
Asta, Shahriar and Özcan, Ender and Curtois, Tim
(2016) A tensor based hyper-heuristic for nurse
rostering. Knowledge-Based Systems, 98 . pp. 185-199.
ISSN 1872-7409

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/32190/1/tbhhnr.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No
Derivatives licence and may be reused according to the conditions of the licence. For more
details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33576022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

A Tensor Based Hyper-heuristic for Nurse Rostering

Shahriar Asta, Ender Özcan, Tim Curtois

ASAP, School of Computer Science, University of Nottingham, NG8 1BB, Nottingham,

UK.

Abstract

Nurse rostering is a well-known highly constrained scheduling problem requir-
ing assignment of shifts to nurses satisfying a variety of constraints. Exact
algorithms may fail to produce high quality solutions, hence (meta)heuristics
are commonly preferred as solution methods which are often designed and
tuned for specific (group of) problem instances. Hyper-heuristics have emerged
as general search methodologies that mix and manage a predefined set of
low level heuristics while solving computationally hard problems. In this
study, we describe an online learning hyper-heuristic employing a data sci-
ence technique which is capable of self-improvement via tensor analysis for
nurse rostering. The proposed approach is evaluated on a well-known nurse
rostering benchmark consisting of a diverse collection of instances obtained
from different hospitals across the world. The empirical results indicate the
success of the tensor-based hyper-heuristic, improving upon the best-known
solutions for four of the instances.

Keywords: Nurse Rostering, Personnel Scheduling, Data Science, Tensor
Factorization, Hyper-heuristics.

1. Introduction

Hyper-heuristics are high level improvement search methodologies ex-
ploring space of heuristics (Burke et al., 2013). According to (Burke et al.,
2010c), hyper-heuristics can be categorized in many ways. A hyper-heuristic
either selects from a set of available low level heuristics or generates new
heuristics from components of existing low level heuristics to solve a problem,

Email addresses: sba@cs.nott.ac.uk (Shahriar Asta), exo@cs.nott.ac.uk (Ender
Özcan), tec@cs.nott.ac.uk (Tim Curtois)

Preprint submitted to Knowledge-Based Systems September 9, 2015

leading to a distinction between selection and generation hyper-heuristics, re-
spectively. Also, depending on the availability of feedback from the search
process, hyper-heuristics can be categorized as learning and no-learning.
Learning hyper-heuristics can further be categorized into online and offline
methodologies depending on the nature of the feedback. Online hyper-
heuristics learn while solving a problem whereas offline hyper-heuristics pro-
cess collected data gathered from training instances prior to solving the prob-
lem.

Nurse rostering is a highly constrained scheduling problem which was
proven to be NP-hard (Karp, 1972) in its simplified form. Solving a nurse
rostering problem requires assignment of shifts to a set of nurses so that 1)
the minimum staff requirements are fulfilled and 2) the nurses’ contracts are
respected (Burke et al., 2004). The general problem can be represented as
a constraint optimisation problem using 5-tuples consisting of set of nurses,
days (periods) including the relevant information from the previous and up-
coming schedule, shift types, skill types and constraints.

In this study, a novel selection hyper-heuristic approach is employed to
tackle the nurse rostering problem. The proposed framework (which is an
extension to the framework in (Asta and Özcan, 2015)) is a single point
based search algorithm which fits best in the online learning selection hyper-
heuristic category, even if it is slightly different to the other online learning
selection hyper-heuristics. A selection hyper-heuristic has two main com-
ponents: heuristic selection and move acceptance method. While the task
of the heuristic selection is to select low level heuristics based on a strat-
egy, the acceptance method decides whether or not the solution produced
by the selected heuristic shall be accepted. Over the years many heuris-
tic selection and move acceptance methods have been proposed. Exam-
ples of heuristics selection strategies are Simple Random (SR) and Random
Gradient (RG)(Cowling et al., 2001), Choice Function (CF) (Cowling et al.,
2001), Reinforcement Learning (RL) (Nareyek, 2004) and Tabu Search (TS)
(Burke et al., 2003). Examples of early (primitive) acceptance mechanisms
are Improvement Only (IO) (Cowling et al., 2001), Improving and Equal (IE)
(Bilgin et al., 2007), and Naive Acceptance (NA) (Burke et al., 2010a). The
IO acceptance criteria only accepts improving solutions (compared to the
current solution) and solutions equal or worsening to the quality of the cur-
rent solution are rejected. The IE acceptance criteria accepts improving as
well as equal solutions. This is while the NA acceptance method improving
solutions are always accepted and equal or worsening solutions are accepted

2

according to a fixed probability (usually 0.5). More sophisticated accep-
tance algorithms such as Simulated Annealing(SA), Late Acceptance (LA)
and Great Deluge (GD) can be found in the scientific literature (Burke et al.,
2013).

Our proposed approach consists of running the simple random heuristic
selection strategy in four stages. In the first two stages, the acceptance mech-
anism is NA, while in the second stage, we use IE as acceptance mechanism.
The trace of the hyper-heuristic in each stage is represented as a 3-rd order
tensor. After each stage commences, the respective tensor is factorized which
results in a score value associated to each heuristic. The space of heuristics
is partitioned into two distinct sets, each representing a different acceptance
mechanism (NA and IE respectively) and lower level heuristics associated
to it. Subsequently, a hyper-heuristic is created which uses different ac-
ceptance methods in an interleaving manner, switching between acceptance
methods periodically. In the third stage, the parameter values for heuristics
is extracted by running the hybrid hyper-heuristic and collecting tensorial
data similar to the first two stages. Subsequently, the hybrid hyper-heuristic
equipped with heuristic parameter values is run for a specific time. The above
mentioned procedure continues until the maximum allowed time is reached.

Compared to the method proposed in (Asta and Özcan, 2015), the frame-
work here has few modifications. First, the framework in (Asta and Özcan,
2015) has been extended to accommodate for an arbitrary number of accep-
tance criteria to be involved in the framework. That is, in contrast to the
work in (Asta and Özcan, 2015) where tensor data was collected for one ac-
ceptance criteria and the space of heuristics was partitioned into two disjoint
sets, in this study, data collection and tensor analysis is performed for each
hyper-heuristic separately. Moreover, low level heuristics are partitioned dy-
namically, rather than only once which was the case in (Asta and Özcan,
2015) where ten (nominal) minute runs were considered. Mining search data
periodically allows us to investigate whether the framework is capable of ex-
tracting new knowledge as the search makes progress. This could be useful
in a variety of applications (i.e. life-long learning as in (Silver et al., 2013),
(Hart and Sim, 2014) and (Sim and Hart, 2014) or apprenticeship learning
as in (Asta et al., 2013) and (Asta and Ozcan, 2014)). Finally, the frame-
work here is different than the one proposed in (Asta and Özcan, 2015) when
parameter control for each low level heuristic is considered. While no param-
eter control was done in (Asta and Özcan, 2015), in this study, parameters
of each heuristic is tuned using tensor analysis. The good results achieved in

3

this study shows that tensor analysis can also play a parameter control role.
The paper is organised as follows. Section 2 overviews the nurse rostering

problem covering the problem definition, benchmarks in the area and related
work. An introduction to tensor analysis is given in Section 3 where tensor
representation of data, its advantages along with techniques widely employed
to analyse tensorial data are explained. A detailed account of the proposed
approach is provided in Section 4. The settings used in our experiments and
the results of these experiments are laid out in Sections 5.1 and 5 respectively.
Finally, concluding remarks and plans towards future work are discussed in
Section 6.

2. Nurse Rostering

In this section, we define the nurse rostering problem dealt with. Addi-
tionally, an overview of related work is provided.

2.1. Problem Definition

The constraints in the nurse rostering problem can be grouped into two
categories: (i) those that link two or more nurses and (ii) those that only
apply to a single nurse. Constraints that fall into the first category include
the cover (sometimes called demand) constraints. These are the constraints
that ensure a minimum or maximum number of nurses are assigned to each
shift on each day. They are also specified per skill/qualification levels in
some instances. Another example of a constraint that would fall into this
category would be constraints that ensure certain employees do or do not
work together. Although these constraints do not appear in most benchmark
instances (including those used here), they do occasionally appear in practise
to model requirements such as training/supervision, carpooling, spreading
expertise etc. The second group of constraints model the requirements on
each nurse’s individual schedule. For example, the minimum and maximum
number of hours worked, permissible shifts, shift rotation, vacation requests,
permissible sequences of shifts, minimum rest time and so on.

In this study, our aim is to see whether any improvement is possible via
the use of machine learning, particularly tensor analysis. We preferred using
the benchmark provided at (Curtois, 2015) as discussed in the next section.
These benchmark instances are collected from a variety of workplaces across
the world and as such have different requirements and constraints, partic-
ularly the constraints on each nurse’s individual schedule. This is because

4

different organisations have different working regulations which have usually
been defined by a combination of national laws, organisational and union
requirements and worker preferences. To be able to model this variety, in
(Burke and Curtois, 2014) a regular expression constraint was used. Using
this domain specific regular expression constraint allowed all the nurse spe-
cific constraints found in these benchmarks instances to be modelled. The
model is given below.
Sets
E = Employees to be scheduled, e ∈ E
T = Shift types to be assigned, t ∈ T
D = Days in the planning horizon, d ∈ {1, · · · |D|}
Re = Regular expressions for employee e, r ∈ Re

We = Workload limits for employee e, w ∈ We

Parameters

rmax
er = Maximum number of matches of regular expression r in the work
schedule of employee e.
rmin
er = Minimum number of matches of regular expression r in the work
schedule of employee e.
aer = Weight associated with regular expression r for employee e.
vmax
ew = Maximum number of hours to be assigned to employee e within the
time period defined by workload limit w.
vmin
ew = Minimum number of hours to be assigned to employee e within the
time period defined by workload limit w.
bew = Weight associated with workload limit w for employee e.
smax
td = Maximum number of shifts of type t required on day d.
smin
td = Minimum number of shifts of type t required on day d.
ctd = Weight associated with the cover requirements of shift type t on day d.

Variables
xetd = 1 if employee e is assigned shift type t on day d, 0 otherwise.
ner = The number of matches of regular expression r in the work schedule
of employee e.
pew = The number of hours assigned to employee e within the time period
defined by workload limit w.
qtd = The number of shifts of type t assigned on day d.

5

Constraints
Employees can be assigned only one shift per day.

∑

t∈T

xetd ≤ 1, ∀e ∈ E, d ∈ D (1)

Objective Function

Minf(s) =
∑

e∈E

4
∑

i=1

fe,i(x) +
∑

t∈T

∑

d∈D

6
∑

i=5

ft,d,i(x) (2a)

where

fe,1(x) =
∑

e∈Re

max{0, (ner − rmax
er)aer} (2b)

fe,2(x) =
∑

e∈Re

max{0, (rmin
er − ner)aer} (2c)

fe,3(x) =
∑

w∈We

max{0, (pew − vmax
ew)bew} (2d)

fe,4(x) =
∑

w∈We

max{0, (vmin
ew − pew)bew} (2e)

fe,5(x) = max{0, (smin
td − qtd)ctd} (2f)

fe,6(x) = max{0, (qtd − smax
td)ctd} (2g)

To facilitate comparing results and to remove the difficulties in comparing
infeasible solutions, the benchmark instances were designed with only one
hard constraint 1 which is always possible to satisfy. Every other constraint
is modelled as a soft constraint, meaning that it becomes part of the objec-
tive function. If in practice, in one of the instances, a soft constraint should
really be regarded as a hard constraint then it was given a very high weight
(the Big M method). The objective function is thus given in equation 2a.
It consists of minimising the sum of equations 2b to 2g. Equations 2b and
2c ensure that as many of the regular expression constraints are satisfied as
possible. These constraints model requirements on an individual nurse’s shift
pattern. For example, constraints on the length of a sequence of consecutive

6

working days, or constraints on the number of weekends worked, or the num-
ber of night shifts and so on. Equations 2d and 2e ensure that each nurse’s
workload constraints are satisfied. For example, depending on the instance,
there may be a minimum and maximum number of hours worked per week,
or per four weeks, or per month or however the staff for that organisation
are contracted. Finally, equations 2f and 2g represent the demand (some-
time called cover) constraints to ensure there are the required number of staff
present during each shift. Again, depending upon the instance, there may
be multiple demand curves for each shift to represent, for example, the min-
imum and maximum requirements as well as a preferred staffing level. The
weights for the constraints are all instance specific because they represent
the scheduling goals for different institutions.

2.2. Related Work

There are various benchmarks for nurse rostering. Curtois (2015) pro-
vides a comprehensive public benchmark including the latest best known
results together with the approaches yielding them. The characteristics of
the benchmark instances used in the experiments are summarized in Table 1.

There is a growing interest in challenges and the instances used during
those challenges and resultant algorithms serve as a benchmark afterwards.
The last nurse rostering competition was organised in 2010 (Haspeslagh et al.,
2014) which consisted of three tracks where each track differed from oth-
ers in maximum running time and size of instances. Many different algo-
rithms have been proposed since then ((Valouxis et al., 2012), (Lü and Hao,
2012), (Pillay and Rae, 2012), (Anwar et al., 2014), (Rae and Pillay, 2014),
and more). Since it has been observed that the previous challenge did not
impose much difficulty for the competitors (Burke and Curtois, 2014), other
than developing a solution method in limited amount of time, a second chal-
lenge has been organised which is ongoing 1. In the second nurse rostering
competition, the nurse rostering problem is reformulated as a multi-stage
problem with fewer constraints where a solver is expected to deal with con-
secutive series of time periods (weeks) and consider longer planning horizon.
The remaining part of this section covers the state-of-the-art solution meth-
ods applied to the benchmark instances from (Curtois, 2015) which are used
during the experiments.

1The Second International Nurse Rostering Competition: mobiz.vives.be/inrc2/

7

Instance N
o
.
o
f
S
ta
ff

S
h
if
t
T
y
p
e
s

N
o
.
o
f
S
h
if
ts

B
e
st

K
n
o
w
n

Method (Ref.)
BCV-A.12.1 12 5 31 1294 (Xue et al., 2010)
BCV-3.46.1 46 3 26 3280 ′′

BCV-A.12.2 12 5 31 1875 hyper-heuristic (Chan et al., 2012)
CHILD-A2 41 5 42 1095 ′′

ERRVH-A 51 8 48 2135 ′′

ERRVH-B 51 8 48 3105 ′′

ERMGH-B 41 4 48 1355 ′′

MER-A 54 12 48 8814 ′′

Valouxis-1 16 3 28 20 variable neighborhood (Solos et al., 2013)
Ikegami-3Shift-DATA1.1 25 3 30 3 *
Ikegami-3Shift-DATA1.2 25 3 30 3 *
Ikegami-3Shift-DATA1 2 3 30 2 *
ORTEC01 16 4 31 270 branch&price (Burke and Curtois, 2014)
ORTEC02 16 4 31 270 ′′

Table 1: Characteristics of the nurse rostering benchmark instances (Curtois, 2015). The
method and source from which the best known solution’s objective value is obtained for
each instance is listed in the last column. The entries indicated by * are taken from a
private communication to Nobuo Inui, Kenta Maeda and Atsuko Ikegami.

8

In (Métivier et al., 2009), the nurse rostering problem was identified as
an over-constrained one and it is modelled using soft global constraints. A
variant of Variable Neighbourhood Search (VNS), namely VNS/LDS+CP
(Loudni and Boizumault, 2008), was used as a meta-heuristic to solve the
problem instances. The proposed approach was tested on nine different in-
stances from (Curtois, 2015). The experimental results show that the method
is relatively successful, though the authors have suggested to use specific new
heuristic for instances such as Ikegami to improve the performance of the
algorithm.

(Xue et al., 2010) ????? This approach is the best on the BCV-A.12.1
and BCV-3.46.1 instances.

Glass and Knight (2010) proposed a method based on mixed integer lin-
ear programming, solving four of the instances from (Curtois, 2015), namely,
ORTEC01, ORTEC02, GPost and GPost-B. The method is able to solve those
instances to optimality very quickly. The idea of implied penalties was in-
troduced in the study. Employing implied penalties avoids accepting small
improvements in the current rostering period at the expense of penalizing
larger penalties on the next rostering period.

In (Burke et al., 2010d), a hybrid multi-objective model was presented to
solve nurse rostering problems. The method is based on Integer Program-
ming (IP) and Variable Neighbourhood Search (VNS). The IP method is
used in the first phase of the algorithm to produce intermediary solutions
considering all the hard constraints and a subset of soft constraints. The so-
lution is further improved using the VNS method. The proposed approach is
then applied to the ORTEC problem instances and compared to a commercial
hybrid Genetic Algorithm (GA) and a hybrid VNS (Burke et al., 2008). The
computational results show that the proposed approach outperforms both
methods in terms of solution quality.

Chan et al. (2012) introduced a hyper-heuristic method inspired from
pearl hunting and applied it to various nurse rostering instances. The pro-
posed method is based on repeated intensification and diversification and can
be described as a type of Iterated Local Search (ILS). Their experiments con-
sisted of running the algorithm on various instances for several times, where
each run is 24 CPU hours long. The algorithm discovered 6 new best-known
results as illustrated in Table 1.

In (Solos et al., 2013), a generic two-phase variable neighbourhood ap-
proach was proposed for nurse rostering. After determining the value of the
parameters which govern the performance of the algorithm, a random popu-

9

lation of candidate solutions is generated. In the first phase of the algorithm,
assigning nurses to working days is handled. Subsequent to this phase, in
the second phase, assigning nurses to shift types is dealt with. Though, the
proposed approach has been applied to few publicly available instances, the
chosen instances are significantly different from one another. This is still
the best approach producing the best known result for Valouxis-1 in the
benchmark.

In (Burke and Curtois, 2014) a branch and price algorithm and an ejec-
tion chain method was employed for solving the nurse rostering problem
instances which were collected from thirteen different countries by the au-
thors and made publically available from (Curtois, 2015). Branch and price
method is based on the branch and bound technique with the difference
that each node of the tree is a linear programming relaxation and is solved
through column generation. The column generation method consists of two
parts: the restricted master problem and the pricing problem. The former is
solved using a linear programming method while the latter is using a dynamic
programming approach. Some of the latest results and best-known solutions
regarding the instances is provided by this study. Also, a general problem
modelling scheme has been proposed in (Burke and Curtois, 2014) which is
also adopted here due to its generality over many problem instances. This
approach is the best on the ORTEC01 and ORTAC02 instances.

Numerous other approaches have been proposed to solve the nurse ros-
tering problem. In (Azaiez and Al Sharif, 2005) the nurse rostering problem
was modelled using 0-1 Goal Programming Model. A shift sequence based
approach was introduced in (Brucker et al., 2010). In (Burke et al., 2010b)
a Scatter Search (SS) was presented to tackle the nurse rostering problem.

3. Tensor Analysis

Tensorial representation and tensor analytic approaches are widely used
to investigate high dimensional data and extract latent patterns and correla-
tions between various modes of data. The classical approach in data mining is
to collect the data into datasets of matrix form without regard for the natural
dimensionality of the data. Collapsing data in this fashion brings about the
advantage of simplifying the problem of data mining which is much needed
for many machine learning and statistical approaches which shape the core
of data mining frameworks. However, collapsing data dimensions results in
loss of information including latent relationships between various modes of

10

data. Several recent studies dealt with this problem and proposed a solid
remedy based on tensor analytic approaches ((Vasilescu and Terzopoulos,
2002),(Anandkumar et al., 2012) and (Acar et al., 2009)). These studies all
show that tensorial representation and analytical approaches which come
with it are capable of detecting patterns which where invisible to classical
data mining approaches which have no regard for the natural dimensionality
of the data.

Since their introduction, tensorial approaches have been employed and
greatly contributed to a variety of research areas such as computer vision
(Vasilescu and Terzopoulos, 2002), video processing (Krausz and Bauckhage,
2010), data compression (Wang et al., 2009), Signal Processing (Cichocki et al.,
2014) and web mining (Acar et al., 2009), (Zou et al., 2015). Various prob-
lems produce data of high order of dimensionality in nature and tensors, as
multidimensional arrays, are fully suited to represent such data. For instance,
video streams constitute a data which is three dimensional (pixel coordinates
and time) or higher (when information such as audio, text, change of envi-
ronment and etc are also considered). Such data can surely be presented as a
three dimensional array which is commonly referred to as a nth-order tensor.
The order of a tensor indicates its dimensionality where each dimension of a
tensor is referred to as a mode. For example, a tensor representing a video
is a 3rd-order tensor.

The first step to extract latent patterns hidden within tensor data is
to subject the tensor to factorization, say, decomposing the tensor into its
basic factors. Several factorizations methods exist. Higher Order Singular
Value Decomposition (HOSVD), Tucker decomposition, Parallel Factor de-
composition and Non-negative Tensor Factorization (NTF) are among the
most widely known factorization methods. HOSVD (Lathauwer et al., 2000)
is a generalization of the Singular Value Decomposition (SVD) used in the
Principal Component Analysis (PCA) method to higher dimensions. Tucker
decomposition (Tucker, 1966c) decomposes a tensor into a set of matrices
and a core tensor. Parallel Factor (a.k.a PARAFAC or CANDECOMP
or CP) (Harshman, 1976) and Non-negative Tensor Factorization (NTF)
(Shashua and Hazan, 2005) decompose a tensor into a sum of rank one
tensors. Further information on tensors and applications and comparison
between various factorization methods can be found in (Kolda and Bader,
2009).

Following (Kolda and Bader, 2009), the notations which are used in this
paper are as the following. Tensors, matrices and vectors are denoted by

11

boldface Euler script letters, boldface capital letters and boldface lower-case
letters respectively (e.g., T is a tensor,M denotes a matrix and v is a vector).
Scalar values such as tensor, matrix and vector entries are indexed by lower-
case letters. For example, tpqr is the (p, q, r) entry of a 3rd−order tensor
T .

3.1. CP Factorization

In this paper, following (Asta and Özcan, 2015), CP decomposition method
is used for factorization. While Tucker decomposition is a generalization of
the CP method, there are few advantages based on which the latter method
is favoured over the former approach. Unlike the Tucker decomposition,
the factors produced by the CP decomposition method are unique (under
mild conditions)(Kolda and Bader, 2009). The tensor-based hyper-heuristic
in this paper uses the scores achieved after factorization to rank heuristics.
One should expect a reasonably high level of consistency between the heuris-
tic rankings produced in various runs of the algorithm. Thus, uniqueness of
the basic factors is a most crucial condition. Moreover, compared to Tucker
decomposition, CP factorization produces easy to interpret basic factors.
This is particularly desirable in the context of heuristics. Some applications
(such as video, speech and text) produce easy-to-understand contents be-
cause there is a certain semantic concept naturally associated with the data.
This is not the case in the data produced by hyper-heuristics. Therefore, it
is very desirable to choose a decomposition method which offers some level
of simplicity in the process of interpreting the basic factors.

CP decomposition uses the Alternating Least Square (ALS) algorithm
((Carroll and Chang, 1970))S to decompose a tensor into its basic factors.
That is, the original tensor T of size P ×Q×R is approximated by another
tensor T̂ . The purpose of the ALS algorithm is to minimize the error differ-
ence between the original tensor and the estimated tensor, denoted as ε as
follows:

ε =
1

2
||T − T̂ ||

2

F (3)

where the subscript F refers to the Frobenious norm. That is:

||T − T̂ ||
2

F =

P
∑

p=1

Q
∑

q=1

R
∑

r=1

(

tpqr − t̂pqr
)2

(4)

12

The approximated tensor contains the factors of the original tensor and
can be expressed as a sum of rank one2 tensors as in Equation 5 (this is also
illustrated in Figure 1).

Figure 1: Factorizing a tensor to K components.

T̂ =

K
∑

k=1

λk ak ◦ bk ◦ ck (5)

In Eq.5, λk ∈ R+, ak ∈ R
P , bk ∈ R

Q and ck ∈ R
R for k = 1 · · ·K,

where K is the number of desired components. Each component k is of the
form (λk ak ◦ bk ◦ ck) where λk is the weight of the component and the
individual vectors (e.g. ak, bk and ck) are called factors. The number of
components is set depending on the application. In this paper, we set the
number of components to be K = 1. Therefore, the Equation 5 is reduced
to the following equation.

T̂ = a ◦ b ◦ c (6)

The operator “◦” indicates an outer product. The outer product of three
vectors produces a 3rd-order tensor. For instance, in Equation 6, T̂ is a 3rd-
order tensor which is obtained by the outer product of three vectors a, b and
c. Subsequently, each tensor entry, denoted as t̂pqr is computed through a
simple multiplication like apbqcr.

Rather than using all the factors in the outer product which results in the
approximated tensor T̂ , using only two of the factors in the outer product
results in a structure which we refer to as the basic frame (Equation 7). It

2a tensor is of rank one when it can be written as the outer product of N vectors. Many
articles use the term rank to refer to tensor order. However, it should be noted that the
meaning of the two words are entirely different.

13

was shown in several studies (e.g. (Krausz and Bauckhage, 2010)) that the
basic frame exhibits very interesting phenomena.

B = a ◦ b (7)

For instance the basic frame B, which is actually a matrix, captures the
hidden relationship between the first two modes of data. In other words, the
matrix B contains score values which quantifies the relationship between the
object pairs. For instance, in case of a video tensor and given that a and b
represent x and y values of pixel coordinates, the basic frame B quantifies
the “level of interaction” between various pixel regions within a video.

Tensor factorization represents the original tensor in a concise form as
can be seen from Equation 5. When it comes to mining the approximated
data, the estimated tensor T̂ is also more generalizable and also increases
the resistance to disruptions caused by data anomalies such as missing val-
ues. Factorizing the tensor allow partitioning of the data into a set of more
comprehensible sub-data which can be of specific use depending on the appli-
cation according to various criteria. For example, in the field of computer vi-
sion, (Kim and Cipolla, 2009) and (Krausz and Bauckhage, 2010) separately
show that factorization of a 3rd-order tensor of a video sequence results in
some interesting basic factors. These basic factors reveal the location and
functionality of human body parts which move synchronously.

4. Proposed Approach

The proposed approach consists of the consecutive iteration of four stages
as depicted in Algorithm 1 and Figure 2. In all stages, simple hyper-heuristic
algorithms operating on top of a fixed set of low level heuristics (move
operators) are used. Those low level heuristics are exactly the same low
level heuristics implemented for the personnel scheduling problem domain
(Curtois et al., 2009) under the Hyper-heuristic Flexible Framework (HyFlex)
v1.0 (Ochoa et al., 2012). The low level heuristics in HyFlex are categorized
into four groups: mutation (MU), ruin and re-create (RR), crossover (XO)
and local search (LS). Consequently, one mutation operator is available for
the nurse rostering problem domain which is denoted here by MU0. This
operator randomly un-assigns a number of shifts while keeping the resulting
solution feasible. Three ruin and re-create heuristics are available which are
denoted by RR0, RR1 and RR2. These operators are based on the heuris-
tics proposed in (Burke et al., 2008) and they operate by un-assigning all

14

the shifts in one or more randomly chosen employees’ schedule followed by a
rebuilding procedure. These operators differ in the size of the perturbation
they cause in the solution. Five local search heuristics, denoted by LS0,
LS1, LS2, LS3 and LS4 are also used where the first three heuristics are hill
climbers and the remaining two are based on variable depth search. Also,
three different crossover heuristics are used which are denoted by XO0, XO1
and XO2. The crossover operators are binary operators and applied to the
current solution in hand and the best solution found so far (which is initially
the first generated solution). More information on these heuristics can be
found in (Curtois et al., 2009).

During the first two stages (line 2 and 3), two different tensors are con-
structed. The tensor TNA is constructed by means of an SR-NA algorithm
and tensor TIE is constructed from the data collected from running an SR-IE
algorithm. Both stages use all the heuristics available to the problem domain
which is denoted by h. At the end of the second stage (line 4 and 5), each
tensor is subjected to factorization to obtain basic frames (BNA and BIE)
and score values (SNA and SIE) corresponding to each tensor. Using all the
information we have on both tensors, the heuristic space is partitioned (line 6)
to two distinct sets: hNA and hIE. Subsequently, in the third stage, a hybrid
algorithm is executed for a limited time (tp) with random heuristic parame-
ter values (depth of search and intensity of mutation). The hybrid algorithm
consists of periodically switching between the two acceptance mechanisms
NA and IE. Depending on the chosen acceptance method, the heuristics are
chosen either from hNA or hIE. In fact the hybrid algorithm is very similar
to the algorithm in the final stage except that during the search process in
this stage, the heuristic parameters are chosen randomly and a tensor using
the heuristic parameter settings is constructed. Factorizing this tensor and
obtaining the basic frame (similar to what is done in previous steps) results in
good parameter value settings for heuristics. Hence this stage can be consid-
ered as a parameter control phase for the heuristics. The final (fourth) stage
consists of running the previous stage for a longer time (3× tp) and assigning
values achieved in the previous stage to heuristic parameters. After the time
specified for the fourth stage is consumed, the algorithm starts over from
stage one. This whole process continues until the maximum time allowed
(Tmax) for a given instance is reached. Figure 2 illustrates this process.

15

Figure 2: Overall approach with various stages.

Algorithm 1: Tensor-based hyper-heuristic

1 while t < Tmax do
2 (TNA) = ConstructTensor(h, NA, tp);
3 (TIE) = ConstructTensor(h, IE, tp);
4 (BNA,SNA) = Factorization(TNA,h);
5 (BIE,SIE) = Factorization(TIE,h);
6 (hNA,hIE) = Partitioning(BNA,BIE,SNA,SIE);
7 (P) = ParameterControl();
8 Improvement(hNA,hIE,P,SNA,SIE);

9 end

16

4.1. Tensor Analysis for Dynamic Low Level Heuristic Partitioning
During first and second stages, given an acceptance criteria (such as NA or

IE), a hyper-heuristic with a simple random heuristic selection and the given
acceptance methodology is executed. During the run, data, in the form of a
tensor is collected. Hence the collected tensor data (TNA or TIE depending
on the acceptance criteria) is a 3rd-order tensor of size R|h|×R

|h|×R
t, where

|h| is the number of low level heuristics and t represents the number of tensor
frames collected in a given amount of time. Each tensor is a collection of two
dimensional matrices (M) which are referred to as tensor frames. A tensor
frame is a two dimensional matrix of heuristic indices. Column indices in a
tensor frame represent the index of the current heuristic whereas row indices
represent the index of the heuristic chosen and applied before the current
heuristic. Algorithm 2 shows the tensor construction procedure.

The core of the algorithm is the SR selection hyper-heuristic (starting
at the while loop in line 4) combined with the acceptance criteria which
is given as input. Repeatedly, a new heuristic is selected at random (line
12) and is applied to the problem instance (line 14). The returned objective
function value (fnew) is compared against the the old objective function value
and the immediate change in objective function value is calculated as δf =
fold − fnew. The method Accept (line 16) takes the δf value as input and
returns a decision as to whether accept the new solution or reject it. In case
the new solution is accepted , assuming that the indices of the current and
previous heuristics are hcurrent and hprevious respectively, the tensor frame M
is updated symmetrically: mhprevious,hcurrent

= 1 andmhcurrent,hprevious
= 1. The

use of symmetry in the design of tensor frames ensures that the order in which
heuristics are applied (which is random) does not influence the outcome of the
factorization. The tensor frame M is only allowed to have ⌊|h|/2⌋ elements
with a value of 1 (line 5). Whenever this threshold is reached the tensor
frame is added to the tensor and a new frame is initialized (lines 6 to 9).
A high value for this threshold increases the likelihood of calling a heuristic
more than once when filling a given frame. While the heuristic may be paired
with different heuristics each time it is called, in such situations, the fact that
the heuristics itself has been called multiple times will be lost to the tensor
and it would look as if the heuristic has been called only once. Hence, such
cases where loss of information is inevitable should be less likely. In other
words, we are in favour of a sparse tensor. On the other hand, we also would
like to ensure that adequate number of heuristics have been registered with
each frame to make sure that each frame represents a considerable subset of

17

heuristics. That is, we are not in favour of frames with only one active entry
(which is the minimum number of entries a frame can have). The value of
⌊|h|/2⌋ is determined experimentally to ensure that we have a sparse enough
tensor which represents a wide enough range of available heuristics.

Assuming that the objective function value before updating the frame for
the first time is fstart and assuming that the objective function value after
the last update in the tensor frame is fend, then the frame is labelled as
∆f = fstart − fend (line 7). In other word, the label of a frame (∆f) is the
overall change in the objective function value caused during the construction
of the frame. ∆f is different from δf in the sense that the former measures
the change in objective value inflicted by the collective application of active
heuristic indexes inside a frame. The latter is the immediate change in ob-
jective value caused by applying a single heuristic. This whole process is
repeated until a time limit (tp) is reached (line 4). This procedure, creates
a tensor of binary data for a given acceptance method. In order to prepare
the tensor for factorization and increase the chances of gaining good patterns
from the data, the frames of the constructed tensor are scanned for consec-
utive frames of positive labels(∆f > 0). Only these frames are kept in the
tensor and all other frames are removed. This adds an extra emphasis on
intra-frame correlations which is important in discovering good patterns. The
resulting tensor for each acceptance criteria is then fed to the factorization
procedure.

In the factorization stage, a tensor T is fed to the factorization procedure
(Algorithm 3). This could be TNA or TIE depending on who calls the fac-
torization procedure. Using the CP factorization, basic factors of the input
tensor T are obtained (line 2). Using these basic factors the basic frame B
is computed (line 3). To obtain the basic frame, Equation 6 is used where
K = 1 and basic factors a and b represent previous and current heuristic
indexes respectively (Figure 3). The values in the basic frame quantify the
relationship between the elements along each dimension (basic factor). To
make use of the basic frame, the maximum entry is pinpointed and the col-
umn corresponding to this entry is sorted. This results in a vector S which
contains the score values achieved for heuristics.

The factorization stage is applied to both TNA and TIE tensors. That is,
the procedures tensor construction (Algorithm 2) and factorization (Algo-
rithm 3) are executed twice independently. Starting from an initial solution,
first we execute the two procedure assuming NA as acceptance criteria. Con-
sequently, we obtain a basic frame BNA and a set of score values SNA. Fol-

18

Algorithm 2: The tensor construction phase

1 In: h, acceptance criteria, P, tp;
2 Initialize tensor frame M to 0;
3 counter = 0;
4 while t < tp do
5 if counter = ⌊|h|/2⌋ then
6 append M to T ;
7 set frame label to ∆f ;
8 Initialize tensor frame M to 0;
9 counter = 0;

10 end
11 hprevious = hcurrent;
12 hcurrent = selectHeuristic(h);
13 fcurrent = fnew;
14 fnew =applyHeuristic(hcurrent);
15 δf = fcurrent − fnew;
16 if Accept(δf , acceptance criteria) then
17 mhprevious,hcurrent

= 1;
18 mhcurrent,hprevious

= 1;
19 counter ++;

20 end

21 end
22 Construct final tensor T from collected data;

19

Figure 3: Extracting the basic frame for K = 1 in Eq.5.

lowing this, the two procedure (Algorithms 2 and 3) are executed assuming
IE as acceptance criteria. This results in a basic frame BIE and score values
SIE. Consequently, for a given heuristic, there are two vectors of score values,
one obtained from factorizing TNA and the other obtained from factorizing
TIE. These score vectors are sorted in line 5 and fed into the partitioning
procedure (Algorithm 4). Sorting of scores is necessary during the ranking
of heuristics and partitioning the heuristic space in Algorithm 4.

Algorithm 3: Factorization

1 In: T ,h;
2 a,b, c = CP(T , K = 1);
3 B = a ◦ b;
4 x, y = max(B);
5 S = sort(Bi=1:|h|,y) //Scores;

Algorithm 4 is used to partition the space of heuristics. In lines 2 and 3
of the algorithm, the two score values for a given heuristic are compared to
one another. The heuristic is assigned to the set hNA if its score is higher (or
equal) in the basic frame achieved from TNA (that is, if SNA(h) ≥ SIE(h)).
Otherwise it is assigned to hIE . Note that, equal scores (say, SNA(h) =
SIE(h)) rarely happens. At the end of this procedure, two distinct sets of
heuristics, hNA and hIE , are achieved where each group is associated to NA
and IE acceptance methods respectively..

4.2. Parameter Control via Tensor Analysis

The next two stages of the framework (Algorithm 5 and 6 respectively)
are very similar. The only detail which distinguishes the two is that, the first
stage (Algorithm 5) is run for a shorter time with randomly chosen heuristic
parameter values. These values are chosen from the range {0.1, 0.2, 0.3, 0.4,

20

Algorithm 4: Partitioning

1 In: BNA,BIE,SNA,SIE;
2 hNA = {h ∈ h | SNA(h) ≥ SIE(h)};
3 hIE = {h ∈ h | SIE(h) > SNA(h)};

0.5, 0.6, 0.7, 0.8} denoted by p ∈ P. The goal is to construct a tensor which
contains selected heuristic parameter values per heuristic index. Factorizing
this tensor would then help in associating each heuristic with a parameter
value. This is while the final stage of the algorithm (Algorithm 6) runs for
a longer time and uses these parameter values for each heuristic instead of
choosing them randomly. Despite their similarity, each stage is described in
detail here to provide the readers with a clearer picture of the logic

In Algorithm 5, the two sets of heuristics achieved in the previous stage
together with their respective score values per heuristic are employed to run
a hybrid acceptance hyper-heuristic. For the selected heuristic, a random
parameter value is chosen and set (lines 11-12), the heuristic is applied and
the relevant acceptance criteria is checked (lines 14-15). The heuristic se-
lection is based on tournament selection. Depending on the tour size, few
heuristics are chosen from the heuristic set corresponding to the acceptance
mechanism and a heuristic with highest score (probability) is chosen and ap-
plied. In case of acceptance, the relevant frame entry is updated (line 16).
Since this is a hybrid acceptance algorithm, each acceptance criteria has a
budget which is expressed as the number of heuristic calls allocated to the
acceptance method. If the acceptance criteria has used its budget, then a
new random acceptance criteria is selected (lines 18-20). Obviously, in cases
where there are only two acceptance methods available (like here) random
selection can be replaced by simply toggling between the two acceptance
methods. A random selection is however necessary for cases where there are
more than two acceptance strategies available. After continuing this process
for a time tp, the final tensor (TParam) is constructed from collected frames
and factorized (exactly in the same manner as in Algorithm 2), the basic
frame is computed and the parameter values are extracted as suggested in
line 25.

4.3. Improvement Stage

In the next phase of the algorithm, the two sets of heuristics achieved in
previous stages, together with their score and parameter values are employed

21

Algorithm 5: Parameter Control

1 In: h,hNA,hIE , tp;
2 Initialize tensor frame M to 0;
3 counter = 0;
4 while t < tp do
5 if counter = ⌊|h|/2⌋ then
6 append frame and initialize;
7 if acceptance criteria = NA then
8 h = SelectHeuristic(hNA);
9 else

10 h = SelectHeuristic(hIE);
11 pcurrent = rand({0.1, 0.2, · · · , 0.8});
12 setHeuristicParameter(pcurrent);
13 fcurrent = fnew;
14 fnew =applyHeuristic(hcurrent) , δf = fcurrent − fnew;
15 if Acceptance(δf , acceptance criteria) then
16 mh,p = 1 , counter ++;
17 end
18 if callCounter > c then
19 callCounter = 0;
20 acceptance criteria = selectRandomAcceptance();

21 end
22 Construct final tensor TParam from collected data;
23 a,b, c = CP(TParam, K = 1);
24 B = a ◦ b;
25 x, y = max(B);
26 P = sort(Bi=1:|h|,y);

22

to run a hybrid acceptance hyper-heuristic (Algorithm 6). Each acceptance
method is given a budget in terms of the maximum number of heuristic calls
it is allowed to perform (callCounter). Whenever, the acceptance method
uses its budget, the algorithm switches to a randomly chosen acceptance
method, resetting the budget (line 10-12). Depending on the acceptance
criteria in charge, a heuristic is selected (using the tournament selection
method discussed above) from the corresponding set (lines 2-5). For instance,
if NA is in charge a heuristic is selected from hNA. Later, depending on the
nature of the heuristic (mutation, hill climbing or none) the parameter value
of the heuristic is assigned (line 6) and the heuristic is applied (line 7). The
achieved objective function value is then controlled for acceptance (line 9).
This process continues until a time limit (3× tp) is reached.

Algorithm 6: Improvement

1 while t < (3× tp) do
2 if acceptance criteria = NA then
3 h = SelectHeuristic(hNA);
4 else
5 h = SelectHeuristic(hIE);
6 setHeuristicParameter(P(h));
7 fnew = ApplyHeuristic(h);
8 δf = fcurrent − fnew;
9 Acceptance(δf , acceptance criteria);

10 if callCounter > c then
11 callCounter = 0;
12 acceptance criteria = selectRandomAcceptance();

13 end

5. Experimental Results

23

5.1. Experimental Design

The algorithm proposed here is a multi-stage algorithm where in each
stage data samples are collected from the search process in form of tensors.
Various approaches can be considered for data collection. While each stage
can collect the data and ignore those collected in previous corresponding
stages the data collected from various (corresponding) stages can be ap-
pended to one another. The former data collection approach has the advan-
tage that collected data reflect the current search status independent from
previous search stages allowing the algorithm to focus on the current state.
However, ignoring previous data means discarding the knowledge that could
have been extracted from experience. In order to assess the two data collec-
tion approaches, we employ both data collection approaches. That is, two
methods are investigated here, both using the same algorithm (as in Algo-
rithm 1). The only difference between them is that one algorithm (TeBHH 1)
the data collection phase of the algorithm ignores previously collected data
and over-writes the dataset. In the second algorithm (TeBHH 2) the data
collected at each stage is appended to those collected in the same previous
stage. Please note that, this does not mean that the data collected in the
third stage is appended to those collected in the second stage. Each stage
maintains its own dataset and e.g. stage 2 appends its data to the dataset
designated for the same stage index.

Regardless of the data collection strategy they employ, both TeBHH 1
and TeBHH 2 have three configurable parameters, namely, the time allo-
cated for data collection phase (tp), the budget allocated to each acceptance
criterion (callCounter in Algorithm 6) and the tournament size (employed
in Algorithms 5 and 6). For each variant, a range of values are considered.
Values considered for the variable tp are {75, 125, 175} seconds. For the call
budget, values in {|h|, 2× |h|, 3 × |h|} are considered. Also, three different

tour sizes have been investigated: {2, |h|
2
, |h|}. Each experiment performed

with the proposed approach with each combination of those parameter values
as the initial setting are indexed successively using the ordering as provided,
starting from 1 denoting (75, |h|, 2) to 27 denoting (175,3× |h|, |h|).

24

5.2. Selecting The Best Performing Parameter Setting

In order to determine the best performing parameter setting, each vari-
ant of the algorithm with a parameter value combination was run 10 times
where each run terminates after two hours. Apart from detecting the best
performing parameter configuration, we would like to know how sensitive the
framework is with respect to the parameter settings. Seven instances were
chosen for these experiments which would hopefully cover and represent a
whole range of available instances. The chosen instances are: BCV-A.12.1,
BCV-A.12.2, CHILD-A2, ERRVH-A, ERRVH-B, Ikegami-3Shift-DATA1.2 and
MER-A.

Figure 4 shows the results from these experiments for the TeBHH 1 vari-
ant. Although most of the configurations seem to achieve similar perfor-
mances, there is no other parameter configuration which performs signifi-
cantly better than the configuration with index 9 (for which tp = 175 sec-
onds, acceptance budget of 3 × |h| and tournament size of 2) on any of the
cases, which is confirmed via a Wilcoxon signed rank test. Ranking all con-
figuration based on the average results across the instances shows that this
configuration performs slightly better than the others in the overall. There-
fore, these values are chosen for the TeBHH 1 variant. A similar analysis
shows that the parameter configuration with index 4 (for which tp = 75 sec-
onds, acceptance budget of 2×|h| and tournament size of 2) is more suitable
for the TeBHH 2 variant. It has been observed that tournament size of 2 is
constantly a winner over the other values for tour size. The apparent con-
clusion is that both algorithms are very much sensitive to the value chosen
for this parameter. Also, a shorter time for data collection in the TeBHH
2 variant makes sense, since it preserves the data collected in previous data
collection sessions. The same is not true for TeBHH 1 which overwrites the
old data in each stage. Thus, a longer data collection time in case of TeBHH
1 also makes sense. However, when the performance of variants with dif-
ferent data collection time values are compared, the emerging conclusion is
that both algorithms are not very sensitive to the chosen value. A similar
conclusion can be reached for the value of the acceptance budget.

5.3. Comparative Study

In the first round of experiments, an analysis is made as to compare the
performance of the two proposed algorithms, namely, TeBHH 1 and TeBHH
2. The second column in Table 2 shows the result of this comparison. The

25

1350

1400

1450

1500

1550

1600

1650

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(a) BCV-A.12.1

1900

1950

2000

2050

2100

2150

2200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(b) BCV-A.12.2

1090

1095

1100

1105

1110

1115

1120

1125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(c) CHILD-A2

2140

2160

2180

2200

2220

2240

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(d) ERRVH-A

3120

3140

3160

3180

3200

3220

3240

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(e) ERRVH-B

8

10

12

14

16

18

20

22

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(f) Ikegami-3Shift-DATA1.2

8900

9000

9100

9200

9300

9400

9500

9600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(g) MER-A

Figure 4: Parameter configuration experiments using TeBHH 1. Each value on the X axis
represent the index of the parameter setting of the approach as described at the end of
Section 5.1. The Y axis represents the objective function values.26

statistical test, based on Wilcoxon signed rank test, reveals that, the perfor-
mance disparity between the two algorithms can vary from one instance to
another. For instance, TeBHH 1 outperforms TeBHH 2 on 3 instances signif-
icantly. This is while on 2 other instances the situation is the opposite. Also,
on 9 instances there is no statistically significance difference between the per-
formance of the two algorithms. This makes sense since the only difference
between the two algorithms is the way the dataset is treated throughout
the time. While TeBHH 1 overwrites the data with newly collected dataset,
TeBHH 2 appends the new data to the old dataset. Thus, it is natural that
TeBHH 2 performs similarly to TeBHH 1 since much of their collected data
can be similar. Also, the heuristics on all nurse rostering instances are quite
slow and therefore there is a lack of data which is more the reason that the
two algorithms perform similarly.

Overall, combining the entries in Table 2 and the minimum objective
function value achieved by each algorithm (Table 3), it would be fair to
say that TeBHH 1 performs slightly better than TeBHH 2. It is to say
that it would be safer to refresh the dataset once in a while and handle
the current search landscape independent from the experience achieved from
other regions of the search landscape.

Subsequent to this conclusion another statistical experiment is conducted
to compare the performance of the TeBHH 1 to its building block compo-
nents, namely, SR-NA and SR-IE. The third and fourth columns in Table 2
shows that, given equal values as run time, TeBHH1 performs always better
than the SR-IE hyper-heuristic. On only one instance, TeBHH 1 performs
slightly (and not significantly) better. As for the comparison between TeBHH
1 and SR-NA, although TeBHH 1 still performs significantly better than SR-
NA on the majority of instances, on ORTEC instances it performs very poorly.

The results of applying the two proposed algorithms on various nurse
rostering instances is shown in Table 3. The two algorithms are also com-
pared to various well-known algorithms. While some of these algorithms (like
the one in (Chan et al., 2012)) are general-purpose search algorithms, some
others are specifically designed to solve the given instance.

On the first seven instances in Table 3, both TeBHH 1 and TeBHH 2
outperform compared algorithms in terms of minimum objective function
value. On the instance Valouxis-1, both algorithm can achieve the best
known result (20), although much later than the state-of-the-art (Solos et al.,
2013). Similarly, on Ikegami and ORTEC instances as well as BCV-3.46.1, the
state-of-the-art performs better. The algorithms which solve aforementioned

27

Instance T
e
B
H
H

1
v
s
T
e
B
H
H

2

T
e
B
H
H

1
v
s
S
R
N
A

T
e
B
H
H

1
v
s
S
R
IE

BCV-A.12.1 > > >
BCV-3.46.1 <= >= >
BCV-A.12.2 < >= >
CHILD-A2 > > >=
ERRVH-A > > >
ERRVH-B >= > >
ERMGH-B >= > >
MER-A >= > >
Valouxis-1 >= > >
Ikegami-3Shift-DATA1.2 >= > >
Ikegami-3Shift-DATA1.1 <= > >
Ikegami-3Shift-DATA1 <= > >
ORTEC01 < < >
ORTEC02 >= <= >

Table 2: Statistical Comparison between TeBHH 1, TeBHH 2 and their building block
components (SRIE and SRNA). Wilcoxon signed rank test is performed as a statistical test
on the objective function values obtained over 20 runs from both algorithms. Comparing
algorithm x versus y (x vs. y) ≥ (>) denotes that x (y) performs slightly (significantly)
better than the compared algorithm (within a confidence interval of 95%), while ≤ (<)
indicates vice versa.

28

Instance T
e
B
H
H

1

T
e
B
H
H

2

T
im

e
(s
e
c
.)

B
e
st

K
n
o
w
n

T
im

e
B
e
s
tK

n
o
w
n
(s
e
c
.)

BCV-A.12.1 1270 1280 41443 1294 13914
BCV-3.46.1 3282 3283 - 3280 20764
BCV-A.12.2 1858 1844 9080 1875 86400
CHILD-A2 1087 1089 8229 1095 86400
ERRVH-A 2118 2127 9175 2135 86400
ERRVH-B 3090 3095 10629 3105 86400
ERMGH-B 1217 1214 5 1355 86400
MER-A 8810 8779 22008 8814 86400
Valouxis-1 20 20 3184 20 17
Ikegami-3Shift-DATA1.1 6 8 - 3 2820
Ikegami-3Shift-DATA1.2 8 9 - 3 2820
Ikegami-3Shift-DATA1 6 3 - 2 21600
ORTEC01 285 280 - 270 69
ORTEC02 290 290 - 270 105

Table 3: Comparison between the two proposed algorithms and various well-known (hyper-
/meta-)heuristics. The second and third columns contain the best objective function values
achieved by TeBHH 1 and TeBHH 2 respectively. Fourth column gives the earliest CPU
time (seconds) in which the reported result in bold has been achieved by the corresponding
proposed algorithm. ‘-’ denotes that the maximum CPU time has been used up without
improving upon the best known result. Same quantities (minimum objective function
values and earliest time it has been achieved) are also reported for compared algorithms
in columns five and six.

instances are instance-specific and designed to solve a group of highly related
instances, such as those in the Ikegami family. Overall, the two algorithms
perform well on provided instances and produce new best known results for
some of them (the first seven instances).

Figure 5 shows the distribution of heuristics to disjoint sets hNA and hIE

throughout the 20 runs for some of the problem instances. Each run consists
of up to 27 stages and in each stage, the set of heuristics is partitioned using
tensor factorization. The histograms in Figure 5 is built by counting the num-
ber of times a heuristic is associated with the NA and IE move acceptance
methods throughout all the runs for a given instance. The histograms vary

29

from one instance to another. The difference between histograms are some-
times minor (as it is between histograms of BCV-A.12.1 and BCV-A.12.2)
and sometimes major (as is the case for the instance MER-A compared to the
rest). However, the common pattern among most of these partitions is that
the heuristic MU0 has been equally associated to both sets. Although the
framework clearly shows the tendency to assign heuristics more to the hIE

set rather than hNA, Ruin Recreate and Crossover heuristics are likelier to
be assigned to hNA compared to local search heuristics. Since the heuristics
in nurse rostering domain all deliver feasible solutions, it makes sense that
the framework tries to increase the possibility of diversification by assigning
diversifying heuristics to NA acceptance method.

During the improvement stage (Algorithm 6), the algorithm allocates a
time budget to each acceptance method. Whenever this budget is consumed,
the algorithm switches to a randomly chosen acceptance criteria. Since the
tensor analysis is likelier to assign diversifying heuristics to hNA (keeping the
intensifying heuristics in hIE), it thus performs similar to a higher level Iter-
ated Local Search (ILS) algorithm where each intensification step is followed
by a diversification one. That in turn results in continuous improvement of
the solution as is confirmed in Figure 6 for TeBHH 1 and TeBHH 2 respec-
tively.

The progress plots corresponding to TeBHH 1 and TeBHH 2 (Figure 6)
show that on many instances (particularly on BCV-A.12.1, BCV-A.12.2 and
ERMGH-B) both algorithm are rarely stuck in local optima. This is a good
behaviour showing that given longer run times (similar to the experiments in
(Chan et al., 2012)) there is a high likelihood that the algorithms proposed
here provide better results with even lower objective function values.

6. Conclusions

Nurse rostering is a real-world NP-hard combinatorial optimisation prob-
lem. A hyper-heuristic approach which benefits from an advanced data sci-
ence technique, namely, tensor analysis is proposed in this study to tackle a
nurse rostering problem. The proposed approach embedding a tensor based
machine learning algorithm is tested on well-known benchmark problem in-
stances collected from hospitals across the world. Two different remembering
mechanisms, memory lengths are used within the learning algorithm. One
of them remembers all relevant changes from the start of the search process,
while the other one refreshes its memory every stage. The results indicate

30

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(a) BCV-A.12.1

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(b) BCV-A.12.2

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(c) ERRVH-A

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(d) ERRVH-B

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(e) MER-A

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(f) ERMGH-B

Figure 5: Distribution of heuristics in hNA and hIE partitions.

31

0 100 200 300 400 500
1350

1400

1450

1500

1550

1600

1650

1700

time (minutes)

o
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

TeBHH 1
TeBHH 2

(a) BCV-A.12.1

0 100 200 300 400 500
1900

1950

2000

2050

2100

2150

2200

2250

time (minutes)

o
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

TeBHH 1
TeBHH 2

(b) BCV-A.12.2

0 100 200 300 400 500
2140

2150

2160

2170

2180

2190

2200

2210

2220

time (minutes)

o
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

TeBHH 1
TeBHH 2

(c) ERRVH-A

0 100 200 300 400 500
3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

time (minutes)

o
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

TeBHH 1
TeBHH 2

(d) ERRVH-B

0 100 200 300 400 500
9000

9100

9200

9300

9400

9500

9600

9700

time (minutes)

o
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

TeBHH 1
TeBHH 2

(e) MER-A

0 100 200 300 400 500
1280

1290

1300

1310

1320

1330

1340

1350

1360

time (minutes)

o
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

TeBHH 1
TeBHH 2

(f) ERMGH-B

Figure 6: The progress of the objective function value on average, obtained from 20 runs
of TeBHH 1 and TeBHH 2.

32

that ‘forgetting’ is slightly more useful than remembering all. Hence, a strat-
egy that decides on the memory length adaptively would be of interest as
a future work. In this study, the tensor-based hyper-heuristic with memory
refresh generated new best solutions for four benchmark instances and a tie
on one of the benchmark instance.

The proposed approach cycles through four stages continuously and peri-
odically, employing machine learning in the first three stages to configure the
algorithm to be used in the final stage. The final stage approach itself is an
iterated multi-stage algorithm, invoking a randomly chosen hyper-heuristic
at each stage. Depending on the problem instance and even a trial, the
nature of the low level heuristics allocated to each stage (hence the move
acceptance) could change. However, experiments indicate that mutational
heuristics often can get allocated to either of the hyper-heuristics. SR-NA
allows worsening moves while SR-IE does not. Hence, the final stage compo-
nent of the tensor-based hyper-heuristic acts as a high level Iterated Local
Search algorithm (Lourenço et al., 2010), providing a neat balance between
intensification and diversification using the appropriate low level heuristics
which are determined automatically during the search process, resulting in
continuous improvement in time. The overall approach is enabled to extract
fresh knowledge periodically throughout the run time, which is an extremely
desired behavior in life-long learning. Thus, the tensor-based hyper-heuristic
proposed here can be considered in life-long learning applications.

References

Acar, E., Dunlavy, D., Kolda, T., Dec 2009. Link prediction on evolving data
using matrix and tensor factorizations. In: IEEE International Conference
on Data Mining Workshops, 2009. ICDMW ’09. pp. 262–269.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., Telgarsky, M., 2012. Tensor
decompositions for learning latent variable models. CoRR abs/1210.7559.

Anwar, K., Awadallah, M., Khader, A., Al-betar, M., 2014. Hyper-heuristic
approach for solving nurse rostering problem. In: Computational Intelli-
gence in Ensemble Learning (CIEL), 2014 IEEE Symposium on. pp. 1–6.

Asta, S., Ozcan, E., Dec 2014. An apprenticeship learning hyper-heuristic
for vehicle routing in hyflex. In: 2014 IEEE Symposium on Evolving and
Autonomous Learning Systems (EALS). pp. 65–72.

33

Asta, S., Özcan, E., 2015. A tensor-based selection hyper-heuristic for
cross-domain heuristic search. Information Sciences 299 (0), 412 – 432.
URL http://www.sciencedirect.com/science/article/pii/S0020025514011591

Asta, S., Özcan, E., Parkes, A. J., Etaner-Uyar, A. c., 2013. Generalizing
hyper-heuristics via apprenticeship learning. In: Proceedings of the 13th
European Conference on Evolutionary Computation in Combinatorial Op-
timization. EvoCOP’13. Springer-Verlag, Berlin, Heidelberg, pp. 169–178.

Azaiez, M. N., Al Sharif, S. S., Mar. 2005. A 0-1 goal programming model
for nurse scheduling. Comput. Oper. Res. 32 (3), 491–507.

Bilgin, B., Özcan, E., Korkmaz, E., 2007. An experimental study on hyper-
heuristics and exam timetabling. In: Burke, E., Rudová, H. (Eds.), Prac-
tice and Theory of Automated Timetabling VI. Vol. 3867 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 394–412.
URL http://dx.doi.org/10.1007/978-3-540-77345-0_25

Brucker, P., Burke, E., Curtois, T., Qu, R., Vanden Berghe, G., 2010. A
shift sequence based approach for nurse scheduling and a new benchmark
dataset. Journal of Heuristics 16 (4), 559–573.

Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S.,
Vázquez-Rodŕıguez, J., Gendreau, M., July 2010a. Iterated local search
vs. hyper-heuristics: Towards general-purpose search algorithms. In: 2010
IEEE Congress on Evolutionary Computation (CEC). pp. 1–8.

Burke, E. K., Curtois, T., 2014. New approaches to nurse rostering bench-
mark instances. European Journal of Operational Research 237 (1), 71–81.

Burke, E. K., Curtois, T., Post, G., Qu, R., Veltman, B., 2008. A hybrid
heuristic ordering and variable neighbourhood search for the nurse
rostering problem. European Journal of Operational Research 188 (2),
330–341.
URL http://www.sciencedirect.com/science/article/pii/S0377221707004390

Burke, E. K., Curtois, T., Qu, R., Berghe, G. V., 2010b. A scatter search
approach to the nurse rostering problem.

34

http://www.sciencedirect.com/science/article/pii/S0020025514011591
http://dx.doi.org/10.1007/978-3-540-77345-0_25
http://www.sciencedirect.com/science/article/pii/S0377221707004390

Burke, E. K., De Causmaecker, P., Berghe, G. V., Van Landeghem, H., Nov.
2004. The state of the art of nurse rostering. J. of Scheduling 7 (6), 441–
499.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.,
Qu, R., 2013. Hyper-heuristics: A survey of the state of the art. Journal
of the Operational Research Society 64 (12), 1695–1724.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J. R.,
2010c. A classification of hyper-heuristics approaches. In: Gendreau, M.,
Potvin, J.-Y. (Eds.), Handbook of Metaheuristics, 2nd Edition. Vol. 57
of International Series in Operations Research & Management Science.
Springer, Ch. 15, pp. 449–468.

Burke, E. K., Kendall, G., Soubeiga, E., 2003. A tabu-search hyperheuristic
for timetabling and rostering. Journal of Heuristics 9 (6), 451–470.

Burke, E. K., Li, J., Qu, R., 2010d. A hybrid model of integer programming
and variable neighbourhood search for highly-constrained nurse rostering
problems. European Journal of Operational Research 203 (2), 484 – 493.

Carroll, J., Chang, J.-J., 1970. Analysis of individual differences in multidi-
mensional scaling via an n-way generalization of eckart-young decomposi-
tion. Psychometrika 35 (3), 283–319.

Chan, C., Xue, F., Ip, W., Cheung, C., 2012. A hyper-heuristic inspired by
pearl hunting. In: Hamadi, Y., Schoenauer, M. (Eds.), Learning and Intel-
ligent Optimization. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 349–353.
URL http://dx.doi.org/10.1007/978-3-642-34413-8_26

Cichocki, A., Mandic, D. P., Phan, A. H., Caiafa, C. F., Zhou, G., Zhao,
Q., Lathauwer, L. D., 2014. Tensor decompositions for signal process-
ing applications from two-way to multiway component analysis. CoRR
abs/1403.4462.
URL http://arxiv.org/abs/1403.4462

Cowling, P., Kendall, G., Soubeiga, E., 2001. A parameter-free hyperheuristic
for scheduling a sales summit. In: Proceedings of the 4th Metaheuristic
International Conference, MIC 2001. pp. 127–131.

35

http://dx.doi.org/10.1007/978-3-642-34413-8_26
http://arxiv.org/abs/1403.4462

Curtois, T., 2015. Published results on employee scheduling instances.
http://www.cs.nott.ac.uk/~tec/NRP/.

Curtois, T., Ochoa, G., Hyde, M., Vázquez-Rodŕıguez, J. A., 2009. A hyflex
module for the personnel scheduling problem. Tech. rep., School of Com-
puter Science, University of Nottingham.

Glass, C. A., Knight, R. A., 2010. The nurse rostering problem: A criti-
cal appraisal of the problem structure. European Journal of Operational
Research 202 (2), 379 – 389.

Harshman, R. A., 1976. PARAFAC: Methods of three-way factor analysis
and multidimensional scaling according to the principle of proportional
profiles. Ph.D. thesis, University of California, Los Angeles, CA.

Hart, E., Sim, K., 2014. On the life-long learning capabilities of a nelli*: A
hyper-heuristic optimisation system. In: Bartz-Beielstein, T., Branke, J.,
Filipi, B., Smith, J. (Eds.), Parallel Problem Solving from Nature PPSN
XIII. Vol. 8672 of Lecture Notes in Computer Science. Springer Interna-
tional Publishing, pp. 282–291.
URL http://dx.doi.org/10.1007/978-3-319-10762-2_28

Haspeslagh, S., De Causmaecker, P., Schaerf, A., Stlevik, M., 2014. The
first international nurse rostering competition 2010. Annals of Operations
Research 218 (1), 221–236.
URL http://dx.doi.org/10.1007/s10479-012-1062-0

Karp, R., 1972. Reducibility among combinatorial problems. In: Miller, R.,
Thatcher, J., Bohlinger, J. (Eds.), Complexity of Computer Computations.
The IBM Research Symposia Series. Springer US, pp. 85–103.
URL http://dx.doi.org/10.1007/978-1-4684-2001-2_9

Kim, T.-K., Cipolla, R., Aug. 2009. Canonical correlation analysis of video
volume tensors for action categorization and detection. IEEE Trans. Pat-
tern Anal. Mach. Intell. 31 (8), 1415–1428.

Kolda, T. G., Bader, B. W., Aug. 2009. Tensor decompositions and applica-
tions. SIAM Rev. 51 (3), 455–500.

Krausz, B., Bauckhage, C., 2010. Action recognition in videos using nonneg-
ative tensor factorization. In: ICPR. IEEE, pp. 1763–1766.

36

http://www.cs.nott.ac.uk/~tec/NRP/
http://dx.doi.org/10.1007/978-3-319-10762-2_28
http://dx.doi.org/10.1007/s10479-012-1062-0
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

Lathauwer, L. D., Moor, B. D., Vandewalle, J., Mar. 2000. A multilinear
singular value decomposition. SIAM J. Matrix Anal. Appl. 21 (4), 1253–
1278.

Loudni, S., Boizumault, P., 2008. Combining vns with constraint program-
ming for solving anytime optimization problems. European Journal of Op-
erational Research 191 (3), 705 – 735.

Lourenço, H. R., Martin, O. C., Stützle, T., 2010. Iterated local search:
Framework and applications. In: Gendreau, M., Potvin, J.-Y. (Eds.),
Handbook of Metaheuristics. Vol. 146 of International Series in Opera-
tions Research & Management Science. Springer US, pp. 363–397.

Lü, Z., Hao, J.-K., 2012. Adaptive neighborhood search for nurse rostering.
European Journal of Operational Research 218 (3), 865 – 876.
URL http://www.sciencedirect.com/science/article/pii/S0377221711010939

Métivier, J.-P., Boizumault, P., Loudni, S., 2009. Solving nurse rostering
problems using soft global constraints. In: Gent, I. (Ed.), Principles and
Practice of Constraint Programming - CP 2009. Vol. 5732 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 73–87.

Nareyek, A., 2004. Choosing search heuristics by non-stationary reinforce-
ment learning. In: Resende, M. G. C., de Sousa, J. P., Viana, A. (Eds.),
Metaheuristics. Kluwer Academic Publishers, Norwell, MA, USA, pp. 523–
544.
URL http://dl.acm.org/citation.cfm?id=982409.982435

Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J., Walker, J., Gen-
dreau, M., Kendall, G., McCollum, B., Parkes, A., Petrovic, S., Burke, E.,
2012. Hyflex: A benchmark framework for cross-domain heuristic search.
In: Hao, J.-K., Middendorf, M. (Eds.), European Conference on Evolu-
tionary Computation in Combinatorial Optimisation, EvoCOP ’12. Vol.
7245 of LNCS. Springer, Heidelberg, pp. 136–147.

Pillay, N., Rae, C., 2012. A survey of hyper-heuristics for the nurse roster-
ing problem. In: Proceedings of the 2012 ORSSA (Operations Research
Society of South Africa) Annual Conference. pp. 115–122.

Rae, C., Pillay, N., 2014. Investigation into an evolutionary algorithm hyper-
heuristic for the nurse rostering problem. In: PATAT ’14 Proceedings of the

37

http://www.sciencedirect.com/science/article/pii/S0377221711010939
http://dl.acm.org/citation.cfm?id=982409.982435

10th International Conference on the Practice and Theory of Automated
Timetabling. pp. 527–532.

Shashua, A., Hazan, T., 2005. Non-negative tensor factorization with appli-
cations to statistics and computer vision. In: ICML. pp. 792–799.

Silver, D., Yang, Q., Li, L., 2013. Lifelong machine learning systems: Beyond
learning algorithms. In: AAAI Spring Symposium Series. pp. 49–55.
URL https://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5802/5977

Sim, K., Hart, E., 2014. An improved immune inspired hyper-heuristic for
combinatorial optimisation problems. In: Proceedings of the 2014 Confer-
ence on Genetic and Evolutionary Computation. GECCO ’14. ACM, New
York, NY, USA, pp. 121–128.
URL http://doi.acm.org/10.1145/2576768.2598241

Solos, I. P., Tassopoulos, I. X., Beligiannis, G. N., 2013. A generic two-phase
stochastic variable neighborhood approach for effectively solving the nurse
rostering problem. Algorithms 6 (2), 278–308.

Tucker, L. R., 1966c. Some mathematical notes on three-mode factor analysis.
Psychometrika 31, 279–311.

Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., Housos, E., 2012. A
systematic two phase approach for the nurse rostering problem. European
Journal of Operational Research 219 (2), 425 – 433.
URL http://www.sciencedirect.com/science/article/pii/S0377221711011362

Vasilescu, M. A. O., Terzopoulos, D., 2002. Multilinear analysis of image
ensembles: Tensorfaces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen,
P. (Eds.), ECCV (1). Vol. 2350 of Lecture Notes in Computer Science.
Springer, pp. 447–460.

Wang, D., Zhou, J., He, K., Liu, C., Xia, J., Oct 2009. Using tucker de-
composition to compress color images. In: 2nd International Congress on
Image and Signal Processing, 2009. CISP ’09. pp. 1–5.

Xue, F., Chan, C., Ip, W., Cheung, C., July 2010. Towards a learning-
based heuristic searching reform scheme. In: 24th European Conference
on Operational Research (EURO XXIV). pp. 262–269.

38

https://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5802/5977
http://doi.acm.org/10.1145/2576768.2598241
http://www.sciencedirect.com/science/article/pii/S0377221711011362

Zou, B., Li, C., Tan, L., Chen, H., 2015. Gputensor: Efficient tensor
factorization for context-aware recommendations. Information Sciences
299 (0), 159 – 177.
URL http://www.sciencedirect.com/science/article/pii/S0020025514011414

39

http://www.sciencedirect.com/science/article/pii/S0020025514011414

	Introduction
	Nurse Rostering
	Problem Definition
	Related Work

	Tensor Analysis
	CP Factorization

	Proposed Approach
	Tensor Analysis for Dynamic Low Level Heuristic Partitioning
	Parameter Control via Tensor Analysis
	Improvement Stage

	Experimental Results
	Experimental Design
	Selecting The Best Performing Parameter Setting
	Comparative Study

	Conclusions

