166 research outputs found

    A modified choice function hyper-heuristic controlling unary and binary operators

    Get PDF
    Hyper-heuristics are a class of high-level search methodologies which operate on a search space of low-level heuristics or components, rather than on solutions directly. Traditional iterative selection hyper-heuristics rely on two key components, a heuristic selection method and a move acceptance criterion. Choice Function heuristic selection scores heuristics based on a combination of three measures, selecting the heuristic with the highest score. Modified Choice Function heuristic selection is a variant of the Choice Function which emphasises intensification over diversification within the heuristic search process. Previous work has shown that improved results are possible in some problem domains when using Modified Choice Function heuristic selection over the classic Choice Function, however in most of these cases crossover low-level heuristics (operators) are omitted. In this paper, we introduce crossover low-level heuristics into a Modified Choice Function selection hyper-heuristic and present results over six problem domains. It is observed that although on average there is an increase in performance when using crossover low-level heuristics, the benefit of using crossover can vary on a per-domain or per-instance basis

    A comparison of crossover control mechanisms within single-point selection hyper-heuristics using HyFlex

    Get PDF
    Hyper-heuristics are search methodologies which operate at a higher level of abstraction than traditional search and optimisation techniques. Rather than operating on a search space of solutions directly, a hyper-heuristic searches a space of low-level heuristics or heuristic components. An iterative selection hyper-heuristic operates on a single solution, selecting and applying a low-level heuristic at each step before deciding whether to accept the resulting solution. Crossover low-level heuristics are often included in modern selection hyper-heuristic frameworks, however as they require multiple solutions to operate, a strategy is required to manage potential solutions to use as input. In this paper we investigate the use of crossover control schemes within two existing selection hyper-heuristics and observe the difference in performance when the method for managing potential solutions for crossover is modified. Firstly, we use the crossover control scheme of AdapHH, the winner of an international competition in heuristic search, in a Modified Choice Function - All Moves selection hyper-heuristic. Secondly, we replace the crossover control scheme within AdapHH with another method taken from the literature. We observe that the performance of selection hyper-heuristics using crossover low level heuristics is not independent of the choice of strategy for managing input solutions to these operators

    A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings

    Get PDF
    Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given global parameters and multiple parametrised operators, adaptation often becomes a crucial constituent in the design of MAs. In this study, a self-adaptive self-configuring steady-state multimeme memetic algorithm (SSMMA) variant is proposed. Along with the individuals (solutions), SSMMA co-evolves memes, encoding the utility score for each algorithmic component choice and relevant parameter setting option. An individual uses tournament selection to decide which operator and parameter setting to employ at a given step. The performance of the proposed algorithm is evaluated on six combinatorial optimisation problems from a cross-domain heuristic search benchmark. The results indicate the success of SSMMA when compared to the static Mas as well as widely used self-adaptive Multimeme Memetic Algorithm from the scientific literature

    An apprenticeship learning hyper-heuristic for vehicle routing in HyFlex

    Get PDF
    Apprenticeship learning occurs via observations while an expert is in action. A hyper-heuristic is a search method or a learning mechanism that controls a set of low level heuristics or combines different heuristic components to generate heuristics for solving a given computationally hard problem. In this study, we investigate into a novel apprenticeship learning-based approach which is used to automatically generate a hyper-heuristic for vehicle routing. This approach itself can be considered as a hyper-heuristic which operates in a train and test fashion. A state-of-the-art hyper-heuristic is chosen as an expert which is the winner of a previous hyper-heuristic competition. Trained on small vehicle routing instances, the learning approach yields various classifiers, each capturing different actions that the expert hyper-heuristic performs during the search process. Those classifiers are then used to produce a hyper-heuristic which is potentially capable of generalizing the actions of the expert hyperheuristic while solving the unseen instances. The experimental results on vehicle routing using the Hyper-heuristic Flexible (HyFlex) framework shows that the apprenticeship-learning based hyper-heuristic delivers an outstanding performance when compared to the expert and some other previously proposed hyper-heuristics

    A tensor based hyper-heuristic for nurse rostering

    Get PDF
    Nurse rostering is a well-known highly constrained scheduling problem requiring assignment of shifts to nurses satisfying a variety of constraints. Exact algorithms may fail to produce high quality solutions, hence (meta)heuristics are commonly preferred as solution methods which are often designed and tuned for specific (group of) problem instances. Hyper-heuristics have emerged as general search methodologies that mix and manage a predefined set of low level heuristics while solving computationally hard problems. In this study, we describe an online learning hyper-heuristic employing a data science technique which is capable of self-improvement via tensor analysis for nurse rostering. The proposed approach is evaluated on a well-known nurse rostering benchmark consisting of a diverse collection of instances obtained from different hospitals across the world. The empirical results indicate the success of the tensor-based hyper-heuristic, improving upon the best-known solutions for four of the instances

    A tensor-based selection hyper-heuristic for cross-domain heuristic search

    Get PDF
    Hyper-heuristics have emerged as automated high level search methodologies that manage a set of low level heuristics for solving computationally hard problems. A generic selection hyper-heuristic combines heuristic selection and move acceptance methods under an iterative single point-based search framework. At each step, the solution in hand is modified after applying a selected heuristic and a decision is made whether the new solution is accepted or not. In this study, we represent the trail of a hyper-heuristic as a third order tensor. Factorization of such a tensor reveals the latent relationships between the low level heuristics and the hyper-heuristic itself. The proposed learning approach partitions the set of low level heuristics into two subsets where heuristics in each subset are associated with a separate move acceptance method. Then a multi-stage hyper-heuristic is formed and while solving a given problem instance, heuristics are allowed to operate only in conjunction with the associated acceptance method at each stage. To the best of our knowledge, this is the first time tensor analysis of the space of heuristics is used as a data science approach to improve the performance of a hyper-heuristic in the prescribed manner. The empirical results across six different problem domains from a benchmark indeed indicate the success of the proposed approach

    An iterated multi-stage selection hyper-heuristic

    Get PDF
    There is a growing interest towards the design of reusable general purpose search methods that are applicable to different problems instead of tailored solutions to a single particular problem. Hyper-heuristics have emerged as such high level methods that explore the space formed by a set of heuristics (move operators) or heuristic components for solving computationally hard problems. A selection hyper-heuristic mixes and controls a predefined set of low level heuristics with the goal of improving an initially generated solution by choosing and applying an appropriate heuristic to a solution in hand and deciding whether to accept or reject the new solution at each step under an iterative framework. Designing an adaptive control mechanism for the heuristic selection and combining it with a suitable acceptance method is a major challenge, because both components can influence the overall performance of a selection hyper-heuristic. In this study, we describe a novel iterated multi-stage hyper-heuristic approach which cycles through two interacting hyper-heuristics and operates based on the principle that not all low level heuristics for a problem domain would be useful at any point of the search process. The empirical results on a hyper-heuristic benchmark indicate the success of the proposed selection hyper-heuristic across six problem domains beating the state-of-the-art approach

    Offline Learning for Sequence-based Selection Hyper-heuristics

    Get PDF
    This thesis is concerned with finding solutions to discrete NP-hard problems. Such problems occur in a wide range of real-world applications, such as bin packing, industrial flow shop problems, determining Boolean satisfiability, the traveling salesman and vehicle routing problems, course timetabling, personnel scheduling, and the optimisation of water distribution networks. They are typically represented as optimisation problems where the goal is to find a ``best'' solution from a given space of feasible solutions. As no known polynomial-time algorithmic solution exists for NP-hard problems, they are usually solved by applying heuristic methods. Selection hyper-heuristics are algorithms that organise and combine a number of individual low level heuristics into a higher level framework with the objective of improving optimisation performance. Many selection hyper-heuristics employ learning algorithms in order to enhance optimisation performance by improving the selection of single heuristics, and this learning may be classified as either online or offline. This thesis presents a novel statistical framework for the offline learning of subsequences of low level heuristics in order to improve the optimisation performance of sequenced-based selection hyper-heuristics. A selection hyper-heuristic is used to optimise the HyFlex set of discrete benchmark problems. The resulting sequences of low level heuristic selections and objective function values are used to generate an offline learning database of heuristic selections. The sequences in the database are broken down into subsequences and the mathematical concept of a logarithmic return is used to discriminate between ``effective'' subsequences, that tend to lead to improvements in optimisation performance, and ``disruptive'' subsequences that tend to lead to worsening performance. Effective subsequences are used to improve hyper-heuristics performance directly, by embedding them in a simple hyper-heuristic design, and indirectly as the inputs to an appropriate hyper-heuristic learning algorithm. Furthermore, by comparing effective subsequences across different problem domains it is possible to investigate the potential for cross-domain learning. The results presented here demonstrates that the use of well chosen subsequences of heuristics can lead to small, but statistically significant, improvements in optimisation performance

    A methodology for determining an effective subset of heuristics in selection hyper-heuristics

    Get PDF
    We address the important step of determining an effective subset of heuristics in selection hyper-heuristics. Little attention has been devoted to this in the literature, and the decision is left at the discretion of the investigator. The performance of a hyper-heuristic depends on the quality and size of the heuristic pool. Using more than one heuristic is generally advantageous, however, an unnecessary large pool can decrease the performance of adaptive approaches. Our goal is to bring methodological rigour to this step. The proposed methodology uses non-parametric statistics and fitness landscape measurements from an available set of heuristics and benchmark instances, in order to produce a compact subset of effective heuristics for the underlying problem. We also propose a new iterated local search hyper-heuristic usingmulti-armed banditscoupled with a change detection mechanism. The methodology is tested on two real-world optimisation problems: course timetabling and vehicle routing. The proposed hyper-heuristic with a compact heuristic pool, outperforms state-of-the-art hyper-heuristics and competes with problem-specific methods in course timetabling, even producing new best-known solutions in 5 out of the 24 studied instances
    corecore