearly manifests itself in the error plot, however this does not impact on the prediction 

noticeably. The plots of RUL, α-λ are good for both 20% and 10% boundaries and RA 

is excellent until 0.9λ. 

Sample 5 is of the nature of being a complex data set, considerable variation and only 

a slight upwards trending.  Again, the error tended to lie around 0.5x10-8 in magnitude, 

with a degree of high peaks,  which led to good plot results overall for the RUL and α-

λ, with the 20% and 10% boundary achieved mostly throughout, however, the last 

30,000 cycles were particularly full of peaks and trough which affected the accuracy. 
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Lastly, sample 6 was a clearly defined upward trending data set, with large swings in 

the data, this resulted in a model error of 0.2-0.8x10-8, with sharp error peaks at around 

7,000 and 80,000 cycles.  The overall RUL and α-λ though was good, with the 20% 

boundary satisfied, and the majority of the prediction lying within the 10% boundary.  

The RA accuracy was good, being around 90% up till 0.9λ when the accuracy fell off 

sharply. Again the small window size, did not appear to effect the result greatly, with 

only a small gain in model error. 

7.3 Discussion 

The final section of this chapter summarises the prognostic results obtained from the 

two methodologies outlined in Chapters 5 and 6.  The results from the physics of 

failure model are compared against the data driven solution in terms of their 

prognostic metrics.  In the data driven model this is the RUL, alpha-lambda, RA and 

Model Error.  For the physic model the RUL, alpha-lambda and RA are used 

respectively.  Performance evaluation metric results are presented in the previous 

sections. In this section, the metric results are examined more thoroughly. 

Table 7.1 below organises the prognostic results from each sample, in each case the 

average has been used to make comparison.  Starting with the data driven 

approach, the sliding window RLS algorithm shows a good degree of accuracy with a 

window length of 100 samples achieving results in excess of 80% for most samples, 

samples 2 and 6 where the trending and variation in the data resulted in a poorer 

performance. 

As the window is increased to 200 samples, the RUL results improve slightly as may 

be expected, moving towards 90% accuracy.  This is also reflected in how the RA, α-

λ (notes less is better in this metric) and RA improves and the noticeable drop in error.  

In the physics based model, again the metrics are good, comparable in a majority of 

cases with the data driven model, which is surprising given the simplicity of the model 

approximation. 

The graphs below illustrate the data in terms of the three main bench marks plotted 

together. 
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Data Driven 

100 Samples 

Window 

Sample1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

RUL(%) 80.76 75.63 87.53 82.13 86.56 74.43 

20% α-λ (%) 49.5 52.61 45.64 48.63 40 53.36 

10% α-λ (%) 24.73 26.3 22.82 24.29 23 26.68 

RA(%) 83.95 93.68 91.07 95.44 94.74 92.6 

Error(%) 1.87E-10 3.81E-10 5.17E-10 1.13E-09 8.69E-10 4.24E-10 

Data Driven 

200 Samples 

Window 

Sample1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

RUL(%) 90.58 87.55 86.7 92.83 89.89 95.69 

20% α-λ (%) 44 45.45 45.93 43.07 44.3 41.76 

10% α-λ (%) 21.98 22.72 22.96 21.52 22.13 20.88 

RA(%) 92.94 95.01 96.17 96.75 97.4 90.48 

Error(%) 6.04E-10 1.02E-09 1.02E-09 1.89E-09 1.92E-09 8.59E-10 

Physics Based 

Model 

Sample 

1 

Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

RUL(%) 88.64 97 96.43 82.76 78.64 82.36 

20% α-λ (%) 42.14 40.81 41.16 43.91 48.22 43.25 

RA(%) 94.46 99.7 97.43 90.31 82.11 89.9 

 

Table 7.1 Comparison of the two methodologies namely Physics based versus the Data Driven 

approach. 
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7.5 Comparison of the α-λ results. 

 
7.6 Comparison of the RA results. 

7.3.1 Computational Execution Time 

One important consideration of the algorithms developed is the execution time.  This 

was timed for a number of iterations on both the sliding window RLS algorithm 

utilising the Kalman filter (200 sample window length) and the PoF Model with the 

Particle filtering (3000 particles) algorithms respectively, within the Matlab™ 

platform.   

Algorithm Average Execution Time (s) 

Sliding window RLS with Kalman filter 1.1 

PoF based with Particle filter 29.9 

Table 7.2 Comparison of algorithm execution times 
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7.3.2 Conclusion 

In conclusion, the main goal of this research was to look at the development of a 

computationally efficient prognostic methodology that allowed the estimation of relay 

life in real time.  From the work carried out, two solutions have been proposed, both 

performing the task set out to a high degree of accuracy.  However, both methods 

have associated with them pros and cons. In the PbM, the model first needs to be set 

up, which involves investigating the physical parameters such as mass loss from the 

arcing duration and this is set within the model and hence the model is not adaptable 

if say the loading changed.  Another downside to the PbM is the computational time, 

however due to the model being linear, this could possibly be shortened by the use of 

a Kalman Filter for the prediction.  

On the other hand, the data driven solution is adaptable, as it uses past data within a 

window for the future life prediction and is therefore self-training, hence it is able to 

adapt to parameter changes.  As well adaptation, it is also computationally efficient 

and can easily be operated in real time within a DSP platform for example.  Another 

advantage is the ability to respond to servicing, if for example a component is changed, 

within the window size of samples, a new model of the degradation may be built.  

Future work also needs to be carried out in order to enable the optimisation of the 

window size. 
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Chapter 8 - Conclusions and Future work 
 

IVHM is an enabling technology that is starting to gain ground amongst operators of 

critical assets such as aerospace equipment, where maintenance is a large 

expenditure for both the operator and the manufacturer. The use of prognostics fits 

into the IVHM framework of system monitoring, fault detection and diagnosis, failure 

prognosis and operations management. Prognostics is the newcomer to this 

framework, with fault detection and diagnosis being a mature technology relatively 

speaking.  However, an intelligent prognostics capability implemented such that the 

maintainers are able to predict failures and the remaining service life of these systems 

and associated components is a very attractive technology. The long term aim to build 

prognostics capability into equipment such that cost-effective, safe, reliable and robust 

systems can be built with extended service life has been comprehended both by 

industry and the research communities. 

The overall aim of prognostics is to provide an accurate estimation of the remaining 

useful life of an asset. The prognosis also needs to take into account the operating 

conditions and how the system is to be used in the future in order to give a RUL 

prediction and the user beneficial information that allows decisions to be made based 

on safety and cost, depending on the priority of the operational use. 

Prognostics may fall into three main categories, namely experience based, Data 

Driven and Physics of Failure.  Cost and accuracy drive the type of model selection.  

Experienced based prognostics is the cheapest option and its range of system 

applicability is diverse, however in terms of accuracy, it falls short of physics of failure 

based models which are the most accurate but difficult and costly to develop.  Data 

Driven based methodologies form the middle ground, however model-based 

prognostics, are expected to take prognostics into the future. 

In this thesis, the development of both a physics based model and data driven solution 

are explored and both methodologies are explored in terms of their suitability for the 

assessment of the intended asset, the relay outputs on the Full Authority Digital 

Controller (FADEC) for a range of aircraft currently being developed. 

Electrical wear of the contacts was identified as the primary mode of failure in the 

relays, due to Joule heating and erosion of the surface to arcing, contamination and 

corrosion. The constriction (contact) resistance was deemed to be an important metric 
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in determining how the condition of the contact may be determined, as well as its 

importance in the development of failure.  The complex nature of the formation of an 

arc between the contacts was examined and how this erodes the surface of the contact 

due to material loss and mass transfer. The process was determined as being a 

complex multi-faceted process and influences the prediction of how long the relay 

contacts will last. 

The contribution of this research was to examine the feasibility of condition monitoring 

and prognostic implementation for the relays.  Experimental testing to enable real 

world data to be collected and thus replicate the failure mode was carried out. A 

suitable feature vector in the form of the contact resistance was determined from this 

experimental work to enable the RUL to be predicted.  From the experimental work 

the development and evaluation of suitable prognostic algorithms to handle the 

complex degradation process from the data collected was carried out. Finally, the 

development of tailored, real time prognostic algorithms that are implementable at 

system level was trialled and benchmarked to assess their performance. 

Two methods were developed based upon a physic based solution. Firstly, a simple 

physics model based upon arc erosion of the contact and its effect on the contact 

resistance due to the reduction of contact surface area was tried.  The physics based 

model of the arcing and the erosion process was developed to enable mass loss to be 

calculated, the results were used in a state space model.  This model was then used 

with Particle filtering to enable a prediction of the RUL to be estimated.  Secondly, a 

computationally efficient, technique based upon system identification using Recursive 

Least Squares algorithm via a sliding window was developed to produce the 

degradation model which was used in conjunction with a  Bayesian framework in the 

form of a Kalman-filter for state variable evolution. Remaining useful life was 

calculated based on the evolution of the state space feature vector.  

Both the models were evaluated against proven prognostic metrics from literature 

used to bench mark the effectiveness of algorithms.  The results from both models 

were consistently within 20% accuracy and most of the time in excess of this, leading 

to the conclusion that the prognostic performance results show that the both physics-

based and data-driven models predict the system behaviour accurately which led to 

successful RUL predictions.   
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The major downfall with the physics model was that any alterations to the model 

material loss parameter needed to be gained from the arc model and heat equation, 

calculated separately, hence the model is not a true physics based model in the sense 

that it may adapt to changes in conditions such as loading, environmental or material 

deviations. Other flaws included the considerable computation power needed when 

using the Particle filter, to get a reasonable estimate, this evoked a great deal of 

processing time even on a Core i5 machine. 

On the other hand, the data driven solution is adaptable, as it uses past data within a 

window for the future life prediction and is therefore self-training, hence it is able to 

adapt to parameter changes.  As well as adaptation, it is also computationally efficient 

and can easily be operated in real time within a DSP platform for example.  Another 

advantage is the ability to respond to servicing, if for example, a component is changed 

within the window size of samples, a new model of the degradation may be built. 

The key areas for future work will be to investigate further the development of these 

models and how factoring additional failure parameter may increase the accuracy.  

This will involve the extraction of a secondary feature vector from the test rig, such as 

contact closure/release time, to see how this may influence the data driven model.  As 

well as this, optimisation of the window size needs to be carried out.  One interesting 

aside that also arises due to this model was the ability to have an idea of what the 

model error was before the prediction, which leads to the feasibility of devising an on-

line metric for RUL accuracy.  

Whereas for the physics based model, bringing additional parameters into the model 

such as material transfer or the effects of film formation, either as empiric factors or 

modelling would be of interest. 
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